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Abstract

Previous graph-based approaches in Aspect-
based Sentiment Analysis(ABSA) have demon-
strated impressive performance by utilizing
graph neural networks and attention mecha-
nisms to learn structures of static dependency
trees and dynamic latent trees. However, in-
corporating both semantic and syntactic infor-
mation simultaneously within complex global
structures can introduce irrelevant contexts and
syntactic dependencies during the process of
graph structure learning, potentially resulting
in inaccurate predictions. In order to address
the issues above, we propose S2GSL, incorpo-
rating Segment to Syntactic enhanced Graph
Structure Learning for ABSA. Specifically,
S2GSL is featured with a segment-aware se-
mantic graph learning and a syntax-based latent
graph learning enabling the removal of irrele-
vant contexts and dependencies, respectively.
We further propose a self-adaptive aggregation
network that facilitates the fusion of two graph
learning branches, thereby achieving comple-
mentarity across diverse structures. Experimen-
tal results on four benchmarks demonstrate the
effectiveness of our framework.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is a fine-
grained sentiment analysis task that aims to rec-
ognize the sentiment polarities of multiple aspects
within a given sentence. For example, in the sen-
tence "The falafel was rather overcooked and dried
but the chicken was fine," the sentiment polarity of
the aspect words "falafel" and "chicken" is recog-
nized as negative and positive, respectively. The
ABSA task presents a notable challenge in accu-
rately recognizing the sentiment polarity of specific
aspect words, particularly when they are influenced
by other aspect words with contrasting polarities
within the given context.
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Figure 1: The attention weight of the aspect word "at-
mosphere" in relation to other words in the sentence."×"
refers to noise information for "atmosphere".
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Figure 2: Dependency tree of an example sentence.

Leading graph-based approaches tackle ABSA
tasks by learning either prior static structures and
learnable dynamic semantic structures via graph
neural networks and attention mechanisms. For in-
stance, (Chen et al., 2020) proposed combining ex-
ternal syntactic dependency tree and implicit graph
to generate aspect-specific representations using
GCN; (Li et al., 2021) proposed to construct a
SemGCN module and a SynGCN module using an
attention mechanism and a syntactic dependency
tree.

Although promising results were reported, we
observe that existing graph structure learning ap-
proaches are still prone to incorrect predictions
with hard samples containing multiple aspect
words. Existing solutions introduce a heavy struc-
ture learning process leading to the following two
main limitations: (i) Approaches reliant on atten-
tion mechanism are vulnerable to irrelevant context,
potentially resulting in misalignment or weak link-
ing. As shown in Figure 1, for the aspect word
"atmosphere", except for the clause "The atmo-
sphere is unheralded", the other parts are redundant

13366



for judging sentiment polarity, i.e., semantic noise.
Negatively influenced by irrelevant context, this re-
sults in only weak linking to "atmosphere" and the
corresponding opinion word "unheralded". (ii) The
global structure of the dependency tree for parsing
complex long sentences cannot avoid containing ir-
relevant dependency information for polarity judg-
ment. As shown in Figure 2, the "conj" relation
connecting "unheralded" and "terrible" is the syn-
tactic noise for the aspect “atmosphere". Thus, the
key to tackling these limitations is efficiently divid-
ing a complex sentence into multiple local clauses
in the graph structure learning process.

In this paper, we propose S2GSL, incorporating
Segment to Syntactic enhanced Graph Structure
Learning for ABSA. To minimize the negative im-
pact of irrelevant structures, S2GSL introduces con-
stituent trees to decompose the complex structure
of the input sentences. To illustrate the role of con-
stituent trees, Figure 3 presents a constituent tree
and its third-layer segment matrix. This segment
matrix can divide a sentence into three semantically
complete paragraphs, which help to facilitate the
alignment between each aspect and its correspond-
ing opinion and filter out the contextual information
unrelated to the respective paragraph. Specifically,
we devise a segment-aware semantic graph(SeSG)
branch by using a supervised dynamic local at-
tention on the constituent tree, to learn the local
semantic structure of each aspect. Sharing the
same idea with leading graph-based approaches,
S2GSL has also been designed with a syntax-based
latent graph(SyLG) branch that utilizes syntactic
dependency labels to enhance the latent tree con-
struction. The difference from past work is that
we introduce an attention-based learning mecha-
nism in SyLG that effectively eliminates irrelevant
dependency structures. Finally, the Self-adaptive
Aggregation Network will fuse the SeSG branch
and SyLG branch by cross-attention aggregation
mechanism, which considers the complementarity
across diverse structures. Our proposed S2GSL
framework makes the following contributions:

• In contrast to leading approaches in complex
graph structure learning for ABSA, our pro-
posed SeSG branch introduces constituent
trees to decompose the global structure learn-
ing into multiple localized substructure learn-
ing processes.

• In order to reduce dependence on prior struc-
tures, our proposed SyLG branch introduces
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Figure 3: A segment matrix at the third layer of the
sample sentence constituent tree divides the sentence
into three semantically complete paragraphs.

a learnable method to incorporate syntactic
dependencies into latent tree construction.

• Within the two graph learning branch, we pro-
pose a Self-adaptive Aggregation Network to
facilitate interactions and foster complemen-
tary across diverse structures.

• We conduct extensive experiments to study the
effectiveness of S2GSL. Experiments on four
benchmarks demonstrate S2GSL outperforms
the baselines. Additionally, the source code
and preprocessed datasets used in our work
are provided on GitHub1.

2 Proposed S2GSL

The overall architecture of S2GSL is shown in Fig-
ure 4 which is mainly composed of four modules:
Context Encoding Module, Segment-aware Seman-
tic Graph Learning(SeSG), Syntax-based Latent
Graph Learning(SyLG), and Self-adaptive Aggre-
gation Module. Next, components of S2GSL will
be introduced separately in the rest of the sections.

2.1 Context Encoding Module

Given a sentence of n words s = {w1, w2, . . . ,
wγ+1 . . . , wγ+m . . . , wn} , where the aspect a =
{wγ+1, . . . , wγ+m}, we use the pre-trained lan-
guage model BERT (Devlin et al., 2019) as sen-
tence encoder to extract contextual representations.
For the BERT encoder, we follow BERT-SPC
(Song et al., 2019) to construct a BERT-based se-
quence x = ([CLS] s [SEP] a [SEP]), if there are
multiple aspects in the sentence, we would con-
struct multiple inputs in the format of x. Then
the output representation Hc = {hc1, h

c
2, . . . , h

c
n} ∈

1https://github.com/ouy7han/S2GSL
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Figure 4: The overall architecture of S2GSL, which is composed primarily of SeSG, SyLG, and Self-adaptive
Aggregation Modules.

Rn×d is obtained, where d denotes the dimension
of the representation and the c denotes "context".

2.2 Segment-aware Semantic Graph Learning
Since aspects are vulnerable to irrelevant context,
inspired by recent work(Nguyen et al., 2020; Shang
et al., 2021), we use an end-to-end trainable soft
masking dynamic local attention mechanism to con-
struct a SeSG branch aiming to align each aspect
and its corresponding opinion.

Attention Segment Masking Matrix We first
generate the word-level attention segments for each
sentence by training left and right boundary soft
masking matrices ϕ̄l, ϕ̄r ∈ Rn×n, the formulations
are calculated as below:

ϕ̄l = Softmax

(
QWQ

L (KWK
L )T√

d
⊙ M̂

)
(1)

ϕ̄r = Softmax

(
QWQ

R (KWK
R )T√

d
⊙ M̂T

)
(2)

M̂ij =

{
1, i ≥ j

−∞, i < j
(3)

where Q=K=Hc,
⊙

is the element-wise prod-
uct,and WQ

L ,WK
L ,WQ

R ,WK
R ∈ Rd×d are trainable

parameters. Notably, a mask matrix M̂ is intro-
duced to ensure that the left boundary position lp
and the right boundary position rp generated at
position i satisfy 0 ≤ lp ≤ i ≤ rp ≤ N .

The attention segment masking matrix Ms can
be obtained by compositing the left and right

boundary soft masking matrices ϕ̄l and ϕ̄r :

Ms = (ϕ̄lLN )⊙ (ϕ̄rL
T
N ) (4)

where LN ∈ {0, 1}n×n refers to the upper-
triangular matrix.

Then we combine the attention segment masking
matrix Ms with the multi-head attention matrices to
enable the model to more focus on the semantically
relevant contextual information around each word:

ASeS = Softmax

(
QWQ(KWK)T√

d
⊙Ms

)

(5)
where WQ, WK are the trainable parameters,
ASeS is a multi-head attention matrix with the num-
ber of l, where l corresponds to the number of lay-
ers in the constituent tree.

Supervised Constraint In the absence of su-
pervised signal, dynamic local attention may not
be able to effectively comprehend the semantically
complete segment information around each word,
so we further introduce segment-supervised signal
to facilitate the learning of dynamic local attention.
Specifically, we use the binary cross-entropy loss
to represent the distinction between the attention
matrix ASeS and the segment-supervised signal
Y seg:

Lseg = BCE(σ(ASeS), Y seg) (6)

Y seg
ij =

{
1, Sij = 1
0, else

(7)
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where σ represents the sigmoid function, Sij = 1
indicates the i-th word and the j-th word belong
to the same segment, Y seg refers to the segment-
supervised signal at each layer of the constituent
tree.

To effectively learn the representation of each
word, we utilize graph convolutional network (Kipf
and Welling, 2017) to extract the segment-aware se-
mantic features HSeS = { hSeS1 , hSeS2 , . . . , hSeSn },
which is formulated as below:

HSeS
l = σ(ASeSWlH

SeS
l−1 + bl) (8)

where HSeS
l represents the l-th GCN output,

HSeS
0 = Hc is the initial input, σ denotes a non-

linear activation function, and Wl and bl are the
trainable parameters.

2.3 Syntax-based Latent Graph Learning
Sharing the same idea with past work(Tang et al.,
2022), we also adopt syntactic dependency labels
to enhance the latent tree construct. The difference
from the past work is that we introduce an attention
mechanism in the latent tree to effectively eliminate
irrelevant dependency structures and construct a
SyLG module.

Syntactically Enhanced Weight Matrix To
leverage dependency label information, we first use
an off-the-shelf toolkit to obtain dependency infor-
mation, then we utilize this information to generate
a dependency type matrix R = {ri,j}n×n, where
ri,j represents the types of dependency between
xi and xj (Tian et al., 2021). Subsequently, we
embed each dependency type ri,j into the vector
eij ∈ R1×dr, and finally obtain the relational adja-
cency matrix MR = {eij |1 ≤ i ≤ n, 1 ≤ j ≤ n},
where eij refers to the embedding vector of depen-
dency type between the i-th word and the j-th word.
If wi and wj are not connected, we assign a "0"
embedding vector to eij .

In order to induce a syntax-based latent tree, we
need to generate a syntactically enhanced weight
matrix. Specifically, we first use multi-head self-
attention mechanism to compute a weight matrix
Aa. Then, we transform the relation adjacency
matrix MR into a syntactic relation weight matrix
Ar through a linear transformation, which has the
same number of heads as Aa. Finally, the syntac-
tically enhanced weight matrix Ā can be obtained
by summing Aa and Ar:

Ak
a = softmax

(
QWQ × (KWK)T√

d

)
(9)

Ar = (W T
RMR + bR) (10)

Ā = softmax (Ar +Aa) (11)

where Ak
a is the attention score matrix of the k-th

head, WR ∈ Rdr×Nhead is the weight matrix for
the linear transformation.

Syntax-based Latent Tree Construction Con-
sidering Ā as the initial weight matrix, we follow
(Zhou et al., 2021) to generate a syntax-based latent
tree. We firstly define a variant of the Laplacian
matrix for the syntax-based latent tree:

L̄ij =

{
Φi +

∑n
i′=1 Āi′j if i = j

−Āij otherwise
(12)

where Φi = exp(Wrh
c
i+br) is the non-normalized

score that the i-th node is selected as the root
node, L̄ can be used to simplify the computation
of weight sums. Therefore, the marginal proba-
bility ASyL

ij of the syntax-based latent tree can be
computed using L̄ij :

ASyL
ij = (1− δ1,j) Āij

[
L̄−1

]
jj

− (1− δi,1) Āij

[
L̄−1

]
ji

(13)

where δ is Kronecker delta, ASyL can be regarded
as the adjacency matrix of the syntax-based latent
tree.

We employ a root constraint strategy (Zhou et al.,
2021) to direct the root node towards the aspect
word:

Lr = −
N∑

i=1

(tilogP
r
i ) + (1− ti)log (1− P r

i )

(14)
where P r

i = Φi[L̄
−1]i1 denotes the probability of

the i-th word being the root node, and ti ∈ {0, 1}
indicates whether the i-th word is an aspect word.

Similar to the SeSG, we utilize graph convolu-
tional network to extract the syntax-based latent
Graph features HSyL = { hSyL1 , hSyL2 , . . . , hSyLn },
which is formulated as below:

HSyL
l = σ(ASyLWlH

SyL
l−1 + bl) (15)

where HSyL
l denotes the l-th layer of GCN output,

HSyL
0 = Hc is the initial input, Wl and bl are the

trainable parameters.

2.4 Self-adaptive Aggregation Module
Considering the complementarity between SeSG
and SyLG, we design a self-adaptive aggregation
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Figure 5: The overall architecture of Self-adaptive Ag-
gregation Module.

module, as shown in Figure 5, to realize their inter-
action. Specifically, this module consists of three
streams, with two of them extended from the tradi-
tional Transformer (Vaswani et al., 2017). These
two streams can combine information from SeSG
and SyLG and ultimately obtain semantic-guided
syntax representations HSemG and syntax-guided
semantic representations HSynG:

OSem = LN(MH(Q = HSeS ,K = V

= HSyL) +HSeS)
(16)

HSemG = LN(FFN(OSem) +OSem) (17)

OSyn = LN(MH(Q = HSyL,K = V

= HSeS) +HSyL)
(18)

HSynG = LN(FFN(OSyn) +OSyn) (19)

where HSemG, HSynG ∈ Rn×d, MH(·) denotes
multi-head attention, LN(·) refers to layer normal-
ization, and FFN(·) represents the feed-forward
neural network.

To avoid bias towards specific module informa-
tion, we introduce an additional channel to balance
the information between SeSG and SyLG. The spe-
cific approach is as follows:

HCom = FFN(Concat([HSeS , HSyL])) (20)

where HCom ∈ Rn×d, Concat(·) represents the
concatenation function.

Considering the different roles of the various
module outputs, we assign different weights to
these outputs to allow the model to more focus on
the important module. Technically, given the input
features X = [X1, X2, X3]. The weight of each
module is calculated by the following equation:

ai = ReLU(W TXi + b) (21)

αi =
exp(ai)∑3
j=1 exp(aj)

(22)

where X1 = HSemG, X2 = HSynG, X3 =
HCom, Wl and bl are the trainable parameters.The
final output feature HF is generated as follows:

HF = Concat([α1H
SemG, α2H

SynG, α3H
Com])

(23)
where HF ∈ Rn×d3 , with d3 = 3d.

2.5 Training
We use average pooling at the final aspect nodes of
HF to obtain the aspect representation Ha. Then,
the sentiment probability distribution y(s,a) is calcu-
lated using a linear layer with a softmax function:

y(s,a) = softmax(W pHa + bp) (24)

where (s,a) represents the sentence-aspect pair.
Our training objective is to minimize the following
objective function:

L(Θ) = LC + λ1Lseg + λ2Lr (25)

where Θ denotes all trainable parameters of the
model, λ1 and λ2 are hyper-parameters, and LC is
the standard cross-entropy loss function:

LC = −
∑

(s,a)∈D

∑

c∈C
log y(s,a) (26)

where D contains all sentence-aspect pairs and C
is the collection of different sentiment polarities.

3 Experiments

3.1 Datasets
We conduct experiments on four public datasets.
The Restaurant and Laptop reviews are from Se-
mEval 2014 Task 4 (Pontiki et al., 2014). The Twit-
ter dataset is a collection of tweets (Dong et al.,
2014). The MAMS dataset is consisted of sen-
tences with multiple aspects(Jiang et al., 2019).
Each aspect in the sentence is labeled with one of
the three sentiment polarities: positive, neutral, and
negative. The statistics for the four datasets are
shown in Table 1.

Dataset
#Positive #Negative #Neutral

Train Test Train Test Train Test

Laptop 976 337 851 128 455 167

Restaurant 2164 727 807 196 637 196

Twitter 1507 172 1528 169 3016 336

MAMS 3380 400 2764 329 5042 607

Table 1: Statistics for the four experimental datasets.
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Model
Laptop Restaurant Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

RAM (Chen et al., 2017) 74.49 71.35 80.23 70.80 69.36 67.30 -

MGAN (Fan et al., 2018) 75.39 72.47 81.25 71.94 72.54 70.81 -

R-GAT (Wang et al., 2020) 78.21 74.07 86.60 81.35 76.15 74.88 84.52 83.74

KumaGCN (Chen et al., 2020) 81.98 78.81 86.43 80.30 77.89 77.03 -

ACLT (Zhou et al., 2021) 79.68 75.83 85.71 78.44 75.48 74.51 -

T-GCN (Tian et al., 2021) 80.88 77.03 86.16 79.95 76.45 75.25 83.38 82.77

DualGCN (Li et al., 2021) 81.80 78.10 87.13 81.16 77.40 76.02 -

SSEGCN (Zhang et al., 2022) 81.01 77.96 87.31 81.09 77.40 76.02 -

dotGCN (Chen et al., 2022) 81.03 78.10 86.16 80.49 78.11 77.00 84.95 84.44

MGFN (Tang et al., 2022) 81.83 78.26 87.31 82.37 78.29 77.27 -

TF-BERT(dec) (Zhang et al., 2023) 81.49 78.30 86.95 81.43 77.84 76.23 -

S2GSL(Ours) 82.46 79.07 87.31 82.84 77.84 77.11 85.17 84.74

Table 2: The main experimental results on four public datasets. The best are in bold, and second-best are underlined.

Model
Laptop Restaurant Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

S2GSL(Ours) 82.46 79.07 87.31 82.84 77.84 77.11 85.17 84.74

w/o SyLG 80.41 77.39 86.50 80.22 75.92 74.87 83.71 83.23

w/o SeSG 79.46 76.33 86.10 79.66 76.51 75.23 83.42 82.76

w/o Self-Adaptive Aggregation 80.88 77.07 86.32 80.08 76.07 75.54 83.60 83.05

Table 3: Experimental results of ablation study.

3.2 Implementation Details

The Stanford parser2 (Manning et al., 2014) is used
to obtain syntactic dependencies. Specifically, we
use CRF constituency parser (Zhang et al., 2020)
to obtain the constituent tree. We use the bert-base-
uncase3 model as our context encoder. The model
training is conducted using the Adam optimizer
with a learning rate of 2× 10−5 and L2 regulariza-
tion of 10−5. The GCN layers of SeSG and SyLG
are set to 3. Our model is trained in 20 epochs with
a batch size of 16. The hyper-parameters λ1 and
λ2 for the four datasets are (0.1,0.5), (0.1,0.45),
(0.35,0.3) and (0.4,0.75). All experiments are con-
ducted on an NVIDIA 3090 GPU. The model with
the highest accuracy or F1 score among all evalua-
tion results is selected as the final model.

3.3 Baselines

We compare our S2GSL with some mainstream
and lasted models in ABSA, including Attention-
based methods: RAM (Chen et al., 2017), MGAN
(Fan et al., 2018). Syntactic-based methods: R-
GAT(Wang et al., 2020),T-GCN(Tian et al., 2021).
Latent-graph methods: ACLT (Zhou et al., 2021),
dotGCN (Chen et al., 2022). Multi-graph com-

2https://stanfordnlp.github.io/CoreNLP/
3https://github.com/huggingface/transformers

bined methods: KumaGCN (Chen et al., 2020),
DualGCN (Li et al., 2021), SSEGCN(Zhang et al.,
2022) MGFN (Tang et al., 2022). Other method:
TF-BERT (Zhang et al., 2023).

3.4 Overall Performance

All baseline results on four datasets are shown in
Table 2, we can find that our S2GSL outperforms
all baselines on Laptop, Restaurant, and MAMS
datasets. We got the second best on the Twit-
ter dataset, reaching comparable with MGFN. We
guess it is because the sentence structure of Twit-
ter dataset is more complex than the other three
datasets, basically samples containing only single
aspect words, which cannot reflect the advantages
of S2GSL. In contrast, the other three datasets, lap-
top, restaurant, and MAMS contain samples of
multiple aspect words. The effect enhancement in
Laptop, Restaurant, and MAMS effectively sup-
ports that S2GSL gets better sentiment recogni-
tion in the case of having multiple aspect words.
Additionally, we conduct a parameter comparison
between S2GSL and the GCN-based baseline meth-
ods. Notably, the number of parameters in S2GSL
is comparable (detailed results can be found in A.2).
These results demonstrate that S2GSL exhibits su-
perior performance while incurring the same com-
putational overhead.
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3.5 Ablation Study

We conduct ablation experiments to further inves-
tigate the effects of different modules, shown in
Table 3. Excluding the syntax-based latent graph
learning (w/o SyLG) results in a decrease in the
model’s performance, which demonstrates the im-
portance of the ability to adaptively capture syn-
tactic relationships between words. We remove
the segment-aware semantic graph learning mod-
ule (w/o SeSG). Compared to the Twitter dataset,
the performance of the Restaurant, Laptop and
MAMS datasets decreases significantly, which is
due to the fact that the sentence structures on
these three datasets are more formal and each sen-
tence can be constructed with multiple subordinate
clauses. w/o Self-Adaptive Aggregation refers to
the SyLG and SeSG modules cannot interact with
each other, leading to a drop in performance on all
four datasets. The study reveals that both SyLG and
SeSG branches are crucial for handling complex
sentences in all datasets, as removing either com-
ponent leads to a noticeable drop in performance.
However, compared to the other three datasets, the
performance of the SeSG module on the Twitter
dataset is not particularly significant, since each
sentence on Twitter contains only one aspect word.
This difference underscores the adaptability and ef-
fectiveness of S2GSL in varying complexity levels
across datasets.

4 Discuss and Analysis

4.1 Effect of Dynamic Local Attention

To demonstrate the effectiveness of supervised dy-
namic local attention, we visualize the attention
weight of all aspects in a sentence, as shown in
Figure 6. We can find that in the model without the
constraints of segment-supervised signal (S2GSL
w/o Lseg), the aspect "food" incorrectly assigns a
higher attention weight to the opinion "great" of
"waitstaff". In contrast, attention weights of each

The        appetizers are         ok         but        the         service is          slow

det COP

nsubj

cc det

root

cop

conj

nsubj

(a) Dependency tree of an example sentence. Respective as-
pects and opinions are connected through the "nsubj" label.

0.182
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0.173
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(b) The weight change of each aspect word assigned to the
corresponding opinion.

Figure 7: Effect of syntactic dependency label.
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Figure 8: Effects of different fusion strategies.

aspect word constrained by the supervised signals
are concentrated in its semantically coherent seg-
ment and each aspect assigns a higher attention
weight to its corresponding opinion, which helps
avoid the influence of noisy information.

4.2 Effect of Syntactic Dependency Label
To investigate the validity of syntactic dependency
label information, we analyzed the weight change
of each aspect word assigned to the corresponding
opinion word in the latent tree. Figure 7(b) shows
the weight changes of the aspect words "appetiz-
ers" and "service" assigned to the corresponding
opinion "ok" and "slow". As can be seen from the
figure, their respective weights have increased by
0.061 and 0.055. This is because in most cases,
each aspect is connected to its corresponding opin-
ion through the same syntactic dependency label,
such as the "nsubj" label in Figure 7(a). The above
analysis indicates that dependency labels can better
capture the relationship between aspects and their
corresponding opinions.

4.3 Effects of different fusion strategies
To validate the effectiveness of our proposed self-
adaptive aggregation module, we compare it with
several typical information fusion strategies: "con-
cat", "sum" and "gate". As shown in Figure 8, we
can find that "gate" outperforms better than "con-
cat" and "sum" on all datasets. Furthermore, "con-
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Model
Laptop14 Restaurant14

F1 F1

5-shot ICL (Han et al., 2023) 76.76 81.85

Prompt-setting 1 75.62 79.48

Prompt-setting 2 77.02 81.38

Prompt-setting 3 77.91 82.14

S2GSL(Ours) 79.09 82.84

Table 4: The results obtained using ChatGPT and
S2GSL.

cat" performs better than "sum" on the laptop and
restaurant, while "sum" performs better on Twitter.
These results provide evidence that direct fusion
strategies (e.g., concat and sum) are sub-optimal. In
contrast, our proposed fusion module achieved the
best performance on all datasets, which proves that
our fusion module adaptively fuses the respective
information in a multi-stream manner, which can
fully utilize the complementarities between each
stream.

4.4 Experiments With ChatGPT

ChatGPT (OpenAI, 2023a), powered by GPT-3.5
and GPT-4, can achieve significant zero-shot and
few-shot in-context learning (ICL) (Brown et al.,
2020b) performance on unseen tasks, even without
any parameter updates.

In this section, we investigate the performance
of ChatGPT on ABSA tasks and its ability for fine-
grained understanding of segmental context. We
experimented with 3 different prompts and their
settings as detailed in A.1. We also compared our
results with (Han et al., 2023), who investigated the
performance of ChatGPT on various information
extraction tasks, including ABSA. All results are
shown in table 4. From the experiment, we find that
when we prompt ChatGPT with some instructions
(single aspect and multi-aspect sentences) can bet-
ter improve the performance, but its best results are
still not as good as our model. This situation sug-
gests that ChatGPT possesses the ability to under-
stand fine-grained segmental information to some
extent. Perhaps there are ways to better harness this
ability, such as incorporating constituent trees and
dynamic local attention mechanisms as described
in this paper (refer A.1 for details).

4.5 Impact of Constituent Tree Layer Number

To investigate the impact of different layer numbers
of the constituent tree, we evaluate the performance
of the model with 2 to 5 constituent tree layers on

three different datasets. As shown in Figure 9, the
best performance of the model is achieved when
the number of layers of the constituent tree is 4.
When the layer numbers of the constituent tree are
lower than 4, the information from the constituent
tree cannot fully cover the entire sentence, resulting
in the model not being able to fully learn the com-
plete segment information of a sentence. When the
layer numbers are greater than 4, the model will
repetitively learn redundant segment information,
resulting in a decrease in model performance.

4.6 Case Study

We conduct a case study with a few examples,
shown in Table 5. The first sentence only has one
aspect word, so all models can easily determine
the sentiment polarity of the aspect correctly. For
the second comparative type of sentence, there is
a certain syntactic dependency between the aspect
"hamburger with special sauce" and the aspect "big
mac", and the SeSG, which lacks syntactic infor-
mation, cannot handle this type of sentence well.
The last cases contain multiple aspects and opin-
ions. DualGCN and SyLG, which lack segment
structure awareness, cannot focus on local infor-
mation around aspects, resulting in incorrect judg-
ments. Our S2GSL correctly predicts all samples,
indicating that it effectively considers the comple-
mentarity between segment structures and syntax
correlations of a sentence.

5 Related Work

With the rapid development of ABSA, current re-
search can be broadly divided into three main cat-
egories attention-based methods, syntactic-based
methods, and multi-graph combined methods.

Attention-based methods Recently, various at-
tention mechanisms have been proposed to implic-
itly construct the semantic relationships between
aspects and their context. (Wang et al., 2016; Tang
et al., 2016; Ma et al., 2017; Chen et al., 2017; Gu
et al., 2018; Fan et al., 2018; Hu et al., 2019; Tan
et al., 2019). For instance, (Wang et al., 2016) pro-
posed an attention-based Long Short-Term Mem-
ory (LSTM) network for aspect-based sentiment
classification. (Ma et al., 2017) proposed an inter-
active attention network that can model the con-
nection between the target aspect and the context
simultaneously. (Hu et al., 2019) propose orthogo-
nal regularization and sparse regularization so that
the attention weights of multiple aspects can focus
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Sentences DualGCN SyLG SeSG S2GSL
1. Much more reasonably [priced]p too! (P✓) (P✓) (P✓) (P✓)
2. New [hambuger with special sauce]p is ok - at least better
than [big mac]n!

(P✓,O×) (P✓,N✓) (P✓,P×) (P✓,N✓)

3. Perfectly al dente [pasta]p, not drowned in [sauce]o - -
generous [portions]p.

(P✓,N×,P✓) (P✓,P×,P✓) (P✓,O✓,P✓) (P✓,O✓,P✓)

Table 5: Case study experimental results of four different models.The aspect words are included in [], and p, n, and
o represent the true "positive", "negative", and "neutral" sentiment polarities.
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Figure 9: Effect of the number of constituent tree layers.

on different parts of a sentence.
Syntactic-based methods Several studies have

explicitly used syntactic knowledge to explic-
itly build connections between aspects and opin-
ions.(Dong et al., 2014; Zhang et al., 2019; Sun
et al., 2019; Huang and Carley, 2019; Zheng et al.,
2020; Wang et al., 2020; Zhou et al., 2021). (Wang
et al., 2020) reshape the conventional dependency
tree with manual rules so that the root node of the
dependency tree points to the aspect word. (Zhou
et al., 2021) constructed a task-oriented latent tree
in an end-to-end fashion.

Multi-graph combined methods With the rapid
growth of Graph Convolutional Neural Networks,
some studies have explored the combination of
different types of graphs for ABSA. For example,
(Chen et al., 2020) used a gating mechanism to
combine a dependency graph and a latent graph to
generate task-oriented representations. (Li et al.,
2021) constructed two graph convolutional neu-
ral networks using dependency tree and attention
mechanism. (Tang et al., 2022) by constructing
a latent graph and a semantic graph to effectively
capture the interaction between aspects and distant
opinions. (Liang et al., 2022) proposes to simul-
taneously utilize constituent tree and dependency
tree of a sentence to model the sentiment relations
between each aspect and its context.

However, these methods have primarily relied on
the global graph structure learning process, which
tends to introduce irrelevant contextual information
and syntactic dependency unrelated to specific as-
pects. Our proposed method of using two graph
branches can effectively align each aspect word
with its corresponding opinion word.

6 Conclusion

In this paper, we propose an S2GSL model to tackle
global structures that will introduce irrelevant con-
texts and syntactic dependencies during the process
of graph structure learning. We propose a SeSG
branch that decomposes the ABSA complex graph
structure learning problem into multiple local sub-
structure learning processes by utilizing constituent
trees. Moreover, we propose a SyLG branch, a
more learnable method to introduce syntactic de-
pendencies into latent tree construction. Finally,
we devise a Self-adaptive Aggregation Network to
realize the interaction between two graph branches,
achieving complementarity across diverse struc-
tures. Experiments on four benchmarks demon-
strate S2GSL outperforms the baselines.

Limitations

S2GSL framework constructs different branches
for syntactic and semantic structures which can-
not encompass diverse structures in a unified graph
modeling process. Therefore, the S2GSL frame-
work further devises an adaptive aggregation to
fuse diverse structural information.
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A Appendix

A.1 Experiments With ChatGPT
The rise of large language models (LLMs) such
as GPT-3 (Brown et al., 2020a), PaLM (Chowd-
hery et al., 2022), Llama (Touvron et al., 2023),
etc, has greatly facilitated the rapid development
of natural language processing (NLP). ChatGPT
(OpenAI, 2023a), powered by GPT-3.5 and GPT-
4, can achieve significant zero-shot and few-shot
in-context learning (ICL) (Brown et al., 2020b)
performance on unseen tasks, even without any
parameter updates.

In this section, we conducted exhaustive experi-
ments to investigate the performance of ChatGPT
on ABSA tasks and its ability for fine-grained un-
derstanding of segmental context.

Experiment setting : The version of ChatGPT
we utilized in the experiment is gpt-3.5-turbo. To
avoid variations in ChatGPT-generated outputs, the
temperature parameter was set to 0. For the num-
ber of response words, the max tokens parameter
was set to 512. We experimented with 3 different
prompts and their respective settings as shown in
Figure10. We take the laptop dataset as example to
explain our prompt settings:

• Prompt-setting 1: Zero-shot. In this prompt
setting, we have only given definition: "Rec-
ognize the sentiment polarity for the given
aspect term in the given review. Answer from
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the options [ “positive”, “negative”, “neutral”
] without any explanation.", then we sent a test
review and all aspect words in this review to
ChatGPT, and ChatGPT will give the answer.

• Prompt-setting 2: 5-Shot ICL with single
aspect short sentences. The given definition
is same as setting 1. What differs from setting
1 is that we randomly selected 5 single-aspect
word sentences from the training set as exam-
ples to better leverage ChatGPT’s In-Context
Learning capability. Sequentially, we provide
a test review and all aspect words, asking Chat-
GPT to output the sentiment polarity for each
aspect word.

• Prompt-setting 3: 5-Shot ICL with multiple
aspects long sentences. What differs from
setting 2 is that the examples chosen from the
training set are all multiple aspects long sen-
tences. The purpose of doing this is to explore
whether ChatGPT possesses the ability to un-
derstand fine-grained segmental context and
the strength of this ability.

Result analysis : The results using ChatGPT
and our model are shown in table6. Firstly, from
the result of prompt-setting 2, we can infer that
using a few examples to guide ChatGPT can effec-
tively improve its performance, demonstrating the
powerful In-Context-Learning capability of Chat-
GPT. Secondly, we compared our experimental re-
sults with (Han et al., 2023), who investigated the
performance of ChatGPT on various information
extraction tasks, including ABSA. We found that
our model has better performance. Finally, from
prompt-setting 3, we can observe that providing
ChatGPT with long examples containing multiple
aspect words can lead to better performance. How-
ever, the results still fall short compared to our
model. This situation suggests that ChatGPT pos-
sesses the ability to understand fine-grained seg-
mental information to some extent. Perhaps there
are ways to better harness this ability, such as in-
corporating constituent trees and dynamic local
attention mechanisms as described in this paper.

A.2 Paramer Comparison
We conduct a parameter comparison between
S2GSL and other GCN-based baseline methods,
shown in table 7. Notably, the number of parame-
ters in S2GSL is comparable while the two graph
learning branch design of S2GSL does lead to an

increase in the parameters, it’s important to note
that this does not result in an unnecessary escala-
tion in computational costs when compared with
the baselines.

Model
Laptop14 Restaurant14

F1 F1

5-shot ICL (Han et al., 2023) 76.76 81.85

Prompt-setting 1 75.62 79.48

Prompt-setting 2 77.02 81.38

Prompt-setting 3 77.91 82.14

S2GSL(Ours) 79.09 82.84

Table 6: The results obtained using ChatGPT and
S2GSL. All three prompt settings are described in the
text.

Model Parameter Count
Laptop Restaurant Twitter

F1 F1 F1

ACLT(2021) 110M 75.83 78.44 74.51

T-GCN(2021) 113M 77.03 79.95 75.25

DualGCN(2021) 111M 78.10 81.16 76.02

SSEGCN(2022) 110M 77.96 81.09 76.02

S2GSL 114M 79.07 82.84 77.11

Table 7: Paramer comparison with other GCN-based
baseline methods.
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Prompt settings of Laptop dataset

Prompt 1:  Zero-shot

“ Recognize the sentiment polarity for the given aspect term in the given review. Answer from the options [ “positive”, 

“negative”, “neutral” ] without any explanation.

Review:

“ The keyboard has a wonderful nature feel. ”

Aspect:

[ keyboard ]

Answer:

Prompt 2:  5-Shot In-Context-Learning(ICL) with single aspect short sentences

“ Recognize the sentiment polarity for the given aspect term in the given review. Answer from the options [ “positive”, 

“negative”, “neutral” ] without any explanation.

Examples:

“ Only good thing is the graphics quality. ”

Aspect:

[ graphics quality ]

Answer:

positive

. . . . . . ( Four other single aspect short sentences )

Review:

“ The keyboard has a wonderful nature feel. ”

Aspect:

[ keyboard ]

Answer:

Prompt 3:  5-Shot ICL with multiple aspects long sentences

“ Recognize the sentiment polarity for the given aspect term in the given review. Answer from the options [ “positive”, 

“negative”, “neutral” ] without any explanation.

Examples:

“ The video chat is the only thing that is iffy about it but im sure once they unpdate the next version on the mackbook 

book the quality of it will be better.  ”

Aspect1: [ video chat ]          Answer: negative

Aspect2: [ quality ]                 Answer: positive

. . . . . . ( Four other multiple aspects long sentences )

Review:

“ The keyboard has a wonderful nature feel. ”

Aspect:

[ keyboard ]

Answer:

Figure 10: Prompt settings of laptop dataset.
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