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Abstract

This paper presents a novel Chunking-Free In-
Context (CFIC) retrieval approach, specifically
tailored for Retrieval-Augmented Generation
(RAG) systems. Traditional RAG systems of-
ten struggle with grounding responses using
precise evidence text due to the challenges of
processing lengthy documents and filtering out
irrelevant content. Commonly employed solu-
tions, such as document chunking and adapt-
ing language models to handle longer contexts,
have their limitations. These methods either
disrupt the semantic coherence of the text or
fail to effectively address the issues of noise
and inaccuracy in evidence retrieval.

CFIC addresses these challenges by circum-
venting the conventional chunking process. It
utilizes the encoded hidden states of docu-
ments for in-context retrieval, employing auto-
aggressive decoding to accurately identify the
specific evidence text required for user queries,
eliminating the need for chunking. CFIC is
further enhanced by incorporating two decod-
ing strategies, namely Constrained Sentence
Prefix Decoding and Skip Decoding. These
strategies not only improve the efficiency of
the retrieval process but also ensure that the fi-
delity of the generated grounding text evidence
is maintained. Our evaluations of CFIC on a
range of open QA datasets demonstrate its su-
periority in retrieving relevant and accurate evi-
dence, offering a significant improvement over
traditional methods. By doing away with the
need for document chunking, CFIC presents
a more streamlined, effective, and efficient re-
trieval solution, making it a valuable advance-
ment in the field of RAG systems. The codes
will be released in this repository.

1 Introduction

Recently, retrieval-augmented generation (RAG)
has marked a significant advancement in the field

∗∗Corresponding author.

of natural language processing (NLP). This tech-
nique has demonstrated remarkable effectiveness
in reducing hallucination in text generation (Ji
et al., 2023), particularly in knowledge-intensive
tasks like open-domain question answering (Wang
et al., 2019; Lewis et al., 2020; Shuster et al., 2021;
Komeili et al., 2022). An RAG system typically
consists of two components: the retriever and the
generator. Given an input query, the retriever first
identifies relevant evidence text, upon which the
generator then generates the answer.

The generator’s output should be grounded by
precise evidence text obtained by the retriever.
However, this poses challenges for most retrieval
systems, as they often retrieve lengthy documents
such as web pages. In practice, we only need spe-
cific grounding text from these documents to help
answer user queries. Using lengthy documents di-
rectly in the RAG system presents two difficulties.
First, generation models may struggle to handle the
extensive length of these documents. Second, irrel-
evant or distracting content within the documents
can lead the model astray from the main query,
resulting in inaccurate response generation (Gao
et al., 2024).

To address this issue, common approaches in-
volve chunking documents into smaller passages
and employing strategies like reranking for rele-
vance (Nogueira and Cho, 2020; Mao et al., 2021;
Gao et al., 2024), or selecting passages based on
other measurements (Asai et al., 2022; Jiang et al.,
2023). However, the chunking process is often sub-
optimal, as determining the granularity of the pas-
sage chunking is challenging. Improper chunking
can disrupt the semantics and result in incomplete
and incoherent retrieved information (Dong et al.,
2023). Another method involves adapting large lan-
guage models (LLMs) to process longer contexts
by training them on long contexts or implementing
a sliding context window (Ratner et al., 2022; Chen
et al., 2023). While these methods enable LLMs
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Figure 1: Comparison of Chunking-Based and
Chunking-Free Methods. The left panel illustrates the
chunking-based method, involving chunking a lengthy
document into smaller passages followed by refinement
through passage ranking. The right panel depicts the
chunking-free method proposed in this paper, where
grounding text is directly decoded by LLMs without the
need for document chunking.

to handle longer texts, they do not fully address
the issue of noise in the lengthy documents and
cannot output the grounding text for the generated
response (Kaddour et al., 2023).

In this paper, we propose a Chunking-Free In-
Context (CFIC) retrieval approach aimed at helping
the RAG system mitigate information bias intro-
duced by document chunking and irrelevant noisy
text. Specifically, given an input query and a
long grounding document, instead of refining the
long documents with a chunking-based method, we
leverage the document’s encoded hidden states to
perform Chunking-free In-Context Retrieval. It cir-
cumvents the traditional chunking process, allow-
ing the retrieval system to auto-aggressively decode
and pinpoint the precise evidence text to ground the
response generation to a query. Figure 1 shows the
comparison between the chunking-based method
and the chunking-free method for grounding text
retrieval. The chunking-free method demonstrates
a superior ability to identify optimal evidence text,
as it considers the entire document for a compre-
hensive perspective.

Concretely, CFIC involves encoding a document
into transformer hidden states. When a user query
is input, CFIC continues to encode the query along-
side task instructions following the hidden states,
subsequently generating grounding text. In prac-
tice, we can cache the documents’ hidden states to
further reduce computation1. Given the expectation

1In a single-sided transformer model, the forward side is
auto-regressive; once an output token’s hidden state is com-
puted, it remains unchanged for subsequent forward steps,
allowing us to use these encoded states as a cache.

for CFIC to process lengthy documents, it becomes
imperative to adapt CFIC for handling long con-
texts. Considering the trade-off between efficiency
and effectiveness, in this paper, we adapt CFIC to
accommodate a 32k context, utilizing LLAMA2-
7B-chat as the foundational model. To achieve
this, we construct a dataset containing long doc-
ument, user query and precise text evidence to
training the foundation model via Supervised Fine-
Tuning (SFT).

Despite its promise, CFIC encounters two ma-
jor challenges: (1) Efficiency issue: the auto-
aggressive generation process involves executing
attention interactions for generating each new to-
ken, a procedure that becomes particularly time-
consuming with longer contexts due to the man-
agement of exponentially larger attention matrices.
This process requires substantial computational re-
sources (Kaplan et al., 2020), and (2) Faithfulness
issue: it is challenging to ensure the generation
model’s output remains faithful to the original in-
put context, given its open-ended decision bound-
ary (Li et al., 2022b). To address these, we propose
two decoding strategies that accelerate inference
and ensure that generated text evidence originates
from the corpus. These include: (1) utilizing sen-
tence prefixes as decoding candidates to shift the
model’s decision boundary from open-ended to
document-dependent generation and (2) upon lo-
cating the appropriate sentence prefix, bypassing
the decoding of intermediate tokens and directly
selecting sentence ends with the highest likelihood
of the [eos] token, thereby terminating the genera-
tion. Furthermore, to retrieve multiple text spans as
evidence, we sample several sentence prefixes with
the best likelihood as candidates and rank them by
sequence likelihood. By this means, CFIC not only
enhances the relevance and accuracy of retrieved
evidence text but also preserves the semantic in-
tegrity of the information, effectively addressing
major drawbacks of current retrieval systems.

We tested CFIF on the LongBench tasks (Bai
et al., 2023) including: (1) single-document ques-
tion answering with datasets like NarrativeQA,
Qasper, MulitfieldQA, and (2) multi-document QA
with datasets like Musqus and HotpotQA. The ex-
periment results verify the effectiveness of our
method. In summary, our contributions are as fol-
lows: (1) we propose a chunking-free in-context
retrieval method dedicated to the RAG system, aid-
ing in locating precise text evidence to answer user
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queries; (2) we propose the CFIC model of which
the ability to find text evidence from long context
is enhanced via Supervised Fine-Tuning with self-
constructed dataset; (3) we design two decoding
strategies that significantly improve the efficiency
and accuracy of the CFIC’s decoding process.

2 Related Work

The RAG framework, initially introduced in the
works of Lewis et al. (2020), aimed to enhance lan-
guage models’ capacity for generating knowledge-
based responses(Chung et al., 2022; Yang et al.,
2023). Subsequent research primarily focus on re-
fining the RAG’s two core components. On the
retrieval front, significant strides have been made
towards more efficient and precise retrieval meth-
ods (Khandelwal et al., 2019; Nishikawa et al.,
2022; Mao et al., 2023; Guo et al., 2022; Kang
et al., 2023). For example, the arise of Dense Pas-
sage Retrieval significantly surpasses traditional
sparse dense (Karpukhin et al., 2020). Parallel
efforts on the generation side have concentrated
on fine-tuning generative models to better harmo-
nize with retrieved information, a notable example
being the work of Izacard and Grave (2021b) in
optimizing external knowledge utilization (Izacard
and Grave, 2021a; Chung et al., 2022; Kamalloo
et al., 2023; Qian et al., 2023b).

Nevertheless, RAG encounters specific chal-
lenges, especially in managing lengthy and com-
plex retrieved documents. Researchers, including
Mao et al. (2021), have developed chunking and
reranking techniques to enhance passage relevance.
Furthermore, Guu et al. (2020) introduced methods
for jointly learning retriever and generator models,
thereby improving the coherence and relevance of
outputs. Addressing the issue of lengthy contexts
in RAG has involved either refining contexts (Li
et al., 2022a; Jiang et al., 2023) or adapting gener-
ation models to handle extended contexts (Ratner
et al., 2022; Chen et al., 2023).

Recent advancements in RAG predominantly
incorporate large-scale language models (LLMs),
such as GPT-3 and GPT-4, to augment language
processing capabilities (Brown et al., 2020; Ope-
nAI, 2023; Google, 2023). The integration of
LLMs has paved the way for more contextually
rich and nuanced generation, especially in aligning
generated responses with human preferences (Ram
et al., 2023; Zhou et al., 2024; Liu et al., 2023b).
In RAG systems employing LLMs, the accuracy

of retrieved textual evidence is crucial for reducing
hallucinations and incorporating external knowl-
edge (Zhang et al., 2023b; Yao et al., 2023; Bang
et al., 2023; Qian et al., 2023a). However, the
challenge of processing long and noisy contexts
persists (Liu et al., 2023a; Li et al., 2022a; Xu
et al., 2023). This paper introduces a chunking-
free in-context retrieval approach that leverages
transformer hidden states to generate grounding
text evidence, treating evidence retrieval as a gen-
erative process. This method represents a more
streamlined and efficient retrieval solution for RAG
systems, marking a significant advancement over
previous retrieval methodologies.

3 Method

3.1 Preliminary
In a RAG system, the system takes a user query q as
input, retrieves text evidence A from a text corpus
C using a retriever θ(·) as external knowledge, and
utilizes a generation model ϕ(·) to produce the final
response T . This pipeline can be formalized as:

A = θ(q, C), T = ϕ(q,A). (1)

The retriever θ(·) can be either a standalone re-
triever (e.g., DPR (Karpukhin et al., 2020)) or a
commercial search engine (e.g., Google), and the
generation model ϕ(·) is usually a trained LM.
Based on Eq. (1), the quality of the generated text
T is bounded by the accuracy of the evidence A,
emphasizing the importance of accurately finding
the accurate text evidence.

In practice, most RAG systems’ retrievers can-
not accurately find exact text evidences, but only
retrieve lengthy documents (e.g., web pages or pre-
indexed articles) that contain the evidences. As
mentioned in Section 1, such lengthy documents
might bias the generated content. Thus, given
the retrieved evidence A, we usually select a few
useful text spans, called supporting text evidence
P = {p1, · · · , pk} ∈ A, to support the answer
generation for the input query q in a RAG system.

We define the process of finding supporting pas-
sages as a mapping function f(·):

P = {p1, · · · , pk} = f(A). (2)

The mapping function f(·) can take various forms,
such as chunking the text evidence A and priori-
tizing relevant chunks through re-ranking. In this
paper, we define the mapping function f(·) as a
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Figure 2: Overview of the proposed method: CFIC. The middle part shows the Constrained Sentence Prefix
Decoding strategy which ensures the generated text prefixes originate from the input article. The right part shows
the Skip Decoding strategy which bypasses decoding the intermediate tokens while terminating generation at the
position with the best likelihood of [eos] token. Gray tokens in the figure are bypassed during generation.

generation process in which we directly generate
the supporting text evidence P conditioned on the
transformer hidden-states h = Trans(A) of the
lengthy document:

P = f(A) ∼ Generator(P|h, q). (3)

Compared to regular auto-regressive decoding,
the above process is characterized by the fact that
the generation target P contains text sourced from
A. This means that once we determine the decod-
ing prefix, we can skip the intermediate tokens and
directly find the terminating position by comput-
ing the probability of inserting [eos] token. This
greatly improves inference efficiency while ensur-
ing that the generated text accurately represents
the source text. Additionally, a single supporting
passage may not always be sufficient for question
answering. Therefore, we can obtain multiple sen-
tence prefixes as top-k candidates using sampling
decoding. In this paper, our proposed model CFIC
applies these ideas to generate the top-k supporting
text evidence P , which are further discussed in the
following sections.

3.2 The Proposed Model: CFIC
Figure 2 presents an overview of our proposed
model, CFIC. The process begins with CFIC re-
ceiving a user query. It then retrieves a long arti-
cle as grounding evidence through a search engine
(e.g., Google). Subsequently, CFIC combines the
long document and the query into an input prompt,
following the format outlined in Table 2. This in-
put prompt is encoded into hidden states. Based on
these hidden states, CFIC first identifies the top-k
sentence prefix candidates using the Constrained
Sentence Prefix Decoding strategy. This strategy

ranks the sentence prefixes considering the gener-
ation score (accumulated token log probabilities
normalized by token length) of each sentence pre-
fix. CFIC then skips the decoding of intermedi-
ate tokens and terminates the generation process
by locating the [eos] token position with the high-
est likelihood (Skip Decoding). Consequently, we
obtain k grounding evidence texts that can aid in
supporting downstream tasks. It is important to
note that this paper primarily focuses on pinpoint-
ing precise grounding text evidence within the long
document, rather than on the retrieval of the long
document. Therefore, we assess our CFIC and all
baseline models using the LongBech benchmark,
which provides pre-prepared long documents. In
the subsequent sections, we will introduce the two
proposed decoding strategies and then discuss the
training and inference processes of CFIC.

Constrained Sentence Prefix Decoding Nor-
mally, the generation process of an auto-aggressive
decoding model is as:

wn ∼
|w|∏

n=1

p(wn ∈ V|w<n,h), (4)

where h represents the hidden states of previous
tokens. The current token, denoted by wn, is se-
lected from the entire vocabulary V of the gener-
ation model. In the case of CFIC, the generation
target P consists of text spans that originate di-
rectly from the source context. Consequently, it is
possible to define a more constrained generation
space to ensure the faithfulness of the text produced.
Specifically, we suggest employing the prefix of
each sentence within the source context as genera-
tion constraints. This approach guarantees that the
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text generated by CFIC can be traced back to the
input context. Thus, Eq. (4) can be modified as:

wn ∼
|w|∏

n=1

p(wn ∈ V̄|w<n,h), (5)

where V̄ denotes a token set contains each sen-
tence’s prefix.

The sentence prefix serves as an position iden-
tifier to facilitate the identification of the starting
point of a supporting passage within the source
context. To select the top-k candidate passages,
it is essential to differentiate k distinct sentence
prefixes. This is achieved through the constrained
top-k sampling decoding, a process that entails
selecting the next token wn from the top-k most
likely tokens V̄k ∈ V̄ based on the token’s probabil-
ity, p(wn|w<n). The sampling process terminate
once the generated sentence prefixes are capable
of uniquely identifying positions in the source con-
text. The number of decoding steps required until
termination is denoted by β, resulting in up to kβ

prefix candidates after β steps. We denote the gen-
erated sentence prefix by b. Subsequently, these
prefix candidates are ranked according to the prefix
sequence score s, which calculates the normalized
accumulated log probability of tokens as follows:

s =
1

|w|

|w|∑

n=1

log p(wn|w<n). (6)

Finally, the k sentence prefixes with the highest
scores are selected.

Referring to Figure 2 for illustration, the decod-
ing process initiates by sampling k tokens, such as
[Bach, In, ..., Throughout], to represent the first set
of candidate tokens. Given that multiple sentences
in the long article begin with the tokens [Bach, In],
the decoding of subsequent tokens is necessary.
For sentences that start with "Bach", the decoding
terminates at step β = 2. And for sentences begin-
ning with "In", the decoding ends at step β = 3.
Following this, we retain k = 2 sentence prefixes
to identify the supporting passages.

Skip Decoding Similarly, since the generation
target originates exactly from the source text, once
the generation prefix is determined, we can use the
generated prefix as a position identifier to locate
the original text in the source text. Subsequently,
we can bypass decoding the intermediate tokens
and directly compute the token probability p([eos])

for the [eos] token after each sentence following
the generated prefix. We select the position with
the highest probability as the termination point.
In practice, we calculate p[eos] after each sentence
within a predefined token distance d. Formally,
given a generated prefix b, we determine the termi-
nation position as follows:

w∗
[eos] = argmax

l∈L
p[eos](b⊕ l), |l| ≤ d, (7)

where l represents the token sequence following
the prefix b with a maximum length of d.

Training and Inference As previously discussed,
we define the task of identifying supporting pas-
sages from a long source text for grounding down-
stream tasks as evidence generation. To this end,
it is crucial to enhance the generation model with
the capability to pinpoint precise textual evidence
within extensive texts. In this study, CFIC achieves
this through Supervised Fine-Tuning (SFT). We
employ a prompt, formed using the pair (q,A) as
outlined in Table 2, as the input, and use the text
evidence P as the target for generation. The model
is trained using the negative log-likelihood (NLL)
loss function:

L(q,A,P∗) = −
|P∗|∑

n=1

log p(P∗
n|P∗

<n, q,A). (8)

The training dataset is introduced in Section 4.1.
During the inference stage, given the input

(q,A), we apply Constrained Sentence Prefix De-
coding and Skip Decoding strategies to extract k
supporting passages. Should these passages exhibit
overlapping sections, we amalgamate such inter-
secting passages into a single cohesive passage.
Subsequently, these collated supporting passages
are utilized to ground downstream tasks.

4 Experiment

4.1 Datasets and Evaluation Metric
As mentioned above, we train the CFIC model us-
ing data that contains (q,A,P) triplets via SFT.
Most current datasets cannot provide such data
format. Thus, we use self-constructed SFT data
to train the CFIC model, and evaluate all base-
lines on the LongBench benchmark (Bai et al.,
2023). Specifically, to construct the SFT train-
ing data, we first collect a corpus of lengthy ar-
ticles, including Wikipedia articles, novels, and
news articles. Subsequently, we randomly select
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Dataset SFT NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue

Num of Samples 25,652 200 200 150 200 200
Ave. Length 12,248 18,409 3,619 4,559 9,151 11,214

Table 1: Statistical information of the datasets utilized in this paper, where the average length indicates the word
count, typically smaller than the BPE-tokenized token length.

Below is an article, read the article
and answer my question after the article.
Now the article begins:
{Article}
Now the article ends.
Select several sentences from the article
to answer my question.
Question: {Question}

Table 2: Prompt template in training and evaluation.

text spans from these articles and ask ChatGPT to
generate a query that can be answered by each text
span. As for evaluation, we choose five datasets
from LongBench including NarrativeQA (Kočiský
et al., 2017), Qasper (Dasigi et al., 2021), Multi-
FieldQA (Bai et al., 2023)), HotpotQA (Yang et al.,
2018) and MuSiQue (Trivedi et al., 2022). Follow-
ing the LongBench benchmark, we use F1-score as
the evaluation metric. For further details of Long-
Bench, please refer to Bai et al. (2023). We show
the statistical information of all datasets in Table 1.

4.2 Baseline Settings
In this study, we focus on in-context retrieval within
the Retrieval-Augmented Generation (RAG) sys-
tem. As such, we employ stand-alone LLMs as
generators. Specifically, we utilize Llama2-7B-
chat-4k (Touvron et al., 2023) and Vicuna-v1.5-
7B-16k (Zheng et al., 2023) as our generators. To
assess our chunking-free approach against the tradi-
tional chunking-based methods, the baseline model
settings are as follow:

Chunking-Base Method Chunking-based meth-
ods generally commence by segmenting a lengthy
document into smaller passages using heuristic
strategies, followed by reranking these passages
with a ranking model. In our research, we investi-
gate two prevalent chunking strategies: (1). Sliding
Window Chunking (SW): This strategy involves di-
viding the document into sentences and then group-
ing these sentences into passages. Each passage
is designed not to exceed a predefined maximum
length of 256 words, with a stride of one sentence.
(2). Paragraph-based Chunking (Para): Here, the

document is split by paragraph markers (e.g., \n).
We employ “bge-large-en-v1.5” (Xiao et al., 2023)
and “llm-embedder” (Zhang et al., 2023a) as the
ranking models. We utilize the SW and Para strate-
gies to divide the document into passages, which
are then reranked by the ranking models. The
highest-ranking passages are chosen as the input
context for the generators to support the QA tasks.

Chunking-Free Method For the chunking-free
models, we present the outcomes using Vicuna-
v1.5-7B-16k (Zheng et al., 2023), LongChat-
7B-32k (Li et al., 2023), and LongAlpaca-7B-
32k (Chen et al., 2023) as baseline models. These
models refine lengthy documents into concise text
evidence, which then serves as context for gener-
ator to support QA tasks. To ensure a fair com-
parison, all baseline models provide a comparable
volume of textual evidence for downstream tasks,
maintaining consistency in the number of passages
or token length. We also explore the effectiveness
of feeding full articles into generators.

4.3 Implementation Detail

To train CFIC, we employed the “LLAMA2-7B-
chat” as the foundation model for our CFIC. Dur-
ing the training, we set the batch size to 1 per
GPU and the learning rate to 1e-5. We set the
gradient accumulation step as 8 and utilized the
AdamW optimizer with an epsilon value of 1e-8.
The model’s maximum length parameter was set
to 32768. We train the model for 600 steps on 8 *
Nvidia A800 80GB GPUs. For CFIC, We set the
number of sampled sentence prefixes as k = 3 and
the maximum decoding length as d = 256 (refers
to Eq. (7)). Besides, we use a warm-up strategy to
adjust the learning rate. To save GPU memory, we
employed DeepSpeed’s Stage 2 zero optimization
to save GPU memory.

4.4 Main Results

Table 3 shows the main experiment results which
are the performance across different QA tasks using
various refined text evidence as context. From the
results we have the following findings: First, CFIC
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Llama2-7B-chat-4k Vicuna-v1.5-7B-16k
Model chunk nar qas mul hot mus nar qas mul hot mus

BGE SW 13.9 22.0 34.0 34.0 14.0 12.1 27.3 37.5 33.6 13.5
BGE Para 12.1 21.7 31.4 31.2 12.3 10.2 23.2 34.7 31.7 12.5
LLM-Embedder SW 14.1 23.2 34.3 33.8 14.6 13.2 27.4 39.1 31.6 12.6
LLM-Embedder Para 13.2 21.7 34.1 32.9 12.6 12.3 25.1 36.3 31.1 12.1

Vicuna-7B - 13.7 19.0 23.3 22.0 9.7 12.3 23.5 24.0 23.8 11.0
LongChat-7B - 12.2 19.7 29.5 27.9 9.6 11.1 21.9 32.4 30.2 9.7
LongAlpaca-7B - 12.8 19.3 26.8 28.8 10.3 11.2 21.2 25.2 27.2 10.2
CFIC-7B(Ours) - 18.3 27.7 41.2 34.0 14.7 17.5 31.0 39.8 33.8 16.2

Full Article - 18.7 19.2 36.8 32.8 9.4 19.4 26.1 38.5 25.3 9.8

Table 3: Main experiment results, which are the QA performance across various datasets, using different refined text
evidence as context. Following Bai et al. (2023), we use F1-score as the evaluation metric. The best results are in
bold and the secondary results are marked with underline.

significantly outperforms other LLMs in chunking-
free in-context retrieval tasks as CFIC is specifi-
cally optimized to select precise text evidence cru-
cial for grounding QA tasks. This underscores
the necessity and effectiveness of supervised fine-
tuning (SFT) in adpting the foundation model into
the in-context retrieval task. Second, Chunking-
based methods serve as strong baselines due to
their ability to extract passages directly from the
source context, whereas LLMs lacking SFT tend
to generate content that may not always align faith-
fully with the source material. CFIC, however,
consistently surpass all chunking-based baselines
across all datasets, indicating the potentiality of the
chunking-free in-context retrieval paradigm. Last,
Compared to using the entire article as context,
our CFIC model significantly improves the perfor-
mance of QA tasks across most datasets, except
for the NarrativeQA dataset. This improvement
evidences the critical role of identifying and utiliz-
ing the right and precise context in optimizing QA
task performance, demonstrating the CFIC model’s
efficiency in context filtering and utilization. As
for the NarrativeQA dataset, we find that Narra-
tiveQA’s precise text evidence frequently appears
at the start of lengthy articles, a location that LLMs
tend to prioritize their attention (Liu et al., 2023a).
This might explain why CFIC does not perform
as well on this dataset, given that its approach to
identifying precise evidence could inadvertently in-
troduce errors, thereby diminishing its accuracy. In
practice, however, that precise text evidence can be
located throughout the entire length of an article,
not just at the beginning.

4.5 Discussion

Ablation Study To assess the effectiveness of the
design of CFIC, we conduct an ablation study by
removing key components of the model, including:
(1). Removal of Sentence Prefix Decoding Strategy
(w/o prefix): we remove the constraint of limiting
the decoding space to sentence prefixes. Instead,
a beam search algorithm was employed to sample
short sequences (each comprising 8 tokens) based
on the input article. Subsequently, the top-k short
sequences were matched back to the input article to
identify starting prefixes. (2). Removal of Skip De-
coding (w/o skip): we dispensed with the practice
of bypassing intermediate tokens following the sen-
tence prefix decoding. The model continued to de-
code the remaining tokens up to a maximum length
of 256 tokens. (3). Removal of Both Decoding
Strategies (w/o both): the CFIC model was tasked
to decode outputs using a greedy search algorithm,
devoid of both the sentence prefix and skip decod-
ing strategies. (4). Absence of SFT (LongAlpaca-
7B): LongAlpaca-7B is a context-extended version
of LLAMA2-7B-chat. We utilized LongAlpaca-7B
as the base model, representing the variant of CFIC
without task-specific SFT.

The results of the ablation experiments are pre-
sented in Table 4. Our findings can be summarized
as follows: (1). The removal of any of the CFIC
model components resulted in a notable degrada-
tion in performance, underscoring the collective
contribution of these elements to the model’s ef-
fectiveness. (2). The most substantial decrease in
performance was observed when SFT was omit-
ted. This suggests that the vanilla LLM struggles
to accurately locate precise grounding text from
lengthy documents, despite its enhanced capability
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Llama2-7B-chat-4k
Model nar qas mul hot mus

CFIC-7B 18.3 27.7 41.2 34.0 14.7
w/o prefix 16.4 26.0 39.3 33.0 12.5
w/o skip 15.8 27.0 37.6 30.1 11.6
w/o both 13.2 20.2 37.4 30.1 9.2

LongAlpaca-7B 12.8 19.3 26.8 28.8 10.3

Full Article 18.7 19.2 36.8 32.8 9.4

Table 4: Results of the ablation Study.

for processing extended contexts. (3). Removing
either the sentence prefix decoding or the skip de-
coding strategies led to an obvious reduction in
performance. This finding verifies our hypothesis
that these decoding strategies not only curtail de-
coding computational demands but also improve
the fedelity of the generated grounding text.

Choice of Decoding Length In our CFIC model,
as defined in Eq. (7), the generation process is ter-
minated upon locating the position of the [eos]
token within a predetermined distance d. This
distance is analogous to the maximum generation
length typically set in standard text generation
tasks, which governs the length of the decoded text.
The selection of d involves a careful balance: too
small a value may lead to excessively brief output
grounding text, offering scant information for sub-
stantiating downstream tasks. Conversely, a larger
d may result in longer output texts, potentially in-
troducing additional textual noise and necessitating
increased computational resources to process the
extended sequences.

To investigate the optimal choice of decoding
length d in CFIC, we conducted experiments with
various settings of this parameter. The results of
these experiments are depicted in Figure 3. Our
findings substantiate the initial hypotheses: the per-
formance across all tasks progressively improves
and reaches its zenith at a d value of 256. Beyond
this point, performance begins to wane, suggesting
that a setting of d = 256 strikes an effective bal-
ance for these tasks. This observation aligns with
the intuition that a span of 256 tokens typically suf-
fices to encapsulate a semantically complete and
coherent unit of information.

Case Study: CFIC v.s. GPTs OpenAI’s model
APIs, including GPT-3.5 and GPT-4, serve as ro-
bust baselines in the domain of LLM. However,
they were excluded from the primary model com-
parisons in our experiments for two primary rea-
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Figure 3: The choice of Maximum Decoding Length.

sons: (1). these APIs lack of control over decoding
process resulting in the inability to manipulate their
decoding mechanisms to align with our method-
ological requirements. (2). The foundational mod-
els of GPT-3.5 and GPT-4 are characterized by
their vast parameter sizes (e.g., 175 billion param-
eters), endowing them with exceptional language
modeling capabilities, especially in handling ex-
tended contexts. However, our focus with CFIC
is on applying LLMs with comparatively smaller
parameter sizes. This approach ensures more man-
ageable computational resource requirements and
enhances model scalability.

Despite these exclusions, we conducted a com-
parative case study, the results of which are pre-
sented in Table 5. This study reveals that our CFIC-
7B model consistently provided complete and rele-
vant grounding text evidence in response to queries.
In contrast, the other models exhibited limitations:
(1). LongAlpaca-7B failed to accurately locate ap-
propriate grounding text, resulting in the generation
of information irrelevant to the downstream tasks.
(2). GPT-3.5 is able to directly respond to queries,
it did not successfully identify precise grounding
text from the original source material. (3). Al-
though GPT-4 managed to retrieve grounding text
pertinent to the query, the information provided
was incomplete, lacking the necessary comprehen-
siveness to fully support the response logically.

5 Conclusion

This study introduces a Chunking-Free In-Context
(CFIC) retrieval method for the RAG system, ad-
dressing the challenges of processing lengthy docu-
ments and refining evidence retrieval. Unlike tradi-
tional chunking-based methods that either compro-
mise textual coherence or struggle with noise and
inaccuracies, CFIC leverages auto-aggressive de-
coding to pinpoint precise evidence directly, elim-
inating the reliance on chunking. CFIC incorpo-
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Query: What hedge fund’s collapse in 1998 highlighted the need for regulation of derivatives?
Answer: Long Term Capital Management (LTCM)

CFIC-7B: In 1998, a trillion-dollar hedge fund called Long Term Capital Management (LTCM) was near collapse. Using
mathematical models to calculate debt risk, LTCM used derivatives to leverage $5 billion into more than $1 trillion. The
derivative transactions were not regulated, nor were investors able to evaluate LTCM’s exposures.

LongAlpaca-7B: The catastrophic financial events of recent months have proved them (Born and Sheila Bair) right. In 2010,
a documentary film Inside Job further alleged that derivatives regulation was ineffective from the Clinton administration on.

GPT-3.5-Turbo: The hedge fund whose collapse in 1998 highlighted the need for regulation of derivatives was Long Term
Capital Management (LTCM).

GPT-4: In 1998, a trillion-dollar hedge fund called Long Term Capital Management (LTCM) was near collapse. Using
mathematical models to calculate debt risk, LTCM used derivatives to leverage $5 billion into more than $1 trillion.

Table 5: Results of Case Study. The text colored with teal refers to the grounding evidence for the user query.

rates Constrained Sentence Prefix Decoding and
Skip Decoding strategies to further enhances re-
trieval efficiency and accuracy. Through compre-
hensive evaluations on various open QA datasets,
CFIC has demonstrated remarkable improvements
in sourcing relevant and precise evidence to ground
language models.

Limitations

This paper introduces a novel approach for
Retrieval-Augmented Generation systems through
the Chunking-Free In-Context (CFIC) retrieval
method. Despite its advancements and effective-
ness, there are certain limitations that warrant dis-
cussion.

One of the primary limitations stems from the
training data used to develop our models. The
dataset, self-constructed and annotated using Chat-
GPT, may harbor annotation biases. Such biases
could affect the model’s performance, particularly
in its ability to generalize across different types
of data or domains. While our approach excels in
tasks requiring precise text evidence, it may offer
limited assistance in scenarios demanding a high-
level understanding of context, such as summariza-
tion tasks. This limitation is due to the model’s
focused capability on specific evidence retrieval
rather than broader context comprehension.

Additionally, in this study, we have set the max-
imum length that CFIC can handle to 32k tokens.
While this threshold accommodates a wide range
of documents, it may not suffice for longer texts,
such as novels, which exceed this limit. This con-
straint is primarily dictated by the available compu-
tational resources, highlighting a need for more effi-
cient processing methods or greater computational
power to extend CFIC’s applicability to longer doc-
uments. With the increase in computational re-

sources and advancements in model acceleration
algorithms, we envision the future possibility of en-
abling CFIC to handle even longer contexts. This
could potentially extend to encoding the entire cor-
pus, facilitating corpus-level in-context retrieval for
each query.

Ethical Impact

The development of CFIC builds upon existing
Large Language Models (LLMs), which are trained
on vast, diverse text corpora. This foundation intro-
duces potential risks associated with biases inher-
ent in the original training data. These biases can
manifest in the model’s outputs, influencing the
quality and impartiality of the retrieved evidence.

Furthermore, the long documents processed by
CFIC are sourced from the web, a domain rife
with its biases. The web’s text content reflects a
wide array of perspectives, some of which may be
skewed or unrepresentative of broader viewpoints.
Given that CFIC is designed to process and retrieve
information from these documents, there is a risk
that the model might inadvertently perpetuate or
amplify these biases without the capacity to discern
or mitigate them.
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A Computational Expense

To explore the computational efficiency of our
method, we conduct experiments on two datasets.
The results, shown in the Table 6, indicate that
our decoding strategies enable CFIC to achieve a
threefold increase in inference efficiency compared
to without the decoding stategies. Furthermore, al-
though we set the maximum decoding length to 256
tokens, our analysis on the MuSiQue and Qasper
datasets reveals that the Constrained Sentence Pre-
fix Decoding strategy typically stops decoding after
an average of 2.7 and 3.1 tokens, respectively. This
is because most sentence prefixes can be distin-
guished after decoding just three tokens, prevent-
ing the need to decode the full 256 tokens until
reaching the [eos] token.

In practice, the Constrained Sentence Prefix De-
coding operates rapidly due to the minimal number
of tokens required for decoding. The Skip Decod-
ing, while more time-consuming due to its compu-
tation of the probability for the [eos] token after
each sentence via a for loop, which can be sig-
nificantly optimized with parallel computing tech-
niques. We are confident that further engineering
efforts will enhance CFIC’s inference time.

B In-Depth Evaluation with ChatGPT
and Human

We conducted additional evaluations to assess the
faithfulness and effectiveness of the generated text
evidence. We defined faithfulness as the measure of
how accurately the generated text evidence reflects
the original long documents, and effectiveness as
how well the generated text evidence supports the
query. We randomly selected 50 samples from the
test sets for two evaluation approaches. Firstly,
we tasked ChatGPT with determining the faith-
fulness of the generated text evidence to the long
documents and assessing the extent to which the
evidence supports the query (supported, partially
supported, not supported). Secondly, we had two
human annotators blindly rate the quality of text
evidence generated by different models. The re-
sults, presented below, show that BGE-SW and
CFIC-7B are highly faithful to the original doc-
uments, directly extracting text spans from them.
Notably, CFIC-7B provides more effective text ev-
idence compared to other methods, indicating its
superior performance in QA tasks.

C Choice of k in Constrained Sentence
Prefix Decoding

Regarding the optimal selection of the number of
retained distinct sentence prefixes (k) in our decod-
ing process, we explored the impact of varying k on
the F1-score and inference latency. These experi-
ments were performed on a single Tesla A800-80G
GPU with an inference batch size of 8. Our inves-
tigation, summarized in Table 8, demonstrates the
influence of k on both performance and efficiency:

(1) We observed that k = 4 represents the per-
formance peak, beyond which the effectiveness de-
clines, indicating that an increase in text evidence
beyond a certain point introduces data noise and di-
minishes returns. Considering both efficiency and
accuracy, we chose k = 3 for all experiments de-
tailed in this paper, as it offers an optimal balance.

(2) The decoding strategies significantly im-
proved efficiency. When comparing CFIC-7B with
and without decoding strategies, the average la-
tency reduction is evident, demonstrating the strate-
gies’ effectiveness in enhancing processing speed
without compromising result quality. For instance,
at k = 3, CFIC-7B achieved an average latency of
361 ms, compared to 1,065 ms for CFIC-7B with-
out decoding strategies, underscoring a substantial
improvement in inference efficiency.
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Dataset MuSiQue Qasper

Ave. Input Length (tokens) 11,214 3,619

Ave. Output Length (tokens)

CFIC-7B 233 230
CFIC-7B w/o decoding strategies 219 211
LongAlpaca-7B 189 196

Ave. Decoding Latency (ms/sample)

CFIC-7B 564 361
CFIC-7B-Constrained Sentence Prefix Decoding 124 129
CFIC-7B-Skip Decoding 366 207
CFIC-7B w/o decoding strategies 1,480 1,065
LongAlpaca-7B 1,279 1,078

Table 6: Comparison of Inference Latency on MuSiQue and Qasper datasets.

Type Supported Partially Supported Not Supported Faithfulness

by ChatGPT

BGE-SW 34% 40% 26% 98%
LongAlpaca-7B 20% 32% 48% 70%
CFIC-7B 42% 44% 14% 96%

by Human

BGE-SW 28% 46% 26% 100%
LongAlpaca-7B 10% 34% 56% 66%
CFIC-7B 40% 54% 6% 100%

Table 7: In-depth Evaluation by ChatGPT and Human.

k

Qasper 1 2 3 4 5 6

F1-Score 21.3 24.2 27.7 28.0 26.5 25.7

Ave. Latency / ms

CFIC-7B 249 302 361 413 453 519
CFIC-7B w/o decoding strategies 802 878 1,065 1,607 2,378 2,899

Table 8: Impact of varying k on F1-Score and Average Latency for Qasper dataset.
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