
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12883–12895
August 11-16, 2024 ©2024 Association for Computational Linguistics

Harder Task Needs More Experts: Dynamic Routing in MoE Models

Quzhe Huang1* , Zhenwei An2∗, Nan Zhuang2∗, Mingxu Tao1,
Chen Zhang1, Yang Jin1, Kun Xu3, Kun Xu3, Liwei Chen3,

�Songfang Huang2,�Yansong Feng1

1Peking University 2Futurise AI 3Kuaishou Technology
{huangquzhe,anzhenwei,zhuangn53}@pku.edu.cn
sfh@agibang.ai fengyansong@pku.edu.cn

Abstract

In this paper, we introduce a novel dynamic
expert selection framework for Mixture of
Experts (MoE) models, aiming to enhance com-
putational efficiency and model performance
by adjusting the number of activated experts
based on input difficulty. Unlike existing
MoE approaches that rely on fixed TopK
Routing, which activates a predetermined
number of experts regardless of the input’s
complexity, our method dynamically allocates
experts based on the confidence level in expert
selection for each input. This allows for more
efficient utilization of computational resources,
activating more experts for complex tasks
requiring advanced reasoning and fewer for
simpler tasks. Through extensive evaluations,
our dynamic routing method demonstrates
substantial improvements over Top2 Routing
across various benchmarks, achieving an aver-
age improvement of 0.7% with less than 90%
activated parameters. Further analysis shows
our model dispatches more experts to tasks
requiring complex reasoning skills, like BBH,
confirming its ability to dynamically allocate
computational resources in alignment with the
input’s complexity. Our findings also highlight
a variation in the number of experts needed
across different layers of the transformer
model, offering insights into the potential
for designing heterogeneous MoE frame-
works. The code and models are available at
https://github.com/ZhenweiAn/Dynamic_MoE.

1 Introduction

To effectively increase the model’s parameter size,
researchers have proposed the Mixture of Experts
(MoE) framework (Shazeer et al., 2017; Lepikhin
et al., 2021). By setting up multiple experts to
enhance the model’s overall capacity, MoE mod-
els selectively activate a subset of parameters for
use, thereby achieving more efficient parameter

* Equal Contribution. � Songfang Huang and Yan-
song Feng are the corresponding authors.

utilization. With the same number of activated pa-
rameters, MoE models substantially outperform
dense models in performance, achieving excep-
tional results in tasks such as QA and machine
translation (Kim et al., 2021).

Most MoE frameworks adopt a routing mecha-
nism that dispatches a fixed number of experts for
every input (Fedus et al., 2022; Du et al., 2022).
The most famous method is TopK Routing (Shazeer
et al., 2017), which initially calculates the proba-
bility of each expert being suited to the current
input and then activates the TopK suitable experts.
Empirically, previous works (Lepikhin et al., 2021)
activate two experts per token, as activating more
experts offers limited improvements in model per-
formance but substantially increases training over-
head. Most of the subsequent studies (Zoph et al.,
2022; Lewis et al., 2021) can be seen as variants
of TopK Routing, where different constraints are
introduced to ensure that the number of tokens
processed by different experts is as balanced as
possible. Almost all these efforts activate a fixed
number of experts.

The TopK Routing, though it achieves good per-
formance on downstream tasks, overlooks the dif-
ferent difficulties of inputs. Compared with sim-
pler input, the more challenging input, e.g., tasks
that require complex reasoning or logic inference,
might need more parameters to solve. Dispatching
experts equally across inputs could lead to com-
putational waste on simpler tasks and insufficient
computational resources for more difficult ones.

To fully leverage the potential of MoE models,
we propose a dynamic routing mechanism that ad-
justs the number of required experts based on the
confidence level in the expert selection. When the
model deems the currently selected experts as insuf-
ficient, it activates more experts. Specifically, we
first compute a probability distribution for select-
ing experts. If the highest probability for an expert
exceeds a predefined threshold p, indicating high

12883



(a) TopK Routing (b) Dynamic Routing

Figure 1: Comparison between TopK routing mechanism and Dynamic Routing mechanism. (a) Each token selects
fixed K=2 experts with TopK Routing probabilities. (b) In Dynamic Routing mechanism, each token selects experts
with higher routing probabilities until the cumulative probability exceeds the threshold.

confidence, we activate only that one expert. Other-
wise, we progressively add additional experts until
the cumulative probability of the selected experts
exceeds the threshold p. This approach allows for
a dynamic selection of experts, with the number of
experts adjusted based on the input’s complexity.

Evaluation across multiple common benchmarks
has revealed that our method substantially outper-
forms MoE models based on TopK Routing. Com-
pared with Top2 Routing, our dynamic routing
achieves an average improvement of 0.7% with
less than 90% activated parameters. Further analy-
sis has shown that our dynamic routing mechanism
activates more experts in tasks requiring complex
reasoning like BBH (Suzgun et al., 2023), while
using fewer experts in relatively easier tasks such
as Hellaswag (Zellers et al., 2019), confirming that
our method indeed dynamically allocates experts
based on the difficulty of the input. Token-level
analysis indicates that tokens with ambiguous se-
mantics are more challenging for the model, typi-
cally activating more experts. Another interesting
finding is that the number of experts needed varies
across different layers of the transformer. Lower
layers require more experts for combination, while
the top layer needs only one. This may relate to
the over-thinking phenomenon (Kaya et al., 2019),
which is widely observed in deep neural networks.

Our contributions can be summarized as follows:

1. We proposed a dynamic routing strategy that
can adjust the number of activated experts
based on the input difficulty.

2. We empirically validate that our proposed
method is efficient in both training and in-
ference, outperforming Top2 Routing while
activating fewer experts.

3. We observe that for MoE models, the number
of experts needed to be activated varies across
different layers. This finding could help de-
sign heterogeneous MoE frameworks.

2 Method

In this section, we first briefly introduce the MoE
model with TopK Routing strategy, which activates
a fixed number of experts for each token. As TopK
Routing ignores the varying difficulty of different
inputs and the different requirements for experts
at different layers, we propose a dynamic routing
mechanism that adjusts the number of activated
experts according to the complexity of inputs. To
avoid activating too many parameters through the
dynamic routing mechanism, we also introduce a
dynamic loss to encourage the model to activate
only the necessary experts.

2.1 TopK Routing MoE

In a Transformer model, the MoE layer is applied
independently per token and replaces the feed-
forward (FFN) layer of the transformer block (Lep-
ikhin et al., 2021). For an MoE layer with N ex-
perts, E = {e1, e2, .., eN}, an input x ∈ Rd will
be sent to the experts, where d is the hidden dimen-
sion. The output of the MoE layer is the weighted
average of the experts’:

MoE(x) =

N∑

i=1

gi(x) ∗ ei(x) (1)

where g∗(x) is computed by a routing network that
determines the contribution of each expert to the
final output. In consideration of computing effi-
ciency, a token is dispatched to limited experts.
Thus for most experts, the corresponding g∗(x) is

12884



zero, which means that the token is not dispatched
to that expert.

To obtain g∗(x), we first compute the probability
P of selecting each expert for input x:

P = Softmax(Wr · xT ) (2)

where Wr ∈ RN×d is a learnable parameter. P is
a vector of size N and Pi represents the probability
of selecting the ith expert ei to process x.

TopK Routing selects the k experts, whose prob-
abilities are the highest k in P. Then the probabili-
ties of the selected experts are normalized and the
weights of the remaining experts are set to zero, in-
dicating they are not activated. The corresponding
calculation of g∗(x) is as follows:

gi(x) =

{
Pi∑

j∈TopK(P) Pj
, i ∈ TopK(P)

0, i /∈ TopK(P)
(3)

where TopK(P) returns the indices of the high-
est k elements in P.

TopK Routing is initially proposed by (Shazeer
et al., 2017), and subsequently, numerous studies
have built upon it. The following works (Lep-
ikhin et al., 2021; Zuo et al., 2022) introduce con-
straints aimed at ensuring a more balanced work-
load among the experts during training. The core
of these works remains to select the most suitable
experts for each token under specific constraints,
based on the probability distribution P calculated
in Equation 2. And the number of experts dis-
patched for each token is fixed across all these
studies. Empirically, the value of k is set to 2, serv-
ing as a trade-off between training costs and model
capabilities.

2.2 Dynamic Routing MoE

Although the TopK Routing strategy has shown
promising performance, its assumption that an
equal number of experts should be dispatched for
each token overlooks the variability in difficulty
across different inputs. Moreover, as a fixed num-
ber of experts are activated at every layer of the
transformer, this method neglects the differences in
representations across layers, potentially requiring
a different number of experts for different layers.

To address these issues and make use of model
parameters more efficiently, we propose a dynamic
routing strategy based on model confidence. Unlike
the TopK Routing, which selects a fixed number
of experts, our method allows the model to assess

Algorithm 1 Expert Selection in Dynamic Routing

Input:
The probability of selecting each expert, P;
The threshold of confidence, p;
Expert Set, {e1, ..., eN};

Output:
The activated expert set, S;

1: sorted_indices I = sort(P, descending_order)
2: cumulative_probability = 0
3: for i in I do
4: cumulative_probability += Pi

5: S = S ∪ {ei}
6: if cumulative_probability > p then
7: Break
8: end if
9: end for

10: return S

whether the currently selected experts are sufficient.
If not, it continues to activate more experts.

Specifically, we regard that P in Equation 2 re-
flects the confidence level of input x in selecting
different experts. In other words, Pi represents how
confident the model is that the ith expert can ade-
quately handle input x. If the highest probability
in P is sufficiently large, then we may only need
to use the corresponding expert. However, if the
highest probability is not large enough, we need
to add more experts to increase the reliability of
processing x.

Algorithm 1 shows how to select activated ex-
perts in Dynamic Routing. we first sort the ele-
ments in P from highest to lowest, resulting in a
sorted indices I. Then we find the smallest set of ex-
perts S whose cumulative probability exceeds the
threshold p, where p is the threshold that controls
how confident the model should be when stopping
adding more experts. p is a hyper-parameter whose
range is from 0 to 1. The higher the p is, the more
experts will be activated.

After obtaining the set of activated experts S, the
calculation of g∗(x) in Equation 1 is:

gi(x) =

{
Pi ei ∈ S

0, ei /∈ S
(4)

2.3 Loss
Dynamic Loss There is a risk associated with our
dynamic routing mechanism: it could assign low
confidence to all experts, thereby activating a larger
number of experts to achieve better performance.

12885



Suppose P is a uniform distribution and we set the
hyper-parameter p to 0.5, then the model would
activate up to half of the experts. This goes against
the original intention of the MoE framework, which
is to scale the model with great efficiency.

To prevent dynamic routing from using too many
parameters to cheat and losing its ability to selec-
tively choose experts, we introduce a constraint on
P. We expect the routing mechanism to select a
small set of necessary experts, therefore, we aim to
minimize the entropy of the distribution P, ensur-
ing that every token can focus on as less specific
experts as possible. Our dynamic loss is designed
to encourage the routing mechanism to select the
minimal necessary set of experts, which is formal-
ized as:

Lossd = −
N∑

i=1

Pi ∗ log(Pi) (5)

Load Balance Loss MoE models typically re-
quire distributed training, where different experts
are deployed across various computing nodes. To
avoid scenarios where some nodes are fully utilized
while others are underutilized, thereby impacting
training efficiency, it is generally desirable for the
number of tokens processed by different experts
to be roughly the same. Furthermore, a previous
study (Zuo et al., 2022) has shown that evenly ac-
tivated experts in an MoE layer can lead to better
performance. To achieve balanced loading among
different experts, we have also incorporated a load-
balance loss, Lossb, which is widely used in pre-
vious works (Lepikhin et al., 2021; Fedus et al.,
2022)

Lossb = N ∗
N∑

i=1

fi ∗Qi (6)

where fi is the fraction of the tokens choosing ex-
pert ei and Qi is the fraction of the router probabil-
ity allocated for expert ei. For a sequence contain-
ing M tokens, fi and Qi are calculated as:

fi =
1

M

M∑

j=1

1{ei ∈ Sj} (7)

Qi =
1

M

M∑

j=1

P j
i (8)

where Sj is the set of activated experts for token
j, which is calculated by Equation ??, and P j is

the probability of selecting each experts for token
j, calculated by Equation 2.

Final Loss Our model is a generative model that
uses the next token generation as the training ob-
jective. We denote this loss as Losslm. Our final
loss is a combination of the language model loss,
dynamic loss, and load-balance loss:

Loss = Losslm + αLossb + βLossd (9)

where α and β are hyper-parameters to adjust the
contribution of the load balance loss and dynamic
loss, respectively. In our experiment, we set α as
1e-2 and β is set as 1e-4.

3 Experiments

3.1 Settings
3.1.1 Training data
We use RedPajama(Computer, 2023) as our train-
ing data, which is a fully open-source implementa-
tion of the LLaMA (Touvron et al., 2023a) training
dataset. RedPajama data consists of diverse sources
including the Common Crawl (CC), C4, Github,
Wikipedia, books, Arxiv, and StackExchange. In
our main experiments, we randomly sample 100B
tokens from RedPajam and use them to train all of
our models.

3.1.2 Model Settings
The model architecture follows LLaMA(Touvron
et al., 2023a). We use LLaMA2 (Touvron et al.,
2023b) tokenizer whose vocabulary size is 32,000.
The number of transformer layers is 24 and the
hidden dimension is 1024. Each MoE layer has
16 experts. Under this configuration, the dense
model has approximately 374M parameters. Each
MoE model has 3.5B total parameters. Only 374M
parameters are activated in MoE-Top1 and 581M
parameters are activated in MoE-Top2. More de-
tailed model and training settings are shown in
Appendix A.

3.1.3 Evaluation
We use opencompass1 to evaluate our model.
Specifically, we adopt a 3-shot evaluation for the
BBH dataset and a 0-shot evaluation for the rest.

3.1.4 Experiment Models
We train several variants of our architecture from
scratch using the above model settings.

1https://github.com/open-compass/OpenCompass/

12886



Dense(374M) Dense(570M) MoE-Top1 MoE-Top2 MoE-Dynamic

PIQA (Bisk et al., 2020) 64.3 65.9 67.3 68.1 68.1
Hellaswag (Zellers et al., 2019) 36.1 39.6 42.3 43.9 44.3
ARC-e (Bhakthavatsalam et al., 2021) 37.9 37.6 39.5 40.4 39.9
Commonsense QA (Talmor et al., 2019) 32.2 31.7 30.3 32.1 33.6
BBH (Suzgun et al., 2023) 22.3 22.1 23.0 23.3 25.6

Average 38.6 39.4 40.5 41.6 42.3

Table 1: Performance on downstream tasks. The best result for each task is emphasized in bold.

Dense We use dense models as our baseline. In
dense models, each transformer layer is composed
of a multi-head attention layer and a standard Feed
Forward Network. We implement two Dense mod-
els: Dense(374M) and Dense(570M) by setting the
hidden dimensions to 1024 and 1280, respectively.

MoE-Top1 / Top2 The MoE models with TopK
Routing, where K = 1 and 2 respectively. Only
language modeling loss, Losslm, and load-balance
loss Lossb are used for training. The MoE-Top1
could be seen as a re-implementation of Switch
Transformer (Fedus et al., 2022) and the MoE-Top2
is a re-implementation of Gshard(Lepikhin et al.,
2021). The activated parameters of MoE-Top1 and
MoE-Top2 are nearly the same as Dense(374M)
and Dense(570M) respectively.

MoE-Dynamic MoE-Dynamic model uses our
dynamic routing mechanism, activating a various
number of experts depending on the input token rep-
resentation. The threshold p in our routing mech-
anism is 0.4. During inference, MoE-Dynamic
model activates no more than 2 experts, which
means it uses fewer parameters than MoE-Top2.

3.2 Main Results

Table 1 shows the performance of different models
on downstream tasks. Overall, the MoE models
outperform the Dense models. Among all the MoE
variants, our proposed Dynamic MoE demonstrates
the best performance, achieving at least a 0.7%
higher score on average compared to other models.

We first compare models with an equal number
of activated parameters. It is observed that MoE-
Top1 outperforms the Dense model with 374M
parameters by an average of 1.9% score, and MoE-
Top2 surpasses the Dense model with 570M param-
eters by 2.2% score. This indicates that, with the
same number of activated parameters, MoE models
substantially outshine their Dense counterparts.

When comparing models with the same archi-
tecture, we generally observe a positive correlation

between model performance and the number of ac-
tivated parameters. For Dense models, the model
with 570M parameters outperforms the model with
374M parameters by 0.8% score on average. Sim-
ilarly, among models using the MoE architecture
with a fixed number of activated experts, MoE-
Top2 reaches an average of 41.6% score and out-
performs MoE-Top1 by 1.1% score. In fact, MoE-
Top2 performs better than MoE-Top1 in all sub-
tasks, demonstrating the rule of more parameters
leading to better performance.

However, our proposed Dynamic Routing mech-
anism breaks this rule. As shown in Table 3, the
average number of activated experts in the MoE-
Dynamic during evaluation phases is less than two,
meaning it activates fewer parameters than MoE-
Top2. Yet, as shown in Table 1, compared to MoE-
Top2, MoE-Dynamic achieves comparable or even
better performance on nearly all the tasks and out-
performs MoE-Top2 by 0.7% score on average.
MoE-Dynamic obtains better performance, indi-
cating that our dynamic routing mechanism can
allocate the necessary experts for different inputs
more reasonably and make use of parameters more
efficiently.

4 Efficiency of Dynamic Routing

The greatest advantage of MoE models is their abil-
ity to efficiently scale to larger models. The TopK
Routing mechanism controls the number of param-
eters used by the entire model by activating a fixed
number of experts. In contrast, our proposed dy-
namic routing mechanism removes the limitation
of a fixed number of experts. Naturally, there may
be concerns that our method might assign too many
experts to each token. Another possible concern is
that our dynamic routing mechanism might cost too
many resources and make the whole model ineffi-
cient. To address these concerns, we demonstrate
the efficiency of the dynamic routing mechanism
from both training and inference perspectives.

12887



20 40 60 80 100
Training Tokens(Billion)

1.8

2.0

2.2

2.4
Ac

tiv
at

ed
 E

xp
er

ts

Figure 2: Average activated experts number across train-
ing procedure.

4.1 Efficient Training
We sample 1000 pieces of text from different
sources within Redpajama and calculate the av-
erage number of experts activated per token at dif-
ferent stages of training. Figure 2 shows the change
in the average number of activated experts through-
out the training process. As shown in the figure, we
can observe that the number of experts activated
per token decreases over time. In the early stages
of training, dynamic routing assigns more experts
to each token, but after 60B tokens, the average
number of activated experts is already less than 2.
Table 2 displays the number of experts activated
by MoE-Dynamic at the end of the 100B training.
It could be seen that across all data sources, the
number of experts activated by MoE-Dynamic is
less than 2.

Recently, the amount of tokens used in training
for large language models far exceeds 100B, for in-
stance, Pythia uses 300B tokens, and Llama2 uses
2T tokens. If we continue to train on an even larger
scale corpus, the average number of parameters
used throughout the training process is guaranteed
to be lower than that of Top2-Routing.

Sources Ratio Activated Experts

CC 67% 1.82
C4 15% 1.84
Github 4.5% 1.88
Wiki 4.5% 1.78
Book 4.5% 1.73
Arxiv 2.5% 1.90
StackExchange 2% 1.79

Avg 100% 1.82

Table 2: Average activated experts in different parts of
the training corpus.

4.2 Efficient Inference
To further explore whether our proposed method
is efficient in inference, we calculate the average

Sources Activated Experts

PIQA 1.72
Winogrande 1.76
ARC-e 1.73
Commonsense QA 1.74
BBH 1.87

Avg 1.76

Table 3: Average activated experts in different down-
stream tasks.

number of experts activated by the model across
different downstream tasks. For every question, we
use the template from the evaluation to concatenate
the question with the gold answer into a complete
input and truncate the tokens exceeding 2048 to
fit our model’s maximum input length. Table 3
shows the average number of experts activated per
token across various downstream tasks. The result
is averaged across all the layers of transformers
and it is evaluated using the checkpoint trained on
100B tokens.

From the table, we can observe that across all
five downstream tasks, the number of activated
experts is less than two. The model activates 1.76
experts on average, which is fewer than the fixed ac-
tivation of two experts by the Top2 Routing method.
During the training phase, our method and Top2
Routing are comparable in efficiency, but upon
completion of training, our inference efficiency
substantially outperforms Top2 Routing. Given
that models are mostly trained once and deploy-
ment costs are the biggest burden nowadays, the
advantages of our method over static MoE routing
mechanisms like Top2 become even more apparent.

4.3 Influence of Routing Module is limited

Compared with TopK Routing, our proposed
method will introduce extra computation during
routing. However, the computation cost of the rout-
ing module is limited compared with the whole
transformer and our proposed method is more effi-
cient than Top2 Routing in reality.

Table 4 shows the throughput of MoE-Dynamic
and MoE-Top2, both of which are trained with
100B tokens. As shown in the table, MoE-Dynamic
is about 5% higher in throughput than MoE-Top2
during both training and inference, effectively val-
idating that our Dynamic Routing is indeed more
efficient.

12888



MoE-Dynamic MoE-Top2

Training(K token/s) 98.5 93.9
Inference(Sample/s) 0.19 0.20

Table 4: Throughput of MoE models trained with 100B
tokens. Training throughput is tested using 8 * A800
on the training dataset. Inference throughput is tested
using a single A800 on BBH dataset.

5 What is Challenging Input?

The motivation for designing dynamic routing is to
enable the model to adjust the number of allocated
experts based on the difficulty of the input. In this
section, we will explore what kinds of inputs are
considered challenging for the model from various
perspectives.

5.1 Tasks Requiring Reasoning

From Table 3, we could observe that solving the
BBH task requires activating an average of 1.87
experts, more than the number needed for other
tasks. BBH, which stands for BIG-Bench Hard, is
a suite of 23 challenging BIG-Bench tasks. These
tasks demand capabilities such as multi-hop reason-
ing, causal inference, logical deduction, and so on,
making them substantially more difficult than nor-
mal NLP tasks (Suzgun et al., 2022). Our model’s
use of more experts on BBH tasks implies that our
method can dynamically monitor task difficulty and
apply more parameters to tackle more challenging
tasks. Interestingly, as shown in Table 1, MoE-
Dynamic, compared to MoE-Top2, sees the most
improvement on BBH tasks. While the average
improvement across all tasks is less than 1.0%, the
improvement on BBH is more than 2.0%, which is
more than double that of other tasks. This further
illustrates that dynamically adjusting the number
of activated experts is beneficial for solving down-
stream tasks, especially more challenging ones.

Task Activated Experts

Tracking shuffled objects

—- Object Number K = 3 1.959
—- Object Number K = 5 1.963
—- Object Number K = 7 1.970

Logical deduction

—- Object Number K = 3 1.943
—- Object Number K = 5 1.947
—- Object Number K = 7 1.953

Table 5: Average activated experts in the same task with
different elements.

5.2 Tasks with More Elements

In BBH, there are two sets of tasks, each containing
three sub-tasks with the same goal but varying ele-
ments. We evaluate whether the number of experts
activated for different sub-tasks is proportional to
the number or elements.

The first task is Tracking shuffled objects: Given
the initial positions of a set of K objects and a
series of transformations (namely, pairwise swaps)
applied to them, determine the final positions of
the objects. The sub-tasks vary in the number of
objects K each contains. The second task is Logical
deduction: Deduce the order of a sequence of K
objects based on the clues and information about
their spatial relationships and placements. The sub-
tasks also vary in the number of objects K each
contains.

The table below shows the number of parameters
activated by MoE-Dynamic on the corresponding
tasks. From the table, we can see that as the num-
ber of objects increases, the number of parameters
activated by the model also gradually increases.

5.3 Tokens with Uncertain Meaning

Examples C-Words Ratio

Most Experts tr, eq, mu, frac 10
Least Expers to, that, and, show 51

Table 6: The first column shows examples of tokens
requiring the most experts and least experts. The last
column shows the complete word ratio in these two
groups of tokens.

To further analyze what types of tokens are con-
sidered more challenging for a model, we examine
the average number of experts activated for each
token in the vocabulary across different contexts.

We sample 1 million tokens from the training
dataset Redpajama, resulting in a new corpus of a
total of 7 million tokens. In this corpus, we cal-
culate the average number of experts activated for
each token in the vocabulary. To minimize the ef-
fect of randomness, we only consider tokens that
appear no less than 10,000 times in the new corpus.

Table 6 shows the number of complete words
among the top 100 and bottom 100 tokens by the
average number of experts activated, along with
some examples.

Upon manually reviewing the 100 tokens that
activate the most experts and the 100 tokens that
activate the least, we observe an interesting phe-

12889



nomenon: Tokens with relatively definite mean-
ing are considered easier by the model, activating
fewer experts. In contrast, tokens with uncertain
meanings are deemed more challenging and require
more experts for processing.

Specifically, since our model’s tokenizer is
trained with Byte Pair Encoding (BPE), many to-
kens are not complete words but subwords. These
subwords have vaguer meanings compared to com-
plete words because they can combine with many
other subwords to form words with different mean-
ings. For example, the subword ’tr’ can lead to the
formation of hundreds of words with varied mean-
ings, such as tree, triple, train, trick, trouble, and
so on. Due to the multitude of possible meanings,
different meanings may require different experts to
process, making such subwords require a compre-
hensive understanding by more experts.

6 Bottom Layers Need More Experts

An intriguing observation from our study is that
our model achieves superior performance while ac-
tivating fewer parameters. As shown in Table 3, on
all the tasks, our MoE-Dynamic activates an aver-
age of fewer than two experts. But it outperforms
the MoE-Top2 in downstream tasks as shown in
Table 1. This result is quite surprising, as perfor-
mance on downstream tasks is typically correlated
with the quantity of activated parameters.

This unexpected phenomenon might be at-
tributed to our method’s more proper allocation of
the experts across different layers, employing more
experts at the bottom layers and fewer at the top.
This layer-wise dynamic allocation, as opposed to
the fixed number of experts per layer, somewhat
mitigates the common issue of overthinking in deep
neural networks, thereby enhancing performance.

The overthinking refers to the situations where
simpler representations of an input sample at an ear-
lier layer, relative to the complex representations
at the final layer, are adequate to make a correct
prediction (Kaya et al., 2019). Previous works (Liu
et al., 2020; Schwartz et al., 2020; Xin et al., 2021)
have demonstrated that shallower representations
can achieve comparable, if not better, performance
across various tasks than deeper representations.
This could be due to deeper representations overfit-
ting specific distributions, lacking generalizability,
and being more vulnerable to attacks (Hu et al.,
2019; Zhou et al., 2020). It suggests that in some
cases, acquiring a better shallow representation is

0 5 10 15 20
Layer Number

1

2

3

4

Ac
tiv

at
ed

 E
xp

er
ts

Figure 3: Activated experts in different layers

more valuable than obtaining a more complex deep
representation, which correlates to previous find-
ings that removing top layers has a limited impact
on the downstream tasks (Sajjad et al., 2023).

Compared with Top2 Routing, our Dynamic
Routing activates more experts at the bottom layers
to obtain better shallow representations and use the
simpler network in the top layers to alleviate the
overthinking issue. Figure 3 displays the number
of experts activated per token at different layers2.
From the figure, we observe a gradual decrease
in the average number of experts activated per to-
ken with the increase in layer depth. The lowest
layer activates the most experts, up to 4 experts
per token, enabling better shallow representations
through a wider network, which is beneficial for
various downstream tasks. At the topmost layer, the
number of activated experts per token is reduced to
even one. This phenomenon can prevent the model
from being too complex and preserve generality in
the final representation.

It should be noted that we do not argue allocating
most parameters to the bottom layers is the optimal
strategy for a model. It is possible that one model
could achieve better performance if more experts
are activated in the intermediate layers. In our ex-
periment, we observe the phenomenon that bottom
layers need more experts and we think this is quite
interesting and worthy of future exploration. Be-
yond the series of overthinking works that we men-
tion above (Kaya et al., 2019; Liu et al., 2020), our
finding also correlates with the conclusion that the
upper layers of the model are tied to pre-training
tasks (Zhang et al., 2020; Tao et al., 2024). Maybe,
because the upper layer is specialized for the task
of the next token prediction, the topmost layers
only activate just one expert.

2The results are evaluated using a checkpoint trained on
100B tokens.

12890



7 Related Work

The Mixture of Experts (MoE) model is initially
introduced by (Jacobs et al., 1991). Recent stud-
ies have demonstrated sparsely gated MoE models
have substantial improvements in model capacity
and efficiency, enabling superiors performance than
dense models(Shazeer et al., 2017). Particularly
MoE has shown great potential with the integra-
tion of transformer architectures (Zoph et al., 2022;
Jiang et al., 2024).

In previous MoE architectures, a static number
of experts are activated regardless of the varying
complexity presented by input tokens. Most of
MoE models activate Top1 or Top2 experts (Lep-
ikhin et al., 2021; Fedus et al., 2022). There are
many works (Roller et al., 2021) make improve-
ments based on the Top2 Routing (Lepikhin et al.,
2021). They make great efforts to distribute to-
kens among different experts more evenly during
the training process and all of them activate static
experts for each token. We choose Top2 Rout-
ing (Lepikhin et al., 2021) as the baseline because
it’s currently the most widely used method and the
only one successfully applied in large language
models (LLM) thus far. For instance, Mixtral-
MoE (Jiang et al., 2024), DeepSeek-MoE (Dai
et al., 2024) and GroK-MoE (X.AI, 2024) all use
this structure.

There are some work that allocating different
numbers of experts to different tokens. Expert-
Choice MoE model selects TopK tokens for each
expert(Zhou et al., 2022) and each token will be
allocated with a different number of experts. How-
ever, on average every token activates exactly two
experts, which is the same with Top2 Routing mod-
els and does not save computation. Different from
the previous works, our dynamic routing mecha-
nism can activate fewer parameters on average by
dynamically allocating experts to different tokens,
which makes our method more efficient.

Recent works point out that in language model-
ing not all tokens require the same calculation cost
(Raposo et al., 2024) and tasks across different do-
mains require varying numbers of experts(Lu et al.,
2024). Our findings that harder task needs more
experts are correlated with this line of work.

8 Conclusion

Our paper introduces a dynamic expert selection
framework for Mixture of Experts (MoE) models,
surpassing existing static TopK Routing by adjust-

ing expert activation based on input complexity.
Our approach not only improves computational ef-
ficiency but also model performance, evidenced
by obvious gains over TopK Routing in our eval-
uations. Our findings reveal the framework’s ef-
fectiveness at dynamically dispatching different
numbers of experts, particularly for complex rea-
soning tasks, and suggest the potential for develop-
ing more challenging heterogeneous MoE models.
In support of further research, we will open-source
our models, contributing to advancements in the
MoE domain.

Limitation

Due to resource constraints, the size of the model
we trained is limited, with only about 600M acti-
vation parameters, and the entire MoE (Mixture of
Experts) model being just over 3B in size. How-
ever, (Dai et al., 2024) has validated that within the
MoE framework, conclusions drawn from smaller
models can be generalized to larger models with
more parameters. Hence, we believe our proposed
dynamic routing method could also be effective in
larger-scale models. Additionally, we have only
trained on 100B tokens, which may not be suffi-
cient for model training. Yet, given the same scale
of training data, our method demonstrated superior
performance, which also underscores the efficiency
of our training process.

Acknowledgments

This work is supported in part by NSFC
(62161160339) and Beijing Science and Technol-
ogy Program (Z231100007423011). We thank the
anonymous reviewers for their valuable sugges-
tions. For any correspondence, please contact Yan-
song Feng.

References
Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar

Khot, Bhavana Dalvi Mishra, Kyle Richardson,
Ashish Sabharwal, Carissa Schoenick, Oyvind
Tafjord, and Peter Clark. 2021. Think you have
solved direct-answer question answering? try arc-da,
the direct-answer AI2 reasoning challenge. CoRR,
abs/2102.03315.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI

12891

http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239


2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Together Computer. 2023. Redpajama: An open source
recipe to reproduce llama training dataset.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts
language models. CoRR, abs/2401.06066.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten P. Bosma, Zongwei
Zhou, Tao Wang, Yu Emma Wang, Kellie Webster,
Marie Pellat, Kevin Robinson, Kathleen S. Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,
Quoc V. Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2022. Glam: Efficient scaling of language mod-
els with mixture-of-experts. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
5547–5569. PMLR.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach.
Learn. Res., 23:120:1–120:39.

Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and
Zhangyang Wang. 2019. Triple wins: Boosting accu-
racy, robustness and efficiency together by enabling
input-adaptive inference. In International Confer-
ence on Learning Representations.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Comput., 3(1):79–87.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
2019. Shallow-deep networks: Understanding and
mitigating network overthinking. In International
conference on machine learning, pages 3301–3310.
PMLR.

Young Jin Kim, Ammar Ahmad Awan, Alexandre
Muzio, Andrés Felipe Cruz-Salinas, Liyang Lu, Amr
Hendy, Samyam Rajbhandari, Yuxiong He, and
Hany Hassan Awadalla. 2021. Scalable and effi-
cient moe training for multitask multilingual models.
CoRR, abs/2109.10465.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. BASE layers:
Simplifying training of large, sparse models. In Pro-
ceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 6265–6274. PMLR.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.
2024. Not all experts are equal: Efficient expert
pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800.

David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. 2024. Mixture-of-depths: Dynamically allocat-
ing compute in transformer-based language models.
arXiv preprint arXiv:2404.02258.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash layers for large sparse
models. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 17555–17566.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2023. On the effect of dropping layers of
pre-trained transformer models. Computer Speech &
Language, 77:101429.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A Smith.
2020. The right tool for the job: Matching model
and instance complexities. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6640–6651.

Noam Shazeer. 2020. GLU variants improve trans-
former. CoRR, abs/2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

12892

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://doi.org/10.1162/NECO.1991.3.1.79
https://doi.org/10.1162/NECO.1991.3.1.79
http://arxiv.org/abs/2109.10465
http://arxiv.org/abs/2109.10465
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
http://proceedings.mlr.press/v139/lewis21a.html
http://proceedings.mlr.press/v139/lewis21a.html
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg


Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13003–13051. Association for
Computational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4149–4158. Association for Computational
Linguistics.

Mingxu Tao, Quzhe Huang, Kun Xu, Liwei Chen, Yan-
song Feng, and Dongyan Zhao. 2024. Probing mul-
timodal large language models for global and lo-
cal semantic representations. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion, LREC/COLING 2024, 20-25 May, 2024, Torino,
Italy, pages 13050–13056. ELRA and ICCL.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open foundation
and fine-tuned chat models. arXiv e-prints, pages
arXiv–2307.

X.AI. 2024. Grok-1. https://github.com/xai-org/
grok-1?tab=readme-ov-file.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. Berxit: Early exiting for bert with better fine-
tuning and extension to regression. In Proceedings
of the 16th conference of the European chapter of
the association for computational linguistics: Main
Volume, pages 91–104.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings

of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. In International Conference on
Learning Representations.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems,
33:18330–18341.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M. Dai, Zhifeng Chen,
Quoc V. Le, and James Laudon. 2022. Mixture-of-
experts with expert choice routing. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable and
transferable sparse expert models. arXiv preprint
arXiv:2202.08906.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Jianfeng Gao, and Tuo
Zhao. 2022. Taming sparsely activated transformer
with stochastic experts. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

12893

https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://aclanthology.org/2024.lrec-main.1142
https://aclanthology.org/2024.lrec-main.1142
https://aclanthology.org/2024.lrec-main.1142
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://github.com/xai-org/grok-1?tab=readme-ov-file
https://github.com/xai-org/grok-1?tab=readme-ov-file
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
https://openreview.net/forum?id=B72HXs80q4
https://openreview.net/forum?id=B72HXs80q4


Dynamic Top1 Top2 Top2-Inference-with-Dynamic

Threshold p 0.4 0.5 - - 0.1 0.2 0.3 0.4

Activated Experts 1.8 2.3 1.0 2.0 1.1 1.9 2.8 3.9
Avg Performance 42.3 42.8 40.5 41.6 40.0 40.3 42.1 42.8

Table 7: Experiment results about threshold p. The first two columns present results of Dynamic MoE models
trained separately with p = 0.4 and p = 0.5. The last four columns reports results of applying dynamic routing
mechanism as a post-hoc method to MoE-Top2.

A Detailed Training Setting

A.1 Model Setting

The model architecture follows LLaMA(Touvron
et al., 2023a). We use Llama2 tokenizer whose
vocabulary size is 32000. Unless specifically stated
otherwise, we set the number of transformer lay-
ers to 24, and the hidden dimension to 1024. We
employ the multi-head attention mechanism with a
total of 16 attention heads, where each head has a
dimension of 64. We use SwiGLU(Shazeer, 2020)
in FFN layers. For initialization, all learnable pa-
rameters are randomly initialized with a standard
deviation of 0.006. Each MoE layer has 16 experts,
which have the same initialized parameters as a
standard FFN. Under this configuration, each dense
model has approximately 374M parameters. Each
MoE model has 3.5B total parameters. Only 374
parameters are activated in MoE-Top1 and 581M
parameters are activated in MoE-Top2.

A.2 Training Setting

We adopt the AdamW optimizer with first-moment
decay β1 = 0.9 and second-moment decay β2 =
0.95. The weight decay is 0.1. The learning rate
warms up from 0 to 3e-4 in the first 2000 steps
and decays in the remaining steps using the cosine
decay schedule to 3e-5. We set the context length
to 2048 and adopt the batch size of 2048. We
use Megatron-LM serving as the backbone of our
training infrastructure. Our configuration includes
a tensor parallelism of 1 and a pipeline parallelism
of 2. During training, we use at most 128 NVIDIA
A800 GPUs.

B Analysis about experiments details

B.1 Influences of threshold p

Threshold p is a hyper-parameter used to control
the dynamic routing mechanism. In this section,
we illustrate that Dynamic Routing method is not
very sensitive to the choosing of p in both training
and inference.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Threshold

38

40

42

Av
g 

Sc
or

e

Figure 4: Average scores of MoE-Dynamic(p = 0.4)
with different threshold p in inference on downstream
tasks

We train Dynamic MoE models based on thresh-
old p ∈ {0.4, 0.5}. Experiment results in Table
7 show that both settings outperform MoE-Top2,
which indicates that dynamic MoE is not very sensi-
tive to the choosing of p during training. We are not
able to try other p as training models from scratch
with different values of p is very resource-intensive

We also evaluate the model with different p dur-
ing inference. Figure 4 demonstrates the average
performance on downstream tasks with different
p of Dynamic-MoE trained with p = 0.4. The
figure reveals that when p is too low, like 0.1 and
0.2, the model’s performance on downstream tasks
decreases dramatically due to activating too few ex-
perts. Conversely, once p surpasses a certain thresh-
old, like 0.3, the model’s performance stabilizes,
and the influence of this parameter on downstream
tasks will become minimal.

B.2 Post-hoc method for TopK?
Another interesting question is whether we can
use a model trained with TopK routing but run the
inference with Dynamic Routing, which is like a
post-hoc pruning for efficiency. As most public
MoE models are trained with TopK Routing, we
hope to apply our Dynamic Routing in these mod-
els directly and improve their efficiency.

Table 7 shows the performance of a model
trained with Top2 Routing and inference with Dy-
namic Routing. As shown in the table, we can
control the number of activated experts by chang-

12894



Activated Experts Avg Performance

MoE-Dynamic 1.8 42.8
w/o Lossd 2.0 40.0

Table 8: Experiment results of Ablation study on Dy-
namic Loss. The first column presents average number
of activated experts for each token. The second column
reports models’ average performance on downstream
tasks in Table 1.

ing the threshold p during inference. We find that
when using proper p, e.g. 0.3 and 0.4, inference
with Dynamic Routing could outperform inference
with Top2 Routing. But this is at the cost of ac-
tivating more parameters. When using p=0.2 for
inference, the model activates 1.9 experts on aver-
age, which is slightly fewer than MoE-Top2. At
this time, the model’s performance is inferior to the
performance of MoE-Top2. It implies that direct
inference with Dynamic Routing using MoE-Top2
model may not work.

B.3 Ablation On Dynamic Loss
We conducted an ablation study using the same
experimental settings as MoE-Dynamic. As shown
in Table 8, the removal of Dynamic Loss leads to
a noticeable increase in the number of activated
experts and a significant drop in performance on
downstream tasks. This finding indicates that the
proposed loss function enhances the model’s effi-
ciency and effectiveness. The Dynamic Loss likely
achieves this by compelling the model to allocate
the most suitable experts for each token.

12895


