
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12841–12858
August 11-16, 2024 ©2024 Association for Computational Linguistics

KnowledgeFMATH: Knowledge-Intensive Math Reasoning
in Finance Domains

Yilun Zhao∗ 1 Hongjun Liu∗2,3 Yitao Long3

Rui Zhang4 Chen Zhao2,3 Arman Cohan1,5

1Yale University 2NYU Shanghai 3New York University
4Penn State University 5Allen Institute for AI

Abstract

We introduce KnowledgeFMATH, a novel
benchmark designed to evaluate LLMs’ capa-
bilities in solving knowledge-intensive math
reasoning problems. Compared to prior works,
this study features three core advancements.
First, KnowledgeFMATH includes 1,259 prob-
lems with a hybrid of textual and tabular
content. These problems require college-
level knowledge in the finance domain for
effective resolution. Second, we provide
expert-annotated, detailed solution references
in Python program format, ensuring a high-
quality benchmark for LLM assessment. We
also construct a finance-domain knowledge
bank and investigate various knowledge inte-
gration strategies. Finally, we evaluate a wide
spectrum of 26 LLMs with different prompting
strategies like Chain-of-Thought and Program-
of-Thought. Our experimental results reveal
that the current best-performing system (i.e.,
GPT-4 with CoT prompting) achieves only
56.6% accuracy, leaving substantial room for
improvement. Moreover, while augmenting
LLMs with external knowledge can improve
their performance (e.g., from 33.5% to 47.1%
for GPT-3.5) , their accuracy remains signifi-
cantly lower than the estimated human expert
performance of 92%. We believe that Knowl-
edgeFMATH can advance future research in
the area of domain-specific knowledge retrieval
and integration, particularly within the context
of solving math reasoning problems.

§ github.com/yale-nlp/KnowledgeFMath

1 Introduction

Large language models (LLMs) have been increas-
ingly recognized for their potential for complex
problem-solving in real-world scenarios (OpenAI,
2023a; Touvron et al., 2023; Jiang et al., 2023).
Solving math reasoning problems has emerged as a

∗Equal Contribution

Question: In 2018, Company A had a passive equity ownership
interest of 15% in Company B. By the close of 2018, Company
A decided to increase its ownership in Company B to 50%,
effective as of 1st January 2019, through a cash purchase. There
have been no financial transactions between Company A and
Company B. Based on the data in the following table with the
financial statements for both companies, what would be the
changes in the total liabilities for Company A under the
proportionate consolidation method from 2018 to 2019?

Company A Company B
2018 2019 2018 2019

Revenue 5,000 7,000 2,000 2,500
Cost 2,000 2,300 1,200 1,300
Operating
income 3,000 4,700 800 1,200
Net profit 1,650 2,300 460 820
Dividends paid - - 230 410
Total assets 4,000 6,000 1,000 1,100
Total liabilities 1,200 900 600 650
Equity 2,800 5,100 400 450

Knowledge Terms:
Proportionate Consolidation Method

Definition:
The proportional consolidation method of
accounting looks at income, expenses, assets,
and liabilities in proportion to a firm's
percentage of participation in a joint
venture…(abbreviated)...

Mathematical Formula in Python format:
None

First, we know from the table that the total
liabilities for company A in 2018 is 1200.

(...abbreviate…)
Therefore, the final answer is 1,200

Model Output with Chain-of-Thought Prompting:

def solution():
A_liabilities_2018 = 1200

 (…abbreviate)
 return change

Model Output with Program-of-Thought Prompting:

Figure 1: An example of KnowledgeFMATH. To an-
swer the given question, LLMs are required to compre-
hend specialized financial terms, such as “passive equity
ownership interest” and “proportionate consolidation
method”. Additionally, they must interpret tabular data
within the question and accurately identify question-
relevant data points in the table.

key method for assessing LLMs’ capabilities (Roy
and Roth, 2015; Amini et al., 2019; Cobbe et al.,
2021; Chen et al., 2023c), as it demands both un-
derstanding contextual information and reasoning
over complex logics.

Recent advancements in LLMs have led to re-
markable progress in solving fundamental math
problems (Wei et al., 2022; Lewkowycz et al., 2022;
Chen et al., 2023b; Wang et al., 2023; Luo et al.,
2023a; Azerbayev et al., 2024). However, as illus-

12841

https://github.com/yale-nlp/KnowledgeFMath

Dataset Domain Level Source # Examples
Table Knowledge-

Solution Format
Reasoning? Intensive?

MAWPS (Koncel-Kedziorski et al., 2016) Math Elem. School Generated 3,320 ✗ ✗ Text
ASDiv (Miao et al., 2020) Math Elem. School Internet 2,305 ✗ ✗ Math Equation
SVAMP (Patel et al., 2021) Math Elem. School ASDiv 1,000 ✗ ✗ Math Equation
Math23K (Wang et al., 2017) Math Elem. School Internet 23,162 ✗ ✗ Math Equation
GSM8K (Cobbe et al., 2021) Math Middle School CrowdSource 8,500 ✗ ✗ Text
MATH (Hendrycks et al., 2021) Math High School Competition 12,500 ✗ ✗ Text
AQuA (Ling et al., 2017) Math College GMAT, GRE 100,000 ✗ ✗ Text
MathQA (Amini et al., 2019) Math College AQuA 100,000 ✗ ✗ Math Equation
MathQA-Python (Austin et al., 2021) Math College AQuA 23,914 ✗ ✗ Python Program
MathVista (Lu et al., 2024) Math Elem. to College Internet+Expert 6,141 Few Few Text

TabMWP (Lu et al., 2023) Math Middle School Textbooks 38,431 ✓ ✗ Text
FinQA (Chen et al., 2021) Finance College Expert 8,281 ✓ ✗ Math Program
TAT-QA (Zhu et al., 2021) Finance College Expert 16, 552 ✓ ✗ Text
MultiHiertt (Zhao et al., 2022) Finance College Expert 10,440 ✓ ✗ Math Equation
DocMath-Eval (Zhao et al., 2023a) Finance College Expert 5,974 ✓ few Python Program

TheoremQA(Chen et al., 2023c) STEM College Internet+Expert 800 ✗ ✓ Text

KnowledgeFMATH (ours) Finance College Internet+Expert 1,259 ✓ ✓ Python Program

Table 1: Comparison between KnowledgeFMATH and existing math reasoning datasets. KnowledgeFMATH
is distinguished by three unique characteristics: (1) Knowledge-Intensive: Problems necessitate domain-specific
knowledge, complemented by a financial knowledge bank for research facilitation; (2) Table Reasoning: 39.0%
of problems incorporate table information, requiring models to understand table structure as well as interpret and
reason over tabular data; (3) Expert Annotation: Each problem is accompanied by a detailed, expert-annotated
Python-formatted solution. Such solution annotation combines the explicitness of code execution with the descriptive
power of natural language explanations in python comment format, offering a more effective and adaptable solution
representation for complex math reasoning problems in KnowledgeFMATH.

trated in Table 1, existing math reasoning bench-
marks typically do not require specialized domain
knowledge. This becomes a notable shortcoming
when considering practical applications of LLMs.
Measuring progress in specialized areas such as fi-
nance and healthcare typically involves addressing
domain-specific and knowledge-intensive problems,
which goes beyond the scope of general mathe-
matical reasoning. Recognizing this gap in the
existing benchmarks, we focus on the finance do-
main. We chose this domain because, as illustrated
in Figure 1, it often involves scenarios requiring
not only basic mathematical skills but also a deep
understanding of financial concepts (Yang et al.,
2023b; Xie et al., 2023; Wu et al., 2023). Addition-
ally, the finance domain frequently employs tables
to represent data (Zhu et al., 2021; Chen et al.,
2021; Zhao et al., 2022; Li et al., 2022; Zhao et al.,
2023b), which adds another layer of complexity to
the knowledge-intensive problem-solving.

We introduce KnowledgeFMATH, the first
benchmark tailored for evaluating LLMs in the
context of Knowledge-intensive Math reasoning in
the Finance domain. The dataset contains 1,259
problems that cover a broad range of finance sub-
areas (e.g., investment analysis, risk assessment,
and financial forecasting), with 39.0% of the prob-

lems necessitating data interpretation over tabular
data. Each problem is accompanied by detailed,
expert-annotated solutions and explanations, pro-
viding a comprehensive reference for evaluating the
LLMs’ performance. Additionally, we collect and
release a comprehensive knowledge bank, which
includes detailed definitions and explanations for
1,760 financial terms and concepts, facilitating fu-
ture research on improving knowledge-intensive
problem-solving through knowledge retrieval.

We evaluate a wide spectrum of open-source
and proprietary LLMs, specifically, 26 model mod-
els from 14 organizations. Notably, this includes
math-specific (Luo et al., 2023a), code-based (Xu
et al., 2023; Luo et al., 2023b; Tunstall et al.,
2023) LLMs, as well as mixture of experts (MoE)
LLMs (Mistral.AI, 2023). Two prompting meth-
ods, Chain-of-Thought (CoT) (Wei et al., 2022) and
Program-of-Thought (PoT) (Chen et al., 2023b),
are adopted for experiments. Our experimen-
tal results indicate that all evaluated open-source
LLMs scored below 24% in accuracy using vari-
ous prompting methods, including CoT and PoT
prompting. Proprietary models perform better, with
GPT-4 significantly outperforming other LLMs,
achieving an accuracy of 56.6% when applying
CoT prompting. However, it still lags far behind

12842

human expert performance in the open-book set-
ting, which stands at 92%. This significant gap
between LLMs and human experts demonstrates
the challenges of KnowledgeFMATH, highlighting
the need for further advancements in LLMs for
knowledge-intensive problem-solving capabilities.

Next, we investigate how to integrate domain-
specific knowledge to enhance the problem-solving
capabilities of LLMs. We investigate various pop-
ular knowledge integration strategies and reveal
that including question-relevant knowledge into
the prompt can consistently improve LLMs’ per-
formance. This provides insights for future work
to develop more advanced knowledge-augmented
strategies to realize higher performance gains.

Our contributions are summarized below:

• We propose KnowledgeFMATH, the first
knowledge-intensive math reasoning benchmark
in finance domains, aimed at evaluating LLMs’
abilities in knowledge-intensive math reasoning.

• We conduct comprehensive evaluations using a
diverse array of LLMs, uncovering a substantial
performance gap between the best-performing
LLM (i.e., GPT-4) and human experts.

• We present a detailed analysis on augmenting
LLMs with various knowledge integration strate-
gies. This provides valuable insights for future
work in knowledge-intensive problem solving.

2 KnowledgeFMATH

In this section, we describe the dataset construc-
tion process for KnowledgeFMATH. We begin by
constructing a knowledge bank that includes well-
formulated definitions of 1,760 financial terms. We
then instruct expert annotators to use knowledge
terms within the constructed knowledge bank to
create knowledge-intensive questions with a hybrid
of textual and tabular content.

2.1 Knowledge Bank Construction

We construct a knowledge bank that covers a wide
range of 1,760 knowledge terms in the finance
domain. It simplifies the creation of knowledge-
intensive questions by annotators and enables the
exploration of various topics within domain knowl-
edge. The knowledge bank includes finance-
domain-specific terms (e.g., “exchange rate” and
“net present value”) collected from Wikipedia. Each
knowledge term is accompanied with their corre-
sponding textual definitions and, where applicable,

Knowledge Term:
Exchange Rate

Definition:
An exchange rate is the value or price of one country's currency in
relation to another currency. It determines how much of one currency
can be exchanged for another and can fluctuate regularly based on
market conditions, import and export demand, inflation, and a host of
other economic factors.

Mathematical Formula:
def exchange_rate(original_currency, new_currency):

return original_currency / new_currency

Figure 2: An example of knowledge terms “Exchange
Rate” included in the constructed knowledge bank.

mathematical formulas in python format. An ex-
ample of included knowledge terms is illustrated
in Figure 2. We detail the process of 1) knowledge
collection, 2) semi-automated knowledge formu-
lation, and 3) knowledge bank update and mainte-
nance in Appendix A.1. It is worth noting that this
knowledge bank is versatile and can be applied to a
variety of finance-relevant tasks for future research.

2.2 KnowledgeFMATH Question Annotation

For each financial term in the knowledge bank, we
instruct annotators to create a corresponding math
reasoning question, if applicable. The answer to the
composed question should be a numeric value. The
annotators are required to adhere to the following
guidelines for a successful question annotation:

Question Annotation If the annotators choose
to adapt questions from textbooks or the Internet
instead of creating their own from scratch, they
are asked to adhere to copyright and license regu-
lations, avoiding data from sites prohibiting copy
and redistribution. Furthermore, they are required
not only to modify the surface-level description
of the question but also to change the associated
numeric values. In light of the emerging concerns
about data contamination in LLMs (Shi et al., 2024;
Deng et al., 2024), we instruct annotators to con-
duct a Google search for each annotated question,
ensuring that no similar question appears on the
first page of the search results. Additionally, we
recognize that many financial problems involve ta-
bles, as shown in Figure 1. Such tabular data plays
a crucial role in thoroughly understanding finan-
cial problems, and it presents unique challenges for
LLMs in terms of comprehension and interpreta-
tion. Therefore, we encourage and reward anno-
tators to include tables that are relevant and accu-
rately represent the data pertinent to the questions.
Finally, out of 1,259 questions, 674 are marked as

12843

having been adapted from existing resources, and
491 are accompanied with tabular data.

Identifying Question-relevant Knowledge Af-
ter a question is annotated, annotators must identify
1-3 key financial concepts for answering this ques-
tion. They then search for each term in our con-
structed knowledge bank. If the term is included,
they verify its context and details for relevance.
If a term is absent or with low-quality definition,
annotators receive a bonus for documenting the
term, providing a brief explanation or definition
and outlining its relevance to the problem. These
identified terms are subsequently added or updated
in the knowledge bank, resulting in a total of 346
new inclusions and 83 revisions.

2.3 KnowledgeFMATH Solution Annotation

As illustrated in Table 1, existing math reasoning
benchmarks typically represent solutions using text
or mathematical equations. However, solutions
in text format often lack the precision and unam-
biguous nature required for computational problem-
solving. Solutions in mathematical equations are
explicit, but less descriptive, as the semantic mean-
ing associated with each numeric value in the equa-
tions can be ambiguous. Moreover, these two for-
mats are less adaptable for use in automated sys-
tems due to variations in language and difficulties
in semantic parsing and execution.

To overcome these limitations, we use Python
programs, starting with “def solution():”, to
represent solutions. Such Python program com-
bines the explicitness of code execution with the
descriptive power of annotated comments, offer-
ing a more effective and adaptable solution repre-
sentation for complex math reasoning problems.
Specifically, annotators are required to first define
variables with meaningful names at the beginning
of the Python function. These variables correspond
to the key elements or quantities mentioned in the
textual or tabular content of questions. The anno-
tators then proceed to write a sequence of Python
statements that logically solve the problem, step by
step. Additionally, annotators are required to write
detailed comments, making the code more read-
able and understandable. To ensure the accuracy
and functionality of the Python-format solutions,
our annotation interface automatically executes the
Python function. This execution checks that the
return type of the answer is either a float or an int
and verifies that there are no execution errors.

Annotation Quality %S ≥ 4

Question Fluency 98.0
Question Correctness 95.3

Knowledge Relevance 94.1
Textual Definition Fluency 93.0
Textual Definition Correctness 94.7
Math Formula Correctness 88.0

Final Answer Correctness 98.0
Python Solution Correctness 96.0
Variable Name Meaningfulness 87.7
Comment Comprehensiveness 83.8

Table 2: Human evaluation over 200 samples of Knowl-
edgeFMATH. Three internal evaluators were asked to
rate the samples on a scale of 1 to 5 individually. We
report percent of samples that have an average score ≥ 4
to indicate the annotation quality of KnowledgeFMATH

Property Value

Knowledge Bank

Knowledge Terms 1,760
Textual Definition Length (Median/Avg) 64.0 / 69.3
% w. Mathematical Definition 62.8%

KnowledgeFMATH Dataset

Question Length (Median/Avg) 49.0 / 55.7

% Questions with Table 39.0 %
Rows per Table (Median/Avg) 3.0 / 3.2
Columns per Table (Median/Avg) 6.0 / 6.9

Knowledge Terms per Example (Median/Avg) 2.5 / 2.4
Math Operations in Python Solution (Median/Avg) 5.0 / 5.3
Code Lines in Python Solution (Median/Avg) 5.0 / 6.1
Comment Lines in Python Solution (Median/Avg) 3.0 / 3.5

Validation Set Size 259
Test Set Size 1,000

Table 3: Basic statistics of the constructed knowledge
bank and KnowledgeFMATH dataset.

2.4 Data Quality Validation

We conduct a comprehensive validation protocol
to ensure the high quality of the annotated data.
For each annotated question, we first assign an-
other annotator to validate whether: 1) the question
is meaningful and grammatically correct, 2) the
associated knowledge terms are accurately anno-
tated and complete, 3) the Python-format solution
is logically correct and easy to understand. Valida-
tors are asked to revise examples that do not meet
these standards. We also report the human evalu-
ation scores and inter-evaluator agreements over
200 sampled examples. As illustrated in Table 2,
KnowledgeFMATH has a high annotation quality.

12844

2.5 Data Statistics and Dataset Release

Table 3 describes the basic statistics of Knowl-
edgeFMATH, with topic-type distribution shown
in Figure 4 in Appendix. We randomly divide
the dataset into two subsets: validation and test.
The validation set contains 259 examples and is
intended for model development validation. The
test set comprises the remaining 1,000 examples
and is designed for standard evaluation. To prevent
data contamination (Shi et al., 2024; Sainz et al.,
2023; Deng et al., 2024), the answer for the test set
will not be publicly released. Instead, we will de-
velop and maintain an online evaluation platform,
allowing researchers to evaluate models and par-
ticipate in a leaderboard. Following recent LLM
reasoning benchmarks (Chen et al., 2023c; Yue
et al., 2023; Lu et al., 2024), the main evaluation of
KnowledgeFMATH is conducted under a zero-shot
setting on the test set to assess LLMs’ capabilities
to generate accurate answers without fine-tuning or
few-shot demonstrations on our benchmark.

2.6 Human-level Performance Evaluation

To provide a rough but informative estimate of
human-level performance by non-experts and ex-
perts on KnowledgeFMATH, we randomly sampled
50 examples from the validation set. We enroll two
experts, both with the CFA license, and two non-
experts to individually solve these questions.

We first evaluate their performance in a closed-
book setting, where the evaluators do not have ac-
cess to the internet or textbooks and are required to
finish the 50 questions within three hours. The non-
expert evaluators achieve accuracy of 54% and 62%
(average 58%), and the expert evaluators achieve
accuracy of 76% and 70% (average 73%).

We then transition to an open-book setting,
where the evaluators are asked to use the internet
and textbooks to correct their initial errors. This set-
ting is designed to assess how external knowledge
resources could enhance human problem-solving
abilities and accuracy. The non-expert evaluators
improved their accuracy to 86% and 82% (average
84%). Similarly, the expert evaluators improved
the accuracy to 94% and 90% (average 92%).

3 Evaluated Systems

3.1 Large Language Models

We evaluate following LLMs on Knowl-
edgeFMATH:

[system prompt]
You are a financial expert, you are supposed to to answer the given
question. You need to output the answer in your final sentence like
'Therefore, the answer is ...'. The answer should be a numeric value.

[user input]
Question: {question}

Table: {table}

Let's think step by step to answer the question.

Program-of-Thought Prompting Method:

[system prompt]
You are a financial expert, you are supposed to generate a Python
program to answer the given question. The returned value of the
program is supposed to be the answer.

[user input]
Question: {question}

Table: {table}

Please generate a Python program to answer the given question.
```python
def solution( ):

Chain-of-Thought Prompting Method:

TODO

Figure 3: Examples of zero-shot CoT and PoT prompts.

• General: GPT-3.5&4 (OpenAI, 2022, 2023a),
Gemini-Pro (Google, 2023), Llama-2 (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023),
MPT (Team, 2023), Falcon (Almazrouei et al.,
2023), WizardLM (Luo et al., 2023b), Yi (01.AI,
2023), Baichuan (Yang et al., 2023a), Phi-1.5 (Li
et al., 2023), and DeepSeek (DeepSeek, 2023).

• Math-specific: WizardMath (Luo et al., 2023a).

• Code-based: CodeLlama (Rozière et al., 2023),
WizardCoder (Luo et al., 2023b), and Lemur (Xu
et al., 2023).

• Mixture of Experts (MoE): Mixtral of ex-
perts (Mistral.AI, 2023).

By default, we use chat or instruct versions
for each model, when available, otherwise, we used
their base version. Additionally, we select the
most recent, largest, and best-performing check-
point available as of paper submission (i.e, Decem-
ber 10th, 2023). All the model weights of eval-
uated open-sourced LLMs can be found at Hug-
gingFace Model Hub1. The implementation details
(i.e., LLM parameter setting, tabular data serializa-
tion, and final answer extraction and evaluation)
are discussed in Appendix B.1.

3.2 Prompting Methods

Following recent LLM reasoning benchmark
works (Lu et al., 2024; Chen et al., 2023c), we

1https://huggingface.co/models

12845

https://huggingface.co/models


evaluate two established prompting methods, with
examples of prompt illustrated in Figure 3.

Chain-of-Thought The CoT method (Wei et al.,
2022; Kojima et al., 2022) instructs the LLMs to
articulate a step-by-step reasoning process. This
leads to a detailed explanation that culminates in
the final answer.

Program-of-Thought Different from CoT, the
PoT method (Chen et al., 2023b) disentangles com-
putation from the reasoning process by prompting
the LLMs to generate a structured program to rep-
resent the reasoning process. The final answer is
then derived by executing the generated program
with an external calculator.

4 Experimental Results

4.1 Main Results

Table 4 illustrates the performance of the evaluated
LLMs using CoT and PoT prompting methods on
the test set of KnowledgeFMATH. From this, we
draw the following conclusions:

GPT-* significantly outperforms other open-
source LLMs Proprietary models demonstrate
the best performance on KnowledgeFMATH. No-
tably, as illustrated in Table 4, GPT-4 significantly
outperforms other LLMs, achieving an accuracy
of 56.6% on KnowledgeFMATH with CoT. In con-
trast, open-source LLMs significantly lag behind.
Furthermore, our case study in Table 7 shows that
while GPT-* models are capable of performing
complex mathematical calculations, other LLMs
often fail to understand financial terms, leading
to incorrect mathematical expressions. This high-
lights a critical need for future development efforts
to close the performance gap.

Substantial Discrepancy in Performance Be-
tween Human Experts and LLMs Even the
best-performing LLM, GPT-4, performs much
worse than human experts. For instance, the ac-
curacy of GPT-4 using the CoT prompting method
stands at 56.6%, falling short of the 92% accuracy
achieved by expert evaluators in the open-book
setting. This gap highlights the critical need for fur-
ther advancements in LLMs, especially in tackling
complex problem-solving tasks within specialized
domains that are knowledge-intensive.

Analysis of Open-sourced LLMs Among open-
source LLMs with CoT prompting, Mixtral MoE

achieves the best performance, demonstrating the
effectiveness of applying a mixture of experts
framework. Moreover, WizardMath also performs
well as it is further instruction-tuned to learn
mathematical reasoning. Moreover, among open-
source LLMs with PoT prompting methods, Lemur
achieves better performance than its backbone (i.e.,
Llama-2), demonstrating the effectiveness of tun-
ing LLMs on code-based tasks for enhanced rea-
soning and coding capabilities.

4.2 Program-of-Thought Analysis – LLMs’
Ability to Generate Executable Programs

We observe that the PoT prompting method consis-
tently improves performance over the CoT method
in GPT-* models and code-based LLMs. In con-
trast, the performance of several general LLMs,
such as Mistral and WizardLM degrades with PoT
prompting. To better analyze the reasons for these
differing performance outcomes, we examine the
execution rate of each LLM under PoT prompt-
ing, measuring how many of the generated Python
programs are executable. Figure 6 illustrates the
relationship between execution rate and accuracy
across different models. It demonstrates that the
degraded performance when applying PoT prompt-
ing is attributable to the low execution rate. For
instance, although WizardLM achieves competitive
performance with CoT, it struggles to consistently
generate executable Python solutions, leading to
lower accuracy with the PoT prompting approach.

4.3 Case Study and Error Analysis

In Table 4, we observe that GPT-* models signifi-
cantly outperform other LLMs. Notably, the latest
GPT-4 version achieves an accuracy of 56.6% us-
ing CoT prompting, closely approaching the non-
expert human-level performance in the close-book
setting (i.e., 58%). To gain a deeper insight into the
capabilities and limitations of GPT-* on our dataset,
we conducted a comprehensive error analysis and
case studies. This was based on 100 randomly
sampled examples from KnowledgeFMATH devel-
opment set where GPT-3.5-1106 exhibited failures.
We identify four common mistakes that the current
LLMs are likely to make (i.e., misinterpretation of
required knowledge, computation error, table mis-
understanding, and question misunderstanding).
We provide detailed examples and explanations for
each error type in Table 6 in Appendix. Moreover,
we also present case study of model output from
various LLMs with CoT prompting, as shown in

12846



Model Size Notes
Quantitative Derivatives Accounting Management Portfolio Economics Corporate Avg.

CoT PoT CoT PoT CoT PoT CoT PoT CoT PoT CoT PoT CoT PoT CoT PoT

Close-book
Non-Expert 58.0
Expert 73.0

Open-book
Non-Expert 84.0
Expert 92.0

GPT-4-1106-preview – – 66.8 66.9 50.8 54.1 54.2 34.4 40.5 51.4 66.7 66.7 57.7 50.4 65.2 58.7 56.6 53.1
GPT-4-0613 – – 58.2 67.7 43.1 50.8 43.1 32.1 36.5 50.0 44.1 68.8 43.1 51.1 56.5 63.0 46.3 52.1
GPT-3.5-1106 – – 42.6 56.4 26.2 27.7 32.1 19.5 28.4 28.4 32.3 45.2 35.0 32.8 28.3 32.6 32.4 33.9
GPT-3.5-0613 – – 37.5 49.0 17.7 24.4 24.4 17.2 21.6 24.3 16.1 39.8 27.7 29.2 17.4 26.1 24.3 29.6
Mixtral 8x7B MoE 30.9 15.2 18.7 10.5 23.7 6.1 14.9 13.5 25.8 29.0 24.1 11.7 30.4 8.7 23.5 12.2
Deepseek 67B – 29.7 19.5 20.5 15.4 22.5 22.2 20.3 13.5 24.7 21.6 23.4 7.3 17.4 10.1 23.3 16.7
Gemini-Pro – – 31.6 29.6 15.4 16.7 24.0 17.6 12.2 21.6 21.5 35.5 26.3 19.7 17.4 17.4 22.0 21.5
WizardMath 70B Math 21.1 2.3 15.1 0.9 22.5 1.4 16.2 0.0 21.5 0.0 17.5 5.3 15.2 2.6 18.1 1.7
WizardLM 70B – 23.8 11.3 12.8 10.5 14.5 7.3 16.2 8.1 17.2 14.0 16.8 11.7 13.0 13.0 16.4 10.3
Lemur 70B Code-based 19.9 16.8 12.8 6.8 17.6 8.7 17.6 17.8 12.9 15.1 16.1 11.4 21.7 10.4 16.2 11.3
Llama 2 70B – 19.5 10.5 13.6 6.9 12.6 8.4 8.1 8.1 14.0 8.6 17.5 11.0 17.4 13.0 14.9 8.8
Falcon 180B – 14.1 6.5 13.3 2.5 11.1 2.3 9.5 3.2 8.6 6.5 14.6 5.3 10.9 0.0 12.5 3.8
Llama 2 13B – 8.2 7.0 8.5 3.3 11.5 5.0 16.2 6.8 8.6 8.6 11.7 7.3 10.9 4.4 9.9 5.5
Yi 34B – 10.6 3.5 6.4 2.8 9.9 3.1 8.1 1.4 2.2 5.4 12.4 1.5 13.0 0.0 8.7 2.9
Llama 2 7B – 7.8 2.0 6.9 1.8 8.0 1.5 8.1 0.0 5.4 3.2 11.7 0.7 6.5 2.2 7.8 1.7
WizardCoder-Py 34B Code-based 8.2 4.2 5.6 0.3 9.5 0.5 4.1 1.6 8.6 3.9 10.2 1.8 4.4 0.0 7.6 1.6
MPT 30B – 7.4 3.5 6.7 1.0 5.7 1.5 4.1 0.0 4.3 1.1 12.4 3.7 6.5 2.2 6.9 1.9
Baichuan2 13B – 8.2 3.9 6.4 2.1 8.0 1.2 5.4 0.0 2.2 1.1 8.0 2.2 4.4 2.2 6.8 2.1
Mistral 7B – 10.2 5.1 4.9 1.9 8.0 2.8 2.7 1.6 7.5 2.6 5.1 4.4 4.4 2.6 6.7 3.0
Vicuna 33B – 5.5 5.5 5.4 4.1 5.3 6.5 4.1 4.1 2.2 8.6 5.1 8.0 8.7 4.4 5.2 5.6
Phi-2 2.7B – 9.4 3.5 2.1 1.5 3 1.2 6.8 4.1 2.2 3.2 5.8 1.5 2.2 0.0 4.9 2.1
CodeLlama 34B Code-based 6.3 5.6 5.1 1.9 2.3 2.8 2.7 3.2 2.2 3.9 8.0 0.9 2.2 2.6 4.6 3.0
Llama 1 65B – 3.5 1.6 2.3 1.0 4.6 0.4 0.0 0.0 5.4 0.0 2.9 1.5 6.5 2.2 3.3 1.0
CodeLlama 7B Code-based 3.9 1.9 2.8 2.8 1.9 1.4 1.4 0.1 0.0 1.1 5.8 2.6 4.4 6.5 2.9 2.2
Phi-1_5 1.3B – 3 0.0 2.3 0.3 2.7 0.0 1.4 1.4 0.0 0.0 0.7 2.2 0.0 0.0 1.9 0.4
Llama 1 7B – 1.2 0.4 2.1 1.0 1.9 0.0 0.0 0.0 1.1 0.0 3.7 0.0 0.0 0.0 1.8 0.4

Table 4: Results of Chain-of-Thought and Program-of-Thought prompting on the test set of KnowledgeFMATH. We
use average Accuracy using CoT prompting as the ranking indicator of model performance. Numbers underscored
indicate that models with PoT prompting achieves better results than with CoT prompting.

Table 7 in the Appendix.

5 Knowledge Augmentation Analysis

In this section, we provide a comprehensive anal-
ysis to understand the performance of LLMs and
the quality of knowledge incorporated into the in-
put context, aiming to provide insights for future
work on knowledge augmentation in LLMs to solve
knowledge-intensive tasks.

5.1 Evaluated Knowledge-Augmented Method

We develop and evaluate various knowledge-
augmented approaches. For each setting, we in-
clude the definition of question-relevant knowledge
terms within the prompts (Figure 5 in Appendix).

• Oracle: To investigate the headroom in knowl-
edge augmentation, we use an oracle setting,
where the ground-truth knowledge terms associ-
ated with the question (Section 2.2) are included.

• LLM as Knowledge Base: Recent work (Petroni
et al., 2019; Kang et al., 2023) demonstrates that

LLMs themselves can effectively serve as knowl-
edge bases. Therefore, we prompt LLMs to first
identify the financial terms required to answer the
question. They then generate definitions of each
identified knowledge term using the inherent data
memorization capabilities.

• Knowledge Retrieval: We use the question as
the retrieval query to the constructed knowledge
bank. We investigate 1) BM25 as sparse re-
triever and 2) OpenAI Ada Embedding2 as dense
retriever to retrieve the top-n question-relevant
knowledge terms from knowledge bank.

• LLM-Instructed Knowledge Retrieval: While
the method of using “LLM as Knowledge Base”
can effectively identify the knowledge required
to answer a question, it is likely to produce
knowledge definitions that are not entirely ac-
curate (Chen et al., 2023a; Peng et al., 2023).
To address this issue of unfaithfulness, we har-
ness the power of external knowledge retrieval

2https://platform.openai.com/docs/guides/
embeddings, we use the text-embedding-ada-002 version.

12847

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings


Setting Llama-2-70B GPT-3.51106

wo. knowledge augmentation 14.3 33.5

LLM as Knowledge Base 13.9 (-0.4) 34.4 (+0.9)

BM25 (n = 3)
Vanilla Retrieval 13.9 (-0.4) 35.1 (+1.6)
LLM as Retrieval Re-Ranker 16.2 (+1.9) 37.1 (+3.6)
LLM-instructed Retrieval 16.2 (+1.9) 40.5 (+7.0)

OpenAI Ada Embed. (n = 3)
Vanilla Retrieval 14.7 (+0.4) 37.1 (+3.6)
LLM as Retrieval Re-Ranker 16.6 (+2.3) 39.7 (+6.2)
LLM-instructed Retrieval 17.0 (+2.7) 41.3 (+7.8)

OpenAI Ada Embed. (n = 5)
Vanilla Retrieval 14.7 (+0.4) 36.9 (+3.0)
LLM as Retrieval Re-Ranker 17.8 (+3.5) 40.5 (+7.0)
LLM-instructed Retrieval 18.9 (+4.6) 41.3 (+7.8)

Oracle 25.1 (+10.8) 47.1 (+13.6)

Table 5: Results of CoT prompting approach under
different knowledge augmentation settings on the devel-
opment set of KnowledgeFMATH.

for obtaining more trustworthy knowledge defi-
nitions. Specifically, instead of using the original
question as the retrieval query, we utilize each
knowledge term along with its definition gener-
ated from the “LLM as Knowledge Base”. This
approach provides a more informative and se-
mantically similar basis for knowledge retrieval.

• LLM as Retrieval Re-Ranker: Recent studies
have demonstrated LLMs’ competitive capabili-
ties in re-ranking retrieved candidates to output a
more precise list (Sun et al., 2023). Therefore, in
this setting, we first use retriever in “Knowledge
Retrieval” to retrieve top-3n candidates. Subse-
quently, we prompt LLMs to select top-n most
relevant knowledge terms from this candidate set.

5.2 Experimental Results
As illustrated in Table 5, improving the question-
relevance of incorporated knowledge can consis-
tently improve the LLMs’ performance. Specifi-
cally, LLMs equipped with retrieved knowledge
from Ada Embedding consistently outperform
those using retrieved knowledge from BM25. This
is due to the more advanced capabilities of the Ada
Embedding-based retriever. Among different LLM-
aided retrieval strategies, LLM-Instructed Knowl-
edge Retrieval achieves the best performance,
demonstrating the effectiveness of using refined
queries for knowledge retrieval. Nevertheless, it is
worth noting that even when incorporated with the
ground-truth knowledge (i.e., the oracle setting),
GPT-3.5 still performs much worse than human

experts in close-book setting (i.e., 92.0%). This
highlights the need for future work on developing
more advanced domain-specific knowledge integra-
tion methods. Table 8 and Table 9 in Appendix C
present a case study on effectiveness of various
knowledge integration strategies.

6 Related Work

The development of general-purpose intelligent sys-
tems is significantly dependent on the foundational
aspect of mathematical reasoning, a topic that has
garnered considerable attention in the academic
community. As illustrated in Table 1, researchers
have proposed a wide spectrum of math reason-
ing datasets that cater to a variety of educational
levels, ranging from elementary school to college.
However, these math reasoning benchmarks typ-
ically do not require specialized domain knowl-
edge, a notable shortcoming when considering the
practical applications of LLMs. Therefore, recent
work has investigated the LLMs’ capabilities in
knowledge-intensive problem solving. For exam-
ple, Chen et al. (2023c) collected a theorem-driven
question-answering dataset, designed to evaluate
AI models’ ability to apply theorems in solving
challenging science problems. Contemporary to
our work, MMMU (Yue et al., 2023) and Math-
Vista (Lu et al., 2024) include examples that require
complex visual reasoning in expert domains.

7 Conclusion

This paper introduces KnowledgeFMATH, aimed
at assessing LLMs in knowledge-intensive math
reasoning. Our comprehensive evaluations of 26
LLMs, using both CoT and PoT prompting meth-
ods, identify significant areas where LLMs need
to enhance their specialized knowledge for com-
plex problem-solving in expert domains. Addition-
ally, our knowledge augmentation analysis indicate
that integrating domain-specific knowledge can im-
prove LLMs’ problem-solving abilities. We be-
lieve this research provides valuable insights for fu-
ture work in advancing LLMs in complex problem-
solving within expert domains.

Limitations

In this work, we propose KnowledgeFMATH and
conduct comprehensive analysis of different LLMs’
capabilities in solving knowledge-intensive math
reasoning problems in finance domains. However,
there are still some limitations: (1) Our method for

12848



extracting final answer from model output (Ap-
pendix B.1) is still not perfect. In some cases,
this methods fails to locate the answer, leading to
the reported accuracy being an approximate lower
bound. (2) In our experiment, we regard tables in
the question as textual input (Appendix B.1). How-
ever, in real-world scenarios, tabular data might
appear as images, where people cannot obtain its
textual content directly. In these cases, OCR tools
to extract table content (Du et al., 2020) or LLMs
with vision capabilities (OpenAI, 2023b; Yue et al.,
2023; Lu et al., 2024) may be required. (3) Due
to computational resource constraints, we do not
tune LLMs on a large-scale finance-domain data
ourselves. However, we believe that training on fi-
nance data can help improve LLMs’ capabilities in
solving knowledge-intensive financial problems.

Acknowledgement

We are grateful for the compute support provided
by Microsoft Research’s Accelerate Foundation
Models Research (AFMR) program. We would
also like to thank the anonymous reviewers and
area chairs for constructive discussions and feed-
back. Hongjun Liu and Chen Zhao are supported
by Shanghai Frontiers Science Center of Artificial
Intelligence and Deep Learning, NYU Shanghai.

References
01.AI. 2023. Yi: Open-source llm release.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Maitha Alhammadi, Mazzotta Daniele, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. The falcon series of language models: To-
wards open frontier models.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen Marcus McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean
Welleck. 2024. Llemma: An open language model
for mathematics.

Liang Chen, Yang Deng, Yatao Bian, Zeyu Qin, Bingzhe
Wu, Tat-Seng Chua, and Kam-Fai Wong. 2023a. Be-
yond factuality: A comprehensive evaluation of large
language models as knowledge generators. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023,
pages 1120–1130, Dubrovnik, Croatia. Association
for Computational Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023b. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023c. TheoremQA: A theorem-driven question
answering dataset. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7889–7901, Singapore. Associa-
tion for Computational Linguistics.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021. FinQA: A dataset of nu-
merical reasoning over financial data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3697–3711, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

DeepSeek. 2023. Deepseek llm: Let there be
answers. https://github.com/deepseek-ai/
DeepSeek-LLM.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Ger-
stein, and Arman Cohan. 2024. Investigating data
contamination in modern benchmarks for large lan-
guage models.

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin,
Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu, Yehua
Yang, Qingqing Dang, et al. 2020. Pp-ocr: A prac-
tical ultra lightweight ocr system. arXiv preprint
arXiv:2009.09941.

Google. 2023. Gemini.

12849

https://01.ai/
https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2311.16867
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://arxiv.org/abs/2108.07732
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=clTPP37Rpu
https://openreview.net/forum?id=clTPP37Rpu
https://openreview.net/forum?id=clTPP37Rpu
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/deepseek-ai/DeepSeek-LLM
https://github.com/deepseek-ai/DeepSeek-LLM
http://arxiv.org/abs/2311.09783
http://arxiv.org/abs/2311.09783
http://arxiv.org/abs/2311.09783
https://arxiv.org/abs/2009.09941
https://arxiv.org/abs/2009.09941
https://deepmind.google/technologies/gemini/#introduction


Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji
Kawaguchi, and Sung Ju Hwang. 2023. Knowledge-
augmented reasoning distillation for small language
models in knowledge-intensive tasks. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1157, San
Diego, California. Association for Computational
Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Moxin Li, Fuli Feng, Hanwang Zhang, Xiangnan He,
Fengbin Zhu, and Tat-Seng Chua. 2022. Learning
to imagine: Integrating counterfactual thinking in
neural discrete reasoning. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 57–69,
Dublin, Ireland. Association for Computational Lin-
guistics.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical re-
port. arXiv preprint arXiv:2309.05463.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2024.
Mathvista: Evaluating math reasoning in visual con-
texts with gpt-4v, bard, and other large multimodal
models.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. In The Eleventh International Conference
on Learning Representations.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Mistral.AI. 2023. Mixtral of experts: A high quality
sparse mixture-of-experts.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue.

OpenAI. 2023a. Gpt-4 technical report. ArXiv,
abs/2303.08774.

OpenAI. 2023b. Gpt-4v(ision) system card.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and

12850

https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=xJLEQQrFia
https://openreview.net/forum?id=xJLEQQrFia
https://openreview.net/forum?id=xJLEQQrFia
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://doi.org/10.18653/v1/2022.acl-long.5
https://doi.org/10.18653/v1/2022.acl-long.5
https://doi.org/10.18653/v1/2022.acl-long.5
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2309.05463
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=DHyHRBwJUTN
https://openreview.net/forum?id=DHyHRBwJUTN
https://openreview.net/forum?id=DHyHRBwJUTN
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:263218031
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813


Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero,
Julen Etxaniz, Oier Lopez de Lacalle, and Eneko
Agirre. 2023. Nlp evaluation in trouble: On the
need to measure llm data contamination for each
benchmark.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqi Chen, and
Luke Zettlemoyer. 2024. Detecting pretraining data
from large language models.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-03-28.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross

Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models.

Lewis Tunstall, Nathan Lambert, Nazneen Ra-
jani, Edward Beeching, Teven Le Scao, Lean-
dro von Werra, Sheon Han, Philipp Schmid,
and Alexander Rush. 2023. Creating a coding
assistant with starcoder. Hugging Face Blog.
Https://huggingface.co/blog/starchat.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
ArXiv, abs/2303.17564.

Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao
Lai, Min Peng, Alejandro Lopez-Lira, and Jimin
Huang. 2023. Pixiu: A large language model, in-
struction data and evaluation benchmark for finance.
ArXiv, abs/2306.05443.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Ling-
peng Kong, Bailin Wang, Caiming Xiong, and Tao
Yu. 2023. Lemur: Harmonizing natural language and
code for language agents.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Ji-
aming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei Su,
Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang
Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Pei-
dong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li,
Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong
Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin
Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li,

12851

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2310.18018
http://arxiv.org/abs/2310.18018
http://arxiv.org/abs/2310.18018
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://mosaicml.com/blog/mpt-7b
https://mosaicml.com/blog/mpt-7b
https://mosaicml.com/blog/mpt-7b
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/D17-1088
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:257833842
https://api.semanticscholar.org/CorpusID:259129602
https://api.semanticscholar.org/CorpusID:259129602
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2310.06830


Youxin Jiang, Yuchen Gao, Yupeng Zhang, Zenan
Zhou, and Zhiying Wu. 2023a. Baichuan 2: Open
large-scale language models.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan
Wang. 2023b. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang,
Huan Sun, Yu Su, and Wenhu Chen. 2023. Mmmu:
A massive multi-discipline multimodal understand-
ing and reasoning benchmark for expert agi.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600, Dublin, Ireland. Association for
Computational Linguistics.

Yilun Zhao, Yitao Long, Hongjun Liu, Linyong Nan,
Lyuhao Chen, Ryo Kamoi, Yixin Liu, Xiangru Tang,
Rui Zhang, and Arman Cohan. 2023a. Docmath-eval:
Evaluating numerical reasoning capabilities of llms
in understanding long documents with tabular data.

Yilun Zhao, Zhenting Qi, Linyong Nan, Boyu Mi, Yixin
Liu, Weijin Zou, Simeng Han, Ruizhe Chen, Xiangru
Tang, Yumo Xu, Dragomir Radev, and Arman Cohan.
2023b. QTSumm: Query-focused summarization
over tabular data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1157–1172, Singapore. Associa-
tion for Computational Linguistics.

Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan,
Xiangru Tang, and Arman Cohan. 2023c. Investi-
gating table-to-text generation capabilities of large
language models in real-world information seeking
scenarios. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 160–175, Singapore. Associa-
tion for Computational Linguistics.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277–3287, Online. Association for
Computational Linguistics.

A KnowledgeFMATH Dataset

A.1 Knowledge Bank Construction
Knowledge Collection To construct a knowledge
bank, we first collect knowledge relevant to the fi-
nance domain from Wikipedia using “finance” and

Accounting
20.8%

Issuance
3.7%

Market
10.9%

Portfolio
7.4%
Management
5.9%

Quantitative
20.4%

Derivatives
31.0%

Figure 4: Topic distribution of KnowledgeFMATH.

“economics” as key search terms. After collecting
the raw financial data, we adopt comprehensive
heuristics, embedding-based methods to remove
duplicates. This procedure ensures the uniqueness
of each knowledge term in our bank.

Automatic Knowledge Formulation To en-
hance the adaptability and usability of the knowl-
edge bank, we incorporate a two-step automatic
knowledge formulation process, making each piece
of collected knowledge standardized and distilled
into a clear, concise format. The primary motiva-
tion for using automatic knowledge formulation
is cost efficiency and effectiveness. We have ob-
served that GPT-* models are adept at handling
this straightforward task with minimal bias, as this
process does not involve the addition of extraneous
knowledge. We first prompt GPT-3.5 to reformu-
late the gathered information for each financial
term into a concise, paragraph-long textual defini-
tion. Since some financial terms come with mathe-
matical definitions, we address the issue of varied
formula formats in the original sources (e.g., La-
TeX and HTML). We instruct GPT-4 to transform
these formulas into a unified python program for-
mat. Figure 2 illustrates an example collected in
the knowledge bank.

Knowledge Bank Update and Maintenance Af-
ter formulating knowledge using LLMs, during the
dataset annotation stage (Section 2.2), we dynami-
cally update and maintain the constructed knowl-
edge bank, incorporating new knowledge that, al-
though not initially covered, is essential for an-
swering the annotated questions. Additionally, we
remove any duplicate entries identified by the an-
notators. We eventually collect 1,760 pieces of

12852

http://arxiv.org/abs/2309.10305
http://arxiv.org/abs/2309.10305
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2022.acl-long.454
http://arxiv.org/abs/2311.09805
http://arxiv.org/abs/2311.09805
http://arxiv.org/abs/2311.09805
https://doi.org/10.18653/v1/2023.emnlp-main.74
https://doi.org/10.18653/v1/2023.emnlp-main.74
https://doi.org/10.18653/v1/2023.emnlp-industry.17
https://doi.org/10.18653/v1/2023.emnlp-industry.17
https://doi.org/10.18653/v1/2023.emnlp-industry.17
https://doi.org/10.18653/v1/2023.emnlp-industry.17
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254


financial knowledge in the knowledge bank, with
52% of the terms including Python-formatted math-
ematical definitions.

B Experiment Setup

B.1 Implementation Details
LLM Experiment The experiments for open-
sourced LLMs were conducted using vLLM frame-
work (Kwon et al., 2023). For all the experiments,
we set temperature as 1.0, Top P as 1.0, and maxi-
mum output length as 512. For questions involving
tabular data, we converted the tables into Mark-
down format for model input.

Final Answer Extraction For LLM with CoT
prompting, we adopt the answer extraction pipeline
from Chen et al. (2023c) to identify the final an-
swer from the model’s output. For LLM with PoT
prompting, we first extract the generated python
solution from the model’s output. If this python
solution is executable, we execute it to obtain the
final answer. Once we obtain the final answer from
model’s output, we compare it with the ground-
truth answer for accuracy measurement.

Tabular Data Serialization Following previous
work on table-relevant tasks (Chen, 2023; Zhao
et al., 2023c), we use Markdown format to present
tabular data in math reasoning problems. In our
preliminary study, we discovered that GPT-* and
llama-2 can effectively understand such table rep-
resentations.

C Experimental Results and Analysis

[system prompt] 
You are a financial expert, you are supposed to to answer the given 
question. You need to output the answer in your final sentence like 
'Therefore, the answer is ...'. The answer should be a numeric value.

[user input]
Relevant Knowledge: 
{knowledge}

Question: {question}

Table: {table}

Let's think step by step to answer the question.

Program-of-Thought Prompting Method:

[system prompt] 
You are a financial expert, you are supposed to generate a Python 
program to answer the given question. The returned value of the 
program is supposed to be the answer.

[user input]
Relevant Knowledge: 
{knowledge}

Question: {question}

Table: {table}

Please generate a Python program to answer the given question.
```python
def solution():

Chain-of-Thought Prompting Method:

TODO

Figure 5: Examples of knowledge-augmented CoT
Prompts we used in Section 5.

12853

Error Type (# Appear) Representative Question Representative Cot Result Ground-truth Python-format Solution Explanation

Misinterpretation of
Required Knowledge
(42/100)

What is the immediate ZAR/HKD exchange rate
given by a broker?
Ratio Spot rate
—— ——
CNY/HKD 0.8422
CNY/ZAR 0.9149
CNY/SEK 1.0218

...The ZAR/CNY spot rate is 0.9149 and the
HKD/CNY spot rate is 0.8422. Let’s calcu-
late: 0.9149 / 0.8422 = 1.0863(wrong formula)
Therefore, the answer is 1.0863.

def solution():
CNY_ZAR = 0.9149
CNY_HKD = 0.8422
ZAR_HKD = (1/CNY_ZAR) * CNY_HKD
return ZAR_HKD

For the given problem,
the formula chosen for
the solution is incor-
rect and not the cor-
rect formula for the
corresponding financial
knowledge.

Error in Complex Com-
putation (24/100)

The Novartis Company noted a notable rise in
its profitability, which led to a material increase
in its credit score. Consequently, the market
demanded a 100 basis point tighter spread to
Gilts on Novartis’s 8-year bond. In case the
bond’s altered duration is 6.0 and its convexity
is 55.0, what would be the effect of this change
on the return?

The change in spread here is -100 basis points
(or -1.0 when we express this as a percent). We
can plug this into the formula along with the
given duration and convexity values: Change in
Return = -6.0 (-1.0) + 0.5 * 55.0 * (-1.0)**2.
Solving the above equation gives us an increase
in return of 3 percent. Therefore, the answer is
3.(wrong answer)

def solution():
modified_duration = 6.0
delta_spread = -0.01
convexity = 55.0
return_impact = -(modified_duration

* delta_spread)
+ 0.5 * convexity
* (delta_spread**2)

return return_impact

The calculation process
is correct, but the final
result given is incorrect.

Table Misunderstanding
(12/100)

A specialist compiled the financial information
for a Real Estate Investment Trust. Using the
income statement, what was the Real Estate In-
vestment Trust’s share price at the end of 2017
according to the Price / FFO multiple?
Income Statement End of 2017
—— ——
Total rental income 450
Total property expenses 228
Net operating income 222
Other expenses 22
General expenses 28
Depreciation 45
Net interest expenses 35
Net income 92
Weighted average shares 118
Earnings per share 0.78
Price/FFO 13x

...Given the net income and the adjustments
we need to make, we can calculate FFO as
follows: FFO = Net Income + Depreciation
and Amortization + Other Expenses (Losses
on Sale of Properties) FFO = 35 (Net Income)
(wrong number for Net Income) + 45 (Depreci-
ation) + 22 (Losses on sale of properties) = 102
US$ million...We were given Price/FFO multi-
ple as 13x and the weighted average shares as
92 million(wrong number for weighted aver-
age shares). Using this we can calculate the
share price: Share Price = 13 * (102 / 92) Share
Price = 13 * (1.1086) Share Price = 14.41 (ap-
prox.)(wrong answer)

def solution():
multiple = 13
net_income = 92
depreciation_and_amortization = 45
loss_from_property_disposal = 22
shares_outstanding = 118
FFO = net_income

+ depreciation_and_amortization
+ loss_from_property_disposal

FFO_per_share = FFO / shares_outstanding
stock_price = multiple * FFO_per_share
return stock_price

The inclusion of the ta-
ble led to a deviation
in the selection of the
formula, resulting in the
use of an incorrect for-
mula during the calcula-
tion. Additionally, an in-
correct number was cho-
sen in one of the steps
of the calculation due to
an error in reading data
from the table, causing
the inserted number to
be inconsistent with the
requirements of the for-
mula.

Question Misunder-
standing (7/100)

Three months ago, a supervisor initiated a
receive-fixed and pay-equity swap. The annu-
alized fixed interest is 3% and the equity index
was at 100 at the time of the swap. The expiry of
the swap is one year with a quarterly reset, and
the nominal amount is valued at $100 million.
The present spot rates are as stated: At what
equity index level would this equity swap value
stand at zero?
Maturity Years Value Factor
———- ———-
0.25 0.997506
0.5 0.992556
0.75 0.985222
1 0.975610

Given the fixed interest rate is annualized at
3%, we can calculate the quarterly interest
payment as (frac3%4 = 0.75%) per quar-
ter. On a nominal amount of $100 million,
the fixed payment per quarter would be (
100,000,000 times 0.75% = $750,000)...we cal-
culate the present value (PV) of the fixed side
like this:(PV_fixed = $750,000 times (0.992556
+ 0.985222 + 0.975610))(PV_fixed = $750,000
times 2.953388 = $2,215,041)...Now let’s cal-
culate the present value (PV) of the equity side:
if the equity index grows to (E), then ((E - 100) /
100) would be the growth rate of the equity side
of the swap.(not correct answer to the ques-
tion

def solution():
fixed_rate = 0.03
nominal_amount = 100000000
current_spot_rates = [0.997506, 0.992556,

0.985222]
number_of_days = 90
denominator = 360
value_fixed_leg = fixed_rate

* (number_of_days / denominator)
* nominal_amount
* sum(current_spot_rates)
+ (nominal_amount
* current_spot_rates[-1])

equity_index_price = value_fixed_leg / nomi-
nal_amount

return equity_index_price

Failed to correctly in-
formation from the ta-
ble, therefore misunder-
standing the question
that needed to be an-
swered, leading to the
selection of a formula
that calculates another
financial value, not the
parameter asked in the
question.

Other case (15/100)

Table 6: Case study on GPT-3.5-turbo-1106’s failure cases.

12854

GPT-4
Output: Firstly, under the proportionate consolidation method, we consider the portion of assets, liabilities, revenue, and
expenses we proportionately own in relation to the company we invested in. In the case of PZ, they increased their stake
in T-Internet from 15% to 50% in 2019. Therefore, for 2019, the proportionate consolidation of liabilities for company
PZ would be its own liabilities plus 50% of T-Internet’s liabilities. From the figures, we have PZ’s total liabilities for
2019 as 900 and T-Internet’s total liabilities for 2019 as 650. Calculating 50% of T-Internet’s liabilities: 0.50 * 650 = 325
(right formula). To get the total liabilities under the proportionate consolidation method, we add PZ’s own liabilities to
its 50% share of T-Internet’s liabilities.Doing this, we have: 900 (PZ’s liabilities) + 325 (50% of T-Internet’s liabilities) =
1225 (right formula). Therefore, the answer is 1225 (right answer).

GPT-3.5
Output: To determine the total liabilities for company PZ under the proportionate consolidation method for 2019, we
need to use the formula: Total liabilities = PZ liabilities + (T-internet liabilities * ownership ratio) In 2018, PZ had a
passive equity ownership interest of 15% in the T-internet company. So, for 2018, the ownership ratio is 15%. In 2019,
PZ increased its ownership to 50% as of 1st January 2019. So, for 2019, the ownership ratio is 50%. From the given
table, we can find the liabilities for PZ in 2018 and 2019: PZ liabilities in 2018 = 1200 PZ liabilities in 2019 = 900
We also have the liabilities for the T-internet company in 2018 and 2019: T-internet liabilities in 2018 = 600 T-internet
liabilities in 2019 = 650 Using the formula and the given values, we can calculate the total liabilities for company PZ
under the proportionate consolidation method for 2019: Total liabilities = 900 + (650 * 50%) (right formula) Therefore,
the answer is 1225 (right answer).

Llama-2-70B
Output: 1. First, we need to calculate the total liabilities for company PZ in 2019 under the proportionate consolidation
method. We can do this by using the formula: Total liabilities = PZ liabilities + (T-internet liabilities * ownership ratio)
We know that PZ liabilities in 2019 were 1,200,000 (from the table). We also know that T-internet liabilities in 2019
were 900,000 (from the table). The ownership ratio is 50%, which means that PZ owns half of T-internet’s shares. So,
we can plug these values into the formula: Total liabilities = 1,200,000 + (900,000 * 0.5) Total liabilities = 1,200,000 +
450,000 Total liabilities = 1,650,000 (wrong formula) 2. Next, we need to add the dividends paid by T-internet in 2019,
which were 230,000 (from the table). We add this to the total liabilities we calculated above: Total liabilities = 1,650,000
+ 230,000 Total liabilities = 1,880,000 3. Finally, we need to convert the answer to the proportionate consolidation
method, which means we need to subtract the portion of T-internet’s liabilities that are not owned by PZ. We can do this
by multiplying T-internet’s liabilities by the ownership ratio and subtracting the result from the total liabilities: Total
liabilities = 1,880,000 - (900,000 * 0.5) Total liabilities = 1,880,000 - 450,000 Total liabilities = 1,430,000 (wrong
formula)

WizardMath
Output: Step 1: Determine the cost of acquiring the 35% stake in T-internet. We need to calculate the cost of purchasing
the additional 35% (50% - 15%) equity stake in T-internet. We can do this by multiplying the total book value of
T-internet’s equity by the percentage of the stake acquired. Cost of acquiring 35% stake = (35/100) * Equity value
of T-internet = (35/100) * $450,000,000 =$157,500,000 (wrong formula) Step 2: Calculate the total consolidated
liabilities for 2019. Since there have been no transactions between the two companies, the consolidated liabilities for
both companies will be the sum of their individual liabilities. Total consolidated liabilities (2019) = PZ’s liabilities (2019)
+ T-internet’s liabilities (2019) Step 3: Find the total liabilities of PZ and T-internet for 2019. We can calculate this by
adding the liabilities of both companies as reported in their individual financial statements for 2019. PZ’s total liabilities
for 2019 amount to $900,000, and T-internet’s total liabilities for 2019 amount to $650,000. Total consolidated liabilities
(2019) = PZ’s liabilities + T-internet’s liabilities = $900,000 + $650,000 = $1,550,000 (wrong formula) Therefore, the
total liabilities for company PZ under the proportionate consolidation method for 2019 is $1,550,000. The answer is: the
total liabilities for company PZ under the proportionate consolidation method for 2019 is $1,550,000 (wrong answer).

Mistral-7B
Output: To determine the total liabilities for company PZ under the proportionate consolidation method for 2019, we
need to calculate 50% of the total liabilities of the T-internet company as of January 1, 2019. We can find this information
in the table provided. Therefore, the answer is: 450 (which is 50% of the total liabilities of the T-internet company, as of
January 1, 2019) (wrong answer).

Table 7: Case study of different LLMs with CoT prompting methods.

12855

Question:
"Assuming a 30% marginal tax rate and an additional 5% risk premium for shares as opposed to bonds, what is the
cost of equity using the bond-yield-plus-risk-premium method for a 20-year, $1,000 non-callable bond with 8% annual
coupons that is presently valued at $1,105.94?"
Ground Truth Knowledge:
Bond-yield-plus-risk-premium method
Definition:
"The bond-yield-plus-risk-premium method is a method used to estimate the cost of equity. It involves taking the yield
on a company’s debt, which represents the risk investors are willing to take for lending money to the company, and
adding a risk premium that represents the extra risk of investing in the company’s equity. This method is based on the
assumption that equity holders require a higher return than bondholders due to the higher risk associated with equity
investments."
Formula:
def Bond_yield_plus_risk_premium_method(risk_premium, yield_to_maturity):

Define constants
risk_premium = risk_premium
yield_to_maturity = yield_to_maturity
Calculate cost of equity
cost_of_equity = yield_to_maturity + risk_premium
return cost_of_equity

Yield to maturity:
Definition:
"Yield to maturity (YTM) is the total return anticipated on a bond if it is held until it matures. YTM is expressed
as an annual percentage rate (APR). It takes into account both the interest payments you receive each year, usually
semi-annually, and any capital gain you may receive if you hold the bond until maturity and it is redeemed at a price
above or below its purchase price."
Formula:
def Yield_to_maturity(FV, P, t, C):

”’
FV: Face value of the bond
P: Price of the bond
t: Time to maturity
C: Coupon payment
”’
import sympy as sp
newline r = sp.symbols(’r’)
Formula for bond price
price_eq = C*(1 - (1 + r)**-t)/r + FV/(1 + r)**t - P
Equation solution
yield_to_maturity = sp.solve(price_eq, r)[1]
return yield_to_maturity

Risk premium:
Definition: "A risk premium refers to the expected additional return on an investment that an investor requires as
compensation for investing in a risky asset, over and above the risk-free rate. It is essentially the reward for taking on a
higher level of risk."
Formula:
def Risk_premium(bond_yield, risk_premium):

Calculate cost of equity
cost_of_equity = bond_yield + risk_premium
return cost_of_equity

Python Solution:
def solution():

import numpy_financial as npf
Given values
FV = -1000 # Future Value
PV = 1105.94 # Present Value
N = 20 # Number of periods
PMT = -80 # Payment per period
Calculating the interest rate
i = npf.rate(N, PMT, PV, FV)
Converting to percentage
i_percent = i * 100
Define constants
risk_premium = 5
yield_to_maturity = i_percent
Calculate cost of equity
cost_of_equity = yield_to_maturity + risk_premium
return cost_of_equity

Table 8: Original question used in the case study of knowledge integration 9. We also present its ground-truth
knowledge definitions and Python-format solution. 12856

Wo. knowledge augmentation
Output: "First, we need to calculate the yield to maturity (YTM) of the bond. The YTM is the rate of return anticipated
on a bond if it is held until maturity and all payments are made as scheduled. To calculate the YTM, we need to use
the present value of the bond, the annual coupons, and the number of years to maturity. Present value of the bond =
$1,105.94 Annual coupons = 8% of $1,000 = $80 Number of years to maturity = 20 Using these values, we can calculate
the YTM using financial formulas or by using an online calculator. Assuming the YTM is calculated to be 6%, we can
now calculate the cost of equity using the bond-yield-plus-risk-premium method. Cost of equity = YTM + risk premium
YTM = 6% (Wrong calculated result for yield to maturity) Risk premium for shares = 5% Cost of equity = 6% + 5%
= 11% Therefore, the answer is 11%.”

BM25 as retriever
Output: "To calculate the cost of equity using the bond-yield-plus-risk-premium method, we need to add the yield
on the bond (representing the risk investors are willing to take) to the risk premium for shares. First, we need to
calculate the yield on the bond. The bond has an 8% annual coupon rate and is currently valued at $1,105.94. Using
the coupon payments formula, we can calculate the total coupon payments over the lifespan of the bond:Coupon
payments = Coupon_Payments(n=20, pmt=1000*0.08, i_y=(1105.94/1000)-1) Next, we need to calculate the yield
to maturity on the bond. The yield to maturity can be obtained using the spot yield formula:Yield to maturity =
Spot_yield(current_price=1105.94, previous_price=1000)Now we can calculate the yield on the bond by dividing the
total coupon payments by the present value of the bond:Yield on bond = Coupon payments / Present value of bond.
Finally, we can calculate the cost of equity by adding the yield on the bond to the risk premium for shares:Cost of equity
= Yield on bond + risk premium. Therefore, the answer is the cost of equity calculated using the bond-yield-plus-risk-
premium method.” (Not give the direct answer to the question)

OpenAI Ada Embedding as retriever
Output: "Step 1: Calculate the yield to maturity of the bondTo calculate the yield to maturity, we need to use the present
value formula for a bond. Given that the present value is $1,105.94, the annual coupon is 8%, and the bond has 20 years
until maturity, we can calculate the yield to maturity using financial software or a financial calculator. Let’s assume the
yield to maturity is 7%.Step 2: Calculate the risk premiumGiven that there is an additional 5% risk premium for shares
as opposed to bonds, the risk premium is 5%.Step 3: Use the bond-yield-plus-risk-premium method formulaUsing the
formula of the bond-yield-plus-risk-premium method, we can calculate the cost of equity as follows:cost_of_equity =
yield_to_maturity + risk_premiumcost_of_equity = 7% + 5% cost_of_equity = 12% Therefore, the cost of equity using
the bond-yield-plus-risk-premium method is 12%.” (Right answer)

LLM as Knowledge Base
Output: "To determine the cost of equity using the bond-yield-plus-risk-premium method, we need to find the yield
on comparable bonds and add the risk premium. First, let’s calculate the yield on the bond. The bond has a face value
of $1,000 and is currently valued at $1,105.94. The coupon rate is 8% and the bond has a 20-year maturity. Using
the present value formula, we can calculate the yield:$1,105.94 = ($80 / (1 + yield)1̂) + ($80 / (1 + yield)2̂) + ... +
($80 + $1,000 / (1 + yield)2̂0) Simplifying this equation, we can solve for the yield using a financial calculator or
software:Yield = 6.5%(Wrong calculated result for yield to maturity) Now, let’s calculate the cost of equity using
the bond-yield-plus-risk-premium method. We add the risk premium of 5% to the yield we calculated:Cost of Equity =
Yield + Risk Premium = 6.5% + 5% = 11.5% Therefore, the answer is 11.5%.”

Table 9: Case study of knowledge integration.

12857

GPT-4-1106
GPT-4-0613

GPT-3.5-0613

Gemini

Mixtral

WizardLM

Lemur

Llama 2 (70B)

Vicuna

Llama 2 (13B)

Falcon

Yi

Mistral
Codellama (34B)

phi-2

Baichuan 2

MPT

Codellama (7B)

Deepseek

Llama 2 (7B)WizardMath

WizardCoder

LLaMA

phi-1.5

Llama 1

0

20

40

60

0 20 40 60 80 100 120

Ac
c

Execution Rate

Figure 6: Relationship between execution rate and accuracy across different models. The degraded performance
when applying PoT prompting is attributable to the low execution rate.

12858

