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Abstract

Low-resource African languages pose unique
challenges for natural language processing
(NLP) tasks, including natural language
generation (NLG). In this paper, we develop
Cheetah, a massively multilingual NLG
language model for African languages.
Cheetah supports 517 African languages and
language varieties, allowing us to address
the scarcity of NLG resources and provide
a solution to foster linguistic diversity. We
demonstrate the effectiveness of Chee-
tah through comprehensive evaluations across
six generation downstream tasks. In five of the
six tasks, Cheetah significantly outperforms
other models, showcasing its remarkable
performance for generating coherent and
contextually appropriate text in a wide range
of African languages. We additionally conduct
a detailed human evaluation to delve deeper
into the linguistic capabilities of Cheetah.
The findings of this study contribute to
advancing NLP research in low-resource
settings, enabling greater accessibility and
inclusion for African languages in a rapidly
expanding digital landscape. The GitHub
repository for the Cheetah project is available
at https://github.com/UBC-NLP/Cheetah.

1 Introduction

The linguistic diversity present in African lan-
guages poses unique challenges for NLG sys-
tems. With over 2, 000 languages spoken across
the African continent (Eberhard et al., 2021), the
need for effective NLG solutions that can accom-
modate this rich linguistic ecosystem cannot be
over-emphasized. This is especially important be-
cause traditional NLG approaches have primarily
focused on high-resource languages, such as Eng-
lish and French due to the availability of large-scale
datasets and resources. Consequently, low-resource
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Figure 1: Cheetah is trained on 517 African languages
and language varieties across 14 language families. The
languages are domiciled in 50 of 54 African countries
and are written in six different scripts.

languages, including numerous African languages,
have been marginalized in NLG research and de-
velopment. Developing robust NLG systems for
the diverse needs of African communities is chal-
lenging due to the scarcity of extensive language
datasets, limited linguistic research, and variations
across these languages. To address these chal-
lenges, recent advancements in language modeling
and transfer learning techniques have shown prom-
ise in supporting NLG in low-resource languages.
Pretrained language models, such as GPT-3 (Rad-
ford et al., 2018, 2019; Brown et al., 2020), mT5
(Xue et al., 2021), and mT0 (Muennighoff et al.,
2022), have demonstrated remarkable capabilities
in understanding and generating human-like text.
These models capture the statistical regularities
and syntactic structures of the languages they are
trained on, making them valuable starting points
for supporting NLG in low-resource settings.

In this paper, we present a pioneering work on
NLG in African languages by introducing Chee-
tah: a novel language model (LM) specifically
designed to support 517 African languages and
language varieties. To the best of our knowledge,
Cheetah supports the largest number of African lan-
guages and language varieties. Leveraging a vast
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corpus of text data collected from diverse sources,
Cheetah learns intricate linguistic information that
characterizes each African language. The contri-
butions of this work are three fold. First, we ad-
dress the scarcity of NLG resources for African
languages by providing a comprehensive language
model that covers a wide range of languages spoken
on the continent. Second, we demonstrate the ef-
ficacy of our approach through extensive evalu-
ations across six downstream task clusters. Each
cluster includes multiple languages, showcasing
the model’s ability to generate coherent and con-
textually appropriate text in different African lan-
guages. Third, we perform fine grained human
analysis of Cheetah using a controlled machine
translation (MT) test set. This uncovers model be-
haviour that is not visible with automatic metrics.
By supporting NLG in African languages, we foster
linguistic diversity, empower African communit-
ies to express themselves in their native languages,
and bridge the digital divide. This paper serves as
a foundational step towards promoting Afrocentric
NLP (Adebara and Abdul-Mageed, 2022) that pri-
oritizes inclusivity and cultural preservation in lan-
guage technology, emphasizing the importance of
catering to the unique linguistic needs of diverse
populations.

The rest of the paper is organized as follows: In
Section 2, we discuss related work. In Section, 4
we describe AfroNLG, the benchmark we create
for evaluation. We provide details of Cheetah in
Section 3. We present performance of Cheetah in
Section 5 and compare it to other multilingual mod-
els. We present controlled test sets in Section 5.1.
We conclude in Section 6, and outline a number of
limitations and use cases for our work in Section 7
and Section 8.

2 Literature Review

One of the challenges in NLG is to generate coher-
ent and semantically meaningful text. Various ap-
proaches have been proposed, including template-
based (Becker, 2002; Van Deemter et al., 2005),
rule-based (Dušek and Jurčíček, 2015; van Milten-
burg et al., 2020), and statistical approaches (Li
et al., 2016). More recently, deep learning ap-
proaches (Sutskever et al., 2014) including the
transformer model (Vaswani et al., 2017) have
achieved SoTA results in various NLG tasks such
as text summarization (Shi et al., 2021) and ma-
chine translation (Vaswani et al., 2017).

While these models have shown impressive res-
ults, they often require a large amount of training
data and computing resources. However, only a few
African languages have benefited from these ad-
vancements due to inadequate data. To address this
issue, researchers have proposed transfer learning-
based approaches, where a pretrained model is
finetuned for a specific NLG task. Transfer learn-
ing (Raffel et al., 2020; He et al., 2022; Ruder
et al., 2019) has enabled the use of low-resource
languages on various NLP tasks. Due to lack of ad-
equate (or good quality) pretraining data (Kreutzer
et al., 2021), transfer learning is often the most
accessible method for only a few low-resource lan-
guages leaving behind a vast majority of extremely
low-resource languages. This is because about 90%
of the world’s languages is claimed to be either left-
behinds, in that it is probably impossible to build
NLP resources for them, or scraping-bys with no
labelled datasets (Joshi et al., 2020). For the left-
behinds, labelled and unlabelled data are unavail-
able and even transfer learning approaches are bey-
ond reach while the scraping-by languages have
no labelled data with which to evaluate model per-
formance.

2.1 Language Models

Only a few African languages have benefited from
the recent advancement of language models (LM)
due to inadequate data sizes. We now describe
encoder-decoder LMs that support NLP tasks in
African languages. We describe these under two
broad headings: massively multilingual models
and African models. We summarize the models
and African languages they cover in Table 1.
Multilingual Models: The massively multilin-
gual models such as mBART (Liu et al., 2020),
MT0 (Muennighoff et al., 2022), and mT5 (Xue
et al., 2021) are trained on several languages. How-
ever, in most cases, only a few African languages
are represented. Among the mentioned models,
mT0 is pretrained on the highest number of African
languages (n=13).
African Models. Adelani et al. (2022) use pre-
trained T5, mT5, and mBART models and develop
AfriByT5, AfriMT5, AfriMBART respectively to
investigate machine translation in zero-shot and
out-of-domain settings. The authors experiment
on 17 African languages and demonstrate that fur-
ther pretraining is effective for adding new lan-
guages to pretrained models. Jude Ogundepo et al.

12799



(2022) train AfriTeVa, an encoder-decoder lan-
guage model from scratch on ten African languages
and English using similar training objectives like
T5 model. AfriTeVa-V2 (Oladipo et al., 2023) has
enhanced support for 16 African languages with
improved quality pretraining data. 1

African Natural Language Understanding. Sev-
eral works attempt to improve the perform-
ance on African NLU tasks by proposing mul-
tilingual and African-dedicated models such as
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020), AfriBERTa (Ogueji et al., 2021),
AfroLM (Dossou et al., 2022), Afro-XLM-R (Alabi
et al., 2022), KINYaBERT (Nzeyimana and Niy-
ongabo Rubungo, 2022), and SERENGETI (Ade-
bara et al., 2023).

2.2 Benchmarks

Multiple benchmarks have been developed for
NLG. However, only a few of Africa’s 2, 000 lan-
guages have been supported to date. In most cases,
the benchmarks support only the machine transla-
tion task. We provide a brief overview under two
headings: African and multilingual. We summar-
ize key information about each benchmark in Table
C.1.
African Benchmarks. AfroMT (Reid et al., 2021a)
is a multilingual machine translation benchmark.
It consists of translation tasks between English
and eight African languages — Afrikaans, Xhosa,
Zulu, Rundi, Sesotho, Swahili, Bemba, and Lin-
gala. Menyo-20k (Adelani et al., 2021) is an MT
evaluation benchmark for English-Yorùbá.
Multilingual with African Languages.
FLoRES-200 (Costa-jussà et al., 2022; Guzmán
et al., 2019) is an evaluation benchmark that
provides MT evaluation support in 200 languages
including 52 African languages. GEM (Gehr-
mann et al., 2021, 2022) referenced as “living"
benchmark, comprises of 40 tasks and supports
52 languages including 10 African languages.
NLLB Seed Data (Costa-jussà et al., 2022)
is a set of professionally-translated sentences
sampled from Wikipedia. It consists of around
six thousand sentences in 39 languages which
include 8 African language. Similarly, NLLB
Multi Domain (Costa-jussà et al., 2022) is an
MT evaluation benchmark made from a set of

1After we finished our work, we became aware of a new
version of AfriTeva, AfriTevaV2 (Oladipo et al., 2023) that
was released only recently (December, 2023). We plan to
evaluate AfriTevaV2 in our camera-ready version of this work.

professionally-translated sentences in the news
and health domains. It consists of approximately
3, 000 sentences in each domain and supports
8 languages including 2 African languages.
Toxicity-200 (Costa-jussà et al., 2022) is an
evaluation benchmark to evaluate the presence of
toxic items in the MT text. It provides support for
50 African languages. XGLUE (Liang et al., 2020) is
a cross-lingual, multi-task benchmark created with
multilingual and bilingual corpora. It supports 19
languages and one African language, i.e., Swahili.

3 Cheetah

3.1 Pretraining Data

We are guided by three main principles in devel-
oping this data: quality, linguistic diversity, and
coverage.
Quality. Developing NLP technologies for low re-
source languages poses a significant challenge due
to the limited availability of high-quality training
data. To address this issue, we undertook the task
of manually curating a diverse corpus spanning
multiple domains, including news articles, health
documents, religious texts, legal documents, and
social media feeds. This manual curation approach
was necessary because there were no existing data-
sets available for the majority of the languages we
aimed to support, and we wanted to ensure the
utilization of reliable and high-quality data.
Coverage. In all, we train Cheetah using a 42G
multi-domain corpus across 517 African languages
and language varieties. The languages are spoken
in 50 of 54 African countries and they are written
with five scripts. This provides support to at least
500M Africans.
Linguistic Diversity. The inclusion of languages
from various domains, geographical regions, and
linguistic typologies, along with the utilization of
reliable data sources, contributes to enhancing the
robustness and quality of Cheetah. Our data con-
sists of languages from 14 language families in
Africa written in five different orthographies. Fur-
thermore, our data spans languages with a vast
array of exotic linguistic features including tone,
vowel and consonant harmony, reduplication, word
orders, and word classes.

More details about pretraining is in Appendix A.

3.2 Implementation Details

Vocabulary. We use SentencePiece (Kudo and
Richardson, 2018) to encode text as WordPiece
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Category LM Lang/Total African Languages Families

Multilingual
MBART 3/50 afr, swh, yor. 2
MT0 14/101 afr, amh, hau, ibo, lin, mlg, nyj, orm, sot, 4

sna, som, swh, xho, yor, and zul
MT5 12/101 afr, amh, nya, hau, ibo, mlg, sna, som, swh, xho, yor, and zul 3

African

AfriVeTa 10/10 gaz, amh, Gahuza, hau, ibo, pcm, som, swa, tir, and yor. 3
AfriMT5 17/17 bam, bbj, ewe, fon, hau, ibo, lug, luo, pcm, mos, swa, tsn, twi, wol, yor, zul. 3
AfriByT5 17/17 bam, bbj, ewe, fon, hau, ibo, lug, luo, pcm, mos, swa, tsn, twi, wol, yor, zul. 3
AfriMBART 17/17 afr, amh, nya, hau, orm, som, swh, xho. 3

Cheetah 517/517 Includes 517 African languages. 14

Table 1: Comparing with available encoder-decoder models with African languages represented. Lang/Total.
describe the number of African languages comparing with the covered languages in the pretrained language models.
Families. describes the number of covered language families.

tokens (Sennrich et al., 2016) with 250K Word-
Pieces. We also include data covering the ten
top spoken languages globally: Arabic, English,
French, German, Greek, Italian, Portuguese, Rus-
sian, Spanish, and Turkish. We use Wikipedia
dumps for these ten languages. We use 1M sen-
tences for each language. However, we only in-
clude it in the vocabulary.
Models Architecture. We pretrain Cheetah using
the encoder-decoder architecture (Xue et al., 2021).
Each of the encoder and decoder components is
similar in size and configuration to T5, with 12
layers each with 12 attention heads, and 768 hidden
units for the base model. In total, this results in a
model with ∼ 580 million parameters. We provide
further details in Table B.1.
Objective. We use an unsupervised (denoising)
objective. The main idea is to feed the model with
masked (corrupted) versions of the original sen-
tence, and train it to reconstruct the original se-
quence. The denoising objective (Xue et al., 2021)
works by randomly sampling and dropping out 15%
of tokens in the input sequence. All consecutive
spans of dropped-out tokens are then replaced by a
single sentinel token.
Pretraining Procedure For pretraining Cheetah,
we use a learning rate of 0.01, a batch size of 1, 024
sequences, and a maximum sequence length of
1, 024. We pretrain each model for 1M steps. We
train our models on Google Cloud TPU with 128
cores (v3− 128) from TensorFlow Research Cloud
(TFRC).2

4 AfroNLG Benchmark

We create AfroNLG, a multi-lingual, multi-task
benchmark comprising 67 test sets across six task

2https://sites.research.google/trc/about/

clusters. AfroNLG includes cloze tasks, machine
translation, paraphrase, question answering, sum-
marization, and title generation. It supports 527
languages, including 517 African languages and
language varieties and the top 10 world languages.
To the best of our knowledge, this is the most ex-
tensive benchmark till date for African languages.
Table C.1 shows, how our benchmark compares to
others. We provide the details of each task cluster
and datasets in what follows. For detailed statistics
about the task clusters, refer to Appendix C.

Cloze Test. In order to comprehensively evaluate
Cheetah across all the languages it was pretrained
on, we employ cloze-tasks as our evaluation ap-
proach and perform two cloze tasks experiments.
These tasks assess the model’s ability to fill in miss-
ing information. In the first cloze task, which we
henceforth call mask-one, we randomly mask only
one token in each sentence. In the second cloze-
task, which we call mask-at-least-one, we ran-
domly mask at least one token and not more than
10% of the tokens in each sentence. For each of the
517 languages, we construct a cloze-task dataset
comprising 200 data points for each language in
the Train set, 100 examples for each language in
the Test set, and 50 data points for each language
in the Dev set. We ensure that there is no overlap
between the data used for the cloze tasks and the
pretraining data. We show an example of our cloze
task in Figure C.1.

Machine Translation. We include only datasets
pertaining African languages in our benchmark. In
selecting the languages for our MT benchmark, we
strive to keep datasets that have been used in any
published machine translation task. This allows us
to cover a diverse set of languages and compare our
models to existing SoTA across a large number of
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language pairs. Our benchmark thus contains data
from Afro-MT3 (Reid et al., 2021b), Lafand-MT4

(Adelani et al., 2022), PidginUNMT5 (Ogueji and
Ahia, 2019), and SALT6 (Akera et al., 2022). The
datasets we consider make up 35 language pairs.

Paraphrase. A paraphrase task aims to create se-
mantically similar and fluent paraphrases given an
input text (Chen et al., 2023; Palivela, 2021). We
use the TaPaCo dataset (Scherrer, 2020) for our
paraphrase generation benchmark. TaPaCo is a
freely available paraphrase corpus for 73 languages
extracted from the Tatoeba database. The dataset
has four African languages: Afrikaans, Berber (a
macro-language), Amazigh, and Kirundi.

Question Answering. The QA task aims to
provide answers to questions based on a knowledge
base also referred to as contexts. We use TYDIA7

QA dataset (Clark et al., 2020). The dataset has a
primary task and a gold passage task. In our bench-
mark, we only include the gold passage task, where
a correct answer is predicted from a passage con-
taining one answer, similar to the existing reading
comprehension task.

Summarization. Summarization is the task of
generating an abridged version of a text, while
capturing the salient ideas and the intended in-
formation from the original text (Nallapati et al.,
2016; King et al., 2022). We use the subset of XL-
Sum (Hasan et al., 2021), an abstractive summar-
ization dataset, that consists of African languages
including Amharic, Hausa, Igbo, Kirundi, Oromo,
Pidgin, Somali, Swahili, Tigrinya, and Yorùbá. We
also develop new test sets using data we crawled
from the web, which are non-overlapping with XL-
Sum. Specifically, we crawl data from BBC and
Voice of Africa (webpages) for Hausa, Ndebele,
and Swahili.

Title Generation. The title generation task returns
a single sentence title for a given article. Similar to
the summarization task, we use XL-SUM to create
a news title generation dataset. We also collect a
new test set for title generation across 15 languages.
The dataset comprises ∼ 6, 000 BBC and Voice of
Africa articles, non-overlapping with XL-Sum, and
is particularly useful for zero-shot title generation.

3https://github.com/machelreid/afromt
4https://github.com/masakhane-io/lafand-mt
5https://github.com/keleog/PidginUNMT
6https://github.com/SunbirdAI/salt
7https://github.com/google-research-datasets/tydiqa

5 Evaluation and Results

We evaluate Cheetah on six task clusters of
AfroNLG benchmark and compare to performance
on mT0, mT5, Afri-MT5, and AfriTeVa. We report
results in Table 2. For all models, we finetune on
the training data split (Train) for 20 epochs with an
early stopping of 5 epochs, learning-rate of 5e− 5,
batch size of 16, and sequence length of 512. All
experiments were performed on 4 GPUs (Nvidia
V100). We report the results of each experiment
as an average of three runs, each with a different
seed.8 We show evaluation results per language and
provide information of model performance next.
Cloze Test. Cheetah outperforms all other models
on both cloze tasks as in Table 2. We show the
results for each language that is supported by the
models compared in Table D.1 and Table D.2. The
performance of all models on mask-one is better
than the performance on mask-at-least-one, reflect-
ing how increasing the number of masked tokens
makes the task more challenging. It is also import-
ant to mention that since evaluation is based on
BLEU it does not reflect correct synonyms that
each model may have generated to replace the
masked tokens.
Machine Translation. Cheetah sets a new SOTA
on 23 tasks surpassing previous models. The mT0
and AfriTEVA models also demonstrate strong per-
formance on six languages. Notably, pairs with
French as the source language tend to yield the
lowest BLEU scores, indicating relatively lower
translation quality. On the other hand, the language
pair involving English to Nigerian Pidgin, specific-
ally on LafandMT and PidginUNMT, showcases
the highest BLEU scores. We assume that the simil-
arity between the Nigerian Pidgin and English con-
tributes favourably to translation quality in these
scenarios. We also report CHRF and CHRF++ res-
ults in Table C.4 and Table C.5 in the Appendix.
Paraphrase. In the three paraphrase tasks, Chee-
tah demonstrates remarkable superiority over all
other models. Specifically, we achieve an impress-
ive ROUGE score of 46.0 on the Berber paraphrase
task, surpassing the second-best model by a margin
of approximately two points.
Question Answering. In the task of question an-
swering, mT0 exhibits superior performance com-
pared to other models. While mT5 achieves the
second-highest performance, Cheetah attains the
third-highest performance in this task.

8Specifically, we use seed values 41, 1512, and 20235.
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Cluster Task Metric mT0 mT5 Afri-MT5 AfriTeVa Cheetah
M

ac
hi

ne
Tr

an
sl

at
io

n
(M

T
)

English → Afrikaans Bleu 20.38±0.3 12.35±1.1 7.12±2.67 7.75±1.67 19.72±0.75

English → Bemba Bleu 19.19±0.3 12.28±0.48 11.73±12.3 20.5±0.87 18.9±1.22

English → Lingala Bleu 15.98±1.16 14.12±0.56 14.32±12.74 13.88±1.04 9.64±1.11

English → Rundi Bleu 12.26±0.47 8.82±0.43 9.57±0.42 7.83±1.04 10.54±0.54

English → Sesotho Bleu 11.04±1.2 12.74±0.75 10.0±1.79 10.76±1.4 13.3±1.38

English → Swahili Bleu 10.59±1.84 9.33±0.58 3.08±0.57 7.24±0.46 11.08±0.61

English → Xhosa Bleu 10.04±0.98 8.25±0.7 3.86±1.35 7.5±0.32 12.34±0.51

English → Zulu Bleu 17.65±1.86 17.97±1.69 1.9±1.11 13.45±1.81 19.49±1.16

English → Hausa Bleu 5.06±0.21 4.96±0.16 0.85±0.04 7.32±0.00 9.22±0.08

English → Igbo Bleu 13.05±0.17 11.57±0.23 1.12±0.09 12.34±0.23 16.75±0.26

English → Luganda Bleu 2.17±2.77 3.33±0.35 0.09±0.01 4.21±0.77 9.75±0.01

English → N. Pidgin Bleu 33.17±0.28 32.65±0.19 2.39±0.23 9.39±0.18 32.64±0.14

English → Swahili Bleu 22.04±2.89 23.2±0.23 2.79±0.08 22.39±0.28 28.11±0.14

English → Zulu Bleu 6.83±0.29 0.58±1.37 0.4±0.03 4.45±0.37 11.75±0.38

English → Twi Bleu 3.4±0.12 1.23±0.03 0.03±0.0 1.68±0.94 4.64±0.13

English → Yoruba Bleu 5.42±0.85 2.58±3.1 0.04±0.0 3.63±4.01 7.83±0.14

English → Zulu Bleu 10.28±0.49 1.31±2.26 0.14±0.03 3.8±4.2 12.13±0.1

French → Bambara Bleu 2.0±2.6 0.37±0.19 0.15±0.01 3.18±0.18 3.06±0.27

French → Ghomálá’ Bleu 0.4±0.09 0.33±0.01 0.07±0.0 0.96±0.01 0.28±0.25

French → Ewe Bleu 0.7±0.35 0.31±0.36 0.09±0.07 0.84±0.16 3.47±0.03

French → Fon Bleu 0.69±0.31 0.8±0.13 1.52±0.06 1.73±0.53 1.29±0.16

French → Moore Bleu 0.27±0.06 0.12±0.05 0.19±0.02 0.47±0.04 1.66±0.86

French → Wolof Bleu 4.02±0.12 0.3±0.05 0.11±0.01 3.08±0.25 3.01±0.07

English → N. Pidgin (UNMT) Bleu 27.44±0.26 23.42±1.61 7.05±1.37 22.54±0.84 26.56±0.04

Acholi → English Bleu 16.41±0.08 11.16±4.77 4.9±0.11 8.37±8.12 19.33±0.1

Acholi → Lugbara Bleu 2.57±0.21 1.48±1.31 2.44±0.37 8.29±0.14 7.21±0.69

Acholi → Luganda Bleu 3.64±0.07 1.74±0.12 0.92±0.01 5.53±0.34 8.03±0.38

Acholi → Nyankore Bleu 2.17±0.14 0.79±0.51 0.46±0.03 4.26±0.54 5.1±0.14

Acholi → Ateso Bleu 1.64±2.34 1.94±0.25 4.9±0.11 7.74±0.33 6.33±0.6

English → Lugbara Bleu 6.19±6.33 8.38±0.49 5.93±0.22 10.95±0.32 11.61±0.28

English → Luganda Bleu 12.08±0.03 10.58±0.25 2.59±0.73 12.41±0.35 17.12±0.16

English → Nyankore Bleu 6.46±0.08 5.69±0.02 1.4±0.39 7.88±0.18 9.04±0.24

English → Ateso (salt) Bleu 10.24±0.06 8.28±0.19 4.91±0.59 11.64±0.49 11.12±0.38

Lugbara → Ateso Bleu 2.21±0.35 1.5±0.2 2.22±0.15 6.67±0.32 3.68±0.31

Luganda → Lugbara Bleu 3.96±0.57 2.61±0.12 3.44±0.32 8.05±0.23 7.99±0.47

Luganda → Ateso Bleu 4.47±0.08 3.01±0.16 2.5±0.22 8.17±0.18 8.13±0.33

Nyankore → Lugbara Bleu 3.45±0.29 2.1±0.32 2.6±0.29 7.5±0.09 7.29±0.09

Nyankore → Luganda Bleu 8.54±0.17 6.91±0.23 2.01±0.25 6.77±6.73 6.25±10.26

Nyankore → Ateso Bleu 3.33±0.11 2.25±0.23 2.12±0.4 6.27±0.12 6.36±0.4

Paraphrase
Multilingual Bleu 41.79±0.28 41.75±0.21 34.72±0.51 43.02±1.25 43.23±0.09

Berber Bleu 44.84±0.31 44.03±0.24 36.08±0.83 **46.41±0.71 46.0±0.27

Kabyle Bleu 25.91±0.13 25.32±0.46 11.56±0.73 16.06±14.79 26.27±0.56

Question Answering QA Swahili F1 79.84±0.19 72.04±0.54 0 62.64±0.78 71.98±1.18

Su
m

m
ar

iz
at

io
n

Multilingual RougeL 22.31±0.12 22.23±0.04 5.34±0.48 18.97±0.06 24.86±0.02

Amharic RougeL 13.81±0.04 13.09±0.03 4.4±1.07 8.29±0.51 15.09±0.1

Igbo RougeL 18.9±0.73 13.22±0.46 14.24±0.39 16.05±0.49 17.36±0.43

Oromo RougeL 11.28±0.03 10.51±0.07 3.52±0.49 7±1.73 14.53±0.1

Rundi RougeL 19.63±0.01 18.02±0.13 11.82±0.39 16.13±0.03 22.57±0.04

Swahili RougeL 26.38±0.02 24.81±0.11 15.07±0.17 21.59±0.13 29.05±0.13

Yoruba RougeL 21.57±0.05 20.06±0.12 13.52±0.18 17.3±0.11 22.49±0.0

Hausa RougeL 26.46±0.06 25.76±0.02 19.96±0.26 25.19±0.11 30.07±0.31

Nigerian Pidgin RougeL 26.54±0.05 25.79±0.1 14.28±1.23 20.29±0.12 27.08±0.02

Somali RougeL 20.69±0.08 19.21±0.06 13.62±0.81 19.27±0.18 23.92±0.04

Tigrinya RougeL 15.84±0.13 13.93±0.11 6.53±0.42 10.07±0.09 16.88±0.12

Ti
tle

G
en

er
at

io
n

Multilingual Bleu 6.53±0.02 6.65±0.08 0.1±0.02 5.2±0.02 7.52±0.07

Amharic Bleu 3.13±0.23 2.65±0.68 0.34±0.14 2.31±0.14 4.34±0.34

Igbo Bleu 6.95±0.13 6.9±0.22 0.77±0.12 4.61±0.14 8.47±0.07

Oromo Bleu 1.1±1.84 2.66±0.19 0.21±0.06 1.54±0.17 3.26±0.21

Rundi Bleu 4.4±0.28 4.13±0.22 0.84±0.07 3.33±0.23 6.05±0.5

Swahili Bleu 9.1±0.23 9.31±0.11 1.22±0.09 7.01±0.09 10.59±0.6

Yoruba Bleu 6.8±0.16 7.23±0.59 0.34±0.05 5.04±2.0 7.97±0.32

Hausa Bleu 8.11±0.24 7.3±0.34 2.59±0.01 6.69±0.18 8.48±0.23

Nigerian Pidgin Bleu 6.75±0.6 3.96±4.3 0.89±0.02 4.72±0.84 6.22±0.28

Somali Bleu 3.37±0.21 3.31±0.16 0.38±0.11 2.82±0.47 5.25±0.14

Tigrinya Bleu 2.99±0.1 2.94±1.09 0.7±0.18 1.92±0.26 5.1±0.05

Cloze-task
Mask-one Bleu 13.61±0.91 8.18±3.94 0.00±0.00 8.36±3.42 13.98±0.32

Mask-at-least-one Bleu 2.36±0.11 2.66±0.09 0.93±0.12 0.68±0.09 7.07±0.09

AfroNLG Score 12.56 11.05 5.15 10.84 14.25

Table 2: Average performance of finetuned African and multilingual models across three runs on AfroLNG
benchmark test sets.
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Summarization. Cheetah sets a new SOTA on
11 languages, outperforming other models by an
average margin of at least three points. Detailed
results can be found in Table 2.
Title Generation. On the Title generation task,
Cheetah sets a new SOTA on 11 languages. We
report results in Table 2.

5.1 Investigating linguistic capabilities

In order to further test the utility of our models,
we use grammar templates to construct test data
in English. We use nine linguistic rules and 19
lexical items to generate 152 sentences. Next, we
use our model to translate from source to target and
manually evaluate the quality of the generated data.
We design new evaluation metrics, faithfulness and
fluency, for the manual evaluation (see Section 5.2).
A detailed description follows.
Grammar templates. We use grammar templates
(McCoy et al., 2019) developed with context-free
grammars (CFG) on the source side to construct
controlled test sets in English. We use CFG on
the source side alone because constituents and con-
stituent order differs across languages. We adopt
this method for two reasons. First, utilizing gram-
mar templates provides a standardized framework
that ensures that the same grammatical phenomena
are tested consistently. By employing a uniform
approach, we can effectively isolate and evaluate
specific linguistic features, facilitating a more rigor-
ous and meaningful comparison of language model
performance. Second, grammar templates exhibit
a high degree of flexibility, allowing for easy modi-
fication and extension to encompass a wide range
of linguistic phenomena. This adaptability not only
facilitates the incorporation of new linguistic fea-
tures but also enables the evolution of our test sets
to match the dynamic landscape of natural language
processing research.

Other alternatives to templates include using
parsed corpora (Bender et al., 2011) or naturally
occurring sentences. For the languages we explore,
there are no good quality parsers, making automatic
parsing inaccessible for this analysis. Furthermore,
when a corpus is parsed automatically, the likeli-
hood of encountering parsing errors escalates with
the intricacy of the sentence structure (Bender et al.,
2011; Marvin and Linzen, 2018). Conversely, if
the test set exclusively comprises sentences with
accurate gold parses, sourcing an ample quant-
ity of instances showcasing syntactic complexit-

ies becomes an arduous task (Marvin and Linzen,
2018). Furthermore, the utilization of naturally
occurring sentences introduces potential complic-
ations that might confound the interpretation of
experiments (Ettinger et al., 2018). The templates
include transitive and intransitive structures, negat-
ive and affirmative structures, and structures with
gender and number. Table E.1 provides examples
of generated sentences using the templates.The
entire generated grammar is available at our Git-
Hub:9.
Inference. We test three of our finetuned ma-
chine translation models with the generated data-
set. This allows us to evaluate how much lin-
guistic information the models have acquired dur-
ing pretraining and finetuning. Specifically, we
use the English→Hausa, English→Swahili, and
English→Yorùbá based on MT0, MT5, AfriTEVA,
and Cheetah models that were finetuned on the La-
fandMT dataset. We do not include Afri-MT5 in
this analysis because it has very low scores across
several tasks as shown in Table 2. Notably, Hausa,
Swahili, and Yorùbá have distinct typologies and
the performance of each model on each language
gives further insight of performance across varying
typological features. Table E.2 shows a number of
linguistic differences between the three languages.
This method can be generalized to any African lan-
guage.

5.1.1 Linguistic Details

Morphology Morphologically, both Hausa and
Swahili are classified as agglutinative languages
(Jaggar, 2017; Dryer and Haspelmath, 2013), char-
acterized by the systematic addition of prefixes,
suffixes, and affixes to root words or stems. This
process imparts precise grammatical meanings, en-
compassing tense, case, mood, person, number,
and more. Conversely, Yorùbá exhibits an analytic
structure, relying on word order and discrete func-
tion words to denote grammatical relationships,
with minimal use of inflections or affixes. The fol-
lowing are examples from the generated (1) Hausa,
(2) Swahili, and (3) Yorùbá, respectively.

(1) a. Bai
neg.masculine

barshi
leave

ba
at-all

‘he did not leave him’

9generatedsentences
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b. Bata
Neg.feminine

barshi
leave

ba
at-all

‘she did not leave him’

(2) a. Ha-ku-mu-a-cha
3pl.sg.sub-neg-3pl.sg.obj-leave

‘He did not leave him’

b. Ha-ku-mu-a-cha
3pl.sg.sub-neg-3pl.sg.obj-leave

‘She did not leave him’

(3) a. Òhun
3pl.sg.sub

ò
neg

kúrò
leave

lÓ
˙

dÒ
˙from

è
3̇pl.sg.obj

‘He did not leave him’

b. Òhun
3pl.sg.sub

ò
neg

kúrò
leave

lÓ
˙
dÒ

˙
from

è
˙
3pl.sg.obj

‘She did not leave him’

Phonology In terms of phonology, Yorùbá and
Hausa are tonal languages, where pitch distinctions
contribute to word differentiation. However, Hausa
features a relatively simpler tone system compared
to Yorùbá and in most cases tone is not marked
in Hausa orthography. Only dictionaries and ped-
agogical materials indicate tone in text. Yorùbá
on the other hand has three tones and indicating
tones in orthography significantly reduces ambigu-
ity (Adebara and Abdul-Mageed, 2022). Swahili,
in contrast, is devoid of tones altogether.

5.2 Human evaluation

To evaluate the effectiveness of each model across
different languages, we assess the generated out-
put’s faithfulness and fluency using a five-point
Likert scale. Faithfulness measures how accurately
a model’s output corresponds to the input sentence,
while fluency assesses the grammatical coherence
and plausibility of the generated output. We use
both metrics because a model can produce coherent
output that may not be faithful to the input sentence.
This way, if faithfulness penalizes a model for out-
puts that are not true to the input or that include
additional unnecessary information, fluency com-
plements our evaluation of the quality of the same

model if the output is fluent. For each grammar cat-
egory, we return the average Likert point for each
language and across the different models model.

5.3 Annotation
We annotated each model’s output for faithfulness
and fluency. For Hausa and Yorùbá, two expert
annotators evaluated the model’s output for faith-
fulness and fluency. We ensured that each annotator
has native speaker competency in reading and writ-
ing (while some had a linguistic background). We
gave specific annotation instructions (see Section
E in the Appendix) to ensure the values are not
assigned arbitrarily. We also ensured that the an-
notators do not know who created which models to
prevent any biases. We report the Cohen’s Kappa
agreement scores in Table E.3 (Appendix). For
Swahili, only one annotator made it to the final
annotation task since we could not acquire high
quality annotations from other annotators. The
Swahili annotator who did the final annotation is a
university lecturer with a Ph.D. in linguistics.

5.4 Fluency and Faithfulness Performance
We report the distribution of faithfulness and flu-
ency scores across all models and languages in
Figure 2. Overall, Cheetah produces more faithful
and more fluent outputs than other models on all
languages. We now go on to provide a brief ana-
lysis of model performance. More details are in in
Appendix F.
Intransitives In the case of Hausa examples, all
three models can generate intransitive sentences
with varying levels of fluency and faithfulness with
Cheetah outperforming other models. In the con-
text of Swahili, errors primarily relate to tense, pos-
sibly because Swahili has an agglutinative structure,
and the models may lack exposure to a comprehens-
ive range of grammatical features during training.
In the case of Yorùbá, all models consistently in-
corporate at least one object in each intransitive
case. This could be because intransitive sentences
in Yorùbá lack a clear direct object, making it chal-
lenging for machine translation models to select the
accurate translation. Additionally, some intransit-
ive phrases in Yorùbá can be polysemous, further
complicating the translation process. We report the
distribution of scores in Figure G.1.
Transitives Cheetah demonstrates the capability to
provide three distinct semantic senses for the poly-
semous transitive verb treated whereas the other
models typically produce only a single semantic in-
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Figure 2: Faithfulness and fluency for Hausa, Swahili, and Yorùbá

terpretation. For Swahili, certain instances exhibit
the deletion or simplification of object markers in
an ungrammatical manner. Figure G.2 shows the
distribution of model performance on transitives.

Negative mT0, MT5, and AfriTeVa have a tend-
ency to output the negation of the antonym of the
verb in each sentence rather than the negation of the
verb. Cheetah also makes similar mistakes about
5% of the time. Affirmative. The models gener-
ally perform better in the context of the affirmative
examples than on the negated examples. However,
in the context of Hausa, mT5, mT0, and AfriTeVa
consistently output the antonym of negated verb.
For instance, the models return “Sara left" rather
than “Sara did not leave". In the Swahili examples,
we also find cases of double negation (which is not
grammatically correct in Swahili). We show the
distribution of results in Figure G.5 and Figure G.4.

Gender/Agreement Yorùbá does not distinguish
gender, yet Cheetah uses Arábìrin (female) before
every occurrence of the name “Sara" to indicate
that the it has a high probability of being feminine
(see Figure G.3). However, “Fred" is not annotated
this way. For Hausa, which requires agreement
between the gender of the noun and the verb, we
find Cheetah outperforming both mt0 and mt5 sig-
nificantly. AfriTeVa, however, has very low accur-
acy in the context of gender. Furthermore, mt0,

mt5, and Cheetah return connotations for love and
relationships for each examples where a male and
female pronoun co-occur cross-lingually.

6 Conclusion

We introduced Cheetah, a massively multilingual
language model designed for African natural lan-
guage generation. We also propose a new African
language generation benchmark, dubbed AfroNLG,
that is both sizeable and diverse. We evaluate Chee-
tah on AfroNLG comparing it to three other mod-
els, two multilingual and one dedicated to African
languages. The performance of Cheetah surpasses
that of all other models we evaluate. This is demon-
strated by its superior AfroNLG score, which is
approximately three times better than the combined
performance of other models. Furthermore, Chee-
tah outperforms all other models across 48 out of
65 test sets spanning six task clusters. We further
analyze our model’s robustness to lexical complex-
ity and carry out human evaluation to inspect the
model’s perform on a controlled test set. Again,
our results underscore superiority of our model.

7 Limitations

We identify the following limitations for our work:

1. The limitations of our language model include
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the limited scope of our evaluation. Future
work should focus on increasing the subset
of languages evaluated manually in order to
ensure quality. We believe automatic analyses
are not sufficient for development of models
that get deployed in particular applications.

2. Another limitation is related to our inability
to perform extensive analysis of biases and
hateful speech present in our pretraining data.
Again, this is due to relatively restricted ac-
cess to native speakers (and even automated
tools) to perform this analysis. As a result, we
cannot fully ensure that our models are free
from biases and socially undesirable effects.
Therefore, it is important that these models be
used with care and caution, and be analyzed
for biases and socially undesirable effects be-
fore use.

3. Additionally, due to unavailability of suffi-
cient computing resources, we were unable
to evaluate larger multilingual language mod-
els.

8 Ethics Statement and Wider Impacts

Cheetah aligns with Afrocentric NLP where the
needs of African people is put into consideration
when developing technology. We believe Chee-
tah will not only be useful to speakers of the lan-
guages supported, but also researchers of African
languages such as anthropologists and linguists.
We discuss below some use cases for Cheetah and
offer a number of broad impacts.

1. Cheetah aims to address the lack of access
to technology in about 90% of the world’s
languages, which automatically discriminates
against native speakers of those languages.
More precisely, it does so by focusing on
Africa. To the best of our knowledge, Chee-
tah is the first massively multilingual PLM de-
veloped for African languages and language
varieties. A model with knowledge of 517
African languages, is by far the largest to date
for African NLP.

2. Cheetah enables improved access of import-
ant information to the African community in
Indigenous African languages. This is espe-
cially beneficial for people who may not be
fluent in other languages. This will potentially
connect more people globally.

3. Cheetah affords opportunities for language
preservation for many African languages. To
the best of our knowledge, Cheetah consists
of languages that have not been used for any
NLP task until now. We believe that it can
help encourage continued use of these lan-
guages in several domains, as well as trigger
future development of language technologies
for many of these languages.

4. Although LMs are useful for a wide range of
applications, they can also be misused. Chee-
tah is developed using publicly available data-
sets that may carry biases. Although we strive
to perform analyses and diagnostic case stud-
ies to probe performance of our models, our
investigations are by no means comprehens-
ive nor guarantee absence of bias in the data.
In particular, we do not have access to native
speakers of most of the languages covered.
This hinders our ability to investigate samples
from each (or at least the majority) of the lan-
guages.

5. We emphasize the ethical use of these models.
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Appendices
A Pretraining Data

We provide details of our pretraining data below:
Religious Domain. Our religious data is taken
from online Bibles, Qurans, and data crawled from
the Jehovah’s witness website. We also include
religious texts from the book of Mormon.
News Domain. We collect data from online news-
papers (Adebara and Abdul-Mageed, 2022) and
news sites such as Voice of America, Voice of Ni-
geria, BBC, Global voices, and DW news sites. We
collect local newspapers from 27 languages from
across Africa.
Government Documents. We collect government
documents South African Centre for Digital Lan-
guage Resources (SADiLaR), and the Universal
Declaration of human rights (UDHR) in multiple
languages.
Health Documents. We collect multiple health
documents from the Department of Health, State
Government of Victoria, Australia. We collect doc-
uments in Amharic, Dinka, Harari, Oromo, Somali,
Swahili, and Tigrinya.
Existing Corpora. We collect corpora available
on the web for different African languages, includ-
ing from Project Gutenberg for Afrikaans, South
African News data. for Sepedi and Setswana,
OSCAR (Abadji et al., 2021) for Afrikaans, Am-
haric, Somali, Swahili, Oromo, Malagasy, and Yor-
uba. We also used Tatoeba for Afrikaans, Amharic,
Bemba, Igbo, Kanuri, Kongo, Luganda, Malagasy,
Sepedi, Ndebele, Kinyarwanda, Somali, Swahili,
Tsonga, Xhosa, Yoruba, and Zulu; Swahili Lan-
guage Modelling Data for Swahili; Ijdutse cor-
pus for Hausa; Data4Good corpora for Luganda,
CC-100 for Amharic, Fulah, Igbo, Yoruba, Hausa,
Tswana, Lingala, Luganada, Afrikaans, Somali,
Swahili, Swati, North Sotho, Oromo, Wolof,
Xhosa, and Zulu; Afriberta-Corpus for Afaan /
Oromo, Amharic, Gahuza, Hausa, Igbo, Pidgin,
Somali, Swahili, Tigrinya and Yoruba; mC4 for
Afrikaans, Amharic, Hausa, Igbo, Malagasy, Chi-
chewa, Shona, Somali, Sepedi, Swahili, Xhosa,
Yoruba and Zulu.

B Models

C AfroNLG Benchmark

We report statistics of AfroNLG benchmark in
Table C.2 and C.1 respectively.

Figure C.1: Examples from the mask-one and mask-at-
least-one cloze task data.

C.1 CHRF and CHRF++ Results

D Cloze Task Results

We provide results on the performance of each
model on individual languages. We use a dash ’-’
to indicate that a specific model does not support a
language.

E Annotation

We gave the following annotation rules to our an-
notators: Faithfulness refers to how close to the
English sentence the model output is. It should
be annotated with values between 1 and 5. Faith-
fulness should be evaluated independently of the
fluency of the model output. Below are some de-
tailed explanations for the scale for faithfulness:

• Give a value 1 if model output is not related
to the source sentence.

• Give a value 2 if the model output is the op-
posite of the source sentence.

• Give a value 3 if the model output is somewhat
related to the source sentence. It should have
some words or phrases that make it related to
the source.

• Give a value 4 if the model output is closely
related but changes the meaning slightly (e.g
difference in gender, number etc)

• Give a value 5 if the model output is an exact
translation

Fluency is how grammatically correct the model
is. Faithfulness and fluency should be judged inde-
pendently. That is, even if the output is not faithful,
don’t use it to determine the fluency score and vice
versa. Here are some detailed explanations on how
to assign the values:

• Give a value 1 if model output is completely
ungrammatical and nonsensical.
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Model Size Params No._heads No._layers D_model Vocab S._Len B. Size #Train_Steps #Langs #A.Langs

mT0 base 580M 12 12 768 ∼250k 1024 1024 UNK 101 13
mT5 base 580M 12 12 768 250K 1024 1024 1M 101 13
AfriMT5 base 580M UNK UNK UNK UNK UNK 2048 UNK 17 17
AfriTeVa base 229M 12 12 768 40K 512 256 500K 10 10

Cheetah base 580M 12 12 768 250K 1024 1024 1M 527 517

Table B.1: Parameters of Cheetah compared with other models.

Category Benchmark Reference Task Lang/Total Datasets Tasks

M
ul

til
in

gu
al

FLoRES200 (Costa-jussà et al., 2022) 52/200 MT Wiki 1
GEMv1 (Gehrmann et al., 2021) DRG, DT, RES, TS, SMP 10/52 18 13

GEMv2 (Gehrmann et al., 2021) DRG, DT, PPH, QA,
RES, TS, SLG, SMP, TS 10/52 50 9

IndicNLG (Kumar et al., 2022) BG, HG, SUM, PARA, QA 0/11 5 5
IndoNLG (Cahyawijaya et al., 2021) SUM, QA, Chit-Chat 0/3 5 3
NLLB M.D. (Costa-jussà et al., 2022) MT 2/8 Wiki 1
NLLB S.D. (Costa-jussà et al., 2022) MT 2/8 Wiki 1
Toxicity200 (Costa-jussà et al., 2022) MT 50/200 Wiki 1

XGLUE (Liang et al., 2020)
NER, POS, MLQA, PAWS-X,
XLNI, NC, QADSM, WPR,
QAM, QG, NTG

1/19 19 11

A
fr

ic
an AfroMT (Reid et al., 2021a) MT 8/8 5 1

Menyo-20k (Adelani et al., 2021) MT 1/2 6 1

AfroNLG Our Work Cloze, CS, MT, QA, TG, SUM, PARA 517/527 67 7

Table C.1: A Comparison of AfroNLG with other multilingual Benchmarks. MT: Machine translation, QA:
Question Answering, CS: Code-Switching, TG: Title Generation, SUM: Summarization, PARA: Paraphrase, NER:
Named Entity Recognition, POS: Part-Of-Speech Tagging, MLQA: Multilingual Question Answering, PAWS-X:
Parallel Aggregated Word Scrambling for Cross-Lingual Understanding, XNLI: Cross-Lingual Natural Language
Interference, NC: News Classification, QADSM: Query-AD Matching, WPR: Web Page Ranking, QAM: QA
Matching, NTG: News Title Generation, BG: WikiBio Biography Generation, and HG: Headline Generation. SD:
Seed Data, MD: Multi Domain. DRG: Dialogue Response Generator, DT: Data-to-Text, RES: Reasoning, TS:
Text Summarization, SMP: Text Simplification, PPH: Paraphrase, SLG: Slide Generation

• Give a value 2 if the model output is reas-
onable but includes some foreign words or
gibberish.

• Give a value 3 if the model output contains
some grammatical phrases but also contains
some ungrammatical phrases.

• Give a value 4 if the model output is almost
grammatical (but may have a few errors like
spelling mistakes)

• Give a value 5 if the model output is very
fluent and sounds looks like what a native
speaker will say.

To prepare for the official annotation process, each
evaluator annotated 10 random samples for the lan-
guage pair they were assigned to. Following the
individual evaluations, we reviewed any annotation
errors and inconsistencies in assessments and as-
signed another random pair of 10 samples. In the
second phase, we removed evaluators for which the
quality of their annotations were deemed of a poor
quality.

F Fluency and Faithfulness Performance

We report the distribution of faithfulness and flu-
ency scores across all models and languages in
Figure 2. Overall, Cheetah produces more faith-
ful and more fluent outputs than other models on
all languages. We now go on to provide detailed
analysis of model performance.
Intransitives In the case of Hausa examples, all
three models manage to produce intransitive ex-
amples. However, Cheetah consistently appends
objects to these intransitive examples. This inclina-
tion to add objects might stem from biases within
the data used for pretraining or finetuning Cheetah.
Nevertheless, it is worth noting that Cheetah outper-
forms other models by generating more fluent and
more faithful Hausa outputs. In the Swahili context,
all models successfully generate intransitive trans-
lations, with model errors primarily related to tense.
This performance discrepancy in Swahili can be
attributed to its agglutinative structure, with models
potentially lacking exposure to a comprehensive
range of grammatical features during pretraining
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Dataset Pairs Train Dev Test

L
af

an
d

eng-hau 5,866 1,301 1,501
eng-ibo 6,945 1,457 1,412
eng-lug 4,076 1,501 1,501
eng-pcm 4,791 1,485 1,565
eng-swa 30,783 1,792 1,836
eng-tsn 2,101 1,343 1,501
eng-twi 3,338 1,285 1,501
eng-yor 6,645 1,545 1,559
eng-zul 3,540 1,462 1,001
fra-bam 3,014 1,501 1,501
fra-bbj 2,233 1,134 1,431
fra-ewe 2,027 1,415 1,564
fra-fon 2,638 1,228 1,580
fra-mos 2,494 1,493 1,575
fra-wol 3,361 1,507 1,501

A
fr

oM
T

eng-afr 25,799 3,226 3,226
eng-bem 12,043 1,506 1,506
eng-lin 17,679 2,211 2,210
eng-run 12,475 1,560 1,560
eng-sot 28,844 3,607 3,606
eng-swa 28,084 3,511 3,512
eng-xho 26,091 3,263 3,262
eng-zul 29,127 3,641 3,642

PidginUNMT eng-pcm 1,682 211 211
SALT All-pairs 20,006 2,501 2,502

Table C.2: Statistics of the MT data in our benchmark.
All-pairs each have the same size of data. They include
ach-eng, ach-lgg, ach-lug, ach-nyn, ach-teo, ach-teo,
eng-lgg, eng-lug, eng-nyn, eng-teo, lgg-teo, lug-lgg,
lug-teo, nyn-lgg, nyn-lug, and nyn-teo

or finetuning. In the context of Yorùbá, all mod-
els consistently incorporate at least one object in
each intransitive case. Notably, mT0 generates an
output without an object approximately 5.88% of
the time. This may be because intransitive sen-
tences inherently lack a clear direct object, making
it more challenging for machine translation models
to grasp context and select the accurate transla-
tion. In certain instances, some intransitive phrases
can be polysemous, further complicating the trans-
lation process. Intransitive English verbs do not
always retain their intransitive nature in Yorùbá.
Furthermore, transitives with optional/truncated ob-
jects tend to have a compulsory object in Yorùbá.
This phenomenon potentially contributes to the
models’ tendency to append objects to intransitive
Yorùbá phrases. For instance, whereas the intrans-
itive "slept" in "John slept" maps to the intrans-
itive form "John sùn" in Yorùbá, the intransitive
verb "prayed", in "John prayed" becomes "John
gbàdúrà", a transitive verb in Yorùbá. On the other
hand, the transitive verb "ate" in "John ate", has an
optional/truncated object in English but becomes
"John je

˙
un", a transitive with an obligatory object.

In Yorùbá, both "ate" and "prayed" are transitive
verbs that require an object. They are derived from
"je

˙
" (eat) and "oúnje

˙
" (food), which give rise to

"je
˙
un" and "gbà" (collect) and "àdúrà" (prayer),

resulting in "gbàdúrà" respectively.

Transitives In the context of transitives, Chee-
tah stands out as the top-performing model across
all three languages, as illustrated in Figure 2. Chee-
tah demonstrates the capability to provide three
distinct semantic senses for the polysemous transit-
ive verb treated whereas the other models typically
produce only a single semantic interpretation. In
Swahili examples, certain instances exhibit the de-
letion or simplification of object markers in an un-
grammatical manner. For a visual representation of
the annotation of intransitive sentences in Yorùbá,
please refer to Figure G.3. Figure G.2 shows the
distribution of model performance on transitives.

Negative In the context of Yorùbá, all models are
able to produce the correct negation marker includ-
ing the correct tone marks. The tone patterns on
negation markers may vary based on the context of
words before and after the negation marker and it
was interesting to see these variations in the models
outputs. Despite this, mT0, MT5, and AfriTeVa
have a tendency to output the negation of the ant-
onym of the verb in each sentence rather than the
negation of the verb. Cheetah also makes similar
mistakes about 5% of the time.

Gender/Agreement We find interesting cases
of gender in the model’s output. For example,
whereas Yorùbá grammar does not distinguish
gender, Cheetah uses Arábìrin (female) before
every occurrence of the name “Sara" to indicate
that the it has a high probability of being femin-
ine (see Figure G.3). It is important to mention
that “Fred" is not annotated this way. For Hausa,
which requires agreement between the gender of
the noun and the verb, we find Cheetah outper-
forming both mt0 and mt5 significantly. AfriTeVa,
however, has very low accuracy in the context of
gender. Furthermore, mt0, mt5, and Cheetah return
connotations for love and relationships for each ex-
amples where a male and female pronoun co-occur
cross-lingually.

Number Cheetah significantly outperforms all
three models in accurately assigning appropriate
number markers. We also find that when translating
the word "you" into Hausa, Swahili, or Yorùbá, all
four models use either singular or plural forms. We
assume that this is due to the fact that the second
person in English (i.e., “you") can be either singu-
lar or plural while each of these languages have a
different word for the singular and plural forms.
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Task Cluster Test Set Source Train Dev Test

Cloze test 517 languages Ours 103,400 25,850 51,700
Paraphrase Multilingual†† (Scherrer, 2020) 22,390 2,797 2,794

Berber 17,607 2,200 2,200
Kabyle 4,441 555 555

Question Answering Swahili (Clark et al., 2020) 49,881 499 n/a

Su
m

m
ar

iz
at

io
n

Multilingual† (Hasan et al., 2021) 63,040 7,875 7875
Amharic 5,761 719 719
Igbo 4,183 522 522
Oromo 6,063 757 757
Rundi 5,746 718 718
Swahili 7,898 987 987
Yorùbá 6,350 793 793
Hausa 6,418 802 802
Nigerian Pidgin 9,208 1,151 1,151
Somali 5,962 745 745
Tigrinya 5,451 681 681
Multilingual⋆† Ours 428

Ti
tle

G
en

er
at

io
n

Multilingual† (Hasan et al., 2021) 63,040 7,875 7875
Amharic 5,761 719 719
Igbo 4,183 522 522
Oromo 6,063 757 757
Rundi 5,746 718 718
Swahili 7,898 987 987
Yorùbá 6,350 793 793
Hausa 6,418 802 802
Nigerian Pidgin 9,208 1,151 1,151
Somali 5,962 745 745
Tigrinya 5,451 681 681
Multilingual⋆ Ours 5899

Table C.3: Statistics of the data in our benchmark. †† includes amh, ber, kab, run. † has amh, ibo, orm, run, swa, yor,
hau, pcm, som, and tir. ⋆† is a newly created summarization test set including ‘hau’, ‘nde’ (zero-shot), and ‘swa’. ⋆

is a newly created test set across 15 languages: ‘amh’, ‘gag’ (zero-shot), ‘hau’, ‘ibo’, ‘pcm’, ‘som’, ‘swa’, ‘tir’,
‘yor’, ‘kin’ (zero-shot), ‘afr’, ‘mlg’ (zero-shot), ‘orm’, ‘nde’ (zero-shot), ‘sna’(zero-shot)
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Task Metric mT0 mT5 afri-mt5 AfriTeVa Cheetah

Translate English to Afrikaans Chrf 26.97±4.75 26.11±4.12 14.66±8.79 20.75±4.02 39.88±0.81

Translate English to Bemba Chrf 10.27±0.89 6.39±1.96 20.23±13.97 9.94±10.05 15.76±0.19

Translate English to Rundi Chrf 21.51±1.39 17.56±3.13 24.91±3.59 31.58±2.33 28.65±3.55

Translate English to Sesotho Chrf 21.08±3.54 12.08±10.91 23.75±4.77 29.57±1.61 29.05±2.41

Translate English to Swahili Chrf 23.26±0.16 20.35±4.87 24.60±0.2 20.5±4.88 37.24±0.04

Translate English to Xhosa Chrf 27.44±3.1 25.88±4.94 34.97±2.49 20.25±15.35 33.45±0.21

Translate English to Zulu Chrf 27.12±3.49 21.54±2.16 37.8±1.41 25.39±16.55 43.75±0.11

Translate English to Hausa Chrf 28.53±0.26 27.65±0.53 19.99±0.42 31.68±0.29 34.9±0.32

Translate English to Igbo Chrf 40.31±0.17 37.18±0.34 22.01±0.7 33.24±0.23 44.37±0.31

Translate English to Luganda Chrf 25.94±2.41 23.33±0.31 15.57±1.45 24.16±2.55 36.22±0.09

Translate English to N. Pidgin Chrf 63.49±0.05 63.9±0.1 24.79±0.68 53.76±0.01 62.95±0.17

Translate English to Swahili Chrf 50.52±3.33 51.76±0.12 21.00±0.7 44.84±0.33 56.36±0.15

Translate English to Setswana Chrf 30.89±0.36 16.62±0.22 13.17±1.73 23.75±0.45 35.87±0.64

Translate English to Twi Chrf 23.56±0.24 15.8±1.29 12.74±1.33 17.47±3.26 25.89±0.2

Translate English to Yoruba Chrf 19.41±1.97 16.51±0.38 11.49±0.29 20.62±0.36 25.09±0.07

Translate English to Zulu Chrf 35.4±1.27 16.13±7.84 15.04±1.1 12.75±0.56 38.81±0.21

Translate French to Bambara Chrf 16.49±0.39 7.44±1.12 10.16±1.58 19.41±0.53 19.91±0.05

Translate French to Ghomálá’ Chrf 8.3±0.76 6.53±0.57 6.72±3.75 13.16±0.4 8.57±3.15

Translate French to Ewe Chrf 10.19±2.32 5.46±3.02 6.96±3.02 13.44±1.64 21.6±0.22

Translate French to Fon Chrf 5.67±2.65 6.09±0.72 5.82±1.58 11.88±1.83 12.71±0.41

Translate French to Moore Chrf 7.86±1.43 5.16±2.20 7.79±0.97 11.42±0.7 12.34±0.56

Translate French to Wolof Chrf 17.55±0.2 3.15±0.12 11.26±1.91 17.58±0.44 16.67±0.21

Translate English to N. Pidgin (pidginUNMT) Chrf 41.83±0.17 37.12±0.77 21.65±1.33 39.04±0.50 40.2±0.17

Translate Acholi to English Chrf 39.12±0.1 33.07±5.49 21.65±1.33 34.19±0.06 42.17±0.05

Translate Acholi to Lugbara Chrf 25.05±0.85 20.61±5.92 28.71±0.34 34.01±0.29 32.31±1.11

Translate Acholi to Luganda Chrf 22.13±0.63 25.75±0.02 24.31±0.1 32.77±0.68 37.34±0.47

Translate Acholi to Nyankore Chrf 27.52±0.45 20.03±3.88 24.50±0.02 32.39±0.92 35.0±0.33

Translate Acholi to Ateso Chrf 26.0±1.99 22.16±1.63 28.33±0.01 35.37±0.61 34.62±1.05

Translate English to Lugbara Chrf 38.84±0.01 37.12±0.77 39.11±0.01 38.94±0.3 40.2±0.17

Translate English to Luganda Chrf 43.71±0.08 41.05±0.19 35.34±1.11 43.14±0.22 49.38±0.02

Translate English to Nyankore Chrf 40.43±0.21 38.38±0.13 36.8±0.07 40.36±0.17 43.67±0.32

Translate English to Ateso (salt) Chrf 41.98±0.13 38.91±0.05 39.76±1.35 42.1±0.42 42.96±0.48

Translate Lugbara to Ateso Chrf 22.67±1.51 20.47±0.7 28.13±0.58 34.3±0.64 29.04±0.3

Translate Luganda to Lugbara Chrf 28.65±1.5 25.74±0.5 30.87±0.12 34.26±0.24 34.94±0.6

Translate Luganda to Ateso Chrf 31.74±0.22 27.66±0.64 34.04±0.01 37.19±0.07 39.05±0.49

Translate Nyankore to Lugbara Chrf 27.47±0.45 24.63±0.76 15.01±0.01 33.17±0.21 33.2±0.19

Translate Nyankore to Luganda Chrf 39.34±0.14 37.34±0.16 35.26±0.13 40.48±0.63 45.29±0.01

Translate Nyankore to Ateso Chrf 28.6±0.11 24.64±1.05 30.69±0.16 34.37±0.14 35.52±0.64

Average 28.07 23.88 22.62 28.77 34.08

Table C.4: Performance of various models on MT data using CHRF
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Task Metric mT0 mT5 afri-mt5 AfriTeVa Cheetah

Translate English to Afrikaans Chrf++ 22.86±3.74 22.32±2.80 11.62±6.72 17.27±2.91 34.02±0.7

Translate English to Bemba Chrf++ 9.04±0.79 5.46±1.78 23.65±1.87 7.85±7.45 13.9±0.13

Translate English to Rundi Chrf++ 18.06±1.16 14.41±2.53 20.36±2.88 25.39±1.57 23.94±3.03

Translate English to Sesotho Chrf++ 17.34±3.09 10.2±8.75 19.31±3.94 23.85±1.43 23.9±2.03

Translate English to Swahili Chrf++ 18.5±0.31 16.28±4.48 19.42±2.2 16.16±3.93 30.6±0.11

Translate English to Xhosa Chrf++ 21.34±2.66 19.96±4.05 26.94±1.92 15.76±11.49 27.0±1.01

Translate English to Zulu Chrf++ 21.14±2.6 17.32±3.17 28.97±1.14 19.29±12.69 40.97±1.10

Translate English to Hausa Chrf++ 25.98±0.27 25.22±0.5 18.28±0.41 28.56±0.22 32.23±0.29

Translate English to Igbo Chrf++ 37.82±0.15 34.8±0.32 20.25±0.68 29.89±0.22 41.87±0.31

Translate English to Luganda Chrf++ 23.15±2.19 20.74±0.36 13.43±1.28 20.27±2.21 33.12±0.08

Translate English to N. Pidgin Chrf++ 60.57±0.15 60.12±0.07 23.85±0.64 49.72±0.36 59.74±0.18

Translate English to Swahili Chrf++ 47.67±3.33 48.95±0.13 19.01±1.69 40.84±0.31 53.67±0.15

Translate English to Setswana Chrf++ 29.02±0.35 14.87±0.16 11.77±1.61 21.25±0.36 34.05±0.64

Translate English to Twi Chrf++ 21.25±0.22 13.63±1.18 11.7±1.13 15.39±3.02 23.96±0.2

Translate English to Yoruba Chrf++ 18.41±1.89 15.47±0.4 10.19±0.25 18.99±0.27 24.1±0.06

Translate English to Zulu Chrf++ 30.99±1.13 13.86±6.85 11.34±2.1 10.58±0.77 34.31±0.2

Translate French to Bambara Chrf++ 15.75±0.36 6.8±0.97 10.2±1.41 18.28±0.49 19.65±0.14

Translate French to Ghomálá’ Chrf++ 7.0±0.77 5.64±0.44 5.84±3.04 11.13±0.34 7.28±2.83

Translate French to Ewe Chrf++ 9.09±2.21 4.75±2.76 6.56±3.19 11.72±1.4 20.53±0.23

Translate French to Fon Chrf++ 5.24±2.33 5.57±0.63 5.28±1.38 10.94±1.93 11.76±0.45

Translate French to Moore Chrf++ 7.08±1.33 4.63±2.02 7.18±0.79 10.31±0.64 11.2±0.54

Translate French to Wolof Chrf++ 16.27±0.24 2.65±0.11 10.23±1.73 15.73±0.33 15.58±0.19

Translate English to N. Pidgin (pidginUNMT) Chrf++ 42.12±0.18 37.67±1.64 22.53±1.31 28.38±0.98 39.58±0.49

Translate Acholi to English Chrf++ 37.96±0.1 27.18±0.36 28.24±0.38 31.83±0.07 41.06±0.06

Translate Acholi to Lugbara Chrf++ 23.41±0.84 19.57±5.04 27.18±0.36 31.45±0.29 30.68±1.02

Translate Acholi to Luganda Chrf++ 25.67±0.34 19.59±0.56 21.52±0.02 28.52±0.63 33.93±0.48

Translate Acholi to Nyankore Chrf++ 24.02±0.41 17.35±3.35 21.38±0.23 27.73±0.84 31.04±0.29

Translate Acholi to Ateso Chrf++ 23.65±1.87 20.07±1.53 25.81±0.04 31.56±0.57 31.83±0.99

Translate English to Lugbara Chrf++ 36.83±0.03 38.3±0.13 37.29±0.12 34.3±0.77 35.85±0.01

Translate English to Luganda Chrf++ 40.1±0.06 37.56±0.19 32.18±1.05 38.28±0.2 45.82±0.04

Translate English to Nyankore Chrf++ 35.93±0.18 34.07±0.12 32.59±0.05 34.88±0.15 39.17±0.33

Translate English to Ateso (salt) Chrf++ 37.98±0.11 38.93±0.01 36.83±1.23 37.85±0.4 39.87±0.47

Translate Lugbara to Ateso Chrf++ 20.55±1.38 18.54±0.65 25.6±0.64 30.48±0.59 26.43±0.32

Translate Luganda to Lugbara Chrf++ 26.79±1.49 23.94±0.48 29.13±0.11 31.56±0.24 33.04±0.58

Translate Luganda to Ateso Chrf++ 28.94±0.22 25.11±0.59 31.26±0.01 33.18±0.05 35.99±0.45

Translate Nyankore to Lugbara Chrf++ 22.89±0.73 25.75±0.44 12.07±0.11 30.54±0.2 31.35±0.2

Translate Nyankore to Luganda Chrf++ 35.7±0.12 33.73±0.15 31.99±0.07 35.74±0.54 41.63±0.0

Translate Nyankore to Ateso Chrf++ 26.03±0.08 22.35±0.98 28.05±0.09 30.53±0.13 32.65±0.62

Average 25.58 21.67 20.50 25.16 31.24

Table C.5: Performance of various models on MT data using CHRF++
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ISO MT0 MT5 AfriMT5 AfriTeVa Cheetah
afr 0 0 - - 20.45
amh 0 0 - 0 0
bam - - 0 - 0
bbj - 5.21 0 - 8.45
ewe - - 0 - 0
fon - - 0 - 0
hau 0 0 0 0 13.41
ibo 0 0 0 0 0
lin 0 - - - 25.35
lug - - 0 - 0
luo - - 0 - 9.35
mos - - 0 - 14.53
mlg 0 0 - - 15.65
nya - - - - 7.64
nyj - - -
orm 0 - - - 0
pcm - - 0 0 10.10
sna 0 0 - - 0
som 0 0 - 0 10.39
sot 4.69 - - - 15.23
swa - - 0 0 7.02
swh - -
tir - - - - 6.33
tsn - - 0 - 0
twi - - 0 - 0
wol - - 0 - 0
xho 0 0 - - 6.92
yor 0 3.61 0 0 6.42
zul 0 0 0 - 8.05

Table D.1: Bleu scores for mask-one cloze task on the
union of languages represented in the four models we
compare Cheetah with. Red describes zero-shot per-
formance greater than 0.

ISO MT0 MT5 AfriMT5 AfriTeVa Cheetah
afr 0 0 - - 0
amh 0 0 - 0 0
bam - - 0 - 0
bbj - - 0 - 0
ewe - - 0 - 0
fon - - 0 - 0
hau 0 - 0 0 6
ibo 0 - 0 0 8
lin 0 - - - 0
lug - - 0 - 0
luo - - 0 - 0
mos - - 0 - 0
mlg 0 - - - 0
nya 0 0 - - 12
nyj - - -
orm 0 - 0 - 0
pcm - - 0 0 0
sna 0 0 - - 0
som 0 0 - 0 4
sot - - - - 10
swa - - 0 0 12
swh - -
tir - - 0 0 0
tsn - - 0 - 0
twi - - 0 - 0
wol - - 0 - 0
xho 0 0 0 - 6
yor 0 0 0 0 0
zul 0 0 0 - 0

Table D.2: Bleu scores for mask-at-least-one cloze task
on the union of languages represented in the four models
we compare Cheetah with.

Category Example

Intransitive He left
Intransitive + Negation We did not leave
Transitive You left Lagos
Transitive + Negation She did not leave them

Table E.1: Some examples of sentences generated with
the templates

Lang. Family # Tone Gender Morphology

Hausa Afro-Asiatic Two Two Isolating
Swahili N.C. Bantu None Five Agglutinative
Yourba N.C. Non-Bantu Three None Isolating

Table E.2: Some linguistic differences between Hausa,
Swahili, and Yoruba. N.C. refers to Niger-Congo

hau yor

Model Faith. Flu. Faith. Flu.

mT0 90.54 97.62 96.57 93.92
mT5 93.51 96.48 82.23 81.10
AfriTeVa 87.27 96.94 88.56 84.73
Cheetah 96.61 97.26 87.11 92.64

Table E.3: Kappa scores for Faithfulness (i.e., Faith.)
and Fluency (i.e., Flu.) across the four models and three
languages we evaluate.
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G Results on Quality Evaluation
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Figure G.1: Faithfulness and fluency for Intransitives in Hausa, Swahili, and Yorùbá

Figure G.2: Faithfulness and fluency for Transitives in Hausa, Swahili, and Yorùbá
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Figure G.3: Performance on some intransitive examples in the Yorùbá test set. The correct words have no highlights,
plausible words or phrases are highlighted with yellow ink while wrong words and phrases are highlighted with
grey highlights. We use plausible to refer to words or phrases that can be used in place of the gold or which give
additional information.

Figure G.4: Faithfulness and fluency for Intransitives + Negation in Hausa, Swahili, and Yorùbá
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Figure G.5: Faithfulness and fluency for Transitives + Negation in Hausa, Swahili, and Yorùbá
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