
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12685–12695
August 11-16, 2024 ©2024 Association for Computational Linguistics

Retaining Key Information under High Compression Ratios:
Query-Guided Compressor for LLMs

Zhiwei Cao1∗, Qian Cao2∗, Yu Lu2, Ningxin Peng2, Luyang Huang2

Shanbo Cheng2† and Jinsong Su1†
1School of Informatics, Xiamen University

2ByteDance Research
lines1@stu.xmu.edu.cn {caoqian.95, luyu.ly, chengshanbo}@bytedance.com jssu@xmu.edu.cn

Abstract

The growing popularity of Large Language
Models has sparked interest in context com-
pression for Large Language Models (LLMs).
However, the performance of previous methods
degrades dramatically as compression ratios
increase, sometimes even falling to the closed-
book level. This decline can be attributed to the
loss of key information during the compression
process. Our preliminary study supports this
hypothesis, emphasizing the significance of re-
taining key information to maintain model per-
formance under high compression ratios. As a
result, we introduce Query-Guided Compressor
(QGC), which leverages queries to guide the
context compression process, effectively pre-
serving key information within the compressed
context. Additionally, we employ a dynamic
compression strategy. We validate the effective-
ness of our proposed QGC on the Question An-
swering task, including NaturalQuestions, Triv-
iaQA, and HotpotQA datasets. Experimental
results show that QGC can consistently perform
well even at high compression ratios, which
also offers significant benefits in terms of infer-
ence cost and throughput1.

1 Introduction

The emergence of chatGPT (Ouyang et al., 2022)
and GPT4 (OpenAI, 2023), along with other Large
Language Models (LLMs) (Touvron et al., 2023a,b)
has sparked a global sensation. The success of
LLMs is closely tied to the long context capabili-
ties of LLMs (Dong et al., 2022; Lewis et al., 2020),
especially in the field of multi-document question
answering. However, the utilization of long con-
text also introduces challenges such as higher in-
ference cost, longer latency, and inferior perfor-

*These authors contributed equally. This work was done
when Zhiwei Cao was interning at ByteDance.

†Corresponding author.
1Our code is available at https://github.com/

DeepLearnXMU/QGC.

mance caused by redundant information (Jiang
et al., 2023).

Many efforts have been made to compress the
long context by directly removing a certain percent-
age of less important words, such as LongLLMLin-
gua (Jiang et al., 2023) and Selective-Context (Li
et al., 2023). Another common method is to gener-
ate a text summary of the given context (Xu et al.,
2023; Wang et al., 2023b). Unlike deleting or re-
ordering the word in the context, AutoCompres-
sor (Chevalier et al., 2023) compresses long docu-
ments into multiple vectors as soft prompts, which
are optimized with full parameters of LLMs. How-
ever, our preliminary study shows that these meth-
ods have a common flaw: as the compression ratio
increases, the compressed context fails to retain
key information, resulting in a significant decrease
in the performance of LLMs.

The key to solve this problem is query, which de-
fines what key information is. We aim to preserve
this query-related key information even at a high
compression ratio. Specifically, we propose the
Query-Guided Compressor (QGC) to fully utilize
query information throughout each compression
step. We first feed the query and the documents
together into a context encoder to learn the query-
guide document representations. We then compress
these document representations into n-gram repre-
sentations guided by the importance of each word
in relation to the query. Subsequently, we pro-
pose to augment the n-gram representations by re-
viewing the query and document, which are finally
aligned to the embedding space of the LLMs. We
further propose dynamically adjusting the compres-
sion ratio of each document based on its relevance
to the query. Compared to previous methods, QGC
has several advantages: 1) high compression ratios
by retaining most query-related information during
compression, 2) low training costs by optimizing
the compressor only instead of finetuning the entire
LLM, and 3) better semantic consistency by com-

12685

https://github.com/DeepLearnXMU/QGC
https://github.com/DeepLearnXMU/QGC

pressing the n-gram structure rather than deleting
words.

We validate the effectiveness of QGC on the
multi-document Question Answering task, includ-
ing three datasets: NaturalQuestions, TriviaQA,
and HotpotQA. Experimental results on the QA
task indicate that, compared to LongLLMLingua,
QGC exhibits a 2.75 times higher compression ra-
tio and a 2.42 times higher throughput. Addition-
ally, its accuracy has improved by an average of
5 points. We further investigated the loss of key
information throughout the compression process.
The findings reveal that under high compression
ratios and high noise conditions, QGC only incurs
a performance loss of about 10%, while LongLLM-
Lingua suffers a loss of approximately 47%. This
validates the effectiveness of QGC in retaining key
information.

2 Preliminary Study

In this section, we first briefly formulate the long
context compression on the Question Answering
task, and then present an analysis on the key infor-
mation loss in previous compression methods.

2.1 Task Formulation

Given a LLM input with augmented context x =
(xins,xd1 , ...,xdk , ...,xdK ,xq), which consists of
the instruction xins, K documents {xdk}Kk=1, and
the query xq, the objective of context compression
can be formulated as:

min
x̃

d(LLM(y|x),LLM(ỹ|x̃)), (1)

where y is the ground-truth answer and ỹ repre-
sents the output of the LLM with the compressed
context x̃ as the input. d(·, ·) is a function measur-
ing the distance between two distributions, such
as KL divergence. In this work, we focus on com-
pressing K retrieved documents that greatly deter-
mine the length of the input.

2.2 Key Information Loss in Compression

We study the effectiveness of two representative
methods, LongLLMLingua (Jiang et al., 2023)
and AutoCompressor (Chevalier et al., 2023).
We conduct experiments on the NaturalQuestions
dataset (Liu et al., 2023) and use accuracy as the
evaluation metric, which judges whether any cor-
rect answers appear in the LLM prediction.

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
Compression Ratio

40

50

60

70

80

A
cc

ur
ac

y
(%

)

Closed-book
Oracle
LongLLMLingua
LongLLMLingua
w/ answer

(a) Compression Ratio for LongLLMLingua

1 doc 2 docs 3 docs 4 docs 5 docs
20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

Closed-book
Oracle
AutoCompressor

(b) Document Number for AutoCompressor

Figure 1: The accuracy of LongLLMLingua (Jiang et al.,
2023) and AutoCompressor (Chevalier et al., 2023) with
different compression ratios and number of documents
on the NaturalQuestions test set, respectively. Closed-
book denotes providing LLMs with the question only,
and Oracle means using the question and corresponding
ground-truth documents as the input of the LLM. “w/
answer” means adding the golden answer to the com-
pressed context.

For LongLLMLingua, we apply LLaMA-2-7B-
Chat2 as the small language model for compression,
and use LongChat-13B-16K3 as the target LLM.
We use the open-source AutoCompressor4, which
fine-tunes LLaMA-2-7B to compress context and
generate answers. Here, we consider four settings:

• Closed-book. It takes the query as the LLM
input with no additional documents.

• Oracle. The query and only the document
containing the ground truth are used as inputs
to the LLM.

• Base. Based on Oracle, we compress the docu-
ment directly with various compression ratios
for LongLLMLingua. However, since Auto-
Compressor is set to compress documents to
fixed length vectors, we change the compres-
sion ratio by adding external documents.

2https://ai.meta.com/llama/
3https://huggingface.co/lmsys/longchat-13b-16k
4https://github.com/princeton-nlp/AutoCompressors

12686

• Base w/ answer. We manually add key in-
formation to the compressed results by con-
catenating the answer with the compressed
word sequence in LongLLMLingua. Note that
this setting is impractical for AutoCompressor
where the compressed results are vectors that
cannot be changed directly.

From Figure 1, we find that the performance of
both methods degrades significantly with increas-
ing compression ratios. As shown in Figure 1(a),
the performance of LongLLMLingua decreases by
47% as the compression ratio increases from 1.53x
to 3.44x. Even worse, the accuracy of LongLLM-
Lingua at 3.44x compression ratio is equivalent to
that of the closed-book setting. The same findings
are illustrated in Figure 1(b) for AutoCompressor.

More importantly, we observe that adding key
information to the compressed result can greatly al-
leviate the performance degradation that typically
occurs at high compression ratios. Back to Fig-
ure 1(a), the accuracy line fluctuates little as the
compression ratio increases from 1.5x to 3.5x with
the help of additional key information, which is
a decrease of 3.87% compared to the former 47%
with the loss of key information. These observa-
tions validate the need to preserve key information
during compression, which motivates us to explore
a better method to fully exploit query information
for context compression.

3 Query-Guided Compression

As shown in Figure 2, we equip the LLM with
the Query-Guided Compressor to compress long
documents into a much shorter sequence of contin-
uous representations, which are then concatenated
with the corresponding instruction and query as the
input for the LLM. In the following, we first intro-
duce the architecture of Query-Guided Compressor
and then its training objective. Then, we propose a
dynamic compression strategy that assigns higher
compression ratios for irrelevant documents to fur-
ther improve the compressed representations.

3.1 Compressor Architecture
Figure 3 illustrates the basic architecture of our
Query-Guided Compressor. Using the compres-
sor, we adopt the following steps to produce com-
pressed representations of each document: 1) learn-
ing the query-aware document representations; 2)
compressing the document representations into n-
gram representations by weighted pooling; 3) aug-

QGC

Instruction: Write a high-quality answer for the given
question using only the provided search results.
{Compressed Document Representations}
Query: Who got the first Nobel Prize in Physics?
Answer:

LLM

Wilhelm Conrad Röntgen

Document 1: (Title: List of Nobel laureates in Physi
-cs) The first Nobel Prize in Physics was awarded …
Document 2: …
…
Document N: (Title: E. C. George Sudarshan) In 2007,
Sudarshan told the “Hindustan Times”, …
Query: Who got the first Nobel Prize in Physics?

Compressed Document Representation
(representation length ≈ 200 tokens)

…

~3K tokens

Figure 2: The framework of our method.

menting the n-gram representations by reviewing
the query and the entire document; 4) aligning the
obtained representations into the embedding space
of the LLM. Particularly, these four steps corre-
spond exactly to the four key components of our
compressor, which are all boxed in Figure 3. Note
that we perform the above operations on each doc-
ument, thus omitting the index k of the document
for simplicity.

Query-Guided Context Encoder At the first
step, we feed the concatenation of the query xq

and the document xd into query-aware context en-
coder to learn the representations of the query and
the document.

The encoder consists of two Transformer en-
coder layers. Formally, these representations can
be obtained in the following way:

[hq;hd] = ContextEncoder([xq;xd]). (2)

Here, hq={hqi }
Nq

i=1 and hd={hdi }Nd
i=1 are the cor-

responding representation sequences of the query
and the document with the lengths of Nq and Nd,
respectively. By allowing the query and the doc-
ument to see each other during encoding, we can
facilitate the extraction of the key information rele-
vant to the query in the document.

12687

Query-Guided Pooling Layer In the next step,
we split the entire document into several n-grams
and compress the information of each n-gram into
a vector based on their correlation to the query.

To this end, document representations are orga-
nized as follows:

hd = [hd
G1

, ...,hd
Gj

, ...,hd
GNg

] (3)

= [hd
1:n, ...,h

d
(j−1)×n:j×n, ...,h

d
Nd−n+1:Nd

],

where Gj represent the indices of the j-th n-gram.
Ng=

Nd
n is the number of n-grams.

Then, we measure the weight of each token in
Gj by calculating its relevance with the mean rep-
resentation h

q
of query tokens:

h
q
=

1

Nq

∑
hqi , (4)

wi,Gj =
exp s(h

q
, hdi)∑

i′∈Gj
exp s(h

q
, hd

i′
)
, (5)

where s(·, ·) is the dot-product function, and wi,Gj

represents the weight of the i-th token representa-
tion hdi in the document, which belongs to the j-th
n-gram.

Finally, we acquire the compressed n-gram rep-
resentations ĥdGj

as the weighted sum of token rep-
resentations in the n-gram:

ĥdGj
=

∑

i∈Gj

wi,Gj · hdi . (6)

Query-Document Reviewing Layer To further
prevent the key information loss in compression,
we introduce a novel reviewing module to perfect
the compressed n-gram representations by revising
both the query and the document representations.

Concretely, this encoder consists of two Trans-
former encoder layers, which takes the query rep-
resentations hq, the document representations hd,
and the compressed n-gram representations ĥd as
inputs, and outputs the improved document n-gram
representations h̃d:

h̃d = ReviewingLayer([hq;hd; ĥd]). (7)

Semantic Alignment Layer Since h̃d lie in a
different embedding space with the inputs of the
LLM, we use a fully-connected semantic alignment
layer to map the n-gram representations into the
embedding space of the LLM. The aligned n-gram
representations ed can be formulated as follows:

ed = W · h̃d + b, (8)

where W and b are learnable parameters.

Query-Guided Context Encoder

!! !"

Query-Guided
Pooling Layer

Query-Document Reviewing Layer

Semantic
Alignment Layer

"! ""

"#!" "#"" "##"

ℎ$#!" ℎ$#"" ℎ$##"

"% "
Compressed

Document Representations

&"

ℎ'!

ℎ'!

Figure 3: The structure of QGC. The first three layers
use query q to guide document d encoding, pooling, and
reviewing respectively. The last layer aligns document
representations into the target LLM embedding space.

3.2 Compressor Training
Unlike AutoCompressor (Chevalier et al., 2023),
we fix the parameter of the LLM and only fine-tune
the compressor.

Through the above steps, each long docu-
ment is compressed into a shorter sequence of
continuous representations ed. Thus, the in-
puts of the LLM are finally formated as x̃ =
(xins, ed1 , ..., edk , ..., edK ,xq). To avoid missing
the key information during compression, we de-
fine the training objective of the compressor in the
following way:

L = LCE + LKL (9)

= − log p(y|x̃) + KL[p(y|x)||p(y|x̃)],
where KL[·||·] represents the Kullback–Leibler di-
vergence. By introducing the KL loss, we encour-
age the LLM to generate the correct answer even
with compressed representations as input.

3.3 Dynamically Compressing Strategy
Due to the different importance of retrieved docu-
ments, we propose to dynamically adjust the com-
pression ratios for different retrieved documents.
Specifically, we assign the n-gram size nk for the
k-th document based on the importance ranking:

nk =

{
min(2 ·Ok, 16) Sk ≥ ϵ

∞ Sk < ϵ
, (10)

where Sk and Ok is the score and rank of the k-th
document acquired by the existing reranker, such
as Contriever (Izacard et al., 2022a). ϵ is the score
threshold for filtering low-score documents. Note
that when the assigned n-gram size nk is set to ∞,
the corresponding document will be discarded.

12688

Methods NaturalQuestions TriviaQA HotpotQA

Acc CR TP EM CR TP F1 CR TP

LongChat-13B

Closed-book 34.84 - - 36.07 - - 22.19 - -
Oracle 83.05 59.2x - - - - 60.61 42.2x -
Original Prompt 53.11 1.0x - 48.70 1.0x - 44.76 1.0x -

Reranker-based Methods
Sentence-BERT (Reimers and Gurevych, 2020) 60.75 4.1x 0.137 48.89 4.5x 1.957 42.92 4.4x 1.930
BGE-Reranker (Xiao et al., 2023) 64.33 4.1x 0.138 47.71 4.5x 1.724 47.96 4.4x 1.689
Cond.PPL (Jiang et al., 2023) 65.91 4.1x 0.128 52.48 4.5x 1.287 49.82 4.3x 1.267

Compression-based Methods
Selective-Context (Li et al., 2023) 35.44 2.5x 0.077 42.73 2.5x 0.465 29.68 2.6x 0.456
LongLLMLingua (Jiang et al., 2023)† 66.70 3.9x - - - - - - -
LongLLMLingua (Jiang et al., 2023) 67.01 4.1x 0.118 51.51 3.7x 0.724 45.43 3.8x 0.683

QGC 69.19 15.2x 0.356 57.72 7.9x 1.832 52.12 8.8x 1.849

LLaMA-2-7B

Closed-book 32.35 - - 30.70 - - 10.54 - -
Oracle 73.45 59.2x - - - - 57.68 42.2x -
Original Prompt 27.53 1.0x - 49.47 1.0x - 44.24 1.0x -

Reranker-based Methods
Sentence-BERT (Reimers and Gurevych, 2020) 24.26 4.1x 0.133 49.49 4.5x 0.731 40.65 4.4x 0.752
BGE-Reranker (Xiao et al., 2023) 25.08 4.1x 0.130 48.69 4.5x 0.683 46.13 4.4x 0.724
Cond.PPL (Jiang et al., 2023) 27.87 4.1x 0.123 52.76 4.5x 0.602 47.84 4.3x 0.623

Compression-based Methods
Selective-Context (Li et al., 2023) 31.79 2.6x 0.082 48.55 2.5x 0.303 28.21 2.6x 0.332
LongLLMLingua (Jiang et al., 2023) 41.13 4.1x 0.108 50.44 3.7x 0.432 39.87 3.8x 0.438
AutoCompressor (Chevalier et al., 2023) 49.23 13.9x 0.302 29.17 8.7x 0.823 29.02 8.1x 0.833
ICAE (Ge et al., 2023) 53.34 21.5x - 48.91 10.2x - 34.50 9.5x -

QGC 60.90 15.2x 0.313 57.46 7.9x 0.902 51.64 8.8x 0.927
QGC(ϵ = 0.42) 57.62 20.6x - 57.11 10.9x - 51.23 12.1x -

Table 1: Experimental results on three benchmark datasets. Acc = accuracy, EM = exact match, F1 = F1 score, CR
= compression ratio, TP = throughput (examples/second). Closed-book, Oracle, and Original Prompt denote
using the query only, the complete ground-truth documents, and all retrieved documents as inputs, respectively. †
indicates that the results are directly cited from Jiang et al. (2023).

4 Experiments

In this section, we conduct extensive experiments
to investigate the effectiveness of QGC.

Datasets & Evaluation Metric The experiments
are carried out based on the three datasets:

• NaturalQuestions We select the processed
version (Liu et al., 2023) where each ques-
tion has 20 related documents and only one of
them contains the correct answer. We follow
Liu et al. (2023) to use accuracy (Acc) as the
evaluation metric, which judges whether the
correct answer appears in the prediction.

• TriviaQA We employ the adversarial Con-

triever (Izacard et al., 2022a) to retrieve the
top 10 documents from all Wikipedia pas-
sages. Following Lewis et al. (2020), we use
the Exact Match (EM) metric to evaluate the
LLM prediction.

• HotpotQA Different from the above two
datasets, HotpotQA (Yang et al.) is a multi-
hop dataset where the answer lies in more
than one document. Specifically, each ques-
tion has 10 related documents and two of them
are ground-truth documents. Following Yang
et al., we use the F1 score to measure the cor-
rectness of the LLM.

Besides, we calculate the compression ratio (CR)

12689

for different methods, which is defined as the length
rate of the original context to the compressed con-
text. We also provide the inference throughput (TP)
on a single A100-80G GPU, including compression
and generation.

Baselines Following (Jiang et al., 2023), we in-
clude two sets of methods as our baselines.

1) Reranker-based Methods. It simply uses a
reranker method to sort documents based on im-
portance and discards unimportant ones. We select
the following reranker: Sentence-BERT (Reimers
and Gurevych, 2020), BGE-Reranker (Xiao et al.,
2023), and Cond.PPL proposed by Jiang et al.
(2023) to measure the association between the
query and documents. Then, we discard documents
with low association until the compression ratio is
met and sort the remaining documents according
to the association from high to low.

2) Compression-based Methods. Compared with
reranker-based methods, they further compress
the sorted documents, retaining more information
while satisfying a higher compression ratio. We
select the following methods as our baselines:

• Selective-Context (Li et al., 2023) It uses self-
information estimated by an external language
model to prune redundant words.

• LongLLMLingua (Jiang et al., 2023) It is
the state-of-the-art method for long context
compression. It first uses a language model
to quantify the importance of each document
as its question-aware perplexity, and then de-
signs a question-aware coarse-to-fine com-
pression method to delete unimportant tokens.

• AutoCompressor (Chevalier et al., 2023) It
fine-tunes LLaMA-2-7B to recursively com-
press long context into summary vectors,
which are used as soft prompts to generate the
answer. We use the released AutoCompressor-
Llama-2-7B-6K for experiments.

• ICAE (Ge et al., 2023) Similar to AutoCom-
pressor, it generates compact and informative
memory slots to represent the original context.
We use the released ICAE model pre-trained
on Llama-2-7B-Chat for experiments 5.

Implementation Details We use LongChat-13B-
16K and LLaMA-2-7B as the LLMs for evaluation,

5https://github.com/getao/icae

Methods Accuracy

QGC 69.19
w/o query-guided context encoder 50.36
w/o query-guided pooling layer 55.34
w/o query-document reviewing layer 64.14
w/o dynamically compressing strategy 62.15

Table 2: The accuracy of ablation study on NaturalQues-
tions test set, where the target LLM is LongChat-13B.

which are frozen during the optimization of QGC.
To ensure stable and reproducible results, we em-
ploy greedy decoding and set the temperature to 0
in all experiments. Following Jiang et al. (2023),
we use LLaMA-2-7B-Chat as the external language
model for Selective-Context and LongLLMLingua.
For QGC, both the query-guided context encoder
and query-document reviewing layer consist of two
Transformer encoder layers. All these layers and
word embeddings are initialized with LLaMA-2-
7B where MLP parameters are all fixed during
training. Our rationale behind this approach stems
from our belief that the MLP plays a crucial role in
knowledge retention, while our focus lies in adjust-
ing the acquired knowledge based on query. Thus,
the trainable parameters in QGC are only 3.5% of
LongChat-13B-16K. Besides the ground-truth doc-
ument, we concatenate 1-4 random documents to
build the long context. We also randomly set the
n-gram size from the candidate list (4, 6, 8, 10) for
each training batch to make the compressor more
robust. We train QGC on downstream datasets for
15 epochs, using a learning rate of 5e-5 with the
Adam optimizer and batch size of 64. During in-
ference, we use the Cond.PPL proposed by Jiang
et al. (2023) to sort retrieved documents for all
compression-based methods and QGC, and set the
ϵ as 0.35. Following (Liu et al., 2023; Bai et al.,
2023) the maximum generation tokens is 100 for
NaturalQuestions, and 32 for both TriviaQA and
HotpotQA. All experiments are conducted on 8
NVIDIA A100 GPUs.

Main Results Table 1 reports the performance,
compression ratios, and throughput of various
methods or models on different datasets. Over-
all, QGC achieves higher compression ratios and
greater throughput while achieving comparable or
even better performance with LongLLMLingua.
These results demonstrate that QGC can effectively
compress context into shorter inputs.

Specifically, the performance and compression
ratio of the reranker-based methods are limited

12690

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Compression Ratio

40

50

60

70

80
A

cc
ur

ac
y

(%
)

LongLLMLingua
LongLLMLingua
w/ answer
QGC

(a) Compression Ratio for QGC

1 doc 2 docs 3 docs 4 docs 5 docs
0

20

40

60

80

A
cc

ur
ac

y
(%

)

Closed-book
Oracle
QGC

(b) Document Number for QGC

Figure 4: The accuracy of QGC with varying compres-
sion ratios and number of documents, respectively.

because no compression operation is used within
the document. Compared to AutoCompressor and
ICAE, our method achieves better accuracy with
comparable compression ratios. Compared with
LongLLMLingua, QGC achieves average +5.03
and +12.87 performance improvements when us-
ing LongChat-13B and LLaMA-2-7B as the tar-
get LLMs. On average, the compression ratio and
throughput of QGC are 2.75 times and 2.47 times
that of LongLLMLingua on all datasets and target
LLMs, respectively.

Ablation Study To explore the effect of differ-
ent components on QGC, we use LongChat-13B
as the target LLM and introduce the following
variants of QGC for ablation study: 1) w/o query-
guided context encoder. In this variant, the query
and document are independently encoded; 2) w/o
query-guided pooling layer. When establishing
this variant, we directly replace the weighted sum
of token representations in each n-gram with their
mean representation; 3) w/o query-document re-
viewing layer. This variant no longer refines the
compressed representations of n-grams; 4) w/o dy-
namically compressing strategy. We fix the n-gram
size as 4 for comparable comparison.

As shown in Table 2, the absence of the query-
document reviewing layer and dynamically com-
pressing strategy lead to a 5.05 and 7.04 accuracy
loss respectively. The more substantial loss is ob-
served after removing the query-guided context
encoder and query-guided pooling layer, resulting

Methods SST-2 GSM8K

Acc CR Acc CR

Original Prompt 92.4 1.0x 14.48 1.0x
LongLLMLingua - - 5.91 3.9x
AutoCompressor 94.2 15.0x 6.68 13.6x

QGC 94.8 23.3x 14.18 13.4x

Table 3: Experimental results on SST-2 and GSM8K
datasets, where the target LLM is LLaMA-2-7B.

in a significant performance accuracy drop of 18.83
and 13.85 respectively, highlighting the importance
of employing the query to guide compression.

5 Analysis

In this section, we conduct in-depth analyses to
explore the performance of QGC in terms of key
information loss, demonstration compression, de-
tailed throughput and reranker impact. All analy-
ses are conducted on NaturalQuestions with target
LLM as LongChat-13B.

Key Information Loss in QGC As described in
Section 2.2, previous methods dramatically lose
key information as the compression ratio increases.
For comparison, we experiment with QGC using
the same setting.

Compared to LongLLMLingua in Figure 4(a),
the performance of QGC only decreases 10% as
the compression ratio increases from 1x to 4x, and
is even comparable to that of LongLLMLingua
containing the correct answer in the compressed
result. As seen in Figure 4(b), we observe that the
performance of QGC slightly degrades with more
documents, which is only a 12% decrease with
4 documents (27% for AutoCompressor). These
results demonstrate that QGC can effectively retain
key information even in much longer context and
higher compression ratio scenarios.

Demonstration Compression for In-Context
Learning To further validate the effectiveness of
QGC in a broader context, we conduct experiments
on both SST-2 and GSM8K datasets. We adopt
the approach of previous studies (Chevalier et al.,
2023; Wei et al., 2022) which utilizing demonstra-
tions as the document, while maintaining consis-
tency with their experimental setup. The results
in Table 3 reveals notable insights. On the SST-
2 dataset, our method surpasses autocompressor
in both compression ratio and accuracy. Mean-
while, on the GSM8K dataset, our accuracy per-
formance remains on par with the original prompt

12691

QGC QGC LongLLMLingua LongLLMLingua
0.0

0.5

1.0

1.5

2.0

2.5
Th

ro
ug

hp
ut

 (e
xa

m
pl

es
/s

)

(CR=20.6x) (CR=15.2x) (CR=13.9x) (CR=4.1x)

Acc=68.02 Acc=69.19

Acc=52.89
Acc=67.01

Generation
Compression

Figure 5: The accuracy, compression throughput, and
generation throughput of QGC and LongLLMLingua.

at the same compression ratio as autocompressor.
This suggests that QGC strikes an excellent bal-
ance between model performance and compression
ratio. These results showcases QGC’s proficiency
in preserving information from demonstrations and
fostering the in-context learning capacity of the
target LLM.

Detailed Throughput Evaluation To evaluate
the throughput of various methods or models, en-
compassing both compression and generation, we
perform testing on a single A100-80G GPU.

The results presented in Figure 5 indicate that
QGC is obviously higher than LongLLMLingua
in both compression throughput and generation
throughput. Moreover, by adjusting the hyper-
parameter ϵ (See Equation 10) to increase the com-
pression ratio, QGC can achieve a higher compres-
sion ratio while minimizing the impact on LLM per-
formance and further improving throughput. Fur-
thermore, our higher compression ratios lead to
shorter LLM input, which also significantly im-
proves the generation throughput of the target LLM.
As for LongLLMLingua, since it additionally intro-
duces LLaMA-2-7B for compression, the compres-
sion throughput is significantly lower than ours. Be-
sides, although LongLLMLingua can also improve
compression ratio by adjusting hyper-parameters,
its performance will significantly drop, while QGC
still maintains excellent performance.

Impact of Different Rerankers The compres-
sion ratio for each document is determined by the
corresponding correlation with the query obtained
by a reranker. Here, we analyze the impact of us-
ing different rerankers in this process. In addition
to the three methods introduced in reranker-based
methods, we also include BM25 and Gzip (Jiang
et al., b) for comparison.

Experimental results are shown in Figure 6. It
can be found that QGC performs better with more
competitive rerankers. Besides, compared with di-

BM25 Gzip SBERT BGE-Reranker Cond.PPL
30

40

50

60

70

A
cc

ur
ac

y
(%

)

Base (avg. CR = 4.1x)|
QGC (avg. CR = 15x)

Figure 6: The performance of QGC using different
rerankers. “Base” represents the performance of each
reranker to be used for compression. The performance
(Recall) of rerankers: Cond.PPL > BGE-Rererank >
SBERT (Sentence-BERT) > Gzip > BM25.

rectly using rerankers for compression, QGC not
only achieves an average 2.65 times higher com-
pression ratio but also maintains lossless or even
improved performance.

6 Related Work

Long Context for LLMs Recently, there have
been a lot of studies focusing on expanding the con-
text length of LLMs (Press et al., 2021; Peng et al.,
2023; Bertsch et al., 2023). Existing efforts primar-
ily involve gradually increasing the window size
during pre-training (Nijkamp et al., 2023), interpo-
lating position embeddings (Chen et al., 2023), and
modifying the attention mechanism (Ding et al.,
2023). Unlike these works, we do not directly aim
to expand the context window of LLMs. Hence,
the QGC that we proposed can complement these
techniques by enabling LLMs to access a broader
context with reduced cost and shorter latency.

Retrieval-augmented LMs Combined with a
standalone retriever to augment LMs are gain-
ing popularity for benefiting various knowledge-
intensive tasks. Previous studies have achieved re-
markable results in improving perplexity (Wang
et al., 2023a), factual accuracy (Nakano et al.,
2022), downstream task performance (Izacard et al.,
2022b), and in-context learning (Huang et al.,
2023). Besides, many works focus on cooperating
LLMs and retrieved documents, such as reranking
retrieved documents (Mao et al.) and discarding
irrelevant documents (Mallen et al.). QGC is also
a retrieval augmentation method for LLMs, which
efficiently compresses the retrieved documents into
shorter inputs while maintaining no significant per-
formance degradation.

Context Compression With the growing con-
text length in LLMs, the demand for higher ef-

12692

ficiency, lower cost, and reduced latency has at-
tracted much attention. As a promising solution,
compression techniques can be broadly catego-
rized into two types: black-box compression (Xu
et al., 2023) and white-box compression (Wang
et al., 2023b). Black-box compression primar-
ily involves token pruning based on different im-
portance measures, such as self-information (Li
et al., 2023) and the LLM perplexity (Jiang et al., a,
2023). On the other hand, white-box compression
focuses on generating summarization or compress-
ing the context into soft prompt through fine-tuning
or Low-Rank Adaptation (LoRA). For instance,
Wang et al. (2023b) autoregressively generates fil-
tered content and fine-tunes target LLM to use
it for generation. Mu et al. (2023) trains LLMs
to compress instructions into concise key-value
attention prefixes. Chevalier et al. (2023) recur-
sively compresses lengthy text into summary vec-
tors, while Ge et al. (2023) generates memory slots
to represent the original context. Compared with
the above-mentioned compression studies, QGC’s
design fully takes into account the query, which
leads to the enhanced retention of key information,
higher compression ratios, higher throughput, and
improved overall performance.

7 Conclusion and Future Work

In this paper, we have presented a query-guided
compressor QGC for LLMs to solve the loss of key
information under high compression ratios. It con-
sists of four essential components: query-guided
context encoder, query-guided pooling layer, query-
document reviewing layer, and semantic alignment
layer. In addition, we also propose a dynamically
compressing strategy during inference. Extensive
experiments on multi-document QA tasks demon-
strate that QGC outperforms previous state-of-the-
art compression methods in both accuracy and com-
pression ratios. Analyses reveal that this is primar-
ily due to our retention of key information through-
out the compression process.

In the future, we aim to validate our approach on
more advanced LLMs, while also expanding its ap-
plication to additional tasks like document summa-
rization. Besides, we will try to further improve our
approach by combining previous studies (Zhang
et al., a; Hu et al., 2022; Zhang et al., 2022, b).

Limitations

QGC is a white-box compressor that necessitates
access to the internal parameters of LLMs, which
restricts its applicability. Furthermore, we have
solely validated the effectiveness of QGC on QA
and ICL task, and its performance on other tasks
that differ significantly from QA task, such as sum-
marization, remains to be verified.

Acknowledgements

The project was supported by National Key R&D
Program of China (No. 2022ZD0160501), Na-
tional Natural Science Foundation of China (No.
62276219), and the Public Technology Service Plat-
form Project of Xiamen (No. 3502Z20231043).
We also thank the reviewers for their insightful
comments.

References
Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,

Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
arXiv preprint arXiv:2308.14508.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew R Gormley. 2023. Unlimiformer: Long-
range transformers with unlimited length input.
arXiv preprint arXiv:2305.01625.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Danqi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, Nanning Zheng,
and Furu Wei. 2023. Longnet: Scaling trans-
formers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2023. In-context autoencoder for context com-
pression in a large language model. arXiv preprint
arXiv:2307.06945.

12693

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Jie Huang, Wei Ping, Peng Xu, Mohammad Shoeybi,
Kevin Chen-Chuan Chang, and Bryan Catanzaro.
2023. Raven: In-context learning with retrieval aug-
mented encoder-decoder language models.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022a. Unsupervised dense in-
formation retrieval with contrastive learning.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022b. Atlas: Few-shot learning with re-
trieval augmented language models.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. a. LLMLingua: Compressing
prompts for accelerated inference of large language
models. In EMNLP 2023.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839.

Zhiying Jiang, Matthew Yang, Mikhail Tsirlin, Raphael
Tang, Yiqin Dai, and Jimmy Lin. b. “low-resource”
text classification: A parameter-free classification
method with compressors. In Findings of ACL 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. NeurIPS 2020.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua
Lin. 2023. Compressing context to enhance infer-
ence efficiency of large language models. In EMNLP
2023.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. When
not to trust language models: Investigating effective-
ness of parametric and non-parametric memories. In
ACL 2023.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
Reader-guided passage reranking for open-domain
question answering. In Findings of ACL 2021.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2022. Webgpt: Browser-
assisted question-answering with human feedback.

Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang,
Congying Xia, Chen Xing, Jesse Vig, Semih Yavuz,
Philippe Laban, Ben Krause, et al. 2023. Xgen-7b
technical report. arXiv preprint arXiv:2309.03450.

OpenAI OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. NeurIPS 2020.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models. arXiv preprint
arXiv:2309.00071.

Ofir Press, Noah A Smith, and Mike Lewis. 2021.
Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint
arXiv:2108.12409.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual using
knowledge distillation. In EMNLP 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee,
Zihan Liu, Mohammad Shoeybi, Yi Dong, Oleksii
Kuchaiev, Bo Li, Chaowei Xiao, Anima Anandku-
mar, and Bryan Catanzaro. 2023a. Shall we pretrain
autoregressive language models with retrieval? a
comprehensive study.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan
Parvez, and Graham Neubig. 2023b. Learning to fil-
ter context for retrieval-augmented generation. arXiv
preprint arXiv:2311.08377.

12694

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2308.07922
http://arxiv.org/abs/2308.07922
http://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2304.06762
http://arxiv.org/abs/2304.06762
http://arxiv.org/abs/2304.06762

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. NeurIPS 2022.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. Re-
comp: Improving retrieval-augmented lms with com-
pression and selective augmentation. arXiv preprint
arXiv:2310.04408.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. HotpotQA: A dataset for di-
verse, explainable multi-hop question answering. In
EMNLP 2018.

Biao Zhang, Deyi Xiong, Yubin Ge, Junfeng Yao, Hao
Yue, and Jinsong Su. 2022. Aan+: Generalized aver-
age attention network for accelerating neural trans-
former. Journal of Artificial Intelligence Research.

Biao Zhang, Deyi Xiong, Jinsong Su, Qian Lin, and
Huiji Zhang. a. Simplifying neural machine transla-
tion with addition-subtraction twin-gated recurrent
networks. In EMNLP 2018.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. b. MoEfication: Trans-
former feed-forward layers are mixtures of experts.
In Findings of ACL 2022.

A Instructions Used in QGC

The following are the instructions we used after
referring to the existing studies (Liu et al., 2023)
and testing.

• NaturalQuestions: Write a high-quality an-
swer for the given question using only the
provided search results(some of which might
be irrelevant).

• TriviaQA & HotpotQA: Using only the pro-
vided search results (some of which might
be irrelevant), answer the following question
with one or few words.

12695

http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597

