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Abstract

Extraction of experimental procedures from hu-
man language in scientific literature and patents
into actionable sequences in robotics language
holds immense significance in scientific do-
mains. Such an action extraction task is par-
ticularly challenging given the intricate details
and context-dependent nature of the instruc-
tions, especially in fields like chemistry where
reproducibility is paramount. In this paper, we
introduce ACTIONIE, a method that leverages
Large Language Models (LLMs) to bridge this
divide by converting actions written in natural
language into executable Python code. This en-
ables us to capture the entities of interest, and
the relationship between each action, given the
features of Programming Languages. Utilizing
linguistic cues identified by frequent patterns,
ActionIE provides an improved mechanism to
discern entities of interest. While our method is
broadly applicable, we exemplify its power in
the domain of chemical literature, wherein we
focus on extracting experimental procedures
for chemical synthesis. The code generated
by our method can be easily transformed into
robotics language which is in high demand in
scientific fields. Comprehensive experiments
demonstrate the superiority of our method. In
addition, we propose a graph-based metric to
more accurately reflect the precision of extrac-
tion. We also develop a dataset to address the
scarcity of scientific literature occurred in ex-
isting datasets.

1 Introduction

Recently, the integration of Natural Language Pro-
cessing (NLP) techniques into various scientific
fields has achieved significant success (Wang et al.,
2019; Soleimani et al., 2022; Song et al., 2023; Lai
et al., 2023; Ouyang et al., 2024). Among the appli-
cations, extracting information from unstructured

∗Equal contribution.

Figure 1: An example of action extraction from liter-
ature that describes a sequence of chemical reaction
actions. The text is drawn from Vaucher et al. (2020a).

scientific literature has been one with growing sig-
nificance (Guo et al., 2022; Zhong et al., 2023a,b).
For example, chemists typically look through a
wide range of publications to select candidate pro-
tocols for one organic synthesis scene, based on
their own reading and repetitive trial-and-error pro-
cedures (Davies, 2019; Vaucher et al., 2021).

Therefore, structured chemical data, including
reaction formulae, chemical entities, and experi-
ment conditions, facilitates effective utilization and
automatic analysis, such as indexing and search-
ing by keywords; discovering and analyzing rela-
tions between entities; clustering related objects
and discovering potential patterns; automatically
executing protocols; and predicting and optimizing
experiment conditions. Representatively, Figure 1
presents a case of structured chemical experimen-
tal procedure, essential for guiding practitioners
in their laboratory work (Vaucher et al., 2020b;
Zeng et al., 2023). This task involves extracting a

12656



sequence of chemical reaction actions from a scien-
tific text passage, where each action is defined by
an operation and its corresponding attributes. For
instance, in the example “ADD EtOAc” shown in
Figure1, “ADD” represents the operation, and the
chemical “EtOAc” is the attribute.

However, the discovery of new chemical ex-
perimental procedures is scattered across unstruc-
tured scientific text and described in various writing
styles, posing a significant challenge to the auto-
matic creation of reaction action databases. Exist-
ing chemical databases, predominantly commer-
cial ones such as Reaxys (Elsevier B.V., 2023),
SciFinder (Chemical Abstracts Service (CAS),
2023), and Pistachio (NextMove Software, 2023),
depend extensively on the manual contributions of
domain experts. Analyzing, indexing, and utiliz-
ing scientific literature typically requires extensive
and costly annotation or labeling by human experts.
Moreover, this method is prone to errors due to
the sheer volume of rapidly expanding scientific
data. Despite the considerable manual effort, these
databases prioritize storing information on the re-
actants, products, and reaction conditions, rather
than the concrete sequences of chemical actions.
This is primarily because manually designing these
experiment procedures is both time-consuming and
costly.

To tackle this issue, various studies have em-
ployed text mining techniques (Hawizy et al., 2011;
Swain and Cole, 2016; Vaucher et al., 2020b; Wang
et al., 2022b; Zeng et al., 2023) to automatically
extract structured information on procedures from
unstructured text, leveraging the advancements in
NLP field. However, extracting experimental pro-
cedures remains a challenging task. One major
hurdle is the complexity and variability of scien-
tific language, which often features intricate sen-
tence structures, domain-specific terminology, ab-
breviations, and acronyms. These elements pose
substantial difficulties for sequential tagging-based
approaches. For example, as shown in Figure 1,
a text describing a series of chemical reaction ac-
tions includes the “WASH” operation followed by
three chemicals. While sequential tagging-based
methods might recognize the chemical compounds,
they often struggle to accurately identify the opera-
tions and associate them with their corresponding
attributes. Furthermore, the scarcity of large, anno-
tated datasets poses an additional obstacle to train-
ing deep learning models on chemical experimental
data effectively.

In this paper, we choose chemical experiment
procedures as a case study, and explore the po-
tential of large language models (LLMs) to ex-
tract structured data from the complex and domain-
specific language in chemical papers and patents.
We propose a novel approach that frames the pro-
cedure extraction task as a code generation prob-
lem, where we express the experimental procedures
as a series of pre-defined operations, and utilize
the unique features of coding, such as classes, in-
heritance, and types, to structure this information.
Our method leverages the capabilities of LLMs in
few-shot in-context learning, reducing the need for
large amounts of annotated data, and accelerating
the preparation process. Moreover, our proposed
framework also offers an easy solution to gener-
ate protocols for different automated platforms by
applying different language configurations.

From the perspective of evaluation, we first pin-
point shortcomings within current evaluation met-
rics for the chemical action extraction task, and
propose a novel metric based on graph-matching
that substantially improves correlation with human
judgments. Existing benchmarks largely concen-
trate on patent documents, which are inherently
well-structured. To more accurately meet the real-
world demands of practitioners, we meticulously
annotate a test set derived from chemistry litera-
ture, which offers a more comprehensive evalu-
ation of model performance. Notably, our new
benchmark is considerably more extensive than
previous ones, with an average length of 770.8
characters compared to 158.2 characters, provid-
ing a testing environment that mirrors realistic sce-
narios more closely. Experimentally, our method
ActionIE demonstrates consistent superiority over
strong baseline models, both against traditional
benchmarks and our newly established testbed.

2 Related Work

The practice of using NLP in structured scientific
data extraction has seen significant advancements,
from utilizing traditional NLP techniques to inte-
grating code generation methods into structure ex-
traction, which is especially influenced by the grow-
ing capabilities of large language models (LLMs).

2.1 Action Extraction in Chemical Documents

The algorithms for action extraction in chemical
texts evolve with the development of NLP. Earlier
approaches, such as ChemDataExtractor (Swain
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Figure 2: Overview of ActionIE.

and Cole, 2016) and ChemicalTagger (Hawizy
et al., 2011), used part-of-speech tagging tech-
niques to perform named entity recognition on
chemical literature. These methods were fast and
effective at extracting key information, but had lim-
ited capabilities at handling more complex sentence
structures in patent documents. In recent years,
the transformer structure has also been introduced
to action extraction. Paragraph2Actions (Vaucher
et al., 2020b) used a transformer-based encoder-
decoder architecture trained on human-annotated
data to generate action sequences.

More recent advancements in NLP are led by
pretrained LLMs. Wang et al. (2022b) finetuned
a BERT model to perform named entity recog-
nition on materials and extract synthesis actions
on a dataset of solution-based inorganic materials
synthesis. Zeng et al. (2023) finetuned both a T5
model and a GPT-3.5 model on a human-annotated
dataset. While these transformer-based models ex-
cel in capturing the semantics of diverse scientific
language, they rely on human-annotated datasets,
which are created under extensive labor from do-
main experts, and are prone to human errors. Also,
these methods hard-code structure definitions in-
side their framework, and have to infer structure
semantics based on the training data, which could
lead to inaccuracies if the training data is not repre-
sentative enough.

Recently, some datasets have been constructed
for different tasks in mining chemical patents. Fang
et al. (2021) is proposed for evaluating the task of
anaphora resolution. He et al. (2020) builds an eval-
uation benchmark in BART format (Stenetorp et al.,
2012) for action extraction in chemical patents, but

the ground truth is not public.

2.2 Leveraging Programming Languages for
Structure Extraction Tasks

With the overwhelming success of very large
decoder-only language models (such as GPT-3
(Brown et al., 2020), GPT-3.5 and GPT-4 (Ope-
nAI, 2023), PaLM 2 (Anil et al., 2023), Llama 2
(Touvron et al., 2023), etc.) on a variety of NLP
tasks, recent research has increasingly focused on
the application of LLMs for scientific structure ex-
traction tasks. Agrawal et al. (2022) demonstrated
the power of zero-shot learning on GPT-3 for ex-
tracting information from clinical texts. Dunn et al.
(2022) further performed chemical entities and re-
lation extraction with a GPT-3 model finetuned on
500 input-output pairs. Zhong et al. (2023b) uses
GPT-4 to capture the roles of chemical entities in
scientific text.

On the other hand, the large language models
show noteworthy improvement in code generation.
Codex (Tyers et al., 2023), finetuned from a GPT
model, has shown remarkable abilities in code com-
pletion. The recent year has seen the application of
GPT-based agents (Hong et al., 2023; Zhou et al.,
2023; Wang et al., 2024), which leverage the rea-
soning and decision abilities of GPT models along
with Chain-of-Thought approaches, in program-
ming tasks.

Among these developments of structure extrac-
tion and code generation, Code4Struct (Wang et al.,
2022a) extracts structured event information from
natural language using code generation. It aligns
programming constructs, such as class definitions,
inheritance, and functions with the entity and event
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Module Name Models

Pattern Mining Flan-T5-Large & GPT-4-0613
Text Rephrasing GPT-4-0613
Code Generation GPT-4-0613
Code to Natural Language Pre-defined Rules

Table 1: Models used for each module in ActionIE.

types of interest, utilizing both the structural and
semantic information of coding.

3 ActionIE Framework

3.1 Task Formulation

Given a text T , we aim to extract all procedures
(actions) P = {(o1, a1), ..., (on, an)}, oi ∈ S men-
tioned in T in sequence, where S is a set of pre-
defined operation types, and ai is the pre-defined at-
tributes of operation Oi. Note that rather than iden-
tifying the specific role a substance plays within
a reaction, our task focuses on the category of at-
tribute to which it belongs. Following prior work
(Vaucher et al., 2020a), we set the pre-defined op-
eration types as follows: Add, CollectLayer, Con-
centrate, Degas, DrySolid, DrySolution, Extract,
Filter, MakeSolution, Microwave, Partition, PH,
PhaseSeparation, Purify, Quench, Recrystallize,
Reflux, SetTemperature, Sonicate, Stir, Triturate,
Wait, Wash, Yield, FollowOtherProcedure, Invali-
dAction, OtherLanguage, and NoAction. Defini-
tions for each action are described in Appendix
A.

3.2 Action Extraction with Programming
Languages

Previous methods utilize a large amount of rules
and patterns provided by human or train a model
in a supervised way which require cost-sensitive
labelled data. In addition, the definitions of ac-
tions may change based on the needs of scientists.
Under certain circumstances, re-creating rules and
patterns by human may be required for unsuper-
vised methods; and relabelling data may be needed
for supervised methods.

Driven by the aforementioned drawbacks, and
with the emergence of Large Language Models
(LLMs), we propose to use LLMs to tackle this
action extraction task, as they have demonstrated
promising capabilities in information extraction,
particularly in data-scarce scenarios. Naively, one
may directly input a paragraph along with all defini-
tions of actions and ask LLMs to extract the action

Figure 3: Rephrasing Example.

information. However, this approach poses some
problems. The first is the well-known hallucina-
tion problem of the generation from LLMs (Huang
et al., 2023). LLMs may generate actions that are
not in the pre-defined action set since LLMs may
directly output the verb found in the paragraph
as an action or output an action not in the pre-
defined set based on its summarization. Further-
more, LLMs may output detailed action sequences
while it should summarize some of the actions. For
instance, the ground-truth action for text “Add HCl
to pH 5.” (adding HCl until the pH of the liquid
is 5) is “PH with HCl to pH 5.”, while LLMs also
include the “ADD” action which results in “ADD
HCl; PH with HCl to pH5.” This demonstrates that
LLMs fail to understand the relationship between
actions.

In light of these limitations, we propose to refor-
mulate the action extraction task as a code writing
problem for LLMs that we transform each action
type into a Python class. This has a few advantages.
First, the abstract nature of class in programming
languages and the relationship between classes in-
cluding “Inheritance” and “Composition” relation-
ships help LLMs better interpret the relationships
between actions. Second, class variables in pro-
gramming languages enable LLMs to understand
what needs to be extracted for each action. Next,
it is more suitable for an environment that needs
changing the set of actions and the interested in-
formation for each action. The users can easily
define the operations they want to extract and the
attributes for each operation by simply modifying
the Python class file which is fed to the LLMs.
Finally, this minimizes the gap between natural
language and robotics language as it is more conve-
nient to transform the Python code produced by our
method to the code that can be executed by robots.
Figure 7 demonstrates the prompt we use for code
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generation.

3.3 External Information Guided Extraction

Text Rephrasing Scientific literature may have
its own writing style that is different from ordinary
writing, particularly in chemistry literature. We
propose to first use LLMs to rephrase the given
paragraph for two main reasons. First, rephrasing
complex scientific texts into simpler language en-
hances their comprehensibility for large language
models like GPT-4, which are pre-trained on gen-
eral, non-scientific text sources. Second, it intro-
duces domain knowledge encoded in the language
model. This is examplified in the case presented
in Figure 3. The original paragraph (a) contains a
phrase “m.p. 49 °C”, which is usually been mis-
interpreted as environment temperature. By lever-
aging LLMs for rephrasing, “m.p.” is rephrased
as “melting point”, shown in Figure 3, and leads
to a correct extraction. In practice, we prompt
GPT-4 to rephrase the input text, as well as feeding
in the mined patterns to keep the structure of the
rephrased text as much as possible. Figure 6 shows
the prompt we use for text rephrasing.

Pattern-guided Extraction For human, it is pos-
sible to identify certain action information, even
lack of any prior domain knowledge. Consider an
example “Partition between water (100 mL) and
ethyl acetate (100 mL)” (Vaucher et al., 2020a).
We can identify that “water (100 mL)” and “ethyl
acetate (100 mL)” are the chemicals involved in
the “Partition” action. This can be accomplished
by the guidance of linguistic cues, including the
semantics of phrases and the structure of sentences.

Motivated by this observation, we utilize fre-
quent patterns in the text that indicate specific re-
action actions as linguistic cues to guide LLMs to
extract action information. Take “PH” action as
an example, we first use a special token “[Chem-
ical]” to replace all occurrences of the chemical
with CHEMDATAEXTRACTOR (Swain and Cole,
2016). Several seed patterns are created, such as
pH [pH] with [Chemical]. The red [pH] indicates
a pH value, and the blue [Chemical] indicates the
chemical for adjusting the pH. With a set of seed
patterns for each action, we mine the enriched pat-
terns through 1) labeling all occurrences in the cor-
pus with seed patterns, 2) training a Flan-T5 model
in a question-answering fashion, 3) re-labeling the
corpus with the trained Flan-T5 model, and 4) se-
lecting the most frequent patterns as the enriched

patterns. GPT-4-0613 is also used for creating a
more diverse set of patterns.

After merging enriched patterns with seed pat-
terns as new seed patterns, we repeat the afore-
mentioned process to mine more reliable patterns
iteratively. The whole process is illustrated in Fig-
ure 4.

3.4 Extracted Action Evaluation
We observe that some actions are equivalent to each
other, for instance, [MakeSolution] with A and B is
equivalent to [Add] A; [Add] B, and sometimes the
order of actions does not matter. Previous evalua-
tion metrics do not consider the order of actions nor
the equivalence between actions, and penalize mis-
matches. In order to take the order of actions and
their equivalences, we propose a graph-based met-
ric called GRAPH MATCHING SIMILARITY. Given
a sentence t with n ∈ Z actions a1, a2, ..., an, and
equivalent relations f : A → {A}, where A is a
set of actions and ai is an arbitrary action, we first
construct its corresponding graph G. Details can
be found in Algorithm 1.

We first construct graphs for the ground truth
sentence and the sentence to be evaluated, denoted
as Ggt and Gquery. Then we find the maximal com-
mon subgraph Gsub in Ggt given Gquery with the
algorithm described in (Hattori et al., 2003). Fi-
nally, we calculate the similarity score with Equa-
tion 1.

score =
|Gsub ∩Gquery|
|Gsub ∪Gquery|

(1)

The evaluation with human judgements com-
pared with other metrics can be found at Section
4.3.

Algorithm 1 Algorithm for Action Graph Construc-
tion
Input: Sentence t = (a1, a2, ..., an) Equivalent

Relations f : A→ {A}
Output: Graph G = (V,E)

procedure CONSTRUCTGRAPH(t, f )
V = {a1}
for i← 2 to n− 1 do

V ∪ {ai};E ∪ {(ai, ai−1), (ai+1, ai)}
if ai ∈ D(f) then

V ∪ {f(ai)}
E ∪ {(f(ai), ai−1), (ai+1, f(ai))}

end if
end for
return G = (V,E)

end procedure
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Figure 4: Pattern Enrichment Overview.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate the effectiveness of our
method on two datasets. One is the test set used
in previous work (Vaucher et al., 2020a), which
contains 352 texts related to an experimental proce-
dure for chemical synthesis. We refer this dataset
as PATENTACTION as all the paragraphs in it are
from patent data. Dataset statistics can be found in
Appendix B. The input is a paragraph from chem-
ical literature which contains one or multiple ac-
tions. The output is a combination of pre-defined
actions in natural language. This dataset is de-
signed for evaluating action extraction in chemical
literature setting based on chemist’s need.

Since extracting action information from sci-
entific literature is of the same significance as
from patent data, collabrating with chemists,
we construct a dataset called SCIENTIFICAC-
TION. 100 long paragraphs are collected from
ChemRxiv (Cambridge Open Engage, 2023).
The average length (number of characters) of
paragraphs in ScientificAction is 770.77, while
the average length in PatentAction is only
158.24. SCIENTIFICACTION will be available at
https://github.com/xianruizhong/ActionIE.

Baselines We compare ActionIE with several
state-of-art methods: Paragraph2Actions (Vaucher
et al., 2020a), ChemTrans (Zeng et al., 2023),
GALACTICA-6.7b (Taylor et al., 2022), and GPT-
4 (OpenAI, 2023).

Implementation Details We choose GPT-4-
0613 (OpenAI, 2023) as the model for extrac-
tion, which supports up to 8,192 tokens. We use
“google/flan-t5-large” (Raffel et al., 2020) for lin-
guistic pattern extraction. GPT-4 (OpenAI, 2023)
is accessed through OpenAI api. For the parame-
ters of GPT-4 (OpenAI, 2023), we use sampling
temperature t = 0, and set 500 as the maximum

number of new tokens.

Evaluation Metrics for Natural Language Fol-
lowing previous work, we use BLEU score (Pap-
ineni et al., 2002) and Levenshtein Similarity (Lev-
enshtein et al., 1966) to evaluate the quality of
extracted actions in natural language. Following
previous work, the BLEU score is modified since
the original BLEU score does not consider short
sentences which is common in the test data. The
proposed GRAPH MATCHING SIMILARITY is also
used for evaluating in the natural language level.

Evaluation Metrics for Operation Level In or-
der to verify the quality of the extracted action se-
quence in operation level, we use precision, recall,
and F1 scores. The sets of operations in ground
truth and output are compared, and the attributes
are ignored. To better consider the order of opera-
tions, we employ SeqMatch-O (SM-O) proposed
in Zeng et al. (2023), an evaluation metric for se-
quence matching in operation level. For details of
SeqMatch-O, please refer to Zeng et al. (2023).

Evaluation Metrics for Attribute Level Fol-
lowing previous work, we leverage SeqMatch-A
(SM-A) proposed in Zeng et al. (2023) for veri-
fying the quality of attribute-level extraction. For
each matched position in SeqMatch-O, the leven-
shtein similarity is calculated for each argument
pair, and the average argument score is used rather
than the original 1 in SM-O. Please refer to Zeng
et al. (2023) for more details.

4.2 Experimental Results
Results for Extraction in Natural Language
The first part of Table 2 represents the results of ex-
traction in natural language in PatentAction dataset.
ChemTrans cannot output natural language action
sequences, hence, its scores are not calculated. Our
proposed ACTIONIE significantly outperforms all
baselines in levenshtein similarity, and outperforms
all baselines in BLEU except Paragraph2Actions,
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Models BLEU Levenshtein
Similarity Precision Recall F1 Graph Matching

Similarity SM-O SM-A

Results for PatentAction (Avg Length: 158.24)

Supervised Methods
Paragraph2Actions 0.8511 0.8927 0.9017 0.9034 0.8985 0.8003 0.8893 0.8629
ChemTrans - - 0.5927 0.4325 0.4866 - 0.4401 -

Few-shot Methods (10-shot)
Galactica-6.7b 0.0051 0.1336 0.3526 0.2705 0.2732 0.2921 0.1453 0.0534
GPT-4 0.4280 0.6822 0.7537 0.7758 0.7458 0.7923 0.7566 0.6633
ACTIONIE 0.8237 0.9018 0.9126 0.9198 0.9101 0.8136 0.8880 0.8521

- Patterns 0.6829 0.8070 0.8458 0.8220 0.8218 0.8074 0.8248 0.7583

Results for ScientificAction (Avg Length: 770.77)

Supervised Methods
Paragraph2Actions 0.4907 0.5380 0.8643 0.5933 0.6633 0.6391 0.5922 0.5118
ChemTrans - - 0.9212 0.4583 0.5982 - 0.4924 -

Few-shot Methods (10-shot)
Galactica-6.7b - - - - - - - -
GPT-4 0.4571 0.6625 0.7858 0.7175 0.7312 0.7574 0.6670 0.5137
ACTIONIE 0.7808 0.8394 0.9236 0.8166 0.8584 0.8013 0.8277 0.7087

- Patterns 0.7193 0.8160 0.8942 0.8033 0.8444 0.7980 0.8099 0.6757

Table 2: Overall experimental results. ChemTrans does not support outputting natural language, only the operations
are evaluated. Galactica-6.7b fails when the input is too long, therefore, the result is not reported.

Figure 5: Case Study.
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but still get a very close score. GALACTICA-
6.7 performs poorly as it is not designed for this
task. GPT-4 demonstrates its promising perfor-
mance given its comparable scores with just 10
demonstrations.

The second part of Table 2 represents the re-
sult of extraction in natural language in Scientifi-
cAction, a more complex and challenging dataset
than PatentAction. Paragraph2Actions is trained
on patent data and does not generalize well in sci-
entific literature. Sometimes, Paragraph2Actions
only outputs FollowOtherProcedure action and ig-
nores other actions described in the input paragraph.
Even GPT-4 receive higher scores in levenshtein
similarity, demonstrating better generalization than
Paragraph2Actions. Ablation study highlights the
significance of using patterns as linguistic cues, in
all cases, we gain much improvement by utilizing
the patterns.

Results for Operation-Level Extraction The
middle columns of Table 2 represents the results
of operational-level extraction. In the PatentAction
dataset, ACTIONIE beats all baselines in precision,
recall, and F1 scores, and have very close scores
with Paragraph2Actions in SeqMatch-O (0.8880 vs
0.8893).

In the ScientificAction dataset, ACTIONIE out-
performs all baselines. Both Paragraph2Actions
and ChemTrans are trained on patent data, and
achieve a high precision, but have a low recall and
F1 scores.

As for the albation study, ACTIONIE benefits
significantly from the improvement provided by
the patterns, which suggests that the patterns effec-
tively help identify the actions.

Results for Attribute-Level Extraction As
listed in the last column of Table 2, in PatentAction
dataset, ACTIONIE outperforms all baselines ex-
cept Paragraph2Actions, but still has a competitive
score (0.8521 vs 0.8629).

In ScientificAction dataset, ACTIONIE surpasses
all baselines by a substantial margin. Note that
GPT-4 receives a slightly higher score than Para-
graph2Actions, which further implies the limitation
of supervised methods such as Paragraph2Actions
and ChemTrans.

4.3 Evaluation Metric Analysis
To better understand how well our proposed
GRAPH MATCHING SIMILARITY metric aligns
with human evaluation, we randomly sample 100

Metric Name Pearson Spearman
Kendall’s

Tau

BLEU 0.1791 0.2427 0.2055

Levenshtein
Similarity

0.1742 0.2603 0.2179

Graph Matching
Similarity

0.3144 0.2976 0.3058

Table 3: Metric Correlations with Human Judgements.

outputs produced by Paragraph2Actions, GPT-4,
and ACTIONIE, which are then given a score by
chemists from 1 to 5. We calculate three correla-
tion coefficients, Pearson, Spearman, and Kendall’s
Tau. As the results shown in Table 3, the pro-
posed GRAPH MATCHING SIMILARITY is better
aligned with human judgements than BLEU and
Levnshtein Similarity.

4.4 Case Study

We randomly sample an example from SCIENTIFIC-
PATENT and study the output of different methods
(see Figure 5). Paragraph2Actions only outputs
FollowOtherProcedure action, and it has been no-
ticed that it consistently does so whenever the input
mentions another procedure. While the model is
supervised to do so, this is an unwanted behavior
since the output would ignore any other actions
mentioned in the text. ChemTrans only captures
the YIELD action, though it includes many details
of the reagent. However, ChemTrans will fail if
we are also interested in the melting point (mp)
of the product given it is a supervised method. It
also misclassifies the product as reagent. GPT-4
correctly extracts most of the actions and their at-
tributes while missing the first ADD action, and
the order of actions is wrong.

5 Conclusion and Future Work

In this paper, we propose ACTIONIE, a framework
for extracting experimental action sequences from
scientific literature. Our approach leverages the
strength of LLMs by transforming the action ex-
traction problem into a coding question for LLMs.
Additionally, it incorporates text rephrasing and
linguistic knowledge which further improve the
overall performance. To more accurately evalu-
ate the extraction quality, we introduce a graph-
based metric, GRAPH MATCHING SIMILARITY.
We have also developed a dataset, SCIENTIFICAC-
TION, to offset the lack of scientific literature oc-
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curred in previous datasets. Experiments demon-
strate that ACTIONIE outperforms state-of-the-art
baselines and GRAPH MATCHING SIMILARITY is
more aligned with human judgements than previ-
ous evaluation metrics. For future developments,
one exciting yet challenging direction is to explore
deeper into different aspects of the extraction pro-
cess and integrating these parts into an automated
workflow that transforms scientific papers into ac-
tionable experiments. This contains identifying
relevant paragraphs from scientific papers that de-
scribe experimental procedures, creating a robotic
system that runs the extracted chemical actions,
and automated outcome validation.

Limitation

The limitations of this paper are stated as follows:

1. In our experiments, we use GPT-4 as the back-
bone model through OpenAI’s API. Although
ACTIONIE can be incorporated with other
causal language models, the performance may
change when using different language mod-
els. In addition, the performance might be
changed by the modification of GPT-4 since
its performance may be different over time
(OpenAI, 2023). Replacing the GPT-4 API
with a static large language model such as
Llama-2 (Touvron et al., 2023) could alleviate
this issue, but this may require considerable
computing resources, which are often limited.

2. Although the dataset proposed in this paper is
collected from scientific literature and is much
longer than previous datasets, it is still shorter
than a scientific paper. Extracting informa-
tion from a full paper may not be possible if
it is too long, given that current GPT-4 API
has token limits. Integrating a text segmenta-
tion module may be one direction to solve this
problem. Another direction may be deploy-
ing techniques that reduce the token limits
(Bertsch et al., 2023).
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A Action Type

We adopt the same action types as in the previous
study, including 26 pre-defined action types. We
include the detailed descriptions of action types in
(Vaucher et al., 2020a) as a reference in Table 4 to
help readers better understand the action types.

B Dataset statistics

The number of each action type mentioned in all
352 samples in PatentAction dataset are summa-
rized in Table 5.

C Prompt

Figure 6 demonstrates the prompt for text rephras-
ing. Figure 7 represents the prompt for code gener-
ation.

D Case Study on Different Scientific
Domains

In order to validate the effectiveness of our method
on different scientific domains, we have conducted
two additional case studies, one in biology and one
in material science, to highlight the potential for
future studies to extend ActionIE across different
domains. The case study in biology can be found
at Figure 8, and the case study in material science
can be found at Figure 9.
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Figure 6: Prompt for Text Rephrasing.

Figure 7: Prompt for Code Generation.
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Action Type Description

Add Add a substance to the reactor
CollectLayer Select aqueous or organic fraction(s)
Concentrate Evaporate the solvent (rotavap)
Degas Purge the reaction mixture with a gas
DrySolid Dry a solid
DrySolution Dry an organic solution with a desiccant
Extract Transfer compound into a different solvent
Filter Separate solid and liquid phases
MakeSolution Mix several substances to generate a mixture or solution
Microwave Heat the reaction mixture in a microwave apparatus
Partition Add two immiscible solvents for subsequent phase separation
PH Change the pH of the reaction mixture
PhaseSeparation Separate the aqueous and organic phases
Purify Purification
Quench Stop reaction by adding a substance
Recrystallize Recrystallize a solid from a solvent or mixture of solvents
Reflux Reflux the reaction mixture
SetTemperature Change the temperature of the reaction mixture
Sonicate Agitate the solution with sound waves
Stir Stir the reaction mixture for a specified duration
Triturate Triturate the residue
Wait Leave the reaction mixture to stand for a specified duration
Wash Wash (after filtration, or with immiscible solvent)
Yield Phony action, indicates the product of a reaction
FollowOtherProcedure The text refers to a procedure described elsewhere
InvalidAction Unknown or unsupported action
OtherLanguage The text is not written in English
NoAction The text does not correspond to an actual action

Table 4: Pre-defined action types used in this paper.

Figure 8: Case study on biology literature. The text is collected from (Adapa et al., 2023).
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Action Type Total number of occurences

Add 255
CollectLayer 37
Concentrate 54
Degas 1
DrySolid 12
DrySolution 22
Extract 34
Filter 34
MakeSolution 62
Microwave 0
Partition 5
PH 47
PhaseSeparation 4
Purify 24
Quench 8
Recrystallize 2
Reflux 7
SetTemperature 60
Sonicate 0
Stir 118
Triturate 3
Wait 19
Wash 45
Yield 37
FollowOtherProcedure 15
InvalidAction 11
OtherLanguage 2
NoAction 25

Table 5: PatentAction Dataset statistics.
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Figure 9: Case study on material science literature. The text is collected from (Watanabe et al., 2010).
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