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Abstract

Recent advancements in large language mod-
els (LLMs) have considerably advanced the
capabilities of summarization systems. How-
ever, they continue to face concerns about hal-
lucination. While prior work has evaluated
LLMs extensively in news domains, most eval-
uation of dialogue summarization has focused
on BART-based models, leaving a gap in our
understanding of their faithfulness. Our work
benchmarks the faithfulness of LLMs for di-
alogue summarization, using human annota-
tions and focusing on identifying and catego-
rizing span-level inconsistencies. Specifically,
we focus on two prominent LLMs: GPT-4 and
Alpaca-13B. Our evaluation reveals subtleties
as to what constitutes a hallucination: LLMs
often generate plausible inferences, supported
by circumstantial evidence in the conversation,
that lack direct evidence, a pattern that is less
prevalent in older models. We propose a re-
fined taxonomy of errors, coining the category
of "Circumstantial Inference" to bucket these
LLM behaviors. Using our taxonomy, we com-
pare the behavioral differences between LLMs
and older fine-tuned models. Additionally, we
systematically assess the efficacy of automatic
error detection methods on LLM summaries
and find that they struggle to detect these nu-
anced errors. To address this, we introduce two
prompt-based approaches for fine-grained er-
ror detection that outperform existing metrics,
particularly for identifying "Circumstantial In-
ference." 1

1 Introduction

Considerable progress has been made in sum-
marization using large language models (LLMs)
(Goyal et al., 2022; Zhang et al., 2023). However,
the challenge of so-called “hallucinations”, charac-
terized in this context as statements in summaries

1The dataset can be downloaded from https:
//github.com/sanjanaramprasad/circumstantial_
inference.git

Greg: Hi, honey. I need to stay after hours :-(
Betsy: Again?
Greg: I''m sorry!
Betsy: What about Johnny?
Greg: Well, could you pick him up? 
Betsy: What if I can't?
Greg: Betsy?
Betsy: What if I can't?
Greg: Can't you, really?
Betsy: I can’t. Today I need to work long hours as well. 
Tuesdays are your days in the kindergarten.

Dialogue Snippet

Summary:
GPT-4:  Greg informs Betsy he needs to stay after work, 
leading to a conflict as their son Johnny has to be picked up 
from kindergarten, which usually falls on Greg's 
responsibility on Tuesdays. Betsy also can't do it as she's 
working long hours. 

Figure 1: In the example provided, GPT-4 infers that
the speakers are discussing "their son." Although this
inference seems plausible given the circumstantial evi-
dence in the conversation, it lacks direct evidence.

that do not have direct evidence in the source mate-
rial persists. As a result, evaluation of these sum-
maries is an active area of research.

In prior research, news articles have been the
main testbed for LLM-generated summary evalu-
ation (Zhang et al., 2023; Yang et al., 2023). Di-
alogue summarization remain less explored, with
prior works mostly focused on smaller fine-tuned
models (Zhu et al., 2023; Gao et al., 2023; Wang
et al., 2022). In this work, we close the evaluation
gap, focusing our analysis on LLM summaries of
chit-chat style dialogues. We obtain fine-grained
inconsistency annotations for summaries generated
(zero-shot) by two prominent LLMs (GPT-4 (Luo
et al., 2023) and Alpaca-13B (Taori et al., 2023))
and across two summarization datasets (SAMSum
Gliwa et al. (2019) and DialogSum Chen et al.
(2021)).

In the domain of dialogues, a further gap exists in
understanding the differences between summaries
generated by LLMs and those generated by smaller
fine-tuned models. In the news domain, prior work
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has found that LLM-generated summaries have
fewer inconsistencies (Goyal et al., 2022; Zhang
et al., 2023). Work done by Tang et al. (2022), also
in the news domain, notes varying error distribu-
tions across different model categories. In our work
in the dialogue domain, we compare differences in
error rates and analyze the categories of errors for
summaries of dialogues with fine-tuned models ver-
sus summaries with LLMs. As in the news domain,
we find that LLM-generated summaries have fewer
inconsistencies. Surprisingly, our analysis reveals
that over 30% of LLM-generated summaries con-
tain inconsistencies, contrasting sharply with the in-
consistency rate of less than 5% in GPT-generated
news summaries (Zhang et al., 2023).

To further elucidate the differences between
LLMs and fine-tuned models, we annotate spans
with error categories. Previous work has primar-
ily relied on part-of-speech-based tags for error
classification (Wang et al., 2022; Zhu et al., 2023;
Gao et al., 2023). However, complexities inherent
in LLM-generated summaries, often lengthier and
more intricate, do not neatly align with error cate-
gories based solely on part of speech, warranting
alternative strategies for a more meaningful catego-
rization. Hence, our work proposes a refined tax-
onomy integrating existing error types. We further
introduce a new error category specific to LLM be-
havior: "Circumstantial Inference." This category
stems from the observation that LLMs frequently
produce statements that appear plausible based on
circumstantial (but not direct) evidence in the dia-
logues, an aspect hitherto unexplored. In particular,
LLMs tend to produce statements that may be cir-
cumstantially implied based on contextual cues in
the conversation but not explicitly stated as seen in
Figure 1. Although these inferences are not directly
stated and can be inherently unsupported, they can
still be useful in some instances, especially when
summarizing ambiguous dialogues. However, the
appropriateness of such inferred details varies de-
pending on context and domain, highlighting the
need for further investigation.

In addition, there is limited understanding
regarding the automatic detection of the mentioned
error types. Therefore, we systematically evaluate
the performance of state-of-the-art error detectors
on LLM-generated dialogue summaries. We
also introduce two prompt-based methods for
fine-grained error detection, which notably
outperform all prior state-of-the-art error detectors,

particularly in identifying the newly introduced
error type, "Circumstantial Inference."

In summary, our primary contributions are as
follows:

1. We bridge a gap in understanding LLM effec-
tiveness for dialogue summarization by col-
lecting fine-grained human annotations that
highlight inconsistencies and make the bench-
mark publicly available.

2. We propose a refined taxonomy for error cate-
gorization of LLM-generated summaries, in-
cluding a new error category called "Circum-
stantial Inference" that captures the tendency
of LLMs to produce plausible hallucinations
based on conversation context.

3. We examine differences in behavior in dia-
logue summarization between LLMs and fine-
tuned models by comparing error rates and
types.

4. We introduce two prompt-based methods for
fine-grained error detection, which notably
outperform existing metrics. These methods
excel even in detecting the recently identified
error type "Circumstantial Inference." Addi-
tionally, we evaluate state-of-the-art error de-
tectors on model-generated summaries across
model categories and error types unveiling
their effectiveness and limitations.

2 Human Evaluation: Zero-shot
Prompted Dialogue Summaries

We aim to compare the difference in consistency of
zero-shot prompted LLM-generated dialogue sum-
maries with smaller fine-tuned model-generated
summaries.2 To accomplish this, we conduct hu-
man annotations to identify inconsistent spans gen-
erated by both GPT-4 (OpenAI et al., 2023) and
Alpaca-13b (Taori et al., 2023). Specifically, we
direct annotators to spot inconsistencies in sum-
maries, marked by spans that lack evidence in the
source text or distort information from it. Our eval-
uation is carried out on dialogue summarization
datasets previously used for benchmarking fine-
tuned summarization models.

2We deliberately choose zero-shot instead of few-shot to
better understand the model’s inherent capabilities.
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Linguistic
Category

Summary Excerpt Dialogue Excerpt

Circumstantial
Inference

Cameron is unable to bring a video game for
their daughter Peyton.

Peyton: I have been asking you to bring that video game
for me
Cameron: Honey, I am not having enough time to come
home.

Logical Error Jane is worried about the travel time and
suggests they meet later

Steven: the road is new, we will make it
Jane: I don’t want to stress out, let’s meet at 4:30 instead
of 5, ok?

World
Knowledge

#Person1# plans to vote for Joe Biden
instead.

#Person1#: I will vote for Biden anyway.

Referential
Error Person1 said that Person2 could call or email

them.

#Person2#: Please call me or send e-mail.

Figurative
Misinterpre-
tation

Alyssa likes Fergie’s national anthem. Alyssa: Have you seen Fergies national anthem?
Derek: This is not normal. I saw it last week
Alyssa: The best part is that she acts like she nailed it.

Table 1: Examples of linguistic categories for inconsistencies in red between the LLM-generated summaries and the
dialogues.

2.1 Datasets

We perform human annotations on two prominent
summarization datasets: SAMSum (Gliwa et al.,
2019) and DialogSum (Chen et al., 2021). SAM-
Sum comprises artificially generated, concise writ-
ten conversations crafted by linguists, centering
around everyday topics. Conversely, DialogSum
presents a corpus of naturally occurring spoken
dialogues reflecting real-life contexts.

To facilitate comparisons with earlier fine-tuned
models, we annotate the same set of data points
from previous benchmark studies, as outlined be-
low:

a) Reference Matters (RefMatters): Introduced
by Gao et al. 2023, this dataset offers factual an-
notations for summaries generated on dialogues
in SAMSum and DialogSum. The annotated sum-
maries include outputs from four fine-tuned sum-
marization models, addressing eight distinct types
of factual errors: Entity, Predicate, Circumstance,
Coreference, Discourse Link, Out of Article, Gram-
matical, and Others.

b) FacEval Dataset: Detailed by Wang et al.
2022, this dataset provides annotations for BART-
based models applied to the SAMSum dataset. It
delineates six error types, namely Subject Object
Error, Pronoun Error, Negation Error, Particulars
Error, Hallucination Error, and Other Error. No-
tably, there exists a small overlap in data points
with RefMatters.

2.2 Models
We assess the performance of two prevalent Large
Language Models (LLMs) in the context of dia-
logue dialogue summarization: (1) GPT-4 (OpenAI
et al., 2023) utilizing the gpt-4-32k-0613 snapshot,
and (2) Alpaca-13b (Taori et al., 2023). For both
models, we use the default settings and prompt
zero-shot using the following template to generate
summaries:

Generate a summary of the following dia-
logue snippet: {{Dialogue}}

Our evaluation compares our collected annota-
tions against the inconsistency annotations from
previous benchmarks. Specifically, we use annota-
tions for BART (Lewis et al., 2020), UniLM (Dong
et al., 2019), MV-BART (Chen and Yang, 2020),
and CODS (Wu et al., 2021) from the RefMatters
Benchmark. Additionally, we consider annotations
for BART (Lewis et al., 2020), MV-BART (Chen
and Yang, 2020), CondigSum-BART (Liu et al.,
2021a), and Coref-BART (Liu et al., 2021b) in the
FacEval dataset.

Henceforth, we refer to the above models as
FT-Summ, representing smaller fine-tuned sum-
marization models, and the zero-shot prompt-based
models GPT-4 and Alpaca-13B as LLM.

2.3 Fine-grained inconsistency annotation
We perform two rounds of annotations to identify
inconsistencies in dialogue summaries.
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Error Annotation
In the first phase, we enlist two linguist fact-
checkers from Upwork3 to assess summary consis-
tency. Inconsistent summary sections are identified
as those that conflict with or inaccurately represent
dialogue information or lack sufficient evidence.
This definition aligns with criteria from prior stud-
ies on news summarization (Huang et al., 2020;
Maynez et al., 2020; Goyal and Durrett, 2021; Cao
et al., 2022). Inter-annotator agreement, measured
using pairwise F-1 metric, results in a substantial
agreement of 66.94%. Further annotation instruc-
tions are detailed in Appendix A.

Error Categorization
In the second round of annotations, an author of
the paper who is an expert linguist meticulously
categorized the errors to attain more granularity.
We find that traditional methods of error catego-
rization that have relied heavily on part-of-speech
tags (Wang et al., 2022; Zhu et al., 2023; Gao et al.,
2023) prove less effective when dealing with sum-
maries generated by LLMs due to their tendency to
exhibit increased abstraction and inference. This
makes it challenging to align inconsistent spans
with specific part-of-speech-based categories. Con-
sequently, we propose a taxonomy of errors which
we outline in the subsequent section.

Taxonomy of Errors
We describe the taxonomy of errors identified in
this work below and provide examples in Table 1.

Logical Error: This category identifies inac-
curacies in dialogue summaries. Our annotations
highlight three main types of logical errors com-
monly found in summaries generated by LLMs: a)
Event misordering, where the summary presents
an incorrect chronological sequence due to wrong
word usage or sentence order. b) Lack of common-
sense, where models incorrectly reason through
information that should be obvious. c) Missed de-
tail, where the summary would be correct if not for
the omission of important information. FT-Summ
models also exhibit logical errors in this category,
including inaccurate negations, wrong verbs, or
incorrect word senses.

Circumstantial Inference: We introduce this
new category not explored in prior work and in-
spired by Grice’s Maxim of Conversation for Quan-
tity, which states that cooperative speakers make

3https://www.upwork.com/

contributions that are sufficiently but not overly
informative (Grice, 1975). Speakers intentionally
omit information deemed shared knowledge. When
the language model draws inferences based on cir-
cumstantial but not direct evidence in the conver-
sation, we label this as a circumstantial inference
error. While traditionally viewed as an inconsis-
tency, we contend that in open-domain conversa-
tions, such circumstantial inferences may be rea-
sonable. In the example listed in Table 1, Cameron
addresses Peyton as "Honey" plausibly because
they both know Peyton is Cameron’s daughter (and
explicitly stating that would violate the maxim of
Quantity).

The importance of these inconsistencies depends
on the context. For example, in doctor-patient con-
versations, inferring a patient has diabetes from
blood sugar discussions is more consequential than
inferring general familial relationships.

World Knowledge: This error type constitutes
a distinct subset of Out-of-Article Errors, wherein
the inaccuracies involve real-world facts. For in-
stance, the summary might include the full name
of a public figure not explicitly mentioned in the
dialogue (see Table 1).

Referential Errors: This error resembles
subject-object errors in prior research (Wang et al.,
2022; Gao et al., 2023). However, LLMs show
intricate misattributions, unlike FT-Summ models,
where referential errors involve swapped entities.
This complexity challenges previous straightfor-
ward categorizations.

Figurative Misrepresentation This category of
error occurs when metaphors, sarcasm, or jokes in
the content are mistaken for literal statements in
summaries, altering the intended meaning.

Nonsensical errors: We consider grammatical
errors in BART-generated summaries, as well as in-
stances where language models continue a prompt
or repeat instructions after generating a summary
as Nonsensical.

2.4 Evaluation Results

Error Rates
Figure 2 depicts error rates for fine-tuned models
(FT-Summ) and large language models (LLMs)
applied to dialogue summarization datasets. Our
results indicate that GPT-4 exhibits fewer incon-
sistencies in dialogue summarization compared to
fine-tuned models. However, this improvement
is smaller than observed in prior research on news
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Figure 2: Each bar in this plot depicts the proportion of total summaries with inconsistencies across different
model-generated summaries where GPT-4 performs the best (lower means fewer inconsistencies).

Circumstantial Inference

Logical Error

World Knowledge

Referential Error

Figurative Misinterpretation

Nonsensical
0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n 
of

 E
rro

rs

GPT-4
Alpaca-13B
BART

Figure 3: Error category proportions for each model in the dataset (lower values indicate fewer occurrences of
specific categories). The more challenging circumstantial inference errors are common in GPT-4 but hardly present
in BART.

summarization, where GPT-3 achieved an error rate
of less than 5% (Zhang et al., 2023). Conversely, in
our case approximately 23% of GPT-4 summaries
across all dialogue datasets display inconsistencies.
Furthermore, Alpaca-generated summaries gener-
ally show lower inconsistency compared to most
fine-tuned models, but are surpassed by BART.

On further analysis (shown in Appendix B), we
find that Alpaca outperforms the fine-tuned models
(including BART) on the DialogSum benchmark
(Gao et al., 2023), but the opposite is true on the
SAMSum benchmarks (Gao et al., 2023; Wang
et al., 2022). Differences in Alpaca-generated sum-
mary quality across datasets may stem from vari-
ances in dialogue and summary features, to which
larger language models may be less sensitive. Di-
alogSum uses real spoken dialogues with multi-
ple turns, potentially resembling pre-training data,
while SAMSum involves synthetic written conver-
sations.

Fine-grained Error Category Distribution
In the investigation of fine-grained categories, we
conduct annotations on summaries generated by
GPT-4 and Alpaca-13b for Large Language Model
(LLM) models and BART within the framework of
FT-Summ. We choose BART for annotation due to
its consistent superiority in consistency compared
to other fine-tuned summarization models, as evi-

denced by its performance across various datasets
(see Figure 2).

One key discovery (shown in Figure 3) is the
prevalence of Circumstantial Inferences in LLM-
generated summaries. Roughly 38% of errors fall
into this category, which describes cases where
assumptions are made based on circumstantial evi-
dence within the conversation. Interestingly, these
errors are rare in BART-generated summaries, con-
stituting only 1% of all errors.

We also observe several error categories with
lower prevalence in LLMs compared to FT-Summ.
Notably, LLM summaries consistently lack gram-
matical errors, presenting coherent and well-
written summaries. However, we note a simi-
lar error type specific to LLMs—prompt errors.
We group both LLM-based prompt errors and FT-
Summ-based grammatical errors as "Nonsensical"
in Fig 3. Interestingly, GPT-4 exhibits no instances
of nonsensical text, whereas BART shows a higher
prevalence of such cases compared to Alpaca.

Our analysis (shown in Fig 3) also uncovers a
considerable reduction in logical errors, specifically
17%, in the case of LLM errors, in contrast to FT-
Summ, where over 50% of errors manifest as log-
ical errors. This noticeable decrease signifies the
superior proficiency of LLMs over FT-Summ mod-
els in deriving logical inferences from dialogues.

Despite advancements, persistent challenges in
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specific error types remain prevalent within LLMs.
Both FT-Summ and LLMs exhibit a similar fre-
quency of referential errors across all error cat-
egories. Notably, Alpaca-generated summaries
show a higher prevalence of referential errors com-
pared to BART-generated ones, elucidating the ele-
vated error rate in Alpaca summaries. Further ex-
amination reveals two distinct types of referential
errors: coreference and misattributions. Corefer-
ence errors arise from the inability to accurately
establish the reference of a pronoun or noun within
a sentence, whereas misattributions involve erro-
neously attributing information or statements to the
wrong source. Notably, in BART summaries, ref-
erential errors mainly consist of coreference errors
(95%), with misattributions constituting only 5%.
Conversely, referential errors in LLMs are char-
acterized by a higher frequency of misattributions
(58%) compared to coreference errors (42%).

3 Automatic Error Detection

Prior research has demonstrated a shift in error cat-
egory distributions when summarizing with models
of different generations, resulting in varied trends
in the performance of automatic error detectors
(Tang et al., 2022). This section aims to address
the following key questions:

a) Do factuality metrics perform similarly on
summaries generated by Large Language Models
(LLMs) compared to older models (in our study, FT-
Summ)? Specifically, we investigate whether de-
tecting factual errors in LLM-generated summaries
poses greater challenges.

b) Which error types across various model cate-
gories can factuality metrics identify, and what are
the associated failure modes? Drawing upon our
error taxonomy, we analyze the ability of metrics
to detect different error categories, with a specific
focus on their performance in identifying circum-
stantial inferences, an aspect not previously evalu-
ated.

c) Furthermore, we introduce a novel approach
aimed at enhancing the detection of different error
categories at the span-level which we introduce in
section 3.1.2.

3.1 Metrics

To include a wider range of metrics, we assess
metric performance in the following two specific
contexts: binary classification (label the entire sum-
mary as factual or not) and span detection (identify

FT-Summ LLM
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Figure 4: Automatic error detectors exhibit varying
performance when applied to FT-Summ versus LLM.
While QA/NLI metrics indicate a slight improvement,
prompt-based metrics are better in detecting inconsisten-
cies generated by the FT-Summ model in comparison
to LLMs.

the nonfactual span).

3.1.1 Binary Classification

Binary classification metrics assess whether a sum-
mary is faithful or not by providing a single overar-
ching score relative to the source.

We incorporate four metrics into our evaluation
framework: two question-answering-based met-
rics, namely QAFactEval (Fabbri et al., 2021) and
QuestEval (Scialom et al., 2021), alongside two
natural language inference (NLI) based metrics,
SummaC-ZS and SummaC-Conv (Laban et al.,
2022), which serve as our baseline measures. Both
question-answering (QA) and natural language in-
ference (NLI) metrics provide continuous scores
for summarization. To translate these scores into
binary factuality labels, we establish thresholds us-
ing a subset of 10% of the evaluation data. Scores
exceeding the designated threshold are classified
as nonfactual. Distinct thresholds are determined
for each metric and model type across all datasets.
Further elaboration on this process can be found in
Appendix C.

Recent studies have also investigated the effec-
tiveness of integrating ChatGPT prompts in error
detection, demonstrating promising results com-
pared to conventional metrics. Consequently, we
include the established prompt ChatGPT-Direct
Assessment (ChatGPT-DA) (Luo et al., 2023) and
evaluate its performance across both zero-shot and
few-shot scenarios. The prompt is shown in Ap-
pendix D.1.
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Figure 5: Inconsistency binary classification per error category
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Figure 6: Span based F1 scores per error category

3.1.2 Span Detection
Baseline
Span detection involves the meticulous identifica-
tion of nonfactual or inconsistent spans within the
summary when compared to the source document.
As a standard baseline, we integrate QAFactEval
and designate all spans labeled "unanswerable" by
the metric as inconsistent.

Our Approach
In addition to the aforementioned baseline ap-
proach, we introduce two new prompt-based
methodologies. These approaches are structured
around two distinct subtasks.

a) Identification: This prompt focuses solely on
extracting inconsistent spans based on provided
definitions. b) Verification: In this phase, sentences
containing these nonfactual spans are compared
with the source text using a prompt, that asks GPT
to provide a consistency rating from 1 to 5 (detailed
in Appendix D.2.2). Spans are classified as non-
factual only if they receive a rating below 5 during
verification. Considering that summaries gener-
ated by LLMs tend to be more abstract and may
involve inference, we aim to avoid extracting spans
as nonfactual that rely solely on common sense,
even if not explicitly supported by evidence. Our
objective is to identify spans where information is
either entirely fabricated or ambiguous based on
the content.

For our first approach, we use a generic prompt
for identification (Appendix D.2) followed by ver-
ification and call this approach ChatGPT-Span
.

To enhance the previous strategy, we introduce a
"mixture of experts" concept for span identification
(a). This method involves using distinct prompts for
each error type outlined in our taxonomy (Section
2.3). Each error type has a unique prompt (see
Appendix D.3) given to GPT, allowing it to target
each error type. After experts identify all error
types, spans undergo verification (step 2) using the
same procedure as before. This approach is called
ChatGPT-MoE.

3.2 Evaluation Setup

Metrics
We use balanced accuracy as a metric for binary
classification. It calculates the arithmetic mean of
sensitivity and specificity, giving equal importance
to minority and majority classes making it bene-
ficial for imbalanced data. We use F-1 scores to
compare predicted spans with annotated ones.

For binary classification, we also include span-
level automated metrics. We predict a summary
as consistent if no inconsistent spans are predicted,
and inconsistent if at least one is predicted. In
prompt-based few-shot setups, we use a four-shot
approach, with two shots indicating inconsistency
and two indicating consistency.

Datasets and Models
To compare metrics across benchmarks, we utilize
all annotated FT-Summ models from Section 2.2 to
compute balanced accuracy. It’s important to note
that the FacEval benchmark doesn’t involve spans
but focuses solely on error types. Therefore, our
evaluation of span-level F1 scores on this bench-
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FT-Summ LLM
F1 Precision Recall F1 Precision Recall

QAFactEval 10.16 7.55 15.52 8.54 7.49 9.91

Prompt-based (Our Approaches)

ChatGPT-Span(ZS) 23.55 24.79 22.44 30.59 33.47 28.17
ChatGPT-Span(FS) 24.31 27.54 23.59 30.51 33.37 28.10
ChatGPT-MoE (ZS) 28.04 27.62 28.46 31.29 33.93 29.04
ChatGPT-MoE (FS) 29.04 27.90 30.27 33.22 35.60 31.14

Table 2: F1-scores for fine-grained error detectors are shown for both FT-Summ and LLM models. The ChatGPT-
MoE prompt metric exhibits superior performance, particularly in detecting circumstantial inference errors which
leads to superior performance on LLMs compared to FT-Summ models. ZS and FS indicate Zero- Shot and
Few-Shot settings, respectively

mark is restricted to our LLM span annotations.
For assessing performance across error categories,
we exclusively use summaries generated by BART,
referred to as FT-Summ. Using our taxonomy, we
classify annotated spans from previous benchmarks
within BART summaries, enabling us to evaluate
performance metrics on a per-category basis.
We also find that approximately 1% of our dataset
contains nonsensical errors, including grammatical
and prompt inaccuracies. Since these errors mainly
affect coherence rather than consistency, we have
chosen to exclude this subset from our analysis.

3.3 Results

Binary Classification
We start by discussing binary inconsistency de-
tection results. Table 3 presents balanced accu-
racy scores for FT-Summ and LLM models. Inter-
estingly, prompt-based approaches, including di-
rect assessment and span-based methods, perform
less effectively in identifying LLM errors than FT-
Summ errors (Figure 4). Overall, prompt-based
methods outperform standard QA and NLI met-
rics for both model types, though the improvement
is less substantial for LLM models compared to
FT-Summ models. We also show per category per-
formance in Figure 5.

Span Detection
Table 2 shows span-level F1 scores, comparing pre-
dicted spans with annotated ones. Results reveal
that QAFactEval struggles with detecting incon-
sistent spans. In contrast, ChatGPT-Span demon-
strates notably superior performance in both Zero-
Shot(ZS) and Few-Shot scenarios(FS). With Few-
Shot, it exhibits a 1-point increase in F1 scores

Metric FT-Summ LLM

QuestEval 47.54 49.47
QAFactEval 45.00 39.84
SummaC-ZS 43.29 49.70

SummaC-Conv 51.18 46.92
ChatGPT-DA(ZS) 73.00 60.34
ChatGPT-DA(FS) 72.06 61.61

Our Approaches

ChatGPT-Span(ZS) 73.48 63.89
ChatGPT-Span(FS) 72.18 64.84

ChatGPT-SpanMoE(ZS) 73.77 67.96
ChatGPT-SpanMoE(FS) 75.61 70.27

Table 3: Binary accuracy scores comparing factual label
predictions of different metrics against human annota-
tions. ChatGPT-Span and ChatGPT-SpanMoE outper-
form ChatGPT-DA and standard metrics, especially on
LLM-generated summaries. ZS and FS indicate Zero-
Shot and Few-Shot settings, respectively.

for FT-Summ models, primarily enhancing pre-
cision. Moreover, incorporating ChatGPT-MoE
yields a further improvement of nearly 5 points
for FT-Summ and nearly 3 points for LLM sum-
maries. Specifically, for FT-Summ, the most con-
siderable enhancement lies in span recall, while
for LLM models, the MoE prompt method affects
both precision and recall. When examining span
based metrics per error-category, we observe that
ChatGPT-MoE notably enhances the detection of
Circumstantial Inference Errors as depicted in Fig-
ure 6.
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4 Conclusion

In summary, our work is the first to comprehen-
sively assess Large Language Model (LLM) perfor-
mance in dialogue summarization, revealing con-
siderable inconsistencies that underscore the ongo-
ing challenges in this area. Our findings empha-
size the prevalence of circumstantial inferences, in
summaries generated by GPT-4 and Alpaca-13b,
indicating LLMs’ proficiency in language under-
standing but their tendency to introduce concep-
tual inferences. Moreover, we demonstrate that
existing metrics struggle to detect these nuanced
errors effectively. Consequently, we advocate for
performance evaluations on benchmarks utilizing
newer models to better capture the capabilities and
limitations of automatic metrics, given the evolv-
ing error distributions and types of newer LLMs
compared to FT-Summ models. Furthermore, our
incorporation of two prompt-based methods shows
promising progress in identifying circumstantial in-
ference errors, although further research is required
to improve performance.

5 Limitations and Ethics

This study has limitations that should be noted.
Firstly, the annotation process is resource-intensive
and time-consuming. Consequently, we only
benchmarked and annotated two Large Language
Models (LLMs), which may not fully represent the
behavior of all LLMs. Additionally, ethical con-
siderations arise regarding the use of GPT-4 for
prompt-based metrics. Being closed-source and
expensive, its accessibility might be restricted, pos-
sibly widening the gap in research resources and
impeding the reproducibility of our methodology.
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A Annotation

A.1 Annotator Recruitment
We hired annotators through UpWork. Candidates
underwent a qualifying round and an interview
where they had to explain marked errors. Ulti-
mately, we selected two expert proofreaders who
were paid $18USD and $22 USD per hour, respec-
tively.

A.2 Annotator Instruction
The following were the instructions provided to
annotators to mark spans as inconsistent.

Identify minimal spans in the summary that:
a) Misrepresent information from the source: If
a span contradicts or distorts information with re-
spect to the source, annotate the evidence sentences
from the source that demonstrate this inconsistency
and select the span as inconsistent.
b) Introduce new information not supported by evi-
dence in the source: If the summary includes new
information that is neither common knowledge nor
a logical inference but relies on external facts or
deductions, mark these spans as inconsistent. In
this case, evidence sentences may not be available
for annotation.

B Error Rate per Dataset

In figure 7 we provide the inconsistency rates for
all models across each dataset. GPT-4 exhibits the
highest consistency across all datasets. However,
Alpaca-13b shows similar performance to BART
on the dialogsum dataset but is surpassed by BART
on the SAMSum datasets.

C Thresholding for Binary Classification

We use a subset of the evaluation data and apply
thresholding to convert continuous scores into bi-
nary labels. This subset comprises approximately
150 source-summary pairs. The thresholds are in-
dividually determined for each metric, dataset, and
model category. The thresholds are displayed in
Figure 8

D Prompt Details

D.1 ChatGPT-Direct Assessment

Decide if the Summary is consistent with
the corresponding Content. Note that con-
sistency means all information in the sum-
mary is supported by the Content. Answer
"yes" for consistent and "no" for inconsis-
tent:
Content: {{Dialogue}}
Summary: {{Summary}}
Answer

D.2 ChatGPT-Span

D.2.1 Identification

Identify and list spans in the summary
which are not supported by evidence from
the content; if there are no unsupported
spans, respond with "None"
Content: {{Dialogue}}
Summary: {{Summary}}
Answer

D.2.2 Verification

Content: {{Dialogue}}
Assess the extent to which the specified
span in the following sentence is supported
by evidence from the content, using a scale
of 1 to 5, where 1 indicates no supporting
evidence and 5 indicates full support from
the evidence provided within the content
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Figure 8: Thresholds are displayed for each metric on each dataset and model category.

Span: {{Span}}
Sentence: {{SummarySentence}}
Answer:

D.3 ChatGPT-SpanMoE

D.3.1 Identification
Circumstantial Inference

Error Definition: Circumstantial inference
in summaries is inferred supplemental infor-
mation, not explicitly stated in the content
but derived from circumstantial evidence,
often intentionally omitted in the content
and assumed to be shared knowledge among
participants in adherence to the principle of
providing sufficient information without un-
necessary details.
Task Definition: Extract spans from the
summary that are circumstantial inferences.
Ensure the spans are the minimal erroneous
spans. List each span in a new line; if there
are no such spans respond with None Con-
tent: {{Dialogue}}

Summary: {{Summary}}
Answer

Logical Error

Error Definition: Logical inference errors in
summaries arise from drawing conclusions
or making deductions that deviate from the
logical flow of content, leading to inaccura-
cies or misunderstandings in the representa-
tion of information or ideas.
Task Definition: Extract spans from the
summary that are logical errors.
Ensure the spans are the minimal erroneous
spans. List each span in a new line; if there
are no such spans respond with None Con-
tent: {{Dialogue}}
Summary: {{Summary}}
Answer

World Knowledge
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Error Definition: Factual extrapolations are
real-world facts added in a summary, not
explicitly mentioned in the original conver-
sation.
Task Definition: Extract spans from the
summary that introduces additional details,
constituting general facts or world knowl-
edge not explicitly stated in the original con-
tent.
Ensure the spans are the minimal erroneous
spans. List each span in a new line; if there
are no such spans respond with None Con-
tent: {{Dialogue}}
Summary: {{Summary}}
Answer

Referential Error

Error Definition: To identify referential er-
rors, check for inconsistencies with respect
to the content in linking pronouns, terms, or
entities to their correct referents. Also look
for instances of misattributions where state-
ments or actions are inaccurately assigned
to the wrong speaker or participant, result-
ing in content representation inaccuracies.
Task Definition: Extract spans from the
summary that are referential errors.
Ensure the spans are the minimal erroneous
spans. List each span in a new line; if there
are no such spans respond with None Con-
tent: {{Dialogue}}
Summary: {{Summary}}
Answer

Figurative Error

Error Definition: Figurative misrepresen-
tation occurs when non-literal information
in the content is inaccurately portrayed or
misunderstood as literal statements in the
summary, distorting the intended meaning
or message.
Task Definition: Extract spans from the
summary that figuratively misrepresent in-
formation in the content.
Ensure the spans are the minimal erroneous
spans. List each span in a new line; if there
are no such spans respond with None Con-
tent: {{Dialogue}}

Summary: {{Summary}}
Answer

The verification step that follows the spans ex-
tracted from the above prompts is the same as dis-
played in D.2.2
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