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Abstract

Closed-source agents suffer from several issues
such as a lack of affordability, transparency,
and reproducibility, particularly on complex in-
teractive tasks. This motivates the development
of open-source alternatives. We introduce
LUMOS, one of the first frameworks for train-
ing open-source LLM-based agents. LUMOS
features a learnable, unified and modular archi-
tecture with a planning module that learns high-
level subgoal generation, and a grounding mod-
ule trained to translate these into the actions us-
ing various tools in the execution module. The
design allows for modular upgrades and wider
applicability to diverse interactive tasks. To
foster generalizable agent learning, we collect
large-scale, unified, and high-quality training
annotations derived from diverse ground-truth
reasoning rationales across various complex in-
teractive tasks. On 9 datasets, LUMOS exhibits
several key advantages: (1) LUMOS excels mul-
tiple larger open-source agents on the held-out
datasets (unused for training) for each task type.
LUMOS even surpasses GPT agents on QA
and web tasks; (2) LUMOS outperforms open-
source agents produced by chain-of-thoughts
and unmodularized integrated training; and (3)
LUMOS effectively generalizes to unseen tasks,
outperforming 33B-scale agents and domain-
specific agents. Code and data will be released.

1 Introduction

Language agents execute actions and interact with
external tools or environments, in service of a goal.
They have evolved into crucial elements of AI sys-
tems targeted at solving complex interactive tasks.
These tasks often require agents to perform long-
horizon planning and interactive reasoning, and
can range from QA (Yang et al., 2018; Geva et al.,
2021), to web tasks (Deng et al., 2023; Zhou et al.,
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Can we train agents with open data and LLMs?  
Yes, we introduce 🪄 Lumos !

Closed LLMs (GPT-3.5/4) as controller for agents?  
Cons: Expensive, black-box, not reproducible, less controllable, etc.
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An unified, modular and 
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Based on LLAMA-2-7B/13B
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Figure 1: LUMOS is an unified, modular and open-
source agent training framework that enables effective
cross-task generalization while being easy to be updated.
It also has advantages against closed-source agents from
affordability, transparency and reproducibility aspects.

2023), math (Cobbe et al., 2021), and multimodal
reasoning (Schwenk et al., 2022; Lu et al., 2022).

Prior agent frameworks (Yao et al., 2022b; Shinn
et al., 2023; Lin et al., 2023; Lu et al., 2023;
Liu et al., 2023c) have primarily relied on closed-
source large language model (LLM) APIs such
as GPT-4 and ChatGPT (OpenAI, 2023a, 2022).
Though powerful, they can be prohibitively expen-
sive, particularly for tasks with long contexts such
as web tasks (which include encoding long HTML
code). Furthermore, the lack of transparency in
closed-source LLMs hinders scientific understand-
ing of their architectures and effectiveness, and
provides limited reproducibility, and controllability
over their behavior. We argue that over reliance on
closed-source LLM-based agents is not conducive
to the growth of research on language agents.

In this paper, we propose LUMOS, a gener-
alizable Language agent framework via Unified,
Modular, and Open Source training. LUMOS em-
ploys a unified and modular architecture broadly
applicable to complex interactive tasks: a planning
module � , a grounding module - , and an execu-
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📝 s1: Search flights from honolulu to nyc...
⚛ a1-1: Type([box-id], HNL)  ⚒ ⇒ Browser
⚛ a1-2: Type([box-id], JFK)    ⚒ ⇒ Browser 
⚛ a1-3: Click([button-id])      ⚒ ⇒ Browser 

📝 s2: Set a filter to keep … price ≤ 1300
⚛ …. ⚒….

📝 s3: Set a filter to keep premium economy 

Lumos-OnePass (Lumos-O) Lumos-Iterative (Lumos-I) (𝑡-th iteration)

 Task desc.: 𝑇  
 Prev. subgoals: 
 Prev. actions: 
 Action interfaces: 𝐼 

 Task desc.: 𝑇  
 Prev. results: 
 Prev. subgoals: 

📝 Planning 

⚛ Grounding 

⚒ Execution 

 Task desc: 𝑇   
 Action interf.: 𝐼

 Task desc.: 𝑇  

All Actions

Exe. results 

All Subgoals

📝 Planning 

⚛ Grounding 

⚒ Execution 

Next Actions

Exe. result 

Next Subgoal

        Multimodal Task 
(A-OKVQA): The device 
in her hand is from 
which country?

📝 s1: Identify the brand of the device …
⚛ a1: VQA(<img>, What is the brand..?)
⚒ e1: LLAVA(...) ⇒ Nintendo 

        Web Task (Mind2Web): 
Find flights from honolulu to NYC 
with budget of $1,300 for 
premium economy.

📝 s2: Answer the country of Nintendo
⚛ a2: QA(context, What’s the country …)
⚒ e2: LLM(...) ⇒ Japan

Figure 2: Overall framework of LUMOS. LUMOS are trained with 56K high-quality training annotations. We
propose two agent training and inference formulations, LUMOS-O (§2.2) and LUMOS-I (§2.3). LUMOS-O is an
efficient formulation that enables one-pass inference; LUMOS-I is an adaptive formulation that help agents flexibly
plan based on the execution feedback. We showcase two LUMOS-I running examples in A-OKVQA and Mind2Web.

tion module { . The planning module learns to
decompose diverse complex tasks into a sequence
of high-level subgoals. The grounding module is
trained to communicate with the planning module
and translate its generated subgoals into the ac-
tions that can be executed through a collection of
tools in the execution module. LUMOS design al-
lows for easy module upgrades to enhance new task
planning, novel action grounding and supplement-
ing new tools, without impacting the others. To
tackle the tasks through the agent modules, we pro-
pose two interaction formulations for implementing
the language agents, LUMOS-OnePass (LUMOS-
O) and LUMOS-Iterative (LUMOS-I). Outlined in
Fig. 2, LUMOS-O is an efficient formulation that
generates all the subgoals and actions through a
single inference call, accomplishing the task in a
one-pass manner. LUMOS-I is an iterative formu-
lation that generates one subgoal at a time based
on its previous execution results and environment
updates, thereby enabling an adaptive agent.

In addition, LUMOS utilizes a unified data for-
mat that encompasses multiple task types, thereby
enabling the proposed agent framework to conve-
niently support a range of interactive tasks. These
include, but are not limited to: question answering,
mathematics, coding, web browsing, multimodal
reasoning, and text games. To obtain high-quality
annotations for training LUMOS, we leverage the
ground-truth rationales in existing benchmarks
across various task types, and convert them into
a unified format (§3). This conversion is achieved
with the aid of strong LLMs, ensuring that the con-
verted annotations adhere to a universally appli-
cable format consistent with our modular design.
Our proposed annotation conversion method re-
sults in around 56K multi-task multi-domain agent
training annotations, one of the largest open-source
resources for agent fine-tuning. The training an-
notations could serve as a resource for universally
enhancing any open-source LLMs with agent capa-

bilities.
Our evaluation demonstrates that LUMOS pro-

vides improved or comparable performance with
GPT-based or larger open-source agents across
various complex interactive tasks that are com-
monly used for agent evaluation, including QA,
web, math, and multimodal tasks. We summarize
our contributions and results as follows:

General Agent Framework with High-Quality
Data. We introduce an open-source agent learn-
ing framework that trains LLMs with unified data,
aimed at unifying complex interactive tasks and
enhancing generalization on unseen tasks with new
environments and actions. We hope our framework
and annotations can facilitate future research in
developing open-source language agents.

Competitive Performance Across Tasks and
Agent Training Formulations. LUMOS outper-
forms a great number of open-source agents on the
LUMOS held-out datasets unused in LUMOS train-
ing data across the four training task types. LUMOS

even surpasses GPT-based agents in web and QA
tasks. Specifically, LUMOS shows a 5.0% enhance-
ment over GPT-4 on Mind2Web, and 4.1% and
3.5% LLM accuracy1 improvement on HotpotQA
over the ReAct and ReWOO agents fully based
on GPT-3.5-turbo, respectively. Furthermore, we
observe that LUMOS training formulations outper-
form other potential agent training methods, such
as chain-of-thoughts and integrated training, which
instruct a single module to both plan and ground.

Cross-Task Generalization. We evaluate LU-
MOS on two unseen tasks, WebShop (Yao et al.,
2022a), a text game for online shopping, and
InterCodeSQL (Yang et al., 2023), an interactive
code generation task. LUMOS even surpasses 30B-
scale agents, especially by nearly 20 reward points
on WebShop. LUMOS also delivers a consistent

1A metric defined in Xu et al. (2023) to identify the seman-
tic equivalence between predictions and gold answers.
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reward improvement over domain-specific agents.
This suggests that LUMOS can generalize across
tasks, hinting at potential benefits for a wide spec-
trum of language agent applications.

2 LUMOS: A Modular Open-Source
LLM-Based Agent Framework

We introduce the overall design and two formula-
tions for developing agents within this framework.

2.1 LUMOS Agent Architecture
For various complex interactive tasks, a common
solution would include: (1) decomposing the task
into a series of subgoals, (2) converting subgoals
into concrete actions, (3) executing those actions.
This process corresponds to the planning, ground-
ing, and execution modules in our framework.

� Planning Module (PM). This module is de-
signed to dissect a complex task into a series
of high-level subgoals, expressed in natural lan-
guage. For example, a multimodal question such
as “The device in her hand is from which
country?” necessitates two subgoals: (1) Identify
the brand of the device in her hand; (2) Answer the
country of the device brand. The devised subgoals
assist in breaking down a complex task into low-
level actions in an interpretable and tool-agnostic
manner. The planning module is designed for easy
debugging and learning new task planning, without
affecting other modules.

- Grounding Module (GM). This module
transforms the high-level subgoals produced by
the PM into low-level executable actions. For in-
stance, the GM translates the subgoal, “Query the
living period of Lowell Sherman,” into one
or more actions, such as KnowledgeQuery(Lowell
Sherman) and QA([R2], Query:“What is the
living period of Lowell Sherman?”). Here,
R2 refers to the previously retrieved knowledge that
may be helpful in answering the query. The ground-
ing module can be easily customized to learn new
actions without impacting the planning module.

{ Execution Module (EM). The Execution
Module (EM) is a program that implements the
actions generated by the grounding module and
gets execution results. It deploys a variety of
off-the-shelf tools, including APIs, neural models,
and virtual simulators. For instance, the execution
module could call the Wikipedia or Google Search
APIs to accomplish the KnowledgeQuery action.

The main characteristic of the LUMOS frame-
work is the interaction among the three modules.
We propose two formulations promoting the com-
munication: LUMOS-OnePass (LUMOS-O) and
LUMOS-Iterative (LUMOS-I).

2.2 LUMOS-OnePass (LUMOS-O)
The LUMOS-OnePass (LUMOS-O) formulation is
an efficient method that generates all subgoals
and grounded actions at once (efficiency study in
App. E). As depicted in Fig. 2, this formulation uses
the planning module to generate all n subgoals in a
single inference call. We then pass all the generated
subgoals to the grounding module, which translates
them into a sequence of m low-level actions. Note
that in addition to the task description and subgoals,
we also provide action interfaces I to the ground-
ing module as inputs. These action interfaces
(e.g., “VQA(Image_Context, Query): Given
the image context, answer the query.”) de-
fine the functionalities of actions and their valid ar-
guments, guiding the grounding module to produce
executable actions. Lastly, for example, the ground-
ing module can produce all the corresponding ac-
tions, from VQA([IMG], Question: What’s the
brand of the device in her hand?) to the final
one QA(..., Question: What’s the country
of ...?).

Formally, the overall planning and grounding
process of LUMOS-O is illustrated in Fig. 2. In
the planning phase, the task description T is in-
put into the planning module. This generates
an output series of subgoals, expressed as S =
πplan(T ) = {s1, ..., sn}, where πplan is the param-
eters of trained planning module. Grounded ac-
tions are obtained via A = πground(T, I, S), with
reliance on the task description, action interfaces
I = {i1, ..., ik}, and the generated subgoals S.
πground represents the parameters of the grounding
module. We take the last execution result en as the
final inference result for the given task.

2.3 LUMOS-Iterative (LUMOS-I)
LUMOS-Iterative (LUMOS-I) is a formulation that
generates one subgoal and its corresponding exe-
cutable actions in each iteration. When generating
the t-th subgoal, the planning module requires the
previous planned subgoals and the execution results
of their grounded actions as input. The execution
results assist the planning module to be aware of
the environmental change and decide next subgoal
according to the up-to-date environments.
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Take the VQA question “The device in her
hand is from which country?” in Fig. 2 as an
example. In the first iteration, the planning module
will produce “Subgoal 1: Identify the brand
of the device in her hand”. This subgoal
is passed to the grounding module to generate the
query actions, and obtain the executed results Nin
tendo. The planning module then takes Nintendo
along with the prior planning context as input to
generate the next subgoal “Subgoal 2: Answer
the country of Nintendo”. Planning upon the
latest execution results would mitigate the risk of in-
troducing a non-existent object in the environment
or a random entity during the reasoning process (a
case study in App. E).

We demonstrate a single iteration of planning
and grounding process of LUMOS-I in Fig. 2.
To plan the t-th subgoal, we input the 1) task de-
scription T , 2) prior subgoals {s1, ..., st−1}, and
3) their executed results {e1, ..., et−1} into the
planning module. We concatenate them in the
order of T, s1, e1, ..., st−1, et−1 where the most
recent subgoals and their results are placed in
the end, as they have higher influence for plan-
ning t-th subgoal. The output would be the t-
th subgoal, st = πplan(T, s1, e1, ..., st−1, et−1).
After then, the t-th subgoal will be directly in-
corporated into grounding module together with
the prior grounding history and action interface
I to generate the corresponding actions, At =
πground(T, I, s1, A1, ..., st−1, At−1, st). Note that
At is an executable action list, as the high-level sub-
goal might be decomposed into multiple low-level
actions. We finally put the low-level actions At

into execution module. The final execution result
et can be sent back for planning (t+1)-th subgoal.

3 Learning to Plan & Ground with
Open-Source LLMs

To guide planning and grounding modules to gener-
ate subgoals and valid low-level actions under our
specified action interfaces, we fine-tune the two
modules to produce the expected outputs.

Training the modules requires the supervisions
consisting of high-quality tasks, subgoals, and
low-level actions. To equip smaller LLMs with
instruction-following ability, prior works leverage
methods such as Self-Instruct (Wang et al., 2023b)
to synthesize training tasks and inputs, and directly
generate ground-truth task outputs based on its cre-
ated tasks. However, these methods are not suitable

for generating high-quality annotations for training
agents. For example, given a web browsing task
in Mind2Web, GPT-4 only achieves around 20%
step success rate (Liu et al., 2023b) when complet-
ing the task. Relying on such methods to generate
complex interactive task annotations may degrade
the annotation quality.

Instead of creating annotations with LLMs from
scratch, we exploit LLMs as a “style transfer” tool
to convert ground-truth reasoning steps in existing
benchmarks into the expected format in LUMOS

formulations. There are a considerable number of
the datasets annotated with either human-written
solutions or structured action sequences2. For ex-
ample, PRM800K (Lightman et al., 2023) is a math
dataset containing the natural language solutions
interleaved with formulas; StrategyQA (Geva et al.,
2021) are a QA dataset with decomposed questions,
supporting facts, and relevant Wikipedia paragraph
indices; Mind2Web includes ground-truth action
sequences, etc. They provide LLMs with funda-
mental information that sufficiently contributes to
the annotation conversion.

Next, we introduce 1) how we prompt LLMs
to obtain the subgoal and action supervisions for
training modules; 2) how to organize the subgoals
and actions into the conversational forms aligning
with LUMOS formulations; 3) how we train the
modules with the final annotations.

3.1 Annotation Conversion Prompts

To help LLMs better follow the annotation con-
version instructions, we add 4-/5-shot examples
in conversion prompts (see App. I for prompt de-
tails). We discuss the important elements in these
in-context examples. The notations of the con-
verted annotations have hat over letters.

Action Interfaces. Action interfaces define the
available actions that LLMs could ground to. Ta-
ble 8 shows a comprehensive list of action defini-
tions and their implementations.

Ground-Truth Intermediate Reasoning Steps.
We provide LLMs with ground-truth intermediate
reasoning steps in existing benchmarks. With these
as references, LLMs are able to summarize high-
level subgoals and synthesize corresponding ac-
tions according to the given action interfaces.

2More available resources for future extension and the
discussion about the scalability of our annotation conversion
methods are described in App. C.
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Subgoals and Corresponding Actions. When
converting ground-truth reasoning steps into our
expected annotations, we provide LLMs with ex-
amples about how to distill the high-level subgoals
from the reasoning steps and map them into cor-
responding actions. In the in-context examples,
we manually decompose a complex task into high-
level subgoals according to the context of ground-
truth reasoning steps. Under each high-level sub-
goal, we write down multiple corresponding ac-
tions that help to accomplish the subgoal (shown in
App. I). Given the exemplar subgoals and actions
in the prompt, LLMs would emulate to generate
subgoals and their paired actions when performing
the conversion for new tasks.

As the executed results of prior subgoals
might be useful in future action implementa-
tion, we interlink the grounded actions in the
in-context examples to allow context-dependent
execution. One example of the interlinked ac-
tions is R1 = KnowledgeQuery(Zombies); R2
= ParagraphRetrieve(R1, Query: What
color skin are zombies typically depicted
with?). The agent could first find the zombie
knowledge page (R1). Written in interlinked style,
the ParagraphRetrieve action is able to receive
the knowledge about zombies R1 as the context,
and performs query-based retrieval.

Intermediate Executed Results of Subgoals.
The intermediate executed results Ê play an im-
portant role in increasing LUMOS’s adaptability
to environmental changes. Some datasets (e.g.,
GSM8K) offer execution results in their reasoning
steps, i.e., the computation results of formulas. For
the datasets without any execution results, their
reasoning steps actually contain the relevant clues
for the execution results. We take an example in
StrategyQA. Though the answer of the annotated
decomposed question “What color skin are
zombies typically depicted with?” is not di-
rectly provided, the annotation contains a related
fact “Zombies are often depicted as green
in pallor.” that mentions the answer “green”.
Thus, for each in-context example, we concatenate
the relevant documents as well as our manually cap-
tured execution results in the conversion prompts.
When converting new samples into LUMOS an-
notations, LLMs would automatically extract the
executed results from the given documents.

After prompting LLMs with the conversion
prompts, we can acquire the key elements in train-

ing annotations, including subgoals Ŝ, their corre-
sponding actions Â and execution results Ê.

3.2 Organizing Conversational Annotations

Finally, to build the interaction between planning
and grounding modules, we organize the annota-
tions into conversational format.

Conversational Planning Module Annotation.
As shown in App. A’s Fig. 3a, we first play a user
role to provide the task T̂ in the user prompt. For
LUMOS-O, all the subgoals Ŝ are the planning
module’s final outputs. LUMOS-I requires multi-
turn conversational style. From Fig. 3a, the plan-
ning module appends the first ground-truth subgoal
ŝ1 with index “Subgoal 1” as the first response
supervision. We then put Subgoal 1’s executed re-
sult ê1 with prefix “The executed result for
Subgoal 1 is” as the second user input. For the
remaining turns, we act as the user, provide the ex-
ecution results êt−1 of the last subgoal ŝt−1 to the
planning module, and ask if the planning should be
stopped. The response supervisions cover whether
the planning should be terminated; if no, the re-
sponse should contain a new gold subgoal ŝt.

Conversational Grounding Module Annotation.
As shown in App. A’s Fig. 3b, we also first provide
the task T̂ and action interfaces Î to the grounding
module in the first user turn. For LUMOS-O, we
feed all the converted subgoal annotations Ŝ in the
user prompt. All the action annotations Â would be
the user prompt response. For LUMOS-I, we input
the current gold subgoal ŝt, with prefix “Subgoal
to be grounded:”. Its response would be ŝt’s
corresponding actions Ât.

3.3 Training with Converted Annotations

As LUMOS annotations are conversational, we
formulate them as {x1, y1, ..., xi, yi, ..., xn, yn},
where xi is i-th user prompt and yi indicates its
ground-truth responses. Following Wang et al.
(2023a), during training, we feed each entire multi-
turn annotation into a decoder-only model while
merely calculating the decoding loss on the tokens
of ground-truth responses Y = {y1, ..., yi, ..., yn}.
We apply binary masking on the user prompt tokens
to prevent computing loss on them. The final loss
function is L = −∑

j log pπ(tj | t<j)×1(tj ∈ Y )
where tj denotes j-th input token and 1(·) is a
Boolean indicator function.
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4 Experiments

We begin with the details of our experimental setup,
including annotation conversion, module training,
and the tools used in the execution module. We
then evaluate LUMOS by: 1) comparing LUMOS

with existing open-source LLM agents and GPT-
based agents, 2) contrasting LUMOS against other
agent training methods, 3) manifesting LUMOS

generalizability on two unseen tasks involving new
environments and actions, and 4) assessing LUMOS

annotation quality.

4.1 Experimental Setup
Data Collection. Utilizing the conversion
prompts discussed in §3.1, we employ GPT-4
(Achiam et al., 2023) versions on 8/13/2023 and
9/13/2023, and GPT-4V (OpenAI, 2023b) version
on 1/24/2023 to perform annotation conversion
on the ground-truth reasoning steps in existing
benchmarks. App. B provides the data sources
used for annotation conversion. These include
the datasets of math, QA, web and multimodal
tasks. To help LUMOS be aware of the visual
inputs in multimodal tasks, we append a detailed
image caption generated by LLAMA-1.5-7B (Liu
et al., 2023a) to the task description in train and
test sets. After filtering out the ones that contain
mismatched parentheses, invalid execution outputs
or excessively lengthy outputs, we obtain 55,382
and 55,499 annotations for training the planning
and grounding modules, respectively.

Training and Action Interfaces. We adopt
LLAMA-2-7B and LLAMA-2-13B (Touvron et al.,
2023a) as the base models for both the planning and
grounding modules. Details regarding the training
process can be found in App. D. For solving interac-
tive tasks, we integrate commonly used actions for
each task into the pre-defined action interfaces. De-
tails of supported executable actions are included
in App. G.

4.2 Training Task Performance
We evaluate LUMOS across an array of complex
interactive tasks - QA, web, math and multimodal
tasks. The evaluation mainly follows the settings
established by AgentBench (Liu et al., 2023b) and
ReWOO (Xu et al., 2023) (see App. H). For each
task type, excluding web tasks, we include a held-
out dataset to assess the model’s generalizability
across the domains within the same task category.
The performance is displayed in Tab. 1. Note that in

Tab. 1, task-specific agents LUMOS-IX are trained
using task-specific data belonging to task type X
(e.g., Web, Math, QA, MM). LUMOS-IAll rep-
resents the agent after unified training with the
combination of four task type annotations. More
evaluation details are shown in App. H.

LUMOS vs. Open-Source Agents. Overall, we
find that LUMOS consistently outperforms vari-
ous open-source agents across the seven datasets.
Though the base models of some compared agents
are 2-10× larger than LUMOS, LUMOS signifi-
cantly excels in performance. Specifically, 7B
LUMOS-I achieves 24.5% and 14.1% step suc-
cess rate improvements over WizardLM-30B and
AgentLM-70B on Mind2Web.

The effectiveness of LUMOS is particularly man-
ifested on the held-out datasets which are unused
in LUMOS training data. Our observations re-
veal that LUMOS outperforms many baseline open-
source agents across all held-out datasets. No-
tably, even though Orca-Platypus-13B (Lee et al.,
2023) has been trained on a math corpus that in-
cludes GSM8K, its performance still 8.6% lower
than LUMOS-O on SVAMP (Patel et al., 2021).
Moreover, despite ReWOO and FiReAct being
fine-tuned with in-domain HotpotQA annotations,
LUMOS-I, without any fine-tuning on HotpotQA,
still presents an impressive improvement. A similar
trend can be observed on ScienceQA. We compare
AutoAct-7B (Qiao et al., 2024), an open-source
agent specifically trained on ScienceQA. LUMOS

achieves 67.3% on the entire test set of ScienceQA,
while AutoAct-7B’s performance is only 53.3%.

LUMOS vs. GPT-based Agents. Although LU-
MOS is built on LLAMA-2-7B/13B, LUMOS-I de-
livers superior performance by 5.0-8.7% over GPT-
4 on Mind2Web. We also notice a 3.5-7.8% in-
crease in LLM accuracy over the GPT-based Re-
WOO on the HotpotQA dataset when employing
GPT-3.5-turbo as the implementation of the QA
tool to ensure fair comparisons.

4.3 Agent Formulation Comparison

We train models using the same base model and
data, but with different training methods - Chain-
of-Thoughts (CoT) Training: For a given task
T , the agent learns to produce both the chain-of-
thoughts solution and the final answer directly; In-
tegrated Agent Training: For a given task T , the
agent learns to generate all the subgoals and actions
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Agents Web Task

Mind2Web

GPT/API-based Agents

GPT-3.5-turbo 15.7
GPT-4 22.6

Open-source Agents

Baichuan-13B-chat 2.3
WizardLM-30B 3.1

Koala-13B 6.0
AgentLM-70B 13.5⋆

LUMOS-IWeb 27.6⋆

LUMOS-IWeb-13B 31.3⋆

(a) Web performance in step-wise
success rate.

Agents Math Tasks

GSM8K SVAMP

Open-source Agents

AgentLM-13B 32.4 -
Code-Llama (PoT)-13B 36.1 60.0

Platypus-30B 37.8 51.7
ReWOO-open ≈38 -

Orca-Platypus-13B 38.4⋆ 56.9
Alpaca-7B ≈39 -

Galactica-30B 41.7 41.6

LUMOS-OMath 50.5⋆ 65.5
LUMOS-IMath 47.1⋆ 63.6

LUMOS-OMath-13B 55.4⋆ 69.3

(b) Math performance in accuracy.

Agents Multimodal Tasks

A-OKVQA ScienceQA (IMG)

GPT/API-based Agents

GPT-3 + GT Caption 45.4 -

Open-source Agents

ClipCap (VL) 44.0⋆ -
KRISP (VL) 51.9⋆ -
GPV-2 (VL) 60.3⋆ -

MiniGPT-4-13B (VL) 67.2 42.8
LLAVA-1.5-7B (VL) - 57.6

LUMOS-OMM 70.1⋆ 56.9
LUMOS-IMM 71.3⋆ 58.4

LUMOS-IMM-13B 72.4⋆ 58.2

(c) Multimodal performance in accuracy.

Agents Agent Model QA Tool QA Tasks

StrategyQA HotpotQA (LLM Acc. / EM)

GPT/API-based Agents

GPT-3.5-CoT GPT-3.5-turbo GPT-3.5-turbo 56.0 37.8 / 22.4
ReAcT GPT-3.5-turbo GPT-3.5-turbo 64.6 40.8 / 32.4

ReWOO GPT-3.5-turbo GPT-3.5-turbo 66.6 42.4 / 30.4

Open-source Agents

ReWOO-open LLAMA-7B GPT-3.5-turbo ≈56 ≈37 / -⋆

AgentLM LLAMA-2-7B LLAMA-2-7B - - / 22.3
FiReAct LLAMA-2-7B LLAMA-2-7B - - / 26.2⋆

FiReAct CodeLLAMA-34B CodeLLAMA-34B - - / 27.8⋆

LUMOS-OQA LLAMA-2-7B GPT-3.5-turbo 60.6⋆ 39.2 / 24.9
LUMOS-IQA LLAMA-2-7B LLAMA-2-7B 58.3⋆ 37.3 / 23.5
LUMOS-IQA LLAMA-2-7B GPT-3.5-turbo 65.7⋆ 45.9 / 29.4
LUMOS-IQA LLAMA-2-7B GPT-4 72.4⋆ 56.8 / 36.0
LUMOS-IQA LLAMA-2-13B GPT-3.5-turbo 65.3⋆ 50.2 / 31.4
LUMOS-IQA LLAMA-2-13B GPT-4 76.7⋆ 57.4 / 36.3

(d) QA performance. The evaluation metric for StrategyQA and HotpotQA is
accuracy, and LLM accuracy / Exact Match (EM), respectively.

Agents Unseen Tasks

WebShop InterCodeSQL

Baichuan-13B-chat 5.7 -
Koala-13B 6.0 -

WizardLM-30B 10.6 -
Vicuna-v1.1-13B 12.6 -

ChatGLM2 19.4 -
Vicuna-v1.3-33B 23.9 6.7
Vicuna-v1.5-13B 41.7 4.8

OpenChat-v3.2-13B 46.9 -
Claude-instant 49.7 -

LUMOS-IWeb-13B 46.2 4.2
LUMOS-IMath-13B 45.7 5.8
LUMOS-IQA-13B 47.3 3.5
LUMOS-IMM-13B 43.8 4.0

LUMOS-IAll-13B 50.3 7.3

(e) Unseen tasks, WebShop and Inter-
CodeSQL. The metric is average reward
and success rate, respectively.

Table 1: Overall performance of language agents on diverse complex interactive tasks. The tasks highlighted in red
and blue are the held-in/held-out datasets for the trained task types. ⋆ indicates that the results are obtained after
fine-tuning on the task’s training set. We adopt multiple-choice setting for A-OKVQA. IMG denotes the subset with
image inputs in ScienceQA test set. GPT-3 in Tab. 1c indicates text-davinci-002.

using the same model. The execution modules re-
mains the same. This training paradigm is adopted
in ReWOO-open, FiReAct and AgentLM.

From Tab. 3, both LUMOS-I and LUMOS-O out-
perform CoT Training3. They also exceed the in-
tegrated formulation based on a single module to
operate planning and grounding. It highlights the
importance of disentangling subgoal planning and
action grounding skills during the agent training.

4.4 LUMOS Generalizability Evaluation

Since LUMOS employs a unified format to repre-
sent complex interactive tasks, we envision that
after trained with the combined annotations across
the four training task types, i.e., unified training,
when faced with an unseen task type, LUMOS may
adapt to it more effectively.

To examine the generalization ability of LUMOS,
we evaluate it on the unseen tasks, WebShop (Yao
et al., 2022a) and InterCodeSQL. WebShop re-

3We do not implement CoT training on web tasks, as up-
dates to the environment (e.g., changes to HTML) are neces-
sary intermediaries for planning subsequent actions.

Training Data QA

StrategyQA HotpotQA

Downstream Perf. of Training Different Data w/ LLAMA

ReWOO-open Data ≈57 ≈37
LUMOS-IQA Data 58.3 38.1

Perf. Using High- & Low-Level Subgoal Annots. w/ LLAMA-2

LUMOS-IQA w/ Low-Level Subgoals 63.3 44.3
LUMOS-IQA Data 65.7 45.9

Table 2: Comparison between the 7B-sized agents
trained with different annotations.

sembles a text game4, with its shopping environ-
ment and action space considerably differing from
those covered in the training annotations of LUMOS.
InterCodeSQL (Yang et al., 2023) is an interactive
code generation task that requires the agent to gen-
erate SQL code based on the external databases
and involves unseen SQL commands. To make LU-
MOS adapt to these unseen tasks, we supplement
2-/3-shot examples in the module inputs, enabling

4WebShop utilizes four actions in its training annotations:
Search, FeatureRetrieve, Pick, and Click. The argument
of Click is a shopping item, differing from that of Click in
Mind2Web which includes an HTML element description.
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them to learn how to generate subgoals and ground
to new sets of available actions (see App. J).

As outlined in Tab. 1e, LUMOS-I achieves a
3-7 higher average reward than domain-specific
agents on WebShop. It also significantly outper-
forms larger agents such as WizardLM-30B and
Vicuna-v1.3-33B (Chiang et al., 2023). We observe
the similar trend on InterCodeSQL. It suggests that
unified training enables agents to enhance the gen-
eralization on unseen tasks and novel actions. We
provide more unified training results in App. F to
show unified training also boosts the performance
on most training task types.

4.5 Further Analysis on Training Annotations
We aim to address three questions pertinent to qual-
ity and format decisions. Q1: How good are our
converted training annotations? Q2: Would adopt-
ing low-level subgoals be more effective than us-
ing high-level subgoals? Q3: Would incorporat-
ing LUMOS annotation with general instruction-
tuning data achieve comparable performance on
instruction-following benchmarks?

Assessment of Annotation Quality. We assess
the quality of our annotations by training models
with them and evaluating the agents’ performance.
We compare them with ReWOO-open data, con-
structed based on HotpotQA and TriviaQA (Joshi
et al., 2017) using the Self-Instruct method. For fair
comparison, we train the base model of ReWOO-
open, LLAMA-7B, using LUMOS annotations. We
also adopt the integrated training formulation and
sample 2,000 training data to keep the same train-
ing settings as ReWOO-open. Given that ReWOO-
open data exclusively relies on QA benchmarks, we
primarily focus on QA task evaluation. Shown in
Tab. 2, LUMOS data yields an improvement when
compared to ReWOO-open data on StrategyQA
and HotpotQA. Note that even if the ReWOO-open
data are based on HotpotQA, it still underperforms
LUMOS on HotpotQA.

Low-Level Subgoal vs. High-Level Subgoal.
As described in §2, we ask LLMs to generate high-
level subgoals corresponding to one or many low-
level actions. An alternative annotation could be
one where each subgoal corresponds solely to one
low-level action, i.e., the subgoal is “low-level”.
We direct LLMs to create low-level subgoals by
modifying the annotation conversion prompt to fit
the format where a subgoal is strictly linked to
one action. Tab. 2 reveals a drop after replacing

high-level subgoals with low-level ones on both
QA datasets. This result hence reaffirms the appro-
priateness of our initial subgoal design.

Effect on General Instruction-Following Bench-
mark. As LUMOS adopts the conversational style
discussed in Sec. 3, any tasks that can be for-
malized as conversation tasks could be accom-
modated. Therefore, LUMOS supports all the
instruction-tuning tasks and complex interactive
tasks. We conduct an experiment to show the ef-
fectiveness of LUMOS in instruction tuning tasks.
By integrating the general instruction-tuning train-
ing data, Alpaca, with the unified training anno-
tations of LUMOS, we created an expanded train-
ing dataset. To guide LUMOS towards generat-
ing straightforward responses, we appended the
phrase “Respond to me directly” to each in-
put instance from Alpaca, instructing the model to
avoid elaborating reasoning processes for the gen-
eral instruction-tuning tasks. Tested on the Super-
NaturalInstruction benchmark (Wang et al., 2022),
Lumos achieved a 39.3 ROUGE-L score, which is
close to the LLAMA-2-7B trained on Alpaca alone
(39.8), which suggesting the possibility of develop-
ing agent reasoning ability and general instruction
following ability simultaneously.

5 Related Work

LLM Agents. Language agents have shown po-
tential in solving diverse complex interactive tasks.
ReAct (Yao et al., 2022b) introduced a prompting
method that shaped LLMs as language agents and
grounded them in external environments. Subse-
quently, several methods (Shen et al., 2023; Lu
et al., 2023; Xu et al., 2023; Lin et al., 2023; Liu
et al., 2023c) aimed at improving agent perfor-
mance and increasing their applicability in diverse
scenarios. These agents mainly rely on closed-
source LLMs, lacking of the consideration of af-
fordability, reproducibility and transparency issues
on complex interactive tasks.

Improving Small Models for Building Agents.
Recent works have utilized larger models to gen-
erate training data for fine-tuning smaller mod-
els (Bosselut et al., 2019; West et al., 2022; Wang
et al., 2023b; Hsieh et al., 2023; Brahman et al.,
2023) to enable them to follow instructions and
perform chain-of-thoughts reasoning. We also ob-
serve contemporaneous efforts ReWOO-open (Xu
et al., 2023), FireAct (Chen et al., 2023), AgentLM
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Agents Web Task

Mind2Web

Integrated Training 25.3

LUMOS-IWeb 27.6

(a) Web task.

Agents Math Tasks

GSM8K SVAMP

CoT Training 40.4 52.2
Integrated Training 45.5 61.7

LUMOS-OMath 50.5 65.5
LUMOS-IMath 47.1 63.6

(b) Math tasks.

Agents QA Tasks

StrategyQA HotpotQA

CoT Training 58.3 22.1
Integrated Training 62.3 39.6

LUMOS-OQA 60.6 39.2
LUMOS-IQA 65.7 45.9

(c) QA tasks.

Agents Multimodal Tasks

A-OKVQA ScienceQA

CoT Training 68.3 57.3
Integrated Training 70.9 57.6

LUMOS-OMM 70.1 56.9
LUMOS-IMM 71.3 58.4

(d) Multimodal tasks.

Table 3: Comparison among different formulations of training language agents. The metric for HotpotQA is LLM
accuracy (%). All the experiments are based on LLAMA-2-7B.

(Zeng et al., 2023), and AutoAct (Qiao et al., 2024),
focusing on training agents on smaller LLMs. Un-
like FireAct and AutoAct, our work delves into a
more in-depth analysis, aiming to discover a unified
task representation that enables agents to general-
ize across unseen interactive tasks effectively. In
contrast to ReWOO-open and AgentLM, we ex-
tend to examining proper training formulations and
studying multiple strategies for creating large-scale,
high-quality datasets for agent training. We demon-
strate LUMOS superior performance in §4.

6 Conclusion

We introduce LUMOS, an open-source, generaliz-
able language agent training framework. We pro-
pose two formulations, LUMOS-I and LUMOS-O,
which promote collaboration among agent modules
to solve complex tasks. For module training data,
we use LLMs to transform reasoning steps in ex-
isting benchmarks into a unified format applicable
within LUMOS framework. LUMOS outperforms a
variety of open-source agents across the 9 datasets.
It performs even better than GPT agents on QA and
web tasks. LUMOS also exceeds potential agent
training formulations and exhibits superior gener-
alization on two unseen interactive tasks.

Limitations

Covered Training Task Types. Currently, LU-
MOS is trained using annotations for four specific
types of complex interactive tasks, which may still
limit its generalization capabilities for novel tasks.
To address this, we aim to enrich the training data
for LUMOS by incorporating a wider variety of task
types. As outlined in §3 and App. C, a substan-
tial array of benchmarks already exists, providing
ground-truth reasoning steps that could serve as
a foundation for expanding LUMOS’s annotations.
By broadening the scope of annotations, we not
only enhance the language agents but also offer a
valuable resource for practitioners looking to de-
velop their own models.

Backtracking and Replanning Ability. In sit-
uations where language agents encounter invalid

execution outcomes or navigate erroneous solu-
tion pathways, it is crucial for them to possess
the capacity for self-diagnosis and replanning their
reasoning processing. The current LUMOS lacks
these sophisticated self-corrective features. Future
versions should be designed with advanced mecha-
nisms that enable the agents to recognize and rec-
tify their planning errors.

Open-Source Tool Replacement. For part of our
QA experiments, we employ GPT models to ad-
dress decomposed sub-questions. It is designed
for fair comparison with the agents that also use
GPT models as QA tools, as elaborated in §4.2.
Our future strategy involves transitioning to fully
open-source QA frameworks that leverage mod-
els such as LLAMA-2-70B, aiming to establish a
completely open-source framework.
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Appendix

A Illustration of Annotation Organization

As discussed in §3.2, we organize the ground-truth
subgoals and actions converted by GPT-4 into the
conversational format that boosts the interaction
between modules. We show the final conversation
format in Fig. 3.

B Statistics of Converted Training
Annotations

As discussed in §4.1, the data sources for construct-
ing training annotations cover a broad range of
complex interactive tasks. Tab. 4 shows the bench-
marks leveraged for annotation conversion, along
with the task type information.

To train agents like LUMOS-IMath mentioned
in Tab. 1b, we need to leverage the annotations
converted from 19778 data specific to math domain.
For training a unified agent such as LUMOS-I, we
would use the annotations transformed from all the
listed data as training set.

We calculate the average turn numbers in each
task’s converted training annotations. The average
numbers are 4.75, 3.75, 8.25 and 3.92 for Math,
QA, Web and Multimodal tasks, respectively.

C Available Resources for LUMOS
Training Data Extension

As discussed in §3, we seek the existing datasets
with ground-truth intermediate reasoning steps to
synthesize LUMOS training annotations from four
complex interactive task categories, math, QA, web
and multimodal tasks.

The methodology for converting annotations as
described is not limited to the four task types previ-
ously mentioned. Any training datasets that include
gold reasoning rationales are suitable for the con-
struction of annotations using the LUMOS method.
We present an exhaustive list of datasets that span
a variety of task types in Tab. 5. For example,
the AlfWorld dataset requires actions that have not
been encountered in existing LUMOS annotations,
such as open, take, move, and others; the Trav-
elPlanner dataset requires actions like CitySearch,
FlightSearch, which are equally unseen in the
existing training set as well. This approach could
significantly enhance the scalability of LUMOS an-
notations, thereby augmenting the method’s capa-
bility to adapt to novel environments and acquire
proficiency in executing new actions.

D Details of Training Modules

We describe additional details about our training
experiments. In all of our experiments, we imple-
ment training over two epochs with a learning rate
of 2× 10−5 and a batch size 128. We set the maxi-
mum sequence length to 1024. We also apply linear
warmup for 3% of the total training steps to adjust
the learning rate. All the training experiments are
implemented with 2 NVIDIA 80GB A100 GPUs
or 4 NVIDIA 48GB A6000 GPUs.

E Efficiency Study on LUMOS and
Efficiency-Performance Trade-Off

We compute the inference time for LUMOS-O and
LUMOS-I across 100 instances on GSM8K and
HotpotQA, respectively. The experiments are run
with 2 NVIDIA A6000 48GB GPUs with inference
batch size 16. As depicted in Tab. 6, we find that
LUMOS-O is much more efficient than LUMOS-I
on both datasets.

LUMOS-O completes its inference in a single
round, whereas LUMOS-I necessitates multiple
rounds of inference until it autonomously con-
cludes its planning. The iterative planning and
grounding in LUMOS-I contribute to a higher time
cost for solving individual instances. However,
this property leads to better LUMOS-I’s capacity to
generate appropriate subgoals based on the current
external environment compared to LUMOS-O.

For example, when tackling a complex ques-
tion “What government position was held by
the woman who portrayed Corliss Archer
in the film Kiss and Tell?”, LUMOS-I can
first identify the woman who portrayed Corliss
Archer in Kiss and Tell, Shirley Temple, then ask
the government position she held. However, though
LUMOS-O can first ask who the woman is as well,
without the interaction with external knowledge in
Wikipedia, it will then generate a subgoal which in-
quires the government position held by Madonna, a
random entity irrelevant with the original question.
Hence, LUMOS-O is a more efficient solution, but
not as effective as LUMOS-I due to the lack of the
adaptability to external environments.

We also notice that in Tab. 1b, LUMOS-O
achieves superior performance on math tasks. Con-
sider a mathematical problem such as, “James
decides to run 3 sprints 3 times a week.
He runs 60 meters each sprint. How many
total meters does he run a week?” Even if
the agent calculated how many times James sprints
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Task Types Datasets # Source Data # Total # Final Converted for Planning # Final Converted for Grounding

Math
PRM800K (Lightman et al., 2023) 10000

19778 19386 19471GSM8K (Cobbe et al., 2021) 7473
ASDiv (Miao et al., 2020) 2305

QA
Musique (Trivedi et al., 2022) 17632

19409 19048 19080
StrategyQA (Geva et al., 2021) 1777

Web Mind2Web (Deng et al., 2023) 1009 1009 1007 1007

Multimodal A-OKVQA (Schwenk et al., 2022) 17056 17056 15941 15941

Table 4: Statistics of data sources for conversion and the number of final successfully converted annotations for
each task type.

Datasets Task Types # Total

WebLINX (Lù et al., 2024) Web Browsing 2337
TravelPlanner (Xie et al., 2024) Travel Planning 225

SciQ (Welbl et al., 2017) Question Answering 11679
GrailQA (Gu et al., 2021) Knowledge Graph Reasoning 44337

NL2Bash (Lin et al., 2018) Interactive Coding 8090
AlfWorld (Shridhar et al., 2020) Embodied Task 3553

VCR (Zellers et al., 2019) Multimodal Reasoning 212923
LILA (Mishra et al., 2022) Math 93670

Table 5: Statistics of potential data sources for LUMOS
annotation extension.

Agents GSM8K HotpotQA

LUMOS-O 102s 556s
LUMOS-I 851s 1007s

Table 6: The time cost of LUMOS-O and LUMOS-I
when performing inference 100 instances from GSM8K
and HotpotQA datasets.

a week, which is 3 × 3 = 9, the mere number 9
does not affect the next subgoal generation. This is
because no matter the result is 9 or 10000, the next
high-level subgoal to calculate the total meters re-
mains the same for solving the question. Therefore,
the high environment adaptability of LUMOS-I may
not be a good supplement on math tasks.

F More Unified Training Results

Agents Web QA Multimodal Math

LUMOS-IX-13B 31.3 65.3/50.2/31.4 72.4/58.2 51.9/66.3
LUMOS-IAll-13B 31.9 66.7/51.0/31.6 72.8/58.2 50.5/65.8

Table 7: Unified training performance on trained task
types. We aggregate the performance on held-in/held-
out datasets for each trained task type with the symbol
‘/’. As discussed in the footnote 2 of §4.4, LUMOS-O
is not applicable to web tasks. Thus, we only conduct
unified training for LUMOS-I as it can be universally
applied to any task types.

We evaluate the performance of LUMOS-I-13B
after the unified training that leverages combined
annotations from four distinct training task types.

We observe that the unified training enhances per-
formance across a majority of tasks, including web,
QA, and multimodal tasks. The decline in perfor-
mance for mathematical tasks is marginal, which
is only 0.7% and 1.4%. The unified task represen-
tation may enable LUMOS agents to uncover in-
trinsic links among these complex interactive tasks,
thereby yielding additional advantages for certain
training tasks.

G Execution Tools Associated with Action
Interfaces

For each available action defined in the action inter-
faces, there is at least one corresponding backend
execution tool to facilitate the implementation of
the concrete actions.

Displayed in Tab. 8a, for QA tasks, we
rely on Wikipedia and Google search APIs
to locate relevant entity knowledge. Be-
sides, we leverage a semantic matching model
dpr-reader-multiset-base5 used in Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020) to
capture paragraphs according to the query. Fol-
lowing ReWOO (Xu et al., 2023), we also include
GPT-series model as a simple QA tool to answer
the query based on our retrieved knowledge or pre-
viously interaction history.

Demonstrated in Tab. 8b, for web tasks, the ac-
tions are real mouse and keyboard operations in-
cluding typing, clicking and selecting HTML tags.
To locate the relevant HTML tags to be operated,
following AgentBench evaluation, we use a De-
BERTa model6 that ranks and retrieves the tags
according to the current action.

As shown in Tab. 8c, for math tasks, the main
execution tool is WolframAlpha API 7 as it can per-

5https://huggingface.co/facebook/
dpr-reader-multiset-base.

6https://huggingface.co/osunlp/MindAct_
CandidateGeneration_deberta-v3-base.

7https://www.wolframalpha.com/.
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Subgoal 1: Query the living period of Lowell Sherman.

- Action 1-1: R1 = KnowledgeQuery(Lowell Sherman)

- Action 1-2: R2 = ParagraphRetrieval(R1, Query: …)

- Action 1-3: R3 = QA([R2], Query: …) = 46 years

Subgoal 2: Query the living period of Jonathan Kaplan.

- Action 2-1: R4 = KnowledgeQuery(Jonathan Kaplan)

- Action 2-2: R5 = ParagraphRetrieval(R4, Query: …)

- Action 2-3: R6 = QA([R5], Query: …) = 75 years

Subgoal 3: Compare their living periods.

- Action 3-1: R7 = Calculator(R3 > R6)

- …

<|user|>
Please provide a reasonable subgoal-based plan to solve the 
given task. 
Task: Who lives longer, Lowell Sherman or Jonathan Kaplan?

<|assistant|>
Subgoal 1: Query the living period of Lowell Sherman. 

<|user|>
The execution result of Subgoal 1 is 46 years. Should we 
stop planning?

<|assistant|>
No, I will keep planning. Subgoal 2: Query the living 
period of Jonathan Kaplan.

<|user|>
The execution result of Subgoal 2 is 75 years. Should we 
stop planning?

…

Organize subgoals & execution results into conversation format

Final planning module annotation

We find relevant facts: Lowell Sherman passed away at 

the age of 46. Jonathan Kaplan passed away at the age 

of 75. We need to answer these questions: … … 3) Is #2 

greater than #1? … …

LLM-based annotation conversion

Ground-truth reasoning steps in existing datasets

(a) Final planning module annotation organized from the converted subgoals & execution results.

Subgoal 1: Query the living period of Lowell Sherman.

- Action 1-1: R1 = KnowledgeQuery(Lowell Sherman)

- Action 1-2: R2 = ParagraphRetrieval(R1, Query: …)

- Action 1-3: R3 = QA([R2], Query: …) = 46 years

Subgoal 2: Query the living period of Jonathan Kaplan.

- Action 2-1: R4 = KnowledgeQuery(Jonathan Kaplan)

- Action 2-2: R5 = ParagraphRetrieval(R4, Query: …)

- Action 2-3: R6 = QA([R5], Query: …) = 75 years

Subgoal 3: Compare their living periods.

- Action 3-1: R7 = Calculator(R3 > R6)

- …

<|user|>
Please ground the given subgoal to corresponding executable 
actions for solving the given task. 

[Action Interfaces]

Task: Who lives longer, Lowell Sherman or Jonathan Kaplan? 
Subgoal to be grounded: Subgoal 1: Query the living period 
of Lowell Sherman.

<|assistant|>
R1 = KnowledgeQuery(Lowell Sherman); R2 = 
ParagraphRetrieval(R1, Query: …); R3 = QA([R2], Query: …)

<|user|>
Subgoal to be grounded: Subgoal 2: Query the living period 
of Jonathan Kaplan.

<|assistant|>
R4 = KnowledgeQuery(Jonathan Kaplan); …
…

Organize subgoals & low-level actions into conversation format

Final grounding module annotation

(b) Final grounding module annotation organized from the converted subgoals & actions.

Figure 3: Process of converting converted subgoals, actions, and executions into the final conversational training
annotations for LUMOS-I formulation.

form a large collection of mathematical functions
such as calculating formulas and solving equations.
For complex math operations such as sorting, we
leverage OpenAI Codex (Chen et al., 2021) to gen-
erate a short code snippet for the execution.

For multimodal tasks, as illustrated in Tab. 8d,
both Visual Question Answering (VQA) and Ques-
tion Answering (QA) tools are considered. The em-
ployed VQA model is LLAVA-1.5-7B (Liu et al.,
2023a), while the utilized QA model is LLAMA-2-
13B-chat (Touvron et al., 2023b).

For the unseen task WebShop, the actions
include Search, FeatureRetrieve, Pick, and
Click. The implementation of Search and Click
relies on the embedded implementation already

provided in official WebShop virtual environ-
ment8. FeatureRetrieve and Pick are based on
dpr-reader-multiset-base, which helps to se-
lect the most relevant items and their item features
according to the query.

For the unseen task InterCodeSQL, the action
interfaces include all the possible commands and
functions provided in SQL programming language.

H Details of Performance Evaluation

Metrics. Here we mainly discuss the special met-
rics adopted to evaluate the agent performance.
For HotpotQA, instead of merely using strict ex-
act matching, we follow Xu et al. (2023) to also

8https://github.com/princeton-nlp/WebShop.
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Task Type Action Types Function Descriptions Tools

QA

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search

ParagraphRetrieval(Knowledge, Query)
-> Paragraphs

Retrieve relevant paragraphs
according to the query

dpr-reader-multiset-base

QA(Context, Query) -> Answer
Answer the query based on

the given context
GPT-series/open LLMs

Calculator(Expression) -> Value Calculate given math expressions WolframAlpha

(a) Actions used in complex QA tasks.

Task Type Action Types Function Descriptions Implementation

Web

Click(Env, Query) -> Tag Locate the tag to be clicked according to the query

HTML Simulator
Type(Env, Query, Text) -> Tag, Text

Locate the relevant tag according to the query
and output the typed text

Select(Env, Query, Text) -> Tag, Text
Locate the relevant tag according to the query

and output the selected option

(b) Actions used in web tasks.

Task Type Action Types Function Descriptions Implementation

Math

Calculator(Expression) -> Value Calculate given math expressions

WolframAlpha
SetEquation(Expression) -> Equation Set equations based on given expressions

SolveEquation(Equation) -> Solutions Solve the set equations

Define(Variable) -> Variable Define a variable

SolveInequality(Inequality) -> Solutions Solve the given inequality

Code(Function_Description) -> Code Generate codes for math functions gpt-3.5-turbo

Count(List) -> Number Count the element number in a list Python

(c) Actions used in math tasks.

Task Type Action Types Function Descriptions Implementation

Multimodal
QA(Context, Query) -> Answer

Answer the query based on
the given context

LLAMA-2-13B-chat

VQA(Image_Context, Query) -> Answer
Answer the query based on

the given image context
LLAVA-1.5-7B

(d) Actions used in multimodal tasks.

Table 8: Action interfaces and execution module implementations for complex interactive tasks.

use GPT-4 as an evaluator to judge whether the
predicted answer shares the same semantics with
the gold answer. We call this metric as LLM accu-
racy, frequently mentioned in §4. For Mind2Web,
we adopt the same metric step success rate used
for AgentBench evaluation. A step is deemed suc-
cessful solely when both the chosen HTML tag
and predicted action type exactly match the gold
action. For WebShop, we leverage the reward uti-
lized in both AgentBench and original WebShop
paper, which quantify the similarity between gold
and predicted products with regard to the product
titles and selected attributes.

Evaluation Data. Following Xu et al. (2023), we
only evaluate 300 and 1000 randomly selected ex-
amples from StrategyQA and HotpotQA evaluation
set, respectively. The results reported in Tab. 1d

are the average performance on three different sets
of sampled data. Regarding Mind2Web, we only
evaluate on the “cross-domain” test set that Agent-
Bench utilizes for evaluation. For WebShop, we
evaluate the first 500 instances from the entire test
set as AgentBench used to do. We leverage the en-
tire evaluation set of the other testing benchmarks
for assessment.
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I In-Context Examples in Conversion Prompts

As discussed in §3.1, in-context examples are helpful to instruct LLMs to generate annotations in our
expected format. For each training task types, we showcase one in-context example to help readers better
understand how the prompting conversion method works and the format of our expected annotations. We
highlight subgoals, their actions and execution results with yellow , red and blue, respectively.

I.1 In-Context Example For Obtaining Math Task Annotations
Please convert natural language plans into a series of subgoals and their corresponding actions that
lead to the successful implementation with respect to the given instructions. Please use ‘R[number]’ to
represent the intermediate results for each subgoal, without generating any exact values. Please also
use functions to represent the corresponding actions. For the actions, they must be one of ‘Calculator’,
‘SetEquation’, ‘SolveEquation’, ‘SolveInequality’, ‘Count’, ‘Code’, and ‘Define’.

Example 1:

Task: Peter goes to the store to buy a soda. The soda costs $.25 an ounch. He brought $2 with him and
leaves with $.50. How many ounces of soda did he buy?

Natural language plan:
He spend $1.5 on soda because 2 - .5 = 1.5 He bought 6 ounces of soda because 1.5 / .25 = 6

Subgoal-based plan:

Subgoal 1: Calculate how much the soda costs in total.

Action 1-1: R1 = Calculator(2 - 0.5) = 1.5

Subgoal 2: Calculate the ounces of soda the price per ounch.

Action 2-1: R2 = Calculator(R1 / 0.25) = 6

I.2 In-Context Example For Obtaining Complex QA Task Annotations
Please convert natural language plans into a series of subgoals and their corresponding actions that
lead to the successful implementation with respect to the given instructions. Please use ‘R[number]’
to represent the intermediate results for each subgoal, without generating any exact values. Please
also use functions to represent the corresponding actions. For the actions, they must be one of one of
‘KnowledgeQuery’, ‘ParagraphRetrieve’, ‘QA’, ‘Calculator’ and ‘Code’.

Example 1:

Task: Are more people today related to Genghis Khan than Julius Caesar?

Natural language plan:
We find relevant facts: Julius Caesar had three children. Genghis Khan had sixteen children. Modern
geneticists have determined that out of every 200 men today has DNA that can be traced to Genghis
Khan. We need to answer these questions: 1. How many kids did Julius Caesar have? (Can be answered
based on paragraph ‘Julius Caesar-75’) 2. How many kids did Genghis Khan have? (Can be answered based
on paragraph ‘Genghis Khan-17’) 3. Is #2 greater than #1? Based on these evidences and decomposed
questions, the answer is True.

Subgoal-based plan:

Subgoal 1: Obtain the number of the kids that Julius Caesar had.

Action 1-1: R1 = KnowledgeQuery(Julius Caesar) = WikipediaPage(Julius Caesar)

Action 1-2: R2 = ParagraphRetrieve(R1, Query: How many kids did Julius Caesar have?) =

Paragraph(Julius Caesar-75).

Action 1-3: R3 = QA([R2], Question: How many kids did Julius Caesar have?) = 3.

Subgoal 2: Obtain the number of the kids that Genghis Khan had.

Action 2-1: R4 = KnowledgeQuery(Genghis Khan) = WikipediaPage(Genghis Khan).

Action 2-2: R5 = ParagraphRetrieve(R4, Query: How many kids did Genghis Khan have?) =

Paragraph(Genghis Khan-17).

Action 2-3: R6 = QA([R5], Question: How many kids did Genghis Khan have?) = 16.

Subgoal 3: Determine if Genghis Khan had more kids.

Action 3-1: R7 = Calculator(R6 > R3) = True
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I.3 In-Context Example For Obtaining Web Task Annotations
Since the data source for converting annotations, Mind2Web, already provides the ground-truth execution
results after each action, as discussed in §3.1, we do not ask LLMs to capture each action’s execution
results. Therefore, there are no parts highlighted with blue in the in-context example.

Please convert natural language plans into a series of subgoals and their corresponding actions that
lead to the successful implementation with respect to the given instructions. Please use ‘R[number]’
to represent the intermediate results for each subgoal, without generating any exact values. Please
also use functions to represent the corresponding actions. For the actions, they must be one of they
must be one of ‘TYPE’, ‘CLICK’, and ‘SELECT’.

Example 1:

Task: Find a Ricky Kej track to listen and share which has been added in the last year and is between
2 to 10 minutes.

Natural language plan:
[searchbox] Search −→ TYPE: Ricky Kej; [link] Search for “Ricky Kej” −→ CLICK; [link] Tracks −→
CLICK; [link] Added any time −→ CLICK; [link] Past year −→ SELECT; [link] Any length −→ CLICK;
[link] 2-10 min −→ CLICK; [link] To listen to −→ CLICK; [link] To share −→ CLICK

Subgoal-based plan:

Subgoal 1: Type Ricky Kej to search his songs.

Action 1-1: R1 = TYPE(Env, QUERY: Type Ricky Kej to search his songs, TEXT: Ricky Kej)

Subgoal 2: Click on the option to search for Ricky Rej.

Action 2-1: R2 = CLICK(R1, QUERY: Click on the option to search for Ricky Rej)

Subgoal 3: Choose tracks as the search category.

Action 3-1: R3 = CLICK(R2, QUERY: Choose tracks as the search category)

Subgoal 4: Find the region to adjust the added time of our interested track.

Action 4-1: R4 = CLICK(R3, QUERY: Find the region to adjust the added time of our interested track)

Subgoal 5: Choose the last year as the added date.

Action 5-1: R5 = SELECT(R4, QUERY: Choose the last year as the added date, TEXT: Past year)

Subgoal 6: Find the region to adjust the track length of our interested track.

Action 6-1: R6 = CLICK(R5, QUERY: Find the region to adjust the track length of our interested track)

Subgoal 7: Choose 2 to 10 minutes as the track length.

Action 7-1: R7 = CLICK(R6, QUERY: Choose 2 to 10 minutes as the track length)

Subgoal 8: Listen to our searched track.

Action 8-1: R8 = CLICK(R7, QUERY: Listen to our searched track)

Subgoal 9: Share our searched track.

Action 9-1: R9 = CLICK(R8, QUERY: Share our searched track)
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I.4 In-Context Example For Obtaining Multimodal Task Annotations
Please convert natural language plans into a series of subgoals, their corresponding actions that
lead to the successful implementation with respect to the given instructions. When generating the
actions, please also attach the action’s results contained in the natural language plans. Please use
’R[number]’ to represent the execution results for each action. Please also use functions to represent
the corresponding actions. For the actions, they must be one of the available actions, ’QA’, ’VQA’.

Example 1:

Task: If the cameraman were driving what do they have to do from this position? There’re some choices:
A. turn left, B. drive straight, C. reverse course, D. turn right.

Natural language plan:
The would have to turn right because the lane has right turn arrows painted on it. The arrow on the
street indicates that this lane can only go in one direction at the intersection. The sign on the road
says to turn right. Overall, the final answer is ’turn right’.

Subgoal-based plan:

Subgoal 1: Describe the shape of the sign on the road lane the cameraman is in from the image.

Action 1-1: R1 = VQA([IMG], Question: What’s the sign on the road lane?) = There’s a right turn arrow

on the road.

Subgoal 2: Answer which lane the cameraman is in.

Action 2-1: R2 = QA([R1], Question: Which lane is the cameraman in?) = The cameraman is in right turn

lane.

Subgoal 3: Answer what the cameraman has to do from his position.

Action 3-1: R3 = QA([R1, R2], Question: What does the cameraman have to do from his position?) = turn

right.

Subgoal 4: Select the choice from the answer choices.

Action 4-1: R4 = VQA([IMG], Question: If the cameraman were driving what do they have to do from this

position? We can also see that There’s a right turn arrow on the road, The cameraman is in right turn

lane, turn right. There’re some choices: A. turn left, B. drive straight, C. reverse course, D. turn

right. You must choose one from ’A’, ’B’, ’C’ or ’D’. Output only one letter!) = D
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J In-Context Example for Adapting Modules to Unseen Task — WebShop

As discussed in §4.4, the in-context examples are used for helping modules understand how to plan and
ground to novel available actions. Mentioned in App. G, WebShop involves four unseen actions in training
annotations: Search, FeatureRetrieve, Pick, and Click. The definition of Click is different from the
one defined for web task. In WebShop task, the argument of Click is the item index. However, Click’s
input arguments in Mind2Web include an HTML environment description and a specific query regarding
the goal of click action. We showcase one of the two in-context WebShop-related examples used for the
inference of planning and grounding modules, respectively.

J.1 In-Context WebShop-Related Example for Planning Module

<|user|>
Please provide a reasonable subgoal-based plan to solve the given task.
Task: Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve, short sleeve with
color: a01#black, and size: large, and price lower than 50.00 dollars

<|assistant|>
Subgoal 1: Search two relevant items and the product names according to the instruction.

<|user|>
The execution result for Subgoal 1 is b09s3bn15c - Mens Linen Shirt,Men’s Striped Shirts Casual Short
Sleeve Button Down Shirts Regular Fit Hawaiian Shirts Beach Tees Tops ** b094q7b3ss - Women Cold
Shoulder Tops, Summer Butterfly Print Shirts Fashion Casual Short Sleeve Plus-Size Tunic Top Tee and
Blouse.

<|assistant|>
Subgoal 2: Select the most relevant features of item b09s3bn15c.

<|user|>
The execution result for Subgoal 2 is short, casual, shoulder.

<|assistant|>
Subgoal 3: Select the most relevant features of item b094q7b3ss.

<|user|>
The execution result for Subgoal 3 is black, large, x-large.

<|assistant|>
Subgoal 4: Pick up the most related one from the two relevant items according to the product names and
their features.

<|user|>
The execution result for Subgoal 4 is b094q7b3ss.

<|assistant|>
Subgoal 5: Buy this item by selecting its relevant features.

<|user|>
The execution result for Subgoal 5 is Done.
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J.2 In-Context WebShop-Related Example for Grounding Module

<|user|>
Please ground the given subgoal to corresponding executable actions for solving the given task. The
grounded actions must be the one in available action list.

The available action list is ‘Search’, ‘FeatureRetrieve’, ‘Pick’ and ‘Click’. Search(Query): Search
related items according to the Query; FeatureRetrieve(Feature_list, Query): Select the most relevant
features from Feature_list according to Query; Pick(Item_names, Item_features, Query): Pick the most
relevant item from Item_names according to Query, Item_names and Item_features; Click(Item): Click the
Item to check more information.

Task: Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve, short sleeve with
color: a01#black, and size: large, and price lower than 50.00 dollars
Subgoal to be grounded: Subgoal 1: Search two relevant items and the product names according to the
instruction.

<|assistant|>
R1 = Search(Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve, short sleeve
with color: a01#black, and size: large, and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 2: Select the most relevant features of item b09s3bn15c.

<|assistant|>
R2 = Click(b09s3bn15c); R3 = FeatureRetrieve(R2, Query: Find me slim fit, loose fit women’s tops, tees
& blouses with long sleeve, short sleeve with color: a01#black, and size: large, and price lower than
50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 3: Select the most relevant features of item b094q7b3ss.

<|assistant|>
R4 = Click(< prev); R5 = Click(b094q7b3ss); R6 = FeatureRetrieve(R5, Query: Find me slim fit, loose
fit women’s tops, tees & blouses with long sleeve, short sleeve with color: a01#black, and size: large,
and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 4: Pick up the most related one from the two relevant items according
to the product names and their features.

<|assistant|>
R7 = Pick(Item_names: R1, Item_features: [R3, R6], Query: Find me slim fit, loose fit women’s tops,
tees & blouses with long sleeve, short sleeve with color: a01#black, and size: large, and price lower
than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 5: Buy this item by selecting its relevant features.

<|assistant|>
R8 = Click(< prev); R9 = Click(R7); R10 = Click(black); R11 = Click(large); R12 = Click(x-large); R13
= Click(buy now)
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K In-Context Example for Adapting Modules to Unseen Task — InterCodeSQL

Similar to §J, as InterCodeSQL is another unseen task, we showcase one of the three in-context
InterCodeSQL-related examples used for the inference of planning and grounding modules, respectively.

K.1 In-Context InterCodeSQL-Related Example for Planning Module

<|user|>
Please provide a reasonable subgoal-based plan to solve the given task.
Task: What are the names of poker players, ordered ascending by the number of final tables they have
made?

<|assistant|>
Subgoal 1: Find all the related tables.

<|user|>
The execution result for Subgoal 1 is Results: Table players has Name (type: TEXT), People_ID (type:
INT); Table poker_player has Final_Table_Made (type: INT), People_ID (type: INT).; Subgoal 2: Write
the selection objects: the names of the people who are also poker players.

<|assistant|>
Subgoal 2: Write the selection objects: the names of the people who are also poker players.

<|user|>
The execution result for Subgoal 2 is T1.Name FROM people AS T1 JOIN poker_player AS T2 ON T1.People_ID
= T2.People_ID.

<|assistant|>
Subgoal 3: Write the selection condition: sort all the poker players by the number of final tables they
have made in ascending order.

<|user|>
The execution result for Subgoal 3 is ORDER BY T2.Final_Table_Made.

<|assistant|>
Subgoal 4: Finish the SQL query to the names of poker players, ordered ascending by the number of final
tables they have made.

<|user|>
The execution result for Subgoal 4 is SELECT T1.Name FROM people AS T1 JOIN poker_player AS T2 ON
T1.People_ID = T2.People_ID ORDER BY T2.Final_Table_Made.
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K.2 In-Context InterCodeSQL-Related Example for Grounding Module

<|user|>
Please ground the given subgoal to corresponding executable actions for solving the given task. The
grounded actions must be the one in available action list.

Task: What are the names of poker players, ordered ascending by the number of final tables they have
made?
Subgoal to be grounded: Subgoal 1: Find all the related tables.

<|assistant|>
R1 = SHOW TABLES

<|user|>
Subgoal to be grounded: Subgoal 2: Write the selection objects: the names of the people who are also
poker players.

<|assistant|>
R2 = T1.Name FROM people AS T1 JOIN poker_player AS T2 ON T1.People_ID = T2.People_ID

<|user|>
Subgoal to be grounded: Subgoal 3: Write the selection condition: sort all the poker players by the
number of final tables they have made in ascending order.

<|assistant|>
R3 = ORDER BY T2.Final_Table_Made

<|user|>
Subgoal to be grounded: Subgoal 4: Finish the SQL query to the names of poker players, ordered ascending
by the number of final tables they have made.

<|assistant|>
R4 = SELECT T1.Name FROM people AS T1 JOIN poker_player AS T2 ON T1.People_ID = T2.People_ID ORDER BY
T2.Final_Table_Made
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L Multimodal Task Case Study

We provide two cases in the multimodal datasets, A-OKVQA and ScienceQA, to show the effectiveness of
LUMOS. For the A-OKVQA case, LUMOS first identifies the device brand with the aid of VQA tool. After
LUMOS planning module knows that the device is a Nintendo Wii controller, the module would generate
the next subgoal “Answer the country of origin for the Nintendo Wii controller”. Finally,
LUMOS selects the closest option from the given answer choices. For the ScienceQA case, LUMOS

identifies the highlighted area on the map, which includes Middle East area. Then the planning and
grounding modules would leverage QA tool to answer which continent Middle East is located at, and then
pick up the correct answer “Asia”.

Question: The company producing the device in her hand is from what 
country? There’re some choices: A. … … C. Japan, D. … The image shows the 
following contents: The image features a young woman sitting on a couch, … … 
playing a video game, possibly on a Nintendo Wii console. The couch she is sitting 
on is … …

Lumos-IMM Planning and Grounding Results:

Subgoal 1: Identify the brand of the device in her hand.
Action: R1 = VQA([IMG], Question: What brand is the device in her hand?) = The device in her 
hand is a Nintendo Wii controller.

Subgoal 2: Answer the country of origin for the Nintendo Wii controller.
Action: R2 = QA([R1], Question: What is the country of origin for the Nintendo Wii controller?) = 
The country of origin for the Nintendo Wii controller is Japan.

Subgoal 3: Select the choice from the four answer choices.
Action: R3 = VQA([IMG], Question: The company producing the device in her hand is from what 
country? The image features … We can also see that The device in her hand is a Nintendo Wii 
controller, The country of origin for the Nintendo Wii controller is Japan. There’re some choices: 
A. … … C. Japan, D. … You must choose one from ‘A’, ‘B’, ‘C’ or ‘D’. Output only one letter!) = C.

Planning module output

Grounding module output

Execution module output

Figure 4: LUMOS-IMM case study on A-OKVQA.

Question: Which continent is highlighted? There’re some choices: … … D. 
Asia. The image features a large, colorful map of the world, with various 
countries and continents depicted. The map is filled with green and blue colors, 
giving it a vibrant and lively appearance. … …

Lumos-IMM Planning and Grounding Results:

Subgoal 1: Identify the highlighted area on the map.
Action: R1 = VQA([IMG], Question: Which area is highlighted on the map?) = The area 
highlighted on the map includes the Middle East, … .

Subgoal 2: Answer which continent the highlighted area is in.
Action: R2 = QA([R1], Question: Which continent is the Middle East in?) = The Middle East is 
located in the continent of Asia.

Subgoal 3: Select the choice from the answer choices.
Action: R3 = VQA([IMG], Question: Which continent is highlighted? The image features … We can 
also see that The area highlighted on the map includes the Middle East, …, The Middle East is 
located in the continent of Asia. There’re some choices: … … D. Asia. You must choose one from 
‘A’, ‘B’, ‘C’ or ‘D’. Output only one letter!) = D.

Planning module output

Grounding module output

Execution module output

Figure 5: LUMOS-IMM case study on ScienceQA.
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