
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12302–12319
August 11-16, 2024 ©2024 Association for Computational Linguistics

Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting
Black-box Language Models with Knowledge Graphs

Elan Markowitz∗ ,1,2, Anil Ramakrishna1, Jwala Dhamala1, Ninareh Mehrabi1,
Charith Peris1, Rahul Gupta1, Kai-Wei Chang1, and Aram Galstyan1

1Amazon AGI
2University of Southern California

Abstract

Knowledge graphs (KGs) complement Large
Language Models (LLMs) by providing
reliable, structured, domain-specific, and
up-to-date external knowledge. However, KGs
and LLMs are often developed separately
and must be integrated after training. We
introduce Tree-of-Traversals, a novel zero-shot
reasoning algorithm that enables augmentation
of black-box LLMs with one or more KGs.
The algorithm equips a LLM with actions
for interfacing a KG and enables the LLM to
perform tree search over possible thoughts
and actions to find high confidence reasoning
paths. We evaluate on two popular benchmark
datasets. Our results show that Tree-of-
Traversals significantly improves performance
on question answering and KG question
answering tasks. Code is available at https:
//github.com/amazon-science/
tree-of-traversals

1 Introduction

Large language models (LLMs) are used for a range
of knowledge-intensive tasks such as information
retrieval (Zhu et al., 2023b), summarization (Zhang
et al., 2023), and question answering (Tan et al.,
2023). Trained on large amounts of textual data,
these models learn a wide breadth of information.
However, LLMs suffer from several limitations
– they produce hallucinated information (Ji et al.,
2022; Bang et al., 2023), lack deep domain-specific
knowledge (Pan et al., 2023b), and have a static
knowledge cutoff when training ends.

Knowledge graphs (KGs) naturally complement
LLM weaknesses. KGs contain up-to-date infor-
mation covering general (Vrandeić and Krötzsch,
2014; Lehmann et al., 2015) and/or domain-
specific topics (Abu-Salih, 2020; Liu et al., 2019;
Zhu et al., 2017; Choi and Lee, 2019; Farazi et al.,

∗Work done while interning at Amazon
Corresponding author: esmarkow@usc.edu

2020) in highly structured and interpretable for-
mat. Augmenting an LLM’s ability to reason and
respond in natural language with an external KG’s
up-to-date knowledge presents a path toward a reli-
able and factual LLM.

The rise of powerful LLMs with new capabili-
ties has renewed interest in combining LLMs with
KGS. Numerous survey and position papers have
recently emphasized their combined potential (Pan
et al., 2023a; Zhu et al., 2023a; Yang et al., 2023;
Pan et al., 2023b). Existing works augmented
LLMs with KGs in multiple ways, such as inte-
gration into pretraining (Yasunaga et al., 2022),
fine-tuning (Zhang et al., 2022), or later adaptation
with subsequently trained components (Lin et al.,
2019; Hu et al., 2022). All of these carry some
limitations. In particular, training or fine-tuning a
large scale LLMs is computationally expensive. In
some cases, model weights are unavailable publicly.
Finally, the largest KGs require their own servers
and cannot be integrated in-memory with LLMs.
Additionally, previous works do not consider the
case of augmenting with multiple KGs.

An algorithm that allows the augmentation of a
powerful black-box LLM with any number of inter-
nal or external KGs without training from scratch
or fine-tuning the model is valuable. Such a zero-
shot algorithm would enable several innovative use
cases such as (1) customers using a black-box LLM
API in conjunction with an internal domain-specific
KG, (2) integration of personalized KGs into an
LLM without the risks associated with training a
model with such personal data, (3) integration of
deep domain knowledge via an array of API acces-
sible KGs (e.g., IMDb1, MusicBrainz2).

We introduce Tree-of-Traversals, a novel algo-
rithm that addresses the above issues by allowing
the augmentation of any powerful LLM with arbi-
trary number of KGs in a zero-shot fashion. It re-

1IMDb API
2MusicBrainz API

12302

https://github.com/amazon-science/tree-of-traversals
https://github.com/amazon-science/tree-of-traversals
https://github.com/amazon-science/tree-of-traversals
https://aws.amazon.com/marketplace/seller-profile?id=0af153a3-339f-48c2-8b42-3b9fa26d3367
https://musicbrainz.org/doc/MusicBrainz_API

Answer: No one

Inception

Interstellar

v=0.0

I should

ExpandKG

v=0.9

1

1⃝ Initial state seeded with the KG entities
from the query. Each subsequent step con-
sists of selecting a tree node (rectangle),
sampling thoughts or actions from LLM,
performing actions, and evaluating outputs
with LLM.

? ?
?

Select Inception

v=0.8 v=0.7

Select Inception

and Interstellar

I should

ExpandKG

v=0.9
2

2⃝ Tree-of-Traversals selects which node
to search based on the values of the poten-
tial options. The “Expand KG” option had
higher value than “Answer: No one”. After
choosing to Expand KG, the model next se-
lects which entities from the KG to expand.

?

Select Inception

Select director Select cast

v=0.8

v=0.2 v=0.4

3

3⃝ After selecting entities, the model next
chooses what relation to expand upon. The
local knowledge graph is then updated with
the requested information. Unfortunately, in
this case, the sampled actions yielded low
value output states.

Answer:

Michael Caine

? ?
?

Query: What actor played in both Inception and Interstellar?

Initialize local KG with entities for Inception and Interstellar

Answer: No one

Select Inception

Select director Select cast Select director

Answer:

Unknown

1

expansion order

value = 1.0

value = 0.0

Inception

Interstellar

v=0.8

v=0.2 v=0.4

v=1.0

v=0.7

v=0.7

v=0.0

v=0.0

Select Inception

and Interstellar

I should

ExpandKG

v=0.9

Select cast

v=0.8

2

3 4

5

?
?

Select cast Select director

v=0.7

v=0.7

Select Inception

and Interstellar

v=0.8

4

4⃝ Since the previous selection
yielded low-value states, the
model backtracks to the best
alternative state. Answer:

Michael Caine

Select cast

Answer:

Unknown

v=1.0 v=0.0

v=0.8
5

5⃝ Tree-of-Traversals now has all the infor-
mation needed for the query and generates
two answers. The correct answer is given a
high value by the LLM and is returned to
the user.

Figure 1: An example of how Tree-of-Traversals uses a KG interface for the query, “What actor played in both
Inception and Interstellar?”.

quires no training, functions with black-box access
to the LLM, and works with any API accessible
KG. Our contributions are:

1. Tree of traversals: A novel zero-shot algo-
rithm for augmenting any powerful LLM with
arbitrary number of KGs and enabling ad-
vanced KG reasoning using tree search.

2. Evaluation of Tree-of-Traversals on two ques-
tion answering tasks: 2WikiMultiHop and
QALD-10 and comparison with baselines.

3. Development of a new dataset to test com-
bined reasoning over a general and a domain-
specific KG, and evaluation of Tree-of-
Traversals on this dataset.

We conduct detailed experiments on three mod-
els of varied sizes hosted on Amazon Bedrock and
present detailed ablation studies.

2 Tree-of-Traversals

The Tree-of-Traversals algorithm maintains a local
KG subgraph that is repeatedly expanded until it
contains all the information required by an LLM
to answer the given query. At the start, a local
KG subgraph is initialized to contain the entities
present in the original query. It is then expanded

using a tree search algorithm to choose actions and
thoughts generated by an LLM in order to obtain
relevant knowledge from the KG using a KG inter-
face. The algorithm halts when the LLM is able
to answer the original query using the local KG
subgraph as context. Tree-of-Traversals consists of
three major components. (1) A knowledge graph
interface implemented to interact with one or more
required KGs. (2) An action state machine (ASM)
which is a finite state machine that defines the fea-
sible space of actions, states, and prompt templates
when the LLM interacts with a KG to expand the
local KG subgraph. (3) A tree search algorithm
which defines the overall LLM search trajectory
such as best first search, backtrack upon making a
mistake, and termination condition when an answer
is found.

2.1 Knowledge Graph Interface

The knowledge graph interface allows Tree-of-
Traversals to interact with one or multiple KGs.
Let K = (E ,R, T) be a single KG. E is the set of
entities in which each entity consists of an iden-
tifier, a label, and an optional description (e.g.,
Q35332, ‘Christopher Nolan’, ‘British-American
filmmaker’). R is the set of relation types, each
consisting of an identifier, a label, and an optional
inverse label (P57, ‘director’, ‘is director of ’). T

12303

DEFAULT
SELECTING

ENTITIES 
STATE

SELECTING
RELATION 

STATE
DONE

EXPAND_KG

THINK: <thought>

SELECT

ENTITIES

SELECT RELATION

ANSWER: <answer>

Figure 2: Action State Machine

is the set of edges or facts in the KG in which each
edge is of the form (s, r, o) where s, o ∈ E and
r ∈ R, e.g., (‘Inception’, ‘director’, ‘Christopher
Nolan’). Tree-of-Traversals can be used for K as
long as the following interfaces are implemented.

1. initialize(q) → E0: It takes as input a
query q, extracts entities from q and returns
the linked entities E0 ⊂ E where E0 are the
entities from K that are referenced in q.

2. get_relations(Eselected)→ Roptions: It
takes a set of entities, Eselected, and returns the
relation types, Roptions ⊂ R, that Eselected
have in K: {r|(s, r, o) ∈ T , s ∈ Eselected}

3. get_edges(Eselected, r) → Tadded, Eadded:
It takes a set of entities and a selected re-
lation type, and returns all edges with re-
lation type r for source entities in Eselected:
{(s, r, o) ∈ T |s ∈ Eselected, r = r, o ∈ E}. It
also returns the new entities, Eadded, that are
entities reached with Tadded.

This interface is implemented with SPARQL
queries when available; otherwise, we use the
graph API that is available for the KG. For multiple
KGs, each interface is implemented separately.

2.2 Action State Machine (ASM)
One of the challenges with developing a zero-shot
LLM algorithm that works with arbitrary KGs is
that the LLM does not know what relations are
available in the graph or what relations are valid
for a given entity. Few-shot or in-context learning
approaches can only cover a handful of the possi-
ble relation types (e.g., Wikidata has over 11,000
relation types) (Brown et al., 2020).

To overcome these issues we break the
task of expanding a local KG subgraph into
multiple subtasks. We use a finite state ma-
chine with the following actions: Think,

Answer, ExpandKG, Select_Entities,
and Select_Relation, and states: default,
selecting-entities, selecting-relation, and done as
shown in Figure 2. This is named as Action State
Machine (ASM) throughout the paper.

From the default state, Tree-of-Traversals can
either Think, Answer, or choose to ExpandKG.
After Tree-of-Traversals chooses to ExpandKG,
it first is prompted to Select_Entities
about which it needs more information (e.g.,
‘Inception’ in Figure 1). It is then prompted
to Select_Relation from a list of candi-
date relations provided by the KG interface’s
get_relations method. After selecting a re-
lation (e.g., ‘cast member’ in Figure 1), all edges
containing one of the selected entities as the source
and the selected relation as the relation are added to
the local KG subgraph. Tree-of-Traversals is then
able to Answer, Think, or ExpandKG again.

Prompt Templates. Each state in the ASM other
than the ‘done’ state is associated with a unique
prompt template. Prompt templates are filled with
information from the local KG subgraph and the
KG interface before presenting them to the LLM.
A customized prompt for each state allows us to
present precise and relevant information along with
specific instructions for each state to the LLM sim-
plifying the LLM’s task. For instance, the prompt
for ‘selecting-entities’ presents the available op-
tions of entities to choose from that are in the local
KG subgraph (see Figure 3). Prompt templates for
all the states are in the Appendix F.1-F.3.

Local KG subgraph is represented using a a to-
ken efficient YAML format that minimizes repeti-
tion for multiple edges on the same entity.

Invoking KG Interfaces. Outside of initializa-
tion, there are two times in which the ASM needs
to invoke the KG interface: (1) When construct-
ing the selecting-relation prompt, the algorithm
calls get_relations(Eselected) to gather avail-
able choices of relations. (2) When executing the
transition from selecting-relation to default after
having selected a relation type r, the algorithm
calls get_edges(Eselected, r) so that it can add
the new edges and entities to the local subgraph.

2.3 Tree Search Algorithm
Our approach draws inspiration from the Tree-of-
Thoughts approach (Yao et al., 2023) in which an
LLM is given increased reasoning power by allow-
ing generation of multiple thoughts at a time and

12304

Original Query:
Who is Bob Dylan’s maternal grandmother?

Knowledge Graph Entities:
Q392: Bob Dylan - American singer-songwriter
Q62519478: Beatrice Stone

Knowledge Graph Edges:
Bob Dylan:

mother:
Beatrice Stone

Previous Actions:
...
Current task: Select entities to expand from [Q392,

Q62519478]
Selection:

Figure 3: Prompt for the ‘selecting-entities’ state of the
ASM. The original query and the local KG subgraph are part
of the prompt for every action state while the ‘Current task’
differs. The entity options show what entities can be selected
based on the current local KG subgraph. If the model selected
Q62519478: Beatrice Stone here, then in the next action state
(selecting-relation), the dynamic prompt would list the relation
types that Beatrice Stone has edges for.

building a search tree over the resulting reasoning
chains. We extend this approach to augment LLMs
with KGs through allowing the generation of ac-
tions in addition to thoughts, and building a search
tree over them. Challenges arise because Tree-of-
Thoughts was not designed to incorporate actions
and was not designed for knowledge intensive ques-
tion answering tasks. As a result, we introduce
some modifications: incorporation of actions via
the ASM, a slightly different search procedure and
stopping condition to better handle QA, and a dif-
ferent sampling procedure for improved diversity
when doing constrained sampling.

Algorithm 1 presents the Tree-of-Traversals tree
search algorithm. Given a query q it begins with
initialization using initialize(q) as described
in Section 2.1. After initialization, it searches by
(1) choosing the unexplored node to expand based
on the node’s value assigned by the value func-
tion (Best First→ Depth First as tie-breaker), (2)
sampling k actions from the LLM (k is branching
factor) using the prompt associated with the se-
lected node’s state in the ASM, (3) for each of the
sampled action, applying the transition function,
and (4) evaluating the value of the resulting nodes
with the LLM value function. The search stops
when an answer is found with a node value exceed-
ing the threshold τ . To bound the search space
we add two hyper-parameters: max depth of the
tree search, after which the algorithm is forced to
transition to the done state (i.e., answer the query),
and max expansions after which the model halts
exploration and returns "Cannot find answer".

Algorithm 1 Tree-of-Traversals
Input: q ← query, k ← branching factor,
τ ← answer threshold, P ← LLM,
F ← ASM
Output: Answer to q

1: procedure TOACTIONS(q)
2: T ← ϕ ▷ Empty tree
3: Y ← ϕ ▷ Empty answer set
4: s0 ← initialize(q)
5: T .add(s0)
6: while !finished do
7: s← choose_node(T)
8: ▷ Sample k actions from P using the action

state and associated prompt of s from F(s)
9: a← sample_actions(s, k,F , P)

10: for a ∈ a do
11: ▷ Apply action a to state s according to F
12: s′ ← transition(s, a,F)
13: ▷ Evaluate the resulting state s′ using P
14: s′.value← evaluate(s′, P)
15: T.add(s′)
16: if s′.action_state = done then
17: Y.add(s′)
18: if s′.value > τ then
19: ▷ When answer exceeds threshold, stop search
20: finished← True

21: return argmaxy∈Y y.value

Value Function Guidance. Tree-of-Traversals
computes the value of a node to determine its util-
ity. This value is created by the LLM using eval-
uation prompts (step evaluate in Algorithm 1).
The value can be between 0 to 1 where 1 indicates
highest utility. We use two types of evaluation
prompts: one for intermediate states and one for
answer states. The prompts include the original
query, the local KG subgraph, the trajectory of
previous actions, followed by instructions for eval-
uating the node (see Appendix F.4 and F.5). These
values are then used to guide the exploration of
the action space. Specifically, choose_node re-
turns the unexplored node with the highest value
(Best First). If there are nodes with the same value,
Depth First Search is used.

Chain-of-Traversals. In some cases we can find
the answer to a query with a single sequence of
thoughts and actions using the ASM and KG in-
terface. This is equivalent to Tree-of-Traversals
with a branching factor of k = 1. We refer to this
as Chain-of-Traversals. While useful for compari-

12305

son, experiments show the benefit of considering
multiple branches.

2.4 Tree-of-Traversals with Multiple KGs

Augmenting an LLM with more than one KG
mainly involves building KG interfaces for each
of the added KGs. There are a few other
changes to the algorithm. (1) The entities ex-
tracted in initialize(q) are matched with
each KG interface. (2) When presenting the
options of relations during selecting-relation,
get_relations(Eselected) is called on each KG
interface. (3) When adding a new entity to the local
KG subgraph we call an entity linking function for
the other KG interfaces. We allow for the entity
linking function to be a separate function in the
KG interface or to fallback on initialize(o)
where o is the text label of the entity that has just
been added. This makes allows the use of explicit
links between common KGs if available while still
functioning without.

3 Experiments

We evaluate Tree-of-Traversals using three differ-
ent models available on Amazon Bedrock3: Claude-
Instant (claude-instant-v1), Llama2 70b
(llama2-70b-chat-v1), and Llama2 13b
(llama2-13b-chat-v1). AWS Bedrock pro-
vides on-demand access through a single API to
various Foundation Models, including both open
source and black box ones. This is precisely a use
case Tree-of-Traversals is designed for.

3.1 Tasks and Datasets.

We first evaluate the Tree-of-Traversals algorithm
on two common tasks used for evaluating an LLM’s
knowledge: 2WikiMultiHop and QALD-10. To al-
low testing on complex questions requiring knowl-
edge from multiple KGs we create a new dataset
that requires knowledge from multiple KGs.

2WikiMultiHop Dataset (Ho et al., 2020) was
constructed by extracting multi-hop templates from
HotPotQA (Yang et al., 2018), combining tem-
plates to get complex reasoning questions, gener-
ating candidate questions with Wikidata, and then
confirming that the entity mentions for each edge
appear in the Wikipedia paragraphs. Answers to
these questions can be derived from both Wikipedia
and Wikidata (Vrandeić and Krötzsch, 2014). We

3https://aws.amazon.com/bedrock

Which event was hosted in a venue with a larger
maximum capacity, Fearless Tour: Indianapolis

or Fearless Tour: Omaha?

1. Get venue for Fearless Tour: Indiana-
polis → Gainbridge Fieldhouse

2. Get venue for Fearless Tour: Omaha
→ CHI Health Center Omaha

3. Get maximum capacity of the respec-
tive venues → (18165, 18975)

4. Answer: Fearless Tour: Omaha was hosted
in a venue with a larger maximum capacity.

Figure 4: Example question from MusicBrainz-x-Wiki
and how Tree-of-Traversals arrives at its final answer.
Red indicates entities and and relationships belonging
to MusicBrainz. Green indicates relationships only in
Wikidata. Blue indicates entities linked to both KGs.

subsample 500 questions from the test set follow-
ing the approach used in ReAct (Yao et al., 2022),
including the sampling seed value of 233.

QALD-10 Dataset (Usbeck et al.) is a multi-
lingual Knowledge Graph Question Answering
(KGQA) dataset with 395 questions created by hu-
mans, translated into other languages, and then
constructed as a SPARQL query over Wikidata4.
These questions are more varied in terms of reason-
ing structure than the questions in 2WikiMultiHop
(e.g. requiring multiple answers or aggregations).
We used the questions in English language.

MusicBrainz-x-Wikidata Dataset One novel
use-case of Tree-of-Traversals is synthesizing and
reasoning over multiple knowledge graph sources.
There is no existing dataset that requires synthesiz-
ing information from multiple KGs to answer indi-
vidual questions. Therefore, to test the reasoning
ability using multiple KGs, we create a new dataset,
MusicBrainz-x-Wikidata, containing 109 questions
that require reasoning with information from both
MusicBrainz and Wikidata. Unlike Wikidata which
contains general knowledge, MusicBrainz is a deep
domain-specific database on the music industry.
The vast majority of this information is unlikely to
be known by large language models. We construct
the MusicBrainz-x-Wikidata dataset with human
annotators who were provided with instructions
to find reasoning paths between these two KGs,
the question types to focus on, and some example
questions. The curated questions were checked for
ambiguity and sensibility. By design, each question

4https://github.com/KGQA/QALD-10

12306

https://aws.amazon.com/bedrock
https://github.com/KGQA/QALD-10

2WikiMultiHop (↑)
Algorithm Claude-Instant Llama2-70b Llama2-13b

Chain-of-Thought 25.2 30.4 26.8
ReAct 5.8 30.4 6.8
ReAct→ CoT 27.0 (84.8%) 41.6 (41.6%) 23.6 (71.8%)
FLARe 35.0 45.4 34.8
Chain-of-Traversals 42.6 45.0 31.0
Tree-of-Traversals 63.0 56.6 37.3

QALD-10 (↑)
Algorithm Claude-Instant Llama2-70b Llama2-13b

Chain-of-Thought 47.4 40.0 42.6
ReAct 3.1 23.7 8.7
ReAct→ CoT 47.9 (72.6%) 43.4 (44.4%) 40.8 (79.5%)
FLARe 39.2 38.8 23.1
Chain-of-Traversals 55.7 56.9 39.6
Tree-of-Traversals 64.3 61.6 39.2

Table 1: EM-in on 2WikiMultiHop dataset. →CoT indicates falling back to Chain-of-Thought when no answer is
given. (%) indicates the number of such cases.

requires extracting information from both knowl-
edge graphs in order to answer it successfully. In
addition to the reasoning types in 2WikiMultiHop,
this dataset contains questions that involve aggrega-
tions, comparisons of aggregations, qualifications,
and complex combinations of these. An example
can be seen in Figure 3.1. Detail on instructions,
question types, and examples are in Appendix A.

3.2 Metric.

We use Exact Match Included (EM-in) as the evalu-
ation metric. EM-in is 1 if the ground truth answer
appears with an exact match anywhere in the an-
swer and 0 otherwise. This accounts for the propen-
sity of an LLM to output answers in a sentence with
varying syntax. This is a common metric but is of-
ten referred to interchangeably with Exact Match
(EM) (Sun et al., 2023). When there are multi-
ple answers, we compute average EM-in over all
labels.

3.3 Comparison Baselines.

We experiment against three related approaches
that can work with any black-box LLMs: (1) Chain-
of-Thought (CoT) prompting (Wei et al., 2022)
(2) ReAct (Yao et al., 2022) which iterates be-
tween generating thoughts and generating actions
for searching and retrieving from a text knowledge
base like Wikipedia, and (3) Forward Looking Ac-

tive Retrieval (FLARe) (Jiang et al., 2023b) which
iterates between generating thoughts and then re-
trieving from a knowledge base to correct inaccu-
racies.

3.4 Implementation details.
For all models, we use a sampling temperature of
0.0 for the LLM when multiple samples are not re-
quired and a temperature of 1.0 when diverse sam-
ples are required. We test our approach in two set-
tings: (1) with a branching factor of k = 1 termed
as Chain-of-Traversals, and (2) with a branching
factor of k = 3 termed as Tree-of-Traversals. In
both setups, we set maximum depth to 7 which
means that upon reaching the default action state
beyond depth 7, the only available action is to an-
swer the question. For Tree-of-Traversals, we set
the maximum total expansions to 20. The answer
threshold τ is set to 0.8 which corresponds to high
confidence answers supported by the KG according
the evaluate prompt (Appendix F.5).

For 2WikiMultiHop and QALD-10, we use
Wikidata as the knowledge graph (Vrandeić and
Krötzsch, 2014). For MusicBrainz-x-Wikidata, we
use MusicBrainz in addition to Wikidata. We im-
plement the KG interface for Wikidata using Wiki-
data SPARQL queries5, and implement the KG in-

5https://query.wikidata.org/

12307

https://query.wikidata.org/

Llama2-13b Llama2-70b Claude-Instant
Model

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(E

M
-in

)

Accuracy for answers w/ value 0.0
Accuracy for answers w/ value 1.0

Figure 5: The EM-in accuracy for answers with model as-
signed value 0.0 or 1.0 and the corresponding true EM-in score
of the answer. This includes all proposed answers, not just the
final answer returned by the model.

terface for MusicBrainz KG using the MusicBrainz
API6.

4 Results and Discussion

Table 1 presents the results of our experiments on
2WikiMultiHop and QALD-10. For all the models,
Tree-of-Traversals outperforms the baselines on
2WikiMultiHop, setting state-of-the-art results for
these tasks in the zero-shot setting. We hypothesize
that much of this gain is due to Tree-of-Traversals’
access to the knowledge base via proposed KG
interface and its thought-action procedure guided
by the ASM. This is evident, as even Chain-of-
Traversals, which does not perform a tree traver-
sal (including multiple thoughts/actions, backtrack-
ing, and node value computation), significantly
outperforms ReAct’s knowledge grounding: 8.7%
higher accuracy than ReAct→ CoT on 2WikiMul-
tiHop when averaged over all models. Compared
to Chain-of-Traversals, Tree-of-Traversals further
improves performance. It gives on average a 12.8%
absolute accuracy increase for 2WikiMultiHop and
4.3% absolute improvement for QALD-10. We
note that the better performing the model is, the
more it stands to gain from Tree-of-Traversals as
noted by the difference between Llama-70b and
Llama-13b.

On MusicBrainz-x-Wikidata (Table 2), which
contains challenging reasoning questions requiring
access to two KGs, there is an average of 37.4%
relative improvement from Tree-of-Traversals over
Chain-of-Traversals as shown in Table 2. Both
Chain-of-traversals and Tree-of-Traversals outper-

6https://musicbrainz.org/doc/
MusicBrainz_API

Llama2-13b Llama2-70b Claude-Instant
Model

20

25

30

35

40

45

50

A
cc

ur
ac

y
(E

M
-in

)

123
cases

91
cases

73
cases

w/o backtracking
w/ backtracking

Figure 6: Comparison of results with and without backtrack-
ing on 2WikiMultiHop questions that needed backtracking.
There would be a major degradation in performance if back-
tracking was not allowed.

form Chain-of-Thoughts on this dataset. We only
compare with Chain-of-Thoughts as other retrieval
methods have low coverage over the MusicBrainz
knowledge base.

4.1 Effect of the Value Function.

Tree-of-Traversals relies on signal from the value
function to pick the final tree trajectory. If the val-
ues were arbitrary, then Tree-of-Traversals would
not do any better than Chain-of-Traversals. Fig-
ure 5 shows that there is a meaningful signal from
the value function for all models. There is an aver-
age performance difference of 31.0% between the
accuracy for answers valued at 1.0 vs 0.0. This rep-
resents an average relative improvement of 83.2%
when selecting answers valued at 1.0 over those val-
ued at 0.0. See Appendix C for individual profiles
of each model’s value function.

4.2 Effect of Backtracking.

To determine the effect of backtracking in Tree-
of-Traversals, we ask the counter-factual of how
would the model perform if it could not backtrack
(Figure 6). We limit the analysis to 2WikiMultiHop
questions in which Tree-of-Traversals generates an-
swers on a subtree, and the model eventually back-
tracks on that subtree (i.e., the cases where we have
a counter-factual). As a result, these questions are
generally more challenging than the overall distri-
bution of questions. In these cases, we compare the
result if the highest-valued answer was taken from
the first searched subtree compared to the ultimate
answer after backtracking. We find that the ability
to backtrack gives Tree-of-Traversals a significant
accuracy increase ranging from 4.1% to 12.3%.

12308

https://musicbrainz.org/doc/MusicBrainz_API
https://musicbrainz.org/doc/MusicBrainz_API

Music-x-Wiki (↑)
Algorithm Claude-Instant Llama2-70b Llama2-13b

Chain-of-Thoughts 11.9 10.1 13.8
Chain-of-Traversals 22.0 21.9 14.7
Tree-of-Traversals 40.4 23.4 16.5

Table 2: EM-in on MusicBrainz-x-Wikidata dataset.

4.3 Performance on MusicBrainz-x-Wikidata.

For MusicBrainz-x-Wikidata dataset, we only com-
pare against Chain-of-Thought since the implemen-
tations for other baseline algorithms do not have
access to similar music-specific knowledge bases.
Despite this, we observed some interesting results.
Chain-of-Thought does far worse on MusicBrainz-
x-Wikidata than on the more general datasets based
exclusively on Wikipedia/Wikidata (10.1%-13.8%
vs. 25.2%-47.4%). This could be because LLMs
are trained on vast amount of general knowledge
such as that found in Wikipedia, but they are not
trained with as much data from specific domains
such as music. Besides the presence of KG inter-
face and ASM with Tree-of-Traversals, this could
be an additional reason why Tree-of-Traversals
does 2.2 times as well as Chain-of-Thought on
MusicBrainz-x-Wikidata. This demonstrates the
importance of augmenting LLMs with domain-
specific KGs and/or multiple KGs which the pro-
posed Tree-of-Traversals is capable of.

4.4 Analysis of Baselines.

ReAct underperforms Chain-of-Thought in most
cases. This phenomenon was seen in the origi-
nal ReAct paper which noted that their approach
significantly reduced hallucinations despite lower
accuracy (Yao et al., 2022). Therefore, falling back
on Chain-of-Thought results in an accuracy im-
provements for for Llama2-70b and Claude-Instant.
We note that claude-instant vastly underper-
forms Llama2-70b on ReAct. The primary reason
for this is claude-instant refuses to "search"
people and apologizes after performing invalid ac-
tions. Despite this, ReAct→CoT still improves
over CoT on both 2WikiMultiHop and QALD-10.
FLARe improves model performance on 2Wiki-
MultiHop but not on QALD-10. This may be due
to better overlap between the text knowledge base
for 2WikiMultiHop.

5 Related Works

Knowledge Base Question Answering There
is a large history of work that has looked into an-
swering questions using a knowledge graph (Wu
et al., 2019; Lan et al., 2021). The approaches can
broadly be broken into those that attempt to parse
the question into a logical form (Berant and Liang,
2014; Luo et al., 2018; Zhu et al., 2022), and infor-
mation retrieval approaches (Bordes et al., 2015;
Chen et al., 2019)

Knowledge Enhancement. Recently, re-
searchers have looked into enhancing pretrained
language models and LLMs using knowledge
graphs. Many works have focused on incorpo-
rating knowledge graph data into LLMs through
training, often with architectural changes to the
model (Zhang et al., 2019; Wang et al., 2019;
Peters et al., 2019; Yamada et al., 2020; He et al.,
2021). Some of these have found success using
specialized graph encoder layers (Yasunaga et al.,
2021; Sun et al., 2021). Some have sought to
mix this process with pretraining of the language
model (Yasunaga et al., 2022). The limitations
of including KGs during LLM training are: the
models are incapable of incorporating KG updates
without retraining, are not able to change KG
source (e.g., a domain-specific one), and may have
low explainability resulting from learning knowl-
edge in model weights rather than explicit retrieval.
In addition, these methods add complexity to the
training process, increase cost, and do not work
with LLM without access to model weights. As a
result, scaling these methods has often been seen
as too risky.

Other methods treat a KG as a more complete
source of truth and use the LLM to generate struc-
tured queries for the KG. Tianle et al. (2023) and
Choudhary and Reddy (2023) teach the LLM to
generate a logical KG query which then returns
matching entities from the KG. These methods
share similarities with the semantic parsing based

12309

approaches mentioned earlier. However, by return-
ing a logical query for the KG, these methods lose
the reasoning and commonsense abilities of the
LLM.

Some approaches have looked at injecting KG
or knowledge base data into LLM prompts. Many
methods do a single round of retrieval based on
the query (Lewis et al., 2020; Li et al., 2023) us-
ing a retrieval mechanism, such as dense passage
retrieval (Karpukhin et al., 2020). These methods
cannot answer more complex multi-hop questions
as the initial retrieval is unlikely to contain the sec-
ondary or tertiary information that will ultimately
be required. Later methods have made the retrieval
process iterative. E.g. FLARe (Jiang et al., 2023b)
uses prediction of the upcoming sentence to re-
trieve relevant documents and regenerates until the
sentence contains high-confidence tokens. In Wang
et al. (2023) multi-round QA format is used for
multi-round retrieval. ReAct (Yao et al., 2022) does
multiple rounds of thoughts and actions to query
a text-based knowledge base. Jiang et al. (2023a)
repeatedly interfaces with a KG. In other parallel
works, (Sun et al., 2023; Wen et al., 2023) explore
methods for building KG context for LLMs using
path and neighborhood based search methods. The
above methods do not incorporate tree search or
forms of advanced reasoning beyond the LLM’s
innate ability. They cannot explore multiple rea-
soning paths or solutions and cannot backtrack if
making a mistake. This results in lesser capabilities.
Additionally, none of the above methods explore
reasoning over multiple KGs.

Multiple Knowledge Base QA. Some works
studied QA on questions derived from differing
domains. These works learn to pick between differ-
ent domain-specific QA models, each trained on a
single knowledge base (Puerto et al., 2021; Geigle
et al., 2021; Puerto et al., 2023). Besides requiring
training, such systems cannot answer questions re-
quiring the synthesis of information from different
domains (MusicBrainz-x-Wikidata).

6 Conclusion

Tree-of-Traversals is a powerful algorithm that en-
ables LLMs to utilize KG reasoning with zero
examples, no schema dependency, and no train-
ing. We demonstrate its efficacy experimentally
on multiple LLMs and datasets. We hope Tree-of-
Traversals continues to be developed and see value
in studying integration with personalized user KGs

as well as with other domain-specific datasets.

7 Limitations

Tree-of-Traversals is slower than simpler retrieval
alternatives. Improving the value function would
reduce the number of LLM and KG API calls by
avoiding incorrect paths along the tree to explore.
Other engineering solutions, such as hosting graph
servers, could be implemented to accelerate LLM
and KG access. In terms of the token cost, the KG
text representation is token efficient compared to
many retrieval methods using unstructured knowl-
edge bases as the latter tend to maximize usage of
the LLM context window. However, compared to
non-retrieval baselines, there is significant increase
in token usage cost.

The types of KG questions that can be answered
are limited by the context window, search depth,
and LLM’s reasoning ability. For instance, a very
large aggregation (‘How many mountains have ele-
vation above 3500 meters?’) would require more
entities than what fits in the LLM context. Future
work could look at adding other actions to the ASM,
such as aggregations, that could distill the local KG
into more relevant information.

EM-in is also an imperfect metric. False nega-
tives can arise from discrepancies in date and num-
ber formatting, text formatting, and aliasing. False
positives can arise in cases in which the model does
not definitively answer but includes the correct an-
swer in its response.

8 Ethical Impact

We do not anticipate Tree-of-Traversals to intro-
duce new areas of risk but it may have unstud-
ied effects on existing risks of LLMs or KGs.
We highlight the following areas. (i) Tree-of-
Traversals gives new capabilities to LLMs after
training. While positive in terms of accuracy, we
have not evaluated its effect on wider safety met-
rics. (ii) Our evaluation is limited to only English
versions of KGs and datasets. Tree-of-Traversals
should be evaluated in other languages to ensure
consistent and fair experience. (iii) We have not
performed analysis under misleading or deceptive
knowledge graphs. Using a publicly modifiable
knowledge graph does come with the risk that in-
formation could be deceptively changed.

In terms of positive ethical impact, making this
research public democratizes access to knowledge-
augmented LLMs as this method does not require

12310

a large training investment or owning the language
model to build and customize.

References
Bilal Abu-Salih. 2020. Domain-specific knowledge

graphs: A survey. ArXiv, abs/2011.00235.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A multitask, multilingual,
multimodal evaluation of chatgpt on reasoning, hal-
lucination, and interactivity. ArXiv, abs/2302.04023.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Annual Meeting of the Asso-
ciation for Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. ArXiv,
abs/1506.02075.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Ji-
jnasa Nayak, and Lun-Wei Ku. 2019. Uhop:
An unrestricted-hop relation extraction framework
for knowledge-based question answering. ArXiv,
abs/1904.01246.

Wonjun Choi and Hyunju Lee. 2019. Inference of
biomedical relations among chemicals, genes, dis-
eases, and symptoms using knowledge representation
learning. IEEE Access, 7:179373–179384.

Nurendra Choudhary and Chandan K. Reddy. 2023.
Complex logical reasoning over knowledge
graphs using large language models. ArXiv,
abs/2305.01157.

Feroz Farazi, Maurin Salamanca, Sebastian Mosbach,
Jethro Akroyd, Andreas Eibeck, Leonardus Kevin
Aditya, Arkadiusz Chadzynski, Kang Pan, Xiaochi
Zhou, Shaocong Zhang, Mei Qi Lim, and Markus
Kraft. 2020. Knowledge graph approach to com-
bustion chemistry and interoperability. ACS Omega,
5:18342 – 18348.

Gregor Geigle, Nils Reimers, Andreas Ruckl’e, and
Iryna Gurevych. 2021. Tweac: Transformer with ex-
tendable qa agent classifiers. ArXiv, abs/2104.07081.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. Proceedings of the 14th ACM
International Conference on Web Search and Data
Mining.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609–6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Ziniu Hu, Yichong Xu, W. Yu, Shuohang Wang, Ziyi
Yang, Chenguang Zhu, Kai-Wei Chang, and Yizhou
Sun. 2022. Empowering language models with
knowledge graph reasoning for open-domain ques-
tion answering. ArXiv, abs/2211.08380.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Yejin Bang, Wenliang Dai,
Andrea Madotto, and Pascale Fung. 2022. Survey of
hallucination in natural language generation. ACM
Computing Surveys, 55:1 – 38.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji rong Wen. 2023a. Structgpt:
A general framework for large language model to
reason over structured data. ArXiv, abs/2305.09645.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing
Sun, Li-Yu Daisy Liu, Jane Dwivedi-Yu, Yiming
Yang, Jamie Callan, and Graham Neubig. 2023b.
Active retrieval augmented generation. ArXiv,
abs/2305.06983.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Yu Wu, Sergey Edunov, Danqi Chen,
and Wen tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Conference on
Empirical Methods in Natural Language Processing.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji rong Wen. 2021. A sur-
vey on complex knowledge base question answer-
ing: Methods, challenges and solutions. ArXiv,
abs/2105.11644.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
S. Auer, and Christian Bizer. 2015. Dbpedia - a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6:167–195.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

12311

https://api.semanticscholar.org/CorpusID:226227432
https://api.semanticscholar.org/CorpusID:226227432
https://api.semanticscholar.org/CorpusID:256662612
https://api.semanticscholar.org/CorpusID:256662612
https://api.semanticscholar.org/CorpusID:256662612
https://api.semanticscholar.org/CorpusID:1336493
https://api.semanticscholar.org/CorpusID:1336493
https://api.semanticscholar.org/CorpusID:9605730
https://api.semanticscholar.org/CorpusID:9605730
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:91184245
https://api.semanticscholar.org/CorpusID:91184245
https://api.semanticscholar.org/CorpusID:91184245
https://api.semanticscholar.org/CorpusID:209459645
https://api.semanticscholar.org/CorpusID:209459645
https://api.semanticscholar.org/CorpusID:209459645
https://api.semanticscholar.org/CorpusID:209459645
https://api.semanticscholar.org/CorpusID:258436828
https://api.semanticscholar.org/CorpusID:258436828
https://api.semanticscholar.org/CorpusID:220883899
https://api.semanticscholar.org/CorpusID:220883899
https://api.semanticscholar.org/CorpusID:233241188
https://api.semanticscholar.org/CorpusID:233241188
https://api.semanticscholar.org/CorpusID:231572861
https://api.semanticscholar.org/CorpusID:231572861
https://api.semanticscholar.org/CorpusID:231572861
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://api.semanticscholar.org/CorpusID:253522964
https://api.semanticscholar.org/CorpusID:253522964
https://api.semanticscholar.org/CorpusID:253522964
https://api.semanticscholar.org/CorpusID:246652372
https://api.semanticscholar.org/CorpusID:246652372
https://api.semanticscholar.org/CorpusID:258714753
https://api.semanticscholar.org/CorpusID:258714753
https://api.semanticscholar.org/CorpusID:258714753
https://api.semanticscholar.org/CorpusID:258615731
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:235187102
https://api.semanticscholar.org/CorpusID:235187102
https://api.semanticscholar.org/CorpusID:235187102
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575

Shiyang Li, Yifan Gao, Hao Jiang, Qingyu Yin, Zheng
Li, Xifeng Yan, Chao Zhang, and Bing Yin. 2023.
Graph reasoning for question answering with triplet
retrieval. In Annual Meeting of the Association for
Computational Linguistics.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and
Xiang Ren. 2019. Kagnet: Knowledge-aware
graph networks for commonsense reasoning. ArXiv,
abs/1909.02151.

Yang Liu, Qingguo Zeng, Joaquín B. Ordieres Meré,
and Huanrui Yang. 2019. Anticipating stock market
of the renowned companies: A knowledge graph
approach. Complex., 2019:9202457:1–9202457:15.

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Q.
Zhu. 2018. Knowledge base question answering via
encoding of complex query graphs. In Conference on
Empirical Methods in Natural Language Processing.

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo,
Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira
Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo
Lissandrini, Russa Biswas, Gerard de Melo, Angela
Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien
Graux. 2023a. Large language models and knowl-
edge graphs: Opportunities and challenges. ArXiv,
abs/2308.06374.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2023b. Unifying large
language models and knowledge graphs: A roadmap.
ArXiv, abs/2306.08302.

Matthew E. Peters, Mark Neumann, IV RobertL.Logan,
Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge enhanced con-
textual word representations. In Conference on Em-
pirical Methods in Natural Language Processing.

Haritz Puerto, Tim Baumgärtner, Rachneet Sachdeva,
Haishuo Fang, Haotian Zhang, Sewin Tariverdian,
Kexin Wang, and Iryna Gurevych. 2023. Ukp-square
v3: A platform for multi-agent qa research. In An-
nual Meeting of the Association for Computational
Linguistics.

Haritz Puerto, Gözde Gül Şahin, and Iryna Gurevych.
2021. Metaqa: Combining expert agents for multi-
skill question answering. ArXiv, abs/2112.01922.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Sai
Wang, Chen Lin, Yeyun Gong, Heung yeung Shum,
and Jian Guo. 2023. Think-on-graph: Deep and re-
sponsible reasoning of large language model with
knowledge graph. ArXiv, abs/2307.07697.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhihua Wu,
Weibao Gong, Jianzhong Liang, Zhizhou Shang,
Peng Sun, Wei Liu, Ouyang Xuan, Dianhai Yu, Hao
Tian, Hua Wu, and Haifeng Wang. 2021. Ernie
3.0: Large-scale knowledge enhanced pre-training
for language understanding and generation. ArXiv,
abs/2107.02137.

Yiming Tan, Dehai Min, Y. Li, Wenbo Li, Na Hu, Yon-
grui Chen, and Guilin Qi. 2023. Can chatgpt replace
traditional kbqa models? an in-depth analysis of the
question answering performance of the gpt llm fam-
ily.

Li Tianle, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learn-
ing on knowledge base question answering. In An-
nual Meeting of the Association for Computational
Linguistics.

Ricardo Usbeck, Xi Yan, Aleksandr Perevalov,
Longquan Jiang, Julius Schulz, Angelie Kraft,
Cedric Möller, Junbo Huang, Jan Reineke, Axel-
Cyrille Ngonga Ngomo, et al. Qald-10—the 10th
challenge on question answering over linked data.

Denny Vrandeić and Markus Krötzsch. 2014. Wikidata:
a free collaborative knowledgebase. Commun. ACM,
57:78–85.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li,
Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang
Xiong. 2023. Knowledge-driven cot: Exploring faith-
ful reasoning in llms for knowledge-intensive ques-
tion answering. ArXiv, abs/2308.13259.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juan-Zi Li, and Jian Tang. 2019. Kepler: A
unified model for knowledge embedding and pre-
trained language representation. Transactions of the
Association for Computational Linguistics, 9:176–
194.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. ArXiv,
abs/2201.11903.

Yilin Wen, Zifeng Wang, and Jimeng Sun. 2023.
Mindmap: Knowledge graph prompting sparks graph
of thoughts in large language models. ArXiv,
abs/2308.09729.

Peiyun Wu, Xiaowang Zhang, and Zhiyong Feng. 2019.
A survey of question answering over knowledge base.
In China Conference on Knowledge Graph and Se-
mantic Computing.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: Deep con-
textualized entity representations with entity-aware
self-attention. In Conference on Empirical Methods
in Natural Language Processing.

Lin F. Yang, Hongyang Chen, Zhao Li, Xiao Ding,
and Xindong Wu. 2023. Chatgpt is not enough:
Enhancing large language models with knowledge
graphs for fact-aware language modeling. ArXiv,
abs/2306.11489.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset

12312

https://api.semanticscholar.org/CorpusID:258967426
https://api.semanticscholar.org/CorpusID:258967426
https://api.semanticscholar.org/CorpusID:202540096
https://api.semanticscholar.org/CorpusID:202540096
https://api.semanticscholar.org/CorpusID:201263701
https://api.semanticscholar.org/CorpusID:201263701
https://api.semanticscholar.org/CorpusID:201263701
https://api.semanticscholar.org/CorpusID:53079601
https://api.semanticscholar.org/CorpusID:53079601
https://api.semanticscholar.org/CorpusID:260887174
https://api.semanticscholar.org/CorpusID:260887174
https://api.semanticscholar.org/CorpusID:259165563
https://api.semanticscholar.org/CorpusID:259165563
https://api.semanticscholar.org/CorpusID:202542757
https://api.semanticscholar.org/CorpusID:202542757
https://api.semanticscholar.org/CorpusID:257901155
https://api.semanticscholar.org/CorpusID:257901155
https://api.semanticscholar.org/CorpusID:244896105
https://api.semanticscholar.org/CorpusID:244896105
https://api.semanticscholar.org/CorpusID:259936842
https://api.semanticscholar.org/CorpusID:259936842
https://api.semanticscholar.org/CorpusID:259936842
https://api.semanticscholar.org/CorpusID:235731579
https://api.semanticscholar.org/CorpusID:235731579
https://api.semanticscholar.org/CorpusID:235731579
https://api.semanticscholar.org/CorpusID:257505407
https://api.semanticscholar.org/CorpusID:257505407
https://api.semanticscholar.org/CorpusID:257505407
https://api.semanticscholar.org/CorpusID:257505407
https://api.semanticscholar.org/CorpusID:258461017
https://api.semanticscholar.org/CorpusID:258461017
https://api.semanticscholar.org/CorpusID:14494942
https://api.semanticscholar.org/CorpusID:14494942
https://api.semanticscholar.org/CorpusID:261214582
https://api.semanticscholar.org/CorpusID:261214582
https://api.semanticscholar.org/CorpusID:261214582
https://api.semanticscholar.org/CorpusID:208006241
https://api.semanticscholar.org/CorpusID:208006241
https://api.semanticscholar.org/CorpusID:208006241
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:261048726
https://api.semanticscholar.org/CorpusID:261048726
https://api.semanticscholar.org/CorpusID:210872712
https://api.semanticscholar.org/CorpusID:222124841
https://api.semanticscholar.org/CorpusID:222124841
https://api.semanticscholar.org/CorpusID:222124841
https://api.semanticscholar.org/CorpusID:259203671
https://api.semanticscholar.org/CorpusID:259203671
https://api.semanticscholar.org/CorpusID:259203671
https://api.semanticscholar.org/CorpusID:52822214

for diverse, explainable multi-hop question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv,
abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. ArXiv, abs/2210.03629.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren,
Xikun Zhang, Christopher D. Manning, Percy
Liang, and Jure Leskovec. 2022. Deep bidirec-
tional language-knowledge graph pretraining. ArXiv,
abs/2210.09338.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. Qa-gnn: Rea-
soning with language models and knowledge graphs
for question answering. In North American Chapter
of the Association for Computational Linguistics.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023. Ex-
tractive summarization via chatgpt for faithful sum-
mary generation. ArXiv, abs/2304.04193.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D. Manning,
and Jure Leskovec. 2022. Greaselm: Graph reason-
ing enhanced language models for question answer-
ing. ArXiv, abs/2201.08860.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Annual Meeting of the Association for Computational
Linguistics.

Yueqin Zhu, Wenwen Zhou, Yang Xu, Ji Liu, and
Yongjie Tan. 2017. Intelligent learning for knowl-
edge graph towards geological data. Sci. Program.,
2017:5072427:1–5072427:13.

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao,
Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun Chen,
and Ningyu Zhang. 2023a. Llms for knowledge
graph construction and reasoning: Recent capabili-
ties and future opportunities. ArXiv, abs/2305.13168.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji rong Wen. 2023b. Large language models for infor-
mation retrieval: A survey. ArXiv, abs/2308.07107.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and
Jian Tang. 2022. Neural-symbolic models for logical
queries on knowledge graphs. In International Con-
ference on Machine Learning, pages 27454–27478.
PMLR.

A MusicBrainz x Wiki

Additional information on the creation of the Mu-
sicBrainz x Wiki dataset.

A.1 Creation steps
The dataset was created by annotators in a semi-
automatically supported manner. We developed an
automated tool to support the following process:

• Find linking entities that are present in both
MusicBrainz and Wikidata of various types
(artist, label, place, event, etc.)

• Find related entities that could be used in
a question to perfectly identify the entities
above (e.g., The place owned by the Detroit
Tigers→ Tiger Stadium)

• Find related entities that could be used in a
question to ambiguously identify a linking
entity, so that a qualifier could be added to
disambiguate the linking entity.

• Count the number of edges in Wikidata or Mu-
sicBrainz for each relationship type an entity
has.

We use these tools to create an initial set of multi-
hop questions falling into specific reasoning cate-
gories. We then have human annotators check each
question for sensibility (grammatically correct and
can be definitively understood) and ambiguity (one
right answer in the KGs). If possible, the question
is reworded or fixed to not contain ambiguities. We
are then left with a final set of 109 questions.

A.2 Composition of Questions
The composition of questions for Musicbrainz x
Wiki can be found in table 3.

A.3 Annotators
The annotators consisted of approximately 10 re-
search scientists and engineers, all English speak-
ing and based in the United States.

B Implementation Details

B.1 Diversity Oversampling.
One problem with Tree-of-Thoughts is that when
there are constrained options to choose from, the
LLM becomes repetitive and fails to produce di-
verse outputs (Yao et al., 2023). Their solution used
a "propose prompt" with additional instructions for
proposing multiple distinct thoughts. However, this

12313

https://api.semanticscholar.org/CorpusID:52822214
https://api.semanticscholar.org/CorpusID:52822214
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252968266
https://api.semanticscholar.org/CorpusID:252968266
https://api.semanticscholar.org/CorpusID:233219869
https://api.semanticscholar.org/CorpusID:233219869
https://api.semanticscholar.org/CorpusID:233219869
https://api.semanticscholar.org/CorpusID:258048787
https://api.semanticscholar.org/CorpusID:258048787
https://api.semanticscholar.org/CorpusID:258048787
https://api.semanticscholar.org/CorpusID:246240437
https://api.semanticscholar.org/CorpusID:246240437
https://api.semanticscholar.org/CorpusID:246240437
https://api.semanticscholar.org/CorpusID:158046772
https://api.semanticscholar.org/CorpusID:158046772
https://api.semanticscholar.org/CorpusID:29772448
https://api.semanticscholar.org/CorpusID:29772448
https://api.semanticscholar.org/CorpusID:258833039
https://api.semanticscholar.org/CorpusID:258833039
https://api.semanticscholar.org/CorpusID:258833039
https://api.semanticscholar.org/CorpusID:260887838
https://api.semanticscholar.org/CorpusID:260887838

Question Type Count Description Example
Bridge 30 Direct multi-hop questions The father of Alexander Newley was

the vocal arranger for what song?
Bridge Compar-
ison

7 Comparison of values from two
multi-hop reasoning chains

Which venue was opened more re-
cently, the venue for The Eras Tour:
Seattle (night 1) or the venue for Fear-
less Tour: Seattle?

Bridge Aggre-
gation

42 Count of the number of entities
satisfying a multi-hop condition
(aggregation only over the second
hop)

The place which is the filming loca-
tion of Michelangelo Buonarroti, has
how many songs recorded there?

Bridge Aggre-
gation Compar-
ison

7 Comparison of counts of entities
between two different aggregation
conditions

Who composed more songs, Marie
Daulne’s mother or Qubilah Shabazz’s
godparent?

Qualification
Bridge

10 Multi-hop question in which one
of the edges needs to be disam-
biguated with a qualifying state-
ment

The filming location of Scream
Awards that was built in 1929, has
what recording engineered there?

Qualification
Bridge Aggre-
gation

9 Count of the number of entities
satisfying a qualification bridge
style condition

The sibling of Teppo Ruohonen that
was born in 1949, has composed how
many songs?

Qualification
Bridge Ag-
gregation
Comparison

1 Comparison of qualification
bridge aggregation type questions

Which of the children of Isabel
Preysler that are singers has released
more albums?

Double Qualifi-
cation

3 Multi-hop question in which each
hop requires a disambiguating
qualification edge

The child of Guus Belinfante that was
a singer, has a vocal feature on what
recording by Doe Maar?

Table 3: Composition of questions for Musicbrainz x Wikidata

adds significant complexity to the prompt for pur-
poses that are only tangential to the task being
completed. A simpler approach we employ is to
generate diverse actions by oversampling. Specifi-
cally, if the branching factor is k, we sample 2 ∗ k
possible actions from the LLM and then extract the
first k unique ones to use. We only employ this
for selecting-entities and selecting-relation as the
action choices are limited and diversity is required.
This change does not noticeably affect the compu-
tation cost of Tree-of-Traversals as multiple actions
are sampled for the same prompt and the average
prompt input size (100s-1000s of tokens) is gener-
ally much larger than the average generation length
for these actions (<20 tokens). Latency remains
similar as multiple actions are sampled in parallel.
With this, we consistently generate diverse options
when selecting-entities or selecting-relation.

B.2 Hyperparameters

Tree-of-Traversals does not have a huge number
of hyperparamters. Most of the hyperparameters
were chosen analytically, though some were chosen
based on preliminary experiments. We share some
information on choosing them.
τ was chosen analytically in conjunction with

the prompt for evaluate on the done state (Ap-
pendix F.5). Chosen to be 0.8 so that Tree-of-
Traversals only stops when it is confident that the
answer is supported by the KG.

The temperature was chosen to be 1.0 to pro-
mote diversity. If implementing with other models
which can have temperature >1.0, we recommend
hyperparameter tuning or using a sample prompt
of each type and analytically choosing the tem-
perature such that diverse but sensible actions are
output.

The branching factor k = 3 was chosen based
on small scale experimentation. Larger k makes

12314

the model spend longer searching, taking longer
time and increasing expenses. Smaller k did not
generate as much diversity and options. It is worth
noting that even with k = 3 and diversity sampling,
sometimes the actual number of unique outputs is
less than 3.

The max depth was chosen analytically to
be minimal while enabling answering of most
questions. Some questions in QALD-10 and
MusicBrainz-x-Wikidata would require a greater
depth to answer.

The maximum expansions cutoff was chosen
purely to ensure the model does not hang on a sin-
gle question too long. The actual value is somewhat
arbitrary and has minimal impact on accuracy.

B.3 KG Interface

We present some additional details of the KG Inter-
face.

The initialize function is a three step pro-
cess. First a LLM call and prompt is used to ex-
tract named entities. Second, for each extracted
entity candidates are searched for using the KG
API. Finally, another LLM call is used to match the
extracted entity to the best candidate.
get_relations and get_edges are im-

plemented exclusively using the respective KG
API. For Wikidata, these are each one or two
SPARQL query (forward and reverse edges). For
MusicBrainz, they each require multiple API calls
as the endpoints are separated for different entity
types. E.g. there is a separate endpoint for Artists
and Recordings.

C Value Function Profiles

We profile each value model’s value function to
assess their characteristics. Figure 7 shows the
individual answer value vs accuracy profiles for
each model on 2WikiMultiHop. All models have
a positive correlation between the answer value
and the answer’s accuracy. However, as is to be
expected, there are differences with Llama2-13b
having the lowest correlation and Claude-Instant
having the highest correlation.

Figure 7 only look at the value function response
for final answer states as those are the only ones
with a directly associated accuracy score. While
accurately evaluating answer states is more impor-
tant, we also want to see some useful signal from
the values for intermediary states. Figure 8 shows
the average value for nodes on the search path to

the answer, separated by whether the answer scores
as correct or not. We would expect actions that
ultimately lead to a correct answer to have higher
values than those that lead to incorrect ones. We
clearly see this with the correct distribution being
further right than the incorrect distribution. This
is least pronounced for Llama2-13b which is to
be expected. We also note that the distributions
shape is different between the Llama2 models and
Claude-Instant.

These results indicate that larger, stronger mod-
els, will likely see more improvement in the value
function, and thus, more utility from Tree-of-
Traversals .

D Prompt Engineering

Some prompt re-engineering was required when
switching between models for both our methods
and ReAct. This engineering was limited primarily
to formatting of responses. For example, Llama2
would start responses with "So the next action
should be" while we required the action to start
with "THINK", "EXPAND_KG" or "ANSWER".
Instead we incorporated “So the next action should
be:” into the prompt so that the output began with
the chosen action. For selecting-entities
we added “You have selected the following enti-
ties to expand:”. For selecting-property
we added “I suggest selecting property:”. These
issues could also be solved by changing the parsing
of the presented prompts.

E Fallback to Chain-of-Thought (→CoT)

We fallback to Chain-of-Thought for the ReAct
baseline when either no answer is provided after
depth 7 or when one of the following phrases ap-
pears in the answer: ’determine’, ’unable’, ’cannot’,
’unknown’, ’unsure’, or ’not possible’. While these
certainly could appear in intentional answers, we
find that they occur consistently and exclusively in
non-answer style responses.

12315

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

An
sw

er
 S

co
re corr = 0.10

p = 9.5e-05

(a) Llama2-13b

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

An
sw

er
 S

co
re corr = 0.22

p = 1.3e-21

(b) Llama2-70b

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

An
sw

er
 S

co
re corr = 0.45

p = 1.4e-74

(c) claude-instant

Figure 7: EM-in Accuracy vs value function for all Tree-
of-Traversals answers on 2Wiki. Points are jittered for
visibility. Trendline indicates correlation and p-value.

0.0 0.2 0.4 0.6 0.8
Average Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Average Value on Answer Path
Incorrect
Correct

(a) Llama2-13b

0.0 0.2 0.4 0.6 0.8
Average Value

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Fr

eq
ue

nc
y

Average Value on Answer Path
Incorrect
Correct

(b) Llama2-70b

0.0 0.2 0.4 0.6 0.8
Average Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc

y

Average Value on Answer Path
Incorrect
Correct

(c) claude-instant

Figure 8: The average value function of intermedi-
ary steps along the path to each answer, separated by
whether the answer would be scored as correct or incor-
rect. For each answer proposed by the model, the scores
along the path are averaged, and the resulting distribu-
tion plotted. Data is from 2WikiMultiHop results.

12316

F Prompts

The following pages contains the prompts used in Tree-of-Traversals. The dynamic components that
change based on the query, KG state, action history are shown in color.

F.1 Prompt for default action state

Original Query:
Who is Bob Dylan’s maternal grandmother?

Knowledge Graph Entities:
Q392: Bob Dylan - American singer-songwriter
Q62519478: Beatrice Stone

Knowledge Graph Edges:
Bob Dylan:

mother:
Beatrice Stone

Previous Actions:
EXPAND KG: I should search for the mother of Bob Dylan
SELECT ENTITIES: Q392
SELECT RELATION: P25 - has mother

You are a superintelligent AI equipped with the ability to search a knowledge graph for definitive, up-to-
date answers. Your task is to interface with the knowledge graph in order to answer the above query.
You will be able to expand the knowledge graph until you have found the answer. Think in detail before
acting or answering.

Available actions:
’THINK’ - Generate relevant thoughts to solving the problem. This could include recalling well known facts

from memory.
e.g.,

THINK: I should search for the movies directed by...
THINK: I know that Biden is American, therefore...
THINK: I see that John Cena is in both The Independent and Vacation Friends, therefore...

’EXPAND_KG’ - Search for edges of entities in the knowledge graph using an external API. This is a useful
function for getting to the correct answer.
e.g., EXPAND_KG: I should search for the country of origin of Jonathon Taylor

’ANSWER’ - Generate the final answer once the problem is solved. Just state the best answer, do not output a
full sentence.

e.g.,
ANSWER: No
ANSWER: Harry Potter
ANSWER: [Harry Potter, Ron Weasley, Hermione Granger]

F.2 Prompt for selecting-entities action state

Original Query:
Who is Bob Dylan’s maternal grandmother?

Knowledge Graph Entities:
Q392: Bob Dylan - American singer-songwriter
Q62519478: Beatrice Stone

Knowledge Graph Edges:
Bob Dylan:

mother:
Beatrice Stone

Previous Actions:
EXPAND KG: I should search for the mother of Bob Dylan
SELECT ENTITIES: Q392
SELECT RELATION: P25 - has mother
EXPAND KG: I should search for the mother of Beatrice Stone

Current task
EXPAND_KG takes two parameters. The first is the entity or entity group to get more information about.

Select which entity or entities from the KG to expand.
Provide the QIDs. Options include [Q392, Q62519478]
SELECT ENTITIES:

12317

F.3 Prompt for selecting-relation action state

Original Query:
Who is Bob Dylan’s maternal grandmother?

Knowledge Graph Entities:
Q392: Bob Dylan - American singer-songwriter
Q62519478: Beatrice Stone

Knowledge Graph Edges:
Bob Dylan:

mother:
Beatrice Stone

Previous Actions:
EXPAND KG: I should search for the mother of Bob Dylan
SELECT ENTITIES: Q392
SELECT RELATION: P25 - has mother
EXPAND KG: I should search for the mother of Beatrice Stone
SELECT ENTITIES: Q62519478

Your current task is to select the property (PID) to expand along for the selected entities.
The selected entities are: [Q62519478]
The options of properties to choose from are:
P31 - has instance of
P21 - has sex of gender
P27 - has country of citizenship
P735 - has given name
...

Select exactly one property (PID e.g., P10) from those listed above
SELECT PROPERTY:

F.4 General Prompt for evaluate

Original Query:
Who is Bob Dylan’s maternal grandmother?

Knowledge Graph Entities:
Q392: Bob Dylan - American singer-songwriter
Q62519478: Beatrice Stone

Knowledge Graph Edges:
Bob Dylan:

mother:
Beatrice Stone

Previous Actions:
EXPAND KG: I should search for the mother of Bob Dylan
SELECT ENTITIES: Q392
SELECT RELATION: P25 - has mother
EXPAND KG: I should search for the mother of Beatrice Stone
SELECT ENTITIES: Q62519478

Your current task is to evaluate the above knowledge graph and action history.
Based on the original query, the current knowledge graph, and the action history, give the likelihood that

the model will correctly answer the question.
If the most recent action provided information towards the goal and followed the preceding thought, give a

high score.
If the last action was unhelpful, give a low score.

The output should be a number between 0 and 1 with one decimal. Do not output anything else.

RATING [0.0-1.0]:

12318

F.5 Prompt for evaluate on answer (done)

Original Query:
Who is Bob Dylan’s maternal grandmother?

Knowledge Graph Entities:
Q392: Bob Dylan - American singer-songwriter
Q62519478: Beatrice Stone
Q62519478: Florence Sara Stone

Knowledge Graph Edges:
Bob Dylan:

mother:
Beatrice Stone

Beatrice Stone:
mother:

Florence Sara Stone

Provided answer: The answer is Florence Sara Stone.

Your task is to score the correctness of the provided answer based on the original query, and the knowledge
graph.

Give a pessimistic score from 0.0 to 1.0 on how likely the answer is to be correct.
0.0 if definitely wrong
0.0 if unable to answer based on the knowledge graph
0.5 if unsure
0.7 for probably correct but not confirmed in knowledge graph
1.0 for definitely correct and confirmed in knowledge graph.

Give reasoning to get to the correct answer. Then provide a score.
e.g.,
Reasoning...
So the score for the provided answer should be...

12319

