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Abstract

AI alignment in the shape of Reinforcement
Learning from Human Feedback (RLHF) is
increasingly treated as a crucial ingredient
for high performance large language models.
PROXIMAL POLICY OPTIMIZATION (PPO)
has been positioned by recent literature as the
canonical method for the RL part of RLHF.
However, it involves both high computational
cost and sensitive hyperparameter tuning. We
posit that most of the motivational principles
that led to the development of PPO are less
of a practical concern in RLHF and advocate
for a less computationally expensive method
that preserves and even increases performance.
We revisit the formulation of alignment from
human preferences in the context of RL. Keep-
ing simplicity as a guiding principle, we show
that many components of PPO are unneces-
sary in an RLHF context and that far simpler
REINFORCE-style optimization variants out-
perform both PPO and newly proposed “RL-
free” methods such as DPO and RAFT. Our
work suggests that careful adaptation to LLMs
alignment characteristics enables benefiting
from online RL optimization at low cost.

1 Introduction

State-of-art Large Language Models (LLMs) are
typically pre-trained on tremendous amounts of
text (Brown et al., 2020; OpenAI et al., 2023; Anil
et al., 2023; Touvron et al., 2023a,b; Üstün et al.,
2024) spanning trillions of tokens. These training
corpora often contain many complex preferences,
relations, and intentions that may not all be desir-
able for an LLM to exhibit. A question of great
interest to both the research and wider practitioner
community is how to align these models to human
preferences?

Despite being the focus of considerable research
effort (Khalifa et al., 2021; Ouyang et al., 2022;
Bai et al., 2022b; Lee et al., 2023; Tunstall et al.,

2023), there is a lack of consensus regarding the op-
timal approach to achieve this goal. Reinforcement
Learning from Human Feedback (RLHF), one of
the most widely regarded alignment approaches,
directly borrows from traditional RL literature and
uses techniques such as PROXIMAL POLICY OP-
TIMIZATION (PPO) to maximize the reward score
produced by a reward model that is typically trained
as a binary classifier on pairs of completions la-
beled by human annotators. While PPO has be-
come a canonical approach cemented in popularity
through its usage in the seminal literature on RLHF
(Stiennon et al., 2020; Nakano et al., 2022; Bai
et al., 2022b), getting PPO to work in practice is
non-trivial for non-RL specialists and comes with
known issues:

1. Computational Cost: PPO typically requires
loading up to 4 models simultaneously: the
generator, the reference (for KL estimation),
the critic, and the reward model, where the
training of the generative and critic models
are interleaved (Schulman et al., 2017). This
challenge is further exacerbated by the size
of modern LLMs, ranging in the billions of
parameters (OpenAI et al., 2023; Stiennon
et al., 2020; Touvron et al., 2023a).

2. Optimization challenges: the unstable and
sensitive nature of online RL optimization,
and the relative algorithmic complexity of
PPO requires niche expertise to tune it well
(Engstrom et al., 2020).

Recent works propose “RL-free” methods such
as DPO (Rafailov et al., 2023), IPO (Azar et al.,
2023) or iterative fine-tuning approaches to LLM
preference training (Yuan et al., 2023; Zhao et al.,
2023; Dong et al., 2023). However, these works fail
to question whether a simpler solution within an
RL paradigm exists. Instead, all these approaches
attempt to answer this question by stripping all
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RL components from RLHF and the difficulties
that come with it (Rafailov et al., 2023; Zhao et al.,
2023; Yuan et al., 2023; Liu et al., 2023; Dong et al.,
2023; Azar et al., 2023; Choi et al., 2024). Iterative
fine-tuning techniques rely solely on a powerful re-
ward model to identify a subset of samples to train
on, while DPO and IPO avoid both reinforcement
learning and training a separate reward model by
directly learning from human feedback.

In contrast to these approaches, we remain in
the RL paradigm, but instead return to basics.
The core question we seek to explore in this work is
can we avoid the computational and optimization
complexity of PPO while preserving performance?.
We isolate several key differences between tradi-
tional Deep-RL settings which originally motivated
PPO and typical human-preference learning set-
tings for LLMs. We note that PPO, as an approach,
emphasizes stability across iterations, aiming to
train an effective policy with the premise of small,
stable updates. PPO was designed for a regime
where off-policy gradient updates are large enough
to introduce instability. This regime dominates
traditional Deep-RL benchmarks (Engstrom et al.,
2020; Schulman et al., 2017). However, in this
work, we posit that the setting of RLHF, which
involves fine-tuning a pre-trained LLM, is lacking
in these characteristics.

In contrast to traditional Deep-RL settings, the
initialization of the policy, in the form of a pre-
trained and supervised fine-tuned (SFT) model, is
far from a random parameterization. While the con-
ceivable search space is enormous, due to the pre-
training and SFT stages, only a far smaller subset
of tokens is likely to be generated as the probability
mass is concentrated on these few tokens. Thus,
while traditional Deep-RL settings require strong
regularization to reduce the high variance of the
gradient estimators; we observe empirically this is
less of a practical concern in RLHF and motivate
a less computationally expensive method that pre-
serves robustness (Wu et al., 2018; Kreutzer et al.,
2021).

Furthermore, we revisit how learning from hu-
man preferences is formulated in the context of
RL where generating each token is modeled as an
action, and each partial sequence, starting with the
prompt, is seen as a state. In practice, this mod-
eling assumption for PPO method is often voided.
We argue and show that the modeling of partial
sequences is unnecessary in this setting where re-
wards are only attributed to full generations, with

no true rewards for any intermediary tokens in the
generation. Thus, it is more appropriate and effi-
cient to model the entire generation as a single ac-
tion with the initial state determined by the prompt.

Given these observations, while keeping simplic-
ity as a guiding principle, we explore the use of
the REINFORCE estimator (Williams, 1992) and
its multi-sample extension REINFORCE LEAVE-
ONE-OUT (RLOO) (Kool et al., 2019) to optimize
the sequence-level objective. We break apart PPO
and show that the most basic policy gradient algo-
rithm, Vanilla Policy Gradient REINFORCE con-
sistently outperforms PPO. PPO is unnecessarily
complicated for a pre-trained LLM environment.
Unlike PPO, we can use REINFORCE to directly
optimize the full trajectory (sequence) return cou-
pled with unbiased baselines, whereas actor-critic
algorithms (Sutton et al., 1999), such as PPO, boot-
strap off intermediary state value-functions to re-
duce variance at the cost of introducing bias into
the estimator.

We arrive at consistent results across models
including Llama (Touvron et al., 2023a), Pythia
(Biderman et al., 2023) and datasets such as the
Anthropic Helpful & Harmless (Bai et al., 2022a)
and TL;DR Summarize (Stiennon et al., 2020):

1. PPO is not the right tool for doing RL in
RLHF. We break apart PPO and show that
the most “basic” policy gradient algorithm,
Vanilla Policy Gradient REINFORCE (Sut-
ton and Barto, 2020), is consistently outper-
forming PPO by 3.2% to 20.3% in terms of
win-rate, across all dataset and base model
pairing.

2. RLOO outperforms key baselines. Built
on top of REINFORCE, RLOO enables us-
ing multiple online samples, and we empiri-
cally show it consistently outperforms base-
lines such as PPO, DPO (Rafailov et al., 2023)
as well as RAFT (Dong et al., 2023) across
all datasets and models. We show that RLOO
makes better use of online samples than RAFT
while presenting a higher robustness to noise
and degree of KL penalty.

3. Modeling partial completions is not neces-
sary. We effectively demonstrate that model-
ing partial sequences is an unnecessary under-
taking for LLM preference training. Instead,
modeling the full generations preserves perfor-
mance while reducing complexity in the RL
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Figure 1: Training reward curves for PPO. Left: Higher variance reduction at the cost of bias (low λ) performs worse
than forgoing variance reduction but introducing less bias (high λ). λ = 1.0 which has the highest variance but no
bias, and makes use of the full-trajectory reward in each update, performs the best. Right: PPO is unnecessarily
complicated. Removing various augmentations of PPO from the loss does not degrade performance.

stage and significantly accelerating learning.

4. RLOO is relatively robust to noise and KL
penalty sensitivity. We also accompany our
results with a multi-dimensional analysis con-
cerning language fluency, diversity, and ro-
bustness to noise. We showcase RLOO ro-
bustness to noise and degree of KL penalty
compared to RAFT.

2 Background

The original RLHF pipeline for LLMs proposed in
(Ziegler et al., 2020) consists of three stages:

(1) SFT Stage: A pre-trained LM is instruction-
tuned using a dataset consisting of a given instruc-
tion prompt, and (typically) a human-written com-
pletion. The LM/policy is trained with a cross-
entropy loss over the completion only. Often, the
SFT model, denoted as πsft is used to initialize both
the reward model and the RLHF policy.

LRM = − log σ(rϕ(x, y+)− rϕ(x, y−)) (1)

where σ denotes the logistic function.

(3) RL Stage: In this stage, the reward model is
used to provide online feedback in the optimization
of the policy with the following objective:

max
πθ

Ex∼D,y∼πθ(.|x)[rϕ(x, y)− βpKL], (2)

with pKL = DKLπθ(.|x)||πref(.|x) (3)

where β is meant to control the distance from
the initial policy, πref during the optimization of
rθ(x, y) as proposed in (Stiennon et al., 2022). The
KL-penalty pKL is crucial as penalty-free optimiza-
tion of the reward model leads to degradation in

the coherence of the model. Optimizing this ob-
jective is equivalent to maximizing the following
KL-shaped reward in expectation:

R(x, y) = rϕ(x, y)− β log
πθ(y|x)
πref(y|x)

(4)

While reinforcement learning approaches share
the components above, techniques differ in the for-
mulation of the reward. To understand these differ-
ences, we introduce PPO and distinct alternatives
such as REINFORCE and REINFORCE Leave-
One-Out in the following sections.

2.1 PPO
When using PPO in the RL stage, the initial state
is determined by the prompt, each generated token
is modeled as an action, and partial sequences are
seen as states, with a discount factor (γ ∈ [0, 1])
of 1 used. In this framework, only generating the
<EOS> token carries a reward as output by the re-
ward model which is combined with KL penalty,
while for all other tokens in the vocabulary, only
the KL component is non-zero:

R(x, y) =
∑T

t=1
Rt(x, yt) (5)

where yt denotes the t-th token of y, T the number
of tokens in the trajectory, and Ri the correspond-
ingly shaped reward.

In practice, the following token-level clipped
objective is used in PPO:

min
(
f(yt|st)Âλ(yt, st), (6)

clip1+ϵ1−ϵ(f(yt|st))Âλ(yt, st)
)

with f(yt|st) =
πθ(yt|st)
πold(yt|st)

,
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where st = {y<t, x} represents the state i.e. con-
text at generation step t that is composed of the his-
tory of generated tokens y<t and the given prompt
x, πold is an older policy (not the same as πref ),
and Â(yt, st) is the estimated advantage function,
and ϵ is the clipping ratio. The advantage function
Â(yt, st) is estimated using Generalized Advan-
tage Estimation (GAE) (Schulman et al., 2018), of
generating token (action) yt, at partial completion
(state) at token t− 1 of the generation.

2.2 REINFORCE
Given that in LLM applications, r(x, y) is only
obtained at the end of the full sequence, it may be
more appropriate to model the entire generation as
a single action, as opposed to each token. Although
it has not been explored in the context of LLM
alignment, modeling the full completion as a single
action, as in the bandit formulation, allows using
the REINFORCE estimator (Kreutzer et al., 2017;
Nguyen et al., 2017a; Williams, 1992). This allows
for back-propagating through the discrete action
(generation) space, and directly optimize the KL-
shaped reward objective for the entire sequence.

Ex∼D,y∼πθ(.|x)[R(y, x)∇θ log πθ(y|x)] (7)

To improve learning, one can reduce the vari-
ance of the estimator in Eq. 7, while keeping it
unbiased, by subtracting a baseline b that has high
covariance with the stochastic gradient estimate of
Eq. 7 (Williams, 1992; Mnih and Gregor, 2014):

Ex∼D,y∼πθ(.|x)[(R(y, x)− b)∇θ log πθ(y|x)] (8)

With a strong parameter-free choice for the baseline
being the moving average of all rewards throughout
training (Williams, 1992):

bMA =
1

S

∑
s
R(xs, ys) (9)

Where S is the number of training steps, and
(xs, ys) is the prompt-completion pair at the step s.

2.3 REINFORCE Leave-One-Out (RLOO)
The baseline in Eq. 9 is simple to implement and
computationally cheap. However, it can be im-
proved upon if we have access to multiple on-
line samples, that can be used for further unbi-
ased variance reduction: (1) The rewards for each
sample can serve all other samples as a baseline.
(2) Policy updates can be done on an average of
gradient estimates for each sample, resulting in a

variance-reduced multi-sample Monte-Carlo (MC)
estimate. This is the intuition behind the REIN-
FORCE Leave-One-Out (RLOO) estimator, pro-
posed by (Kool et al., 2019)1:

1

k

k∑

i=1

[R(y(i), x)−
1

k − 1

∑

j ̸=i
R(y(j), x)]

∇ log π(y(i)|x) for y(1), ..., y(k)
i.i.d∼ πθ(.|x)

RLOOk considers each y(i) individually and uses
the remaining k − 1 samples to create an unbiased
estimate of the expected return for the prompt, akin
to a parameter-free value-function, but estimated
at each training step. This is a much more effec-
tive baseline (as our experiments show) than bMA

since it’s created on-the-fly for each sample and at
each training step, but comes at a cost of increased
sampling time during training.

2.4 Alternatives to RL in Preference Training
Iterative Fine-tuning Iterative fine-tuning meth-
ods use the trained reward model to rank comple-
tions of online or offline sampled prompts, and then
iteratively fine-tune the policy on a selected sub-
set (Gulcehre et al., 2023; Dong et al., 2023). We
benchmark Reward rAnked FineTuning (RAFT;
Dong et al., 2023), a simple cross-entropy loss is
used on the best-ranked completion out of k on-
line samples, based on R(x, y) or r(x, y). We note
that RAFT does not make full use of all samples
because it only optimizes using filtered top-ranked
samples. In contrast, RLOO fully leverages con-
structing a baseline and a multi-sample MC esti-
mate for the policy gradient.

Direct Preference Optimization (DPO) Un-
like other methods, DPO (Rafailov et al., 2023)
skips the reward modeling stage in the traditional
RLHF pipeline and uses preference pairs to directly
optimize the policy with the following loss:

− log σ(β log
πθ(y+|x)
πref(y+|x)

− β log
πθ(y−|x)
πref(y−|x)

)

3 From PPO to REINFORCE

We scrutinize individual components of PPO that
we consider not an ideal fit for RLHF. We explain
the theoretical origin, motivate with the practical
conditions of LLM RLHF, and provide empirical
support from preliminary experiments.

1In collaboration with the Huggingface team, we pro-
vide an open-source implementation of RLOO in the TRL
(von Werra et al., 2020) library: https://github.com/
huggingface/trl
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3.1 Revisiting the need for low-variance
estimators

Actor-critic algorithms, such as PPO, were moti-
vated in formulation by the high variance observed
in traditional RL settings. PPO leverages lower-
variance estimators of the total trajectory return to
improve learning. These estimators are constructed
by bootstrapping off a state-value function (Sut-
ton et al., 1999; Schulman et al., 2018; Sutton and
Barto, 2020). While bootstrapping reduces vari-
ance, the trade-off is the introduction of bias which
risks optimizing for biased rewards.

In contrast, REINFORCE uses an unbiased
Monte-Carlo estimator of the trajectory return that
can have high variance in theory, especially if it
is approximated with only a single sample, which
is not frequently preferred in traditional Deep-RL
environments. Recent work has offered a plethora
of evidence that REINFORCE suffers from high
variance and fails in the presence of large action
spaces like NLP (Ranzato et al., 2016; Bahdanau
et al., 2017; Ding and Soricut, 2017; Ammanabrolu
and Hausknecht, 2020; Ammanabrolu et al., 2022;
Martin et al., 2022; Korbak et al., 2022). However,
we note that these findings were based on scenarios
with poor conditioning when training from random
or weak initialization as opposed to warm-starting
it from a strong pre-trained model.

Here, we question whether this empirical ev-
idence holds for RLHF. We posit that this is not
a practical concern in fine-tuning LLMs due to
the extremely strong initialization of the policy (a
pre-trained LLM). In this setting, strong initializa-
tion coupled with prompt conditioning leads to the
concentration of probability mass on a few tokens
at each generation step, even though the number
of possible actions is in theory enormous (refer to
Appendix B for further discussion on the effect of
conditioning). The optimization landscape is far
less likely to present problems like destructively
large and high-variance gradient updates. Thus,
attempting to reduce variance further at the cost of
introducing bias is not worth it.

Empirical support To validate this hypothesis,
we vary the weight placed upon variance minimiza-
tion and bias introduction. In the formulation of
PPO in Sect. 2.1, the advantage estimator GAE
(Schulman et al., 2018) is relied upon to trade-off
bias and variance when estimating the true advan-
tage function in PPO.

GAE introduces a hyper-parameter λ ∈ [0, 1] in

the true advantage function, which balances bias
and variance of the constructed estimator. The
closer λ is to 1, the higher the observed variance.
The optimal choice of where to set λ = 0 depends
on the environment. In a highly stochastic environ-
ment, minimizing variance at the cost of bias is a
worthy trade-off. However, given a stable environ-
ment where variance is already low, the introduc-
tion of bias is needless.

At the extreme of 1 which imposes minimal bias
at the trade-off of variance, the advantage term re-
duces to return the estimator used in Vanilla Policy
Gradient (PG) REINFORCE, which directly builds
on the REINFORCE estimator, by optimizing the
trajectory returns starting from each token in the
generation

∑T

i=t
γT−i−1Rt(x, yt)− bψ(st) (10)

where bψ(st) is a learned baseline state st, akin
to how a value network is learned in the tradi-
tional RL setting, using a standard MLE loss
1
2(
∑T

i=t γ
T−i−1Ri(x, yi)−bψ(st))

2. Note that the
key distinguishing factor between Vanilla PG and
REINFORCE as referred to in this work, is that
Vanilla PG uses the REINFORCE estimator on the
trajectory return starting from the context formed
by the prompt and a partial completion, whereas
the REINFORCE estimator described in Section
2.2 is applied to the the full trajectory return. We
will return to this distinction in the results Section
5.1 when we evaluate whether evaluating partial
completions is necessary in RLHF.

In Figure 1, we present the results of evalu-
ating the reward for PPO given GAE with dif-
ferent value of λ. Two variants impose minimal
bias but invite high variance ((Âλ=1.00 (Vanilla PG
introduced above), and Âλ=0.95) and two variants
which over-index on minimizing variance at the
cost of bias (Âλ=0.0,and Âλ=0.5). Figure 1 plots
the reward and observe that the most extreme vari-
ant Vanilla PG (unbiased Aλ=1.0) performs the
best given it presents no bias at the risk of high
variance. We observe a monotonically decreasing
reward with decreasing λ. This supports our hy-
pothesis that reducing variance at the cost of bias in
an RHLF setting needlessly introduces bias given
the stable default properties of the environment.

3.2 Clipping is Rarely Necessary in RLHF
Next, we turn to the clipping-ratio ϵ (see Eq. 6),
which is used to prevent large policy updates when
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πθ
πold

deviates far from 1, i.e., to prevent updates that
are too far off from the current policy (Schulman
et al., 2017).

In Figure 1, we compare reward curves for in-
dependent PPO training with and without clipping.
Note that we also turn off clipping for the value
network, for these set of experiments, as it has been
observed to have a noticeable impact on learning
in traditional Deep-RL environments (Engstrom
et al., 2020). The removal of these components
does not impact learning meaningfully. We em-
pirically found in our RLHF setting that the loss
is actually clipped on average < 5% of the time
per batch, throughout training across all dataset
and base-model pairings, which indicates that the
learning regime is close to being “on-policy”, with
policies varying slowly from one iteration to the
other.

To further validate this, we completely turn off
clipping followed by removing the ratio πθ

πold
, while

λ = 1, which reduces the PPO loss to that of
Vanilla PG. If anything the removal of clipping
gives a slight boost in performance, validating our
hypothesis that large off-policy updates in our op-
timization regime are rare and do not have catas-
trophic effects on learning as they do in traditional
Deep-RL.

3.3 Modeling Partial Completions is Not
Necessary

As described in Sect. 2, PPO models each token as
an action whereas REINFORCE models the entire
generation as a single action, as opposed to each
token. In practice, in LLM RLHF a r(x, y) is only
attributed to the <EOS> token, where for all other to-
kens, only log π(yt|st)

πref(yt|st) composes Rt(x, y), which
is not meaningful.

From a pure RL point of view, the en-
vironment dynamics are fully deterministic
(PD({y<t+1,x}|st, yt) = 1), meaning that our envi-
ronment (context) changes deterministically based
on the new token/action predicted. Hence, the prob-
lem can be reduced to a bandit problem, where the
Markov Decision Process (MDP) consists of only
the initial state as determined by the prompt, and
the terminal state, which is always reached after
the generation (Kreutzer et al., 2017; Nguyen et al.,
2017b). Note that modeling the entire generation as
a single action is done explicitly by REINFORCE
but is also done implicitly with iterative fine-tuning
methods which generate the entire completion be-
fore filtering using a reward model.

In the results section 5.1 we will explicitly com-
pare REINFORCE and RLOO which both model
the full trajectory return to PPO and Vanilla PG
which both model the partial completion. We ask
is modeling the entire generation as a single ac-
tion sufficient to achieve similar or better per-
formance in RLHF?

4 Experimental Setup

4.1 Training Details

Datasets We report results on the TL;DR Summa-
rize (Stiennon et al., 2020) and Anthropic Helpful
and Harmless Dialogue (Bai et al., 2022a) datasets.
The trainig split of TL;DR Summarize 2 dataset
contains 116k human-written instructions and 93k
human-annotated preference pairs. The prepro-
cessed Anthropic-HH3 dataset contains 112k many
training preference pairs.

Models For both datasets, we use Pythia-6.9B
(Biderman et al., 2023) as the pretrained base-
model. To ablate the effect of the pre-trained model
quality on the human preference optimization, we
also experiment with Llama-7B coupled with the
Anthropic-HH dataset. To ensure a fair compari-
son across all methods, we use a context length of
512 tokens during both supervised fine-tuning and
the reward model training. We initialize both the
reward model and policy with the corresponding
SFT checkpoint, unless noted otherwise.

Experimental Details For the TL;DR Summa-
rize dataset, we use the dedicated SFT split. Since
the original Antrophic-HH dataset does not include
a separate SFT split, we use prompts and the pre-
ferred responses from the binary comparisons dur-
ing the SFT stage similar to prior work (Yuan et al.,
2023; Dong et al., 2023; Rafailov et al., 2023).
In the preference training stage, we use the same
prompts as in the SFT stage to generate comple-
tions. Further details on the experimental setup and
hyper-parameters are given in Appendix D

4.2 Evaluation

Optimization Quality For all online methods
(all methods except DPO), to measure how well
they optimize the intrinsic objective , we report
average rewards (using the training RM) on 1000
samples from the test set. To measure how well

2https://github.com/openai/
summarize-from-feedback

3https://huggingface.co/datasets/Dahoas/
full-hh-rlhf
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Figure 2: Comparison of test rewards for various optimization methods, throughout training. RLOO and REIN-
FORCE with a moving average baseline, consistently achieve higher test rewards than RAFT and PPO throughout
training. REINFORCE w/ B. refers to REINFORCE with a moving average reward baseline as in Equation 8.

Method TL;DR HH (Pythia) HH (Llama)

RLOO (k=4) 77.9 43.7 64.1
RAFT (k=4) 73.2 42.1 63.3

RLOO (k=2) 74.2 47.6 62.2
RAFT (k=2) 72.1 37.7 58.4

RF. W/ B. 70.7 37.9 55.3
VANILLA PG 70.4 36.4 52.3
PPO 67.6 29.2 32.0
DPO 66.6 39.0 61.9

Table 1: Final win rates on generations for held-out test
prompts in the Anthropic-HH and TL;DR Summarize
datasets. Metrics are reported for the checkpoint with
the highest test reward.

each method optimizes the extrinsic objective of
aligning the models to human preference, we report
simulated win rates in accordance with Alpacafarm
framework (Dubois et al., 2024) where we use GPT-
4 as a proxy for human evaluation.

Alignment Tax RLHF fine-tuning is often asso-
ciated with a drop in diversity and language fluency
which is referred to as alignment tax (Askell et al.,
2021; Kirk et al., 2024). Hence, we also report
metrics which serve as proxies for fluency and di-
versity similar to (Dong et al., 2023). To measure
fluency, we report perplexity measured using the
preferred completions from the test set, similar to
(Dong et al., 2023). Finally, we measure the di-
versity coupled with length by using the average
n-gram diversity Li et al. (2016).

5 Results and Discussion

5.1 Reward Optimization
The objective of RLOO, REINFORCE with base-
line, RAFT, PPO, and vanilla PG is to maximize
the reward score, hence we compare the success

of optimization for each method. Fig. 2 shows the
test reward scores plotted during the training for all
methods. On each dataset, we use the same reward
model for all the methods, thus their test reward
scores are directly comparable.

Modeling Partial Completions vs Full Genera-
tions In Fig. 2, we observe that methods that do not
model partial completions such as REINFORCE
with baseline, RLOO, and RAFT consistently out-
perform Vanilla PG and PPO where each token is
modeled as an action (i.e. partial completions). In
addition to their higher performance in reward op-
timization, these methods are more efficient than
Vanilla PG and PPO since they do not require train-
ing a learned baseline and a value network as in
Vanilla PG or PPO respectively. This suggests that
modeling partial sequences is unnecessary.

Sampling Efficiency Given the same sampling
budget, k, RLOO consistently outperforms RAFT
throughout training in terms of reward scores. No-
ticeably, even with a smaller sampling budget
RLOOk=2, RLOO either closely matches or out-
performs RAFTk=4, across all datasets and models.
In this setting, RLOO uses only half the online-
sample budget given the same step count.

This confirms that RLOO leads to better opti-
mization by using all the samples generated, unlike
RAFT where only the top-ranked sample is used for
fine-tuning. Showcasing the same finding, Fig. 5
in Appendix A plots the rewards with respect to
the number of samples generated during training
regardless of the k value.
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Figure 3: Sensitivity to KL weight Training curve for r(x, y) (left) DKL (right) and with k = 2. Under higher
KL, RAFT is not only worse than RLOO at optimizing reward, but also deviates further from the reference policy.
Curves are exponentially smoothed for better readability.

Method Len. PPL D-1 D-2 R-Var.

RLOO (k=4) 60.6 27.6 0.10 0.43 3.1
RAFT (k=4) 62.4 30.1 0.10 0.43 3.2

RLOO (k=2) 58.6 29.2 0.11 0.44 3.0
RAFT (k=2) 52.8 28.9 0.12 0.47 3.1

RF. W/ B. 47.2 27.2 0.13 0.50 2.7
V. PG 39.1 39.0 0.15 0.54 3.7
PPO 16.5 40.4 0.34 0.60 2.3
DPO 104.4 33.8 0.08 0.39 N/A

Table 2: Language Fluency and Diversity Metrics on
the Anthropic-HH dataset.

5.2 Simulated Win Rates

Table 1 presents the win-rates against the original
completions in TL;DR Summarize and Antrophic-
HH for each method. Here, we also include DPO.

Modeling partial completions is not necessary
Recall that the key distinguishing factor between
Vanilla PG and REINFORCE as referred to in this
work, is that while Vanilla PG treats each token
as an action, REINFORCE operates on the entire
generation. As seen in Table 1, REINFORCE with
baseline is on par with Vanilla PG on both TL;DR
(70.7 vs 70.4) and HH (37.9 vs 36.4) datasets
when using Pythia-based models. Moreover, REIN-
FORCE with baseline outperforms Vanilla PG in
HH dataset with a Llama-based model, achieving a
higher win-rate (55.3 vs 52.3).

This confirms the effectiveness of only modeling
the entire generation and not partial completions,
even without using multiple samples during RLHF.

Win-rates are inline with test reward scores
RLOO with k = 4 achieves the highest win-rates,
outperforming PPO by 10.3, 14.5, and 32.1 for
TL;DR, HH (Pythia) and HH (Llama), respectively.
As the only exception, RLOO achieves the highest
win-rate with k = 2 in HH dataset.

RLOO is more sample efficient than RAFT
Comparing RLOO with RAFT, under the same
sampling budget k, RLOO consistently outper-
forms RAFT in all datasets and models. When
averaged across the three dataset and model pair-
ings, RLOO achieves win-rates of 61.3 and 61.9
for k = 2 and k = 4, respectively, while RAFT
scores 56.1 and 59.5, respectively. Notably, RLOO
exhibits the highest increase in win-rate compared
to RAFT, up to 9.9 as in the HH dataset with k = 2
and Pythia-based models (second column in Table
1).

5.2.1 Alignment Tax
Table 2 shows various intrinsic evaluation metrics
including perplexity and diversity scores of Llama-
based models in Antrophic-HH datasets.

Length of Generations Noticeably, the DPO
trained model tends to be over-verbose (the longest
generation length of 104 tokens on average) while
the PPO trained model leads to short generations
(the shortest on average with 16 tokens). We pro-
vide example responses in Appendix F.

Perplexity and Diversity As seen in Table
2, perplexity (PPL) scores are relatively close
amongst RLOO, RAFT, and REINFORCE with
baseline where all three methods achieve signifi-
cantly lower perplexity than PPO and Vanilla PG.

In terms of diversity, Diversity-1 scores are simi-
lar across RLOO, RAFT, REINFORCE with base-
line and Vanilla PG. Diversity-2 scores tend to
slightly decrease for the methods with higher re-
ward optimization (Askell et al., 2021). This is
unsurprising given the significant difference in
their generation length compared to other methods.
Overall, RLOO and REINFORCE with a baseline
maintain fluency and diversity in generations in
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comparison with other methods while achieving
higher reward scores and win-rates.

Reward variance Lower reward variance is de-
sirable for applications such as safety and harm-
lessness where there is a high risk associated with
generating a low-reward sample. Results in Table
2 show that RLOO for the same k value leads to
slightly lower reward variance amongst the gen-
erations, compared to RAFT which is the most
competitive method to RLOO in terms of reward
optimization. Finally, Vanilla PG leads to the high-
est reward variance. REINFORCE with baseline,
however, empirically results in 27% less variance,
even though it either outperforms or is on par with
Vanilla PG in terms of reward optimization and
win-rates.

5.2.2 Robustness
As previously noted, a major drawback of RAFT is
that it only optimizes on the highest-ranked sample
and discards the rest of the online samples. Thus,
the factors that can lead to inaccurate ranking of the
best completion, can also impede learning signif-
icantly. We demonstrate this fragility by showing
the effects of 1) high β for the KL-term and 2)
inserted reward noise on RAFT in comparison to
RLOO.

Mismatch from KL-penalty In Figure 3, we
show the evolution of the KL distance and test re-
ward curve r(x, y) throughout training for RLOO
and RAFT, using k = 2, on the HH dataset using
Pythia-based models. We vary the KL regulariza-
tion, using β = {0.25, 0.5, 1}. Here, a larger KL
penalty in R(x, y) (higher β) potentially increases
mismatches between rankings of the k online sam-
ples. However, the choice of β often depends on
multiple factors such as the distribution of the data
and output logits of the base model, which may not
allow for a low β value even with early-stopping.

We find that RAFT is more sensitive to higher
KL regularization. In a low-regularized regime
(β = {0.1}), RLOO and RAFT converge to
equal KL distances from the reference policy while
RLOO achieves a higher reward. However in-
creased regularization with β = {0.25, 0.5, 1.0},
not only RAFT is worse at optimizing the reward,
but also deviates more from the reference policy.

Mismatch from Reward Noise The reward
model is itself a noisy proxy of reward signal due
to the inherently noisy nature of human preference
(Nguyen et al., 2017b; Kreutzer et al., 2018). In-
spired by literature in Bayesian deep learning on

0 100 200 300 400
Steps

0.8

0.6

0.4

0.2

r
(x

,y
)

r(x
,y

)

RLOO = 1.0
RAFT = 1.0

RLOO = 3.0
RAFT = 3.0

RLOO = 5.0
RAFT = 5.0

Figure 4: Sensitivity to noise Drop in training rewards
upon the addition of noise with σ = {1.0, 3.0, 5.0}
.RAFT shows a more significant drop in reward com-
pared to RLOO. Curves are exponentially smoothed for
better readability.

modeling Aleatoric uncertainty (Kendall and Gal,
2017; Collier et al., 2021), to simulate the effect
of such noise in different degrees, for each prompt,
we add noise to the rewards. Concretely, we add
noise ϵ to the output logits of the binary classifier:
rσ(x, y) = r(x, y) + ϵ where ϵ ∼ N (0, σ2).

Figure 4 shows the drop in reward at different
levels for noise σ = {1.0, 3.0, 5.0}. As expected,
the unaltered training reward decreases for both
RLOO and RAFT. However, the drop is far more
pronounced for RAFT with σ = {3.0, 5.0} This
is due to the addition of reward noise, impacting
the relative rankings hence the training reward. In
contrast, RLOO presents a relatively robust reward
optimization under a noisy reward signal.

6 Conclusion

At a high level, this work posits that the RLHF set-
ting of fine-tuning an LLM has a strong initializa-
tion of the policy, which coupled with further condi-
tioning on a prompt, alleviates historical concerns
with high variance and large action spaces. We
support this position with empirical results, show-
ing that techniques such as REINFORCE & RLOO
rarely used in traditional RL settings due to high
variance outperform PPO. We also show the im-
proved robustness of RLOO relative to iterative
fine-tuning methods like RAFT — achieving a best
of both worlds sweet spot.

7 Limitations

As one of the limitations of our work, we do not
study the reward model (RM) over-optimization,
which refers to the problem when optimizing the

12256



trajectory of the proxy reward, the model diverges
from the “gold” reward objective (Gao et al., 2022).
This aspect has not been studied yet also for iter-
ative fine-tuning methods such as RAFT and de-
serves a dedicated study. We leave this to future
work.

Another limitation is the exploration of RLOO
baseline in a single token action framework, where
partial sequences are modeled. In this work, we
show that modeling partial sequences are unneces-
sary undertaking in the RLHF context. However,
understanding how RLOO performs in such mod-
eling formulation can potentially be useful in other
contexts.

Finally, we limit our work to rewards from hu-
man preferences and we did not explore the other
rewards such as ROUGE, BLEU, or other metrics
used in the NLP.

8 Acknowledgement

We would like to thank Ivan Zhang, Phil Blun-
som, Florian Strub, Max Bartolo, Bharat Venkitesh,
Roger Grosse, and Keiran Paster for helpful dis-
cussions. We would like to especially thank
Matthieu Geist for multiple fruitful discussions on
the framing of this work and feedback on the fi-
nal manuscript. We would also like to thank our
colleagues in Cohere and Cohere For AI for their
continued support throughout the under-taking of
this project.

References
Prithviraj Ammanabrolu and Matthew Hausknecht.

2020. Graph constrained reinforcement learning for
natural language action spaces.

Prithviraj Ammanabrolu, Liwei Jiang, Maarten Sap,
Hannaneh Hajishirzi, and Yejin Choi. 2022. Aligning
to social norms and values in interactive narratives.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5994–6017, Seattle, United States. Association
for Computational Linguistics.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,

Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. Palm 2 technical
report.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, Nelson El-
hage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal
Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Ben Mann, and Jared Kaplan. 2022a. Training a
helpful and harmless assistant with reinforcement
learning from human feedback.

12257

http://arxiv.org/abs/2001.08837
http://arxiv.org/abs/2001.08837
https://doi.org/10.18653/v1/2022.naacl-main.439
https://doi.org/10.18653/v1/2022.naacl-main.439
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/1607.07086
http://arxiv.org/abs/1607.07086
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862


Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosuite, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemi Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-
man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. 2022b. Constitutional ai: Harmless-
ness from ai feedback.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Eugene Choi, Arash Ahmadian, Matthieu Geist, Oilvier
Pietquin, and Mohammad Gheshlaghi Azar. 2024.
Self-improving robust preference optimization.

Mark Collier, Basil Mustafa, Efi Kokiopoulou,
Rodolphe Jenatton, and Jesse Berent. 2021. Corre-
lated input-dependent label noise in large-scale image
classification.

Nan Ding and Radu Soricut. 2017. Cold-start rein-
forcement learning with softmax policy gradient. Ad-
vances in Neural Information Processing Systems,
30.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. 2023. Raft:
Reward ranked finetuning for generative foundation
model alignment.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2024. Alpaca-
farm: A simulation framework for methods that learn
from human feedback.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar,
Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. 2020. Implementation matters in
deep policy gradients: A case study on ppo and trpo.

Leo Gao, John Schulman, and Jacob Hilton. 2022. Scal-
ing laws for reward model overoptimization.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer
vision?

Muhammad Khalifa, Hady Elsahar, and Marc Dymet-
man. 2021. A distributional approach to controlled
text generation.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis,
Jelena Luketina, Eric Hambro, Edward Grefenstette,
and Roberta Raileanu. 2024. Understanding the ef-
fects of rlhf on llm generalisation and diversity.

Wouter Kool, Herke van Hoof, and Max Welling. 2019.
Buy 4 reinforce samples, get a baseline for free! In
DeepRLStructPred@ICLR.

Tomasz Korbak, Hady Elsahar, Germán Kruszewski,
and Marc Dymetman. 2022. On reinforcement learn-
ing and distribution matching for fine-tuning lan-
guage models with no catastrophic forgetting. In
Advances in Neural Information Processing Systems,
volume 35, pages 16203–16220. Curran Associates,
Inc.

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and
Stefan Riezler. 2018. Can neural machine translation
be improved with user feedback? In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 92–105, New Orleans - Louisiana.
Association for Computational Linguistics.

Julia Kreutzer, Stefan Riezler, and Carolin Lawrence.
2021. Offline reinforcement learning from human
feedback in real-world sequence-to-sequence tasks.
In Proceedings of the 5th Workshop on Structured
Prediction for NLP (SPNLP 2021), pages 37–43, On-
line. Association for Computational Linguistics.

Julia Kreutzer, Artem Sokolov, and Stefan Riezler. 2017.
Bandit structured prediction for neural sequence-to-
sequence learning. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1503–1513,
Vancouver, Canada. Association for Computational
Linguistics.

12258

http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2406.01660
http://arxiv.org/abs/2105.10305
http://arxiv.org/abs/2105.10305
http://arxiv.org/abs/2105.10305
http://arxiv.org/abs/2304.06767
http://arxiv.org/abs/2304.06767
http://arxiv.org/abs/2304.06767
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2005.12729
http://arxiv.org/abs/2005.12729
http://arxiv.org/abs/2210.10760
http://arxiv.org/abs/2210.10760
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/2012.11635
http://arxiv.org/abs/2012.11635
http://arxiv.org/abs/2310.06452
http://arxiv.org/abs/2310.06452
https://api.semanticscholar.org/CorpusID:198489118
https://proceedings.neurips.cc/paper_files/paper/2022/file/67496dfa96afddab795530cc7c69b57a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67496dfa96afddab795530cc7c69b57a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67496dfa96afddab795530cc7c69b57a-Paper-Conference.pdf
https://doi.org/10.18653/v1/N18-3012
https://doi.org/10.18653/v1/N18-3012
https://doi.org/10.18653/v1/2021.spnlp-1.4
https://doi.org/10.18653/v1/2021.spnlp-1.4
https://doi.org/10.18653/v1/P17-1138
https://doi.org/10.18653/v1/P17-1138


Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, and
Sushant Prakash. 2023. Rlaif: Scaling reinforcement
learning from human feedback with ai feedback.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J. Liu, and Jialu Liu. 2023.
Statistical rejection sampling improves preference
optimization.

Ilya Loshchilov and Frank Hutter. 2016. Sgdr:
Stochastic gradient descent with restarts. ArXiv,
abs/1608.03983.

Alice Martin, Guillaume Quispe, Charles Ollion, Syl-
vain Le Corff, Florian Strub, and Olivier Pietquin.
2022. Learning natural language generation with
truncated reinforcement learning. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 12–37, Seat-
tle, United States. Association for Computational
Linguistics.

Andriy Mnih and Karol Gregor. 2014. Neural varia-
tional inference and learning in belief networks.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2022. Webgpt: Browser-
assisted question-answering with human feedback.

Khanh Nguyen, Hal Daumé III au2, and Jordan Boyd-
Graber. 2017a. Reinforcement learning for bandit
neural machine translation with simulated human
feedback.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-
Graber. 2017b. Reinforcement learning for bandit
neural machine translation with simulated human
feedback. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1464–1474, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,

Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowl-
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simón Posada Fishman, Juston Forte, Is-
abella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse
Han, Jeff Harris, Yuchen He, Mike Heaton, Jo-
hannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin

12259

http://arxiv.org/abs/2309.00267
http://arxiv.org/abs/2309.00267
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
http://arxiv.org/abs/2309.06657
http://arxiv.org/abs/2309.06657
https://api.semanticscholar.org/CorpusID:15884797
https://api.semanticscholar.org/CorpusID:15884797
https://doi.org/10.18653/v1/2022.naacl-main.2
https://doi.org/10.18653/v1/2022.naacl-main.2
http://arxiv.org/abs/1402.0030
http://arxiv.org/abs/1402.0030
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/1707.07402
http://arxiv.org/abs/1707.07402
http://arxiv.org/abs/1707.07402
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153


Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. 2018. High-dimensional
continuous control using generalized advantage esti-
mation.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2020. Learning
to summarize from human feedback.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2022. Learning
to summarize from human feedback.

Richard S Sutton and Andrew G Barto. 2020. Reinforce-
ment learning: An introduction. MIT press.

Richard S Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processing
Systems, volume 12. MIT Press.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,

Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar San-
seviero, Alexander M. Rush, and Thomas Wolf. 2023.
Zephyr: Direct distillation of lm alignment.

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid,
Freddie Vargus, Phil Blunsom, Shayne Longpre,
Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer,
and Sara Hooker. 2024. Aya model: An instruction
finetuned open-access multilingual language model.

Leandro von Werra, Younes Belkada, Lewis Tun-
stall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. 2020. Trl: Trans-
former reinforcement learning. https://github.
com/huggingface/trl.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A study of reinforcement learning
for neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3612–3621, Brussels,
Belgium. Association for Computational Linguistics.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf: Rank
responses to align language models with human feed-
back without tears.

12260

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2009.01325
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2310.16944
http://arxiv.org/abs/2402.07827
http://arxiv.org/abs/2402.07827
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302


Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J. Liu. 2023. Slic-hf:
Sequence likelihood calibration with human feed-
back.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-
guage models from human preferences.

12261

http://arxiv.org/abs/2305.10425
http://arxiv.org/abs/2305.10425
http://arxiv.org/abs/2305.10425
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593


A Additional Results

Below we present additional experimental results on the RLOO estimator.

A.1 RLOO vs RAFT Sample Efficiency
Figure 5 plots the test reward for RAFT and RLOO regardless of the value of k vs online samples
generated, normalized by batch size which shows RLOO’s efficiency.
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B Effective Conditioning

To evaluate the hypothesis that probability mass is heavily concentrated and conditioning significantly
narrows the likely generation space, we empirically study the characteristics of the output distributions
and each generation step. We use the Llama SFT model used for the HH experiments in Results section.

Probability Mass Concentration Figure 6 (Right) plots the total probability mass concentrated in the
top {1, 16, 32, 64} tokens. There’s a notable jump in the total probability mass after the first token is
generated, which points to the effectiveness of conditioning from the first token and prompt. From that
point on, a significant (∼ 60%) portion of probability mass is put on only the single most probable token
at each step, with more than ∼ 90% of the total mass being concentrated on the top 16 tokens, with
diminishing increases that point for the top 32 & 64 tokens. This empirical evidence directly supports
our reoccurring claim that even though the feasible search (action) space at each step is enormous, in
practice due to the conditioning from the SFT model and the prompt, most of the probability mass is only
distributed amongst a fraction of the possible tokens.

Low Entropy Figure 6 (Left) plots the Normalized Entropy Ĥ(X) = H(X)
Hmax(X) , where Hmax(X) is the

entropy of the uniform distribution under the vocabulary-size. Similar to the jump in probability mass in
Figure 6 right, as expected, the biggest the drop in entropy occurs right after the first token is generated
and only slightly rises up to the end of the generation and is consistently low. This is further supporting
evidence that the generation space is heavily skewed and naturally suggests there to be low variance in the
probability of the generations, due to the entropy in the generative process being consistently low. This
further motivates the single action modelling formulation as it suggests that the first conditioning in the
generation is the most impactful.
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Figure 6: Effect of Conditioning The highest drop in entropy and increase in concentration of probability mass
occurs after generating the first token. Left: Normalized Entropy Right: Total probability mass concentrated in the
Top {1, 16, 32, 64} tokens. Probability mass is consistently concentrated on a very small number of tokens when
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C RLOO’s Connection to Contrastive Loss

Multiple other works in iterative fine-tuning (Zhao et al., 2023; Yuan et al., 2023),utilize a contrastive-style
loss by up weighing the log-probabilities of positive samples and down-weighing the probabilities of
negative samples, as determined by the reward model

Lk=2
c = − log π(y+|x) + log π(y−|x) (11)
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We also have the corresponding loss with k = 2 to Equation 2.3 as:

Lk=2
RLOO =

(R(y+, x)−R(y−, x))
2

(− log π(y+|x) + log π(y−|x)) (12)

It’s clear that RLOOk=2 loss is exactly the contrastive loss but weighted by the difference between the
absolute cores (the 1

k factor is merged into the learning-rate).

D Training Details

Below are additional details on training and data preprocessing.
Data-preprocessing For each dataset, we filter out prompts that exceed a pre-specified length to minimize
the occurrence of generations not containing the EOS token. We filter prompts longer than 448 and 348
tokens, for the TL;DR and HH datasets, respectively.
SFT Training For the TL;DR Summarize dataset, we use the dedicated SFT split. For Antrophic-HH,
since the original dataset does not include a separate SFT split, we use prompts and the preferred responses
from the binary comparisons during the SFT stage. This is consistent with prior work (Yuan et al., 2023;
Dong et al., 2023; Rafailov et al., 2023).

In terms of training hyperparameters, for the Pythia models, similar to previous work (Touvron et al.,
2023b; Bai et al., 2022a), we train for 2 epochs with an initial learning rate of 2e-5 in both summarization
and dialogue tasks. For the Antrophic-HH dataset, since we don’t have an SFT set, we use the preferred
responses from the binary comparisons which make up the HH dataset. This is consistent with prior
work (Yuan et al., 2023; Dong et al., 2023; Rafailov et al., 2023). For the summarize dataset, we use the
dedicated SFT set indicated by the initial dataset. For the Llama models, we found that 1 epoch for the
SFT stage is sufficient.
RM Training In the RM stage, we train RM for 1 epoch with an initial learning rate of 1e-5.

For both RM and SFT training, we use a cosine decay learning schedule (Loshchilov and Hutter, 2016)
and a 0.03 warm-up ratio.
Preference Training For TL;DR Summarize dataset where we only experiment with Pythia models, we
train each variant for 600 steps with a rollout batch-size of 512. We use a β value of 0.03.

For Anthropic-HH, we train Pythia models for 393 steps with the same batch-size configuration as for
TL;DR summarize. As for Llama models, we follow the setup in (Dong et al., 2023) and use 2048 rollout
and step batch size over 2 epochs. We use β = 0.10 for all Anthropic-HH experiments unless otherwise
noted. For both datasets, we use the same prompts as in the SFT stage to roll out online generations.
Across both datasets and all the models, we use a constant learning rate of 1e-6 with a linear warm-up
duration of 3 % of total steps. Learning-rates were chosen after a sweep of {1×10−6, 1×10−5, 2×10−5}
for RAFT and RLOO, and {1× 10−6, 1× 10−5} for PPO and Vanilla PG. For all algorithms, we take 2
gradient steps for each batch.

E GPT-4 Evaluation Prompts

TL;DR Summarize: Which of the following summaries does a better job of summarizing the most
important points in the given forum post, without including unimportant or irrelevant details? A good
summary is both precise and concise.

Post: {instruction}
Summary (A): {output_1}
Summary (B): {output_2}
FIRST provide a one-sentence comparison of the two summaries, explaining which you prefer and why.
SECOND, on a new line, state only "Summary (A)" or " Summary (B)" to indicate your choice. Your
response should use the format:
Comparison: <one-sentence comparison and explanation> Preferred: <"Summary (A)" or "Summary
(B)">

Anthropic-HH: For the following query to a chatbot assistant, which response is more helpful?
Query: instruction
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Response (A): {output_1}
Response (B): {output_2}
FIRST provide a one-sentence comparison of the two responses and explain which you feel is more
helpful. SECOND, on a new line, state only "Response (A)" or "Response (B)" to indicate which
response is more helpful. If they are equally good or bad, state "Neither". Your response should use
the format:
Comparison: <one-sentence comparison and explanation> Preferred: <"Response (A)" or "Response

ı(B)" or "Neither">
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F Example Responses

F.1 TL;DR Summarize (Pythia)

PROMPT: Below is a reddit POST and the corresponding SUBREDDIT and TITLE. Write a both precise
and concise summary of the contents of the post.
SUBREDDIT:r/loseit
TITLE:Caffeine addiction.
I have a horrible caffeine addiction, and I don’t like sacrificing any of my daily calories for coffee. I used
to drink 5-6 Diet Dr. Peppers a day, but I have switched to almost exclusively drinking only water most
days. I do have a Diet Dr. Pepper occasionally, and I know that technically it’s okay to probably have one
a day, but I honestly just feel better all around when I drink only water. But if I don’t have some caffeine
in the morning, I will be writhing in the floor in pain with a skull-pounding headache by mid-day. I know.
Ridiculous, right?
So, I went to the vitamin aisle the other day in search of a supplement with a little caffeine and the only
thing I found was One A Day Adult Vitacraves Gummies with Energy Support. Here’s the website with
[nutritional info] One serving is 20 calories and has 90 mg of caffeine. There’s also some vitamin B6,
B12, and folic acid in there that supposedly helps turn food into energy. I have no idea if that’s true. I’ve
been taking them a couple days, and so far I do feel more energized and I haven’t had any headaches. The
issue is that one bottle is around $9 and there are only 60 in a bottle. You have to take 4 (4!) a day, which
is very intriguing considering the brand name and all. So it’ll cost me around $20 a month. Which is
admittedly cheaper than what I used to spend on Diet Dr. Peppers, but still. I was just curious if anyone
else had a better option for caffeine in a supplement or vitamin?,

RLOO (K=4): "I have a horrible caffeine addiction. Went to the vitamin aisle and only found One A Day
Adult Vitacraves Gummies with Energy Support. Cost $9/bottle and contains 90 mg of caffeine. Anyone
else have a better option for caffeine in a supplement or vitamin?"
RLOO (K=2): "I have a horrible caffeine addiction. I switched to exclusively drinking only water most
days. I went to the vitamin aisle and only found one brand of supplement with caffeine. It costs $9 a
bottle. Anyone else have a better option for caffeine in a supplement or vitamin?"
REINFORCE W/ B.: "I have a horrible caffeine addiction. I don’t like sacrificing any of my daily
calories for coffee. I went to the vitamin aisle and only found a supplement with 90 mg of caffeine. Is
there a better option for caffeine in a supplement or vitamin?",
RAFT (K=4): "I have a horrible caffeine addiction. Went to the vitamin aisle and only found One A Day
Adult Vitacraves Gummies with Energy Support. Cost $9 a bottle and have 90 mg of caffeine. Anyone
else have a better option for caffeine in a supplement or vitamin?"
RAFT (K=2) "I have a horrible caffeine addiction. I switched to only drinking only water most days.
Found One A Day Adult Vitacraves Gummies with Energy Support. Cost $9 a bottle. Anyone else have a
better option for caffeine in a supplement or vitamin?"
PPO: "I have a horrible caffeine addiction. Went to the vitamin aisle in search of a supplement with
caffeine but only found One A Day Adult Vitacraves Gummies with Energy Support. Cost around $20 a
month. Any better options? "
VANILLA PG: "I have a horrible caffeine addiction and was looking for a supplement or vitamin with
caffeine. Only found One A Day Adult Vitacraves Gummies with Energy Support which costs $9 per
bottle. Any better options for caffeine in a supplement or vitamin?",
DPO: "I have a horrible caffeine addiction. I like only drinking water most days, but occasionally I want
some caffeine. I found some caffeine in a supplement in the vitamin aisle, but it’s expensive and I was just
wondering if anyone else has a better option."

F.2 HH (Llama)

PROMPT:: "Human: Why does it hurt when I stretch too hard?Assistant:"
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RLOO (K=4): "Stretching too hard can cause muscle soreness or injury. This is due to a combination
of muscle strain and inflammation. It’s important to stretch gradually, and to listen to your body, so you
don’t overdo it."
RLOO (K=2): "Stretching too hard can cause muscle pain or muscle soreness. This is usually temporary,
and will go away as your muscles get used to the stretch. It’s important to start with a light stretch, and
gradually increase the stretch as your muscles get used to it."
REINFORCE W/ B.: "When you stretch too hard, you can cause minor muscle strain. It2̆019s usually
not a big deal, but it can cause some discomfort. It2̆019s also a sign that you might be overdoing it, so it
can be a warning sign."
RAFT (K=4): "Stretching too hard can cause muscle strain. This is especially true for muscles that
aren2̆019t used to stretching, or for muscles that are already fatigued. It2̆019s also possible to injure a
muscle if you stretch it too far, but this is less common."
RAFT (K=2): "When you stretch too hard, you can cause a minor muscle tear or strain."
PPO: "Stretching too hard can cause muscle soreness or injury."
VANILLA PG: "Stretching too hard can cause muscle soreness and pain. This is because you are
overstretching the muscle, which can cause damage to the muscle fibers. It is best to stretch gradually and
gently, to avoid injury."
DPO : "Stretching can be uncomfortable if you do it too aggressively, because it can cause minor muscle
soreness or even minor injury. When you stretch, you are putting stress on your muscles and connective
tissue, and this stress can sometimes cause minor damage or injury. If you stretch too aggressively or for
too long, you can cause minor muscle soreness or even minor injury. This can cause pain or discomfort
during or after the stretching. It can also cause minor damage to your connective tissue, which can cause
pain or discomfort after the stretch."
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