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Abstract

Embeddings extracted by pre-trained Large
Language Models (LLMs) have significant po-
tential to improve information retrieval and
search. Beyond the zero-shot setup in which
they are being conventionally used, being able
to take advantage of the information from
the relevant query-corpus paired data can fur-
ther boost the LLM capabilities. In this
paper, we propose a novel method, Search-
Adaptor, for customizing LLMs for informa-
tion retrieval in an efficient and robust way.
Search-Adaptor modifies the embeddings gen-
erated by pre-trained LLMs, and can be in-
tegrated with any LLM, including those only
available via prediction APIs. On multi-
ple English, multilingual, and multimodal re-
trieval datasets, we show consistent and signif-
icant performance benefits for Search-Adaptor
– e.g., more than 5% improvements for Google
Embedding APIs in nDCG@10 averaged over
14 BEIR datasets.

1 Introduction

Information retrieval is broadly considered as the
task of searching for information via querying cor-
pus database that might consist many different
types of data, such as documents, webpages or
logs. It has a wide range of applications across
many industries, including retail, healthcare, and
finance, with a significant portion of the world’s
economy is built on. Particularly, language mod-
eling is the key part of information retrieval as in
most cases, query and corpus data are in text form.
Large language models (LLMs) have demonstrated
significant achievements for a variety of text pro-
cessing tasks, including question answering, sum-
marization, and mathematical reasoning (Brown
et al., 2020; Chowdhery et al., 2022; Zhang et al.,
2022a). One critical enabler for the success on
these has been transforming raw text into meaning-
ful representations that preserve semantic meanings

in the representation space (Ouyang et al., 2022).
For a wide range of applications, from recommen-
dations to anomaly detection, tasks are defined as
explicit operations on the learned representations.
This makes the quality of the text mapping into em-
beddings become of paramount importance. Infor-
mation retrieval systems commonly utilize the text
embeddings, with relevant corpora being ranked
based on the similarity between queries and corpus
(Wang et al., 2022; Izacard et al., 2021a).

Various LLMs have been proposed to extract
embeddings from raw text, with the notable ones
including the Sentence T5 (Ni et al., 2021a), Ope-
nAI Embedding APIs (ope) and Google Embed-
ding APIs (gcp). However, one fundamental limi-
tation of pre-trained LLMs is that they cannot uti-
lize retrieval-specific target task data, that are in
the form of positively relevant query-corpus pairs.
Even with a small amount, using such data for tun-
ing is expected to significantly improve informa-
tion retrieval capabilities. Conventional fine-tuning
(Howard and Ruder, 2018) can be one straightfor-
ward way of utilizing the paired query-corpus infor-
mation. However, if the number of paired samples
is small, tuning all the weights of a model might
yield overfitting and thus poor generalization (Lin
et al., 2023), especially in the presence of distri-
bution shifts. In addition, it can be costly from a
computational perspective as it requires large mem-
ory. There are multiple parameter-efficient tun-
ing methods such as prompt tuning (Lester et al.,
2021; Li and Liang, 2021), LoRA (Hu et al., 2021),
partial fine-tuning (Zaken et al., 2021), and vari-
ous adapters (Houlsby et al., 2019; Rücklé et al.,
2020). These approaches only tune a subset of the
parameters of LLMs, aiming to reduce the risks of
overfitting and bringing computational gains. As
a common bottleneck, all of these methods need
full access to the LLM’s parameters to tune the
model, which may not be possible for LLMs with
API-based inference-only access.
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Figure 1: Search-Adaptor modifies the pre-trained
LLM embeddings by learning from paired query-
document data, yielding significantly improved re-
trieval performance on target tasks. Note that Search-
Adaptor does not require access to the LLM weights or
gradients and can even be applied to the LLMs that are
only accessible via prediction APIs.

In this paper, our focus is customizing LLMs
to obtain superior embeddings for information re-
trieval, particularly from the angle of how to best
take advantage of the available retrieval-specific
tuning data and obtain robust improvements in
wide range of regimes, with a tuning method that
is low cost and even applicable to LLMs with API-
based inference-only access. Fig. 1 overviews the
proposed approach, Search-Adaptor. Improving
the tuning performance in this setup requires a set
of innovations. We propose integration of a low
capacity adapter module (to be customized for the
target dataset) on top of fixed LLMs to modify the
pre-trained embeddings. For efficient tuning, we in-
troduce a novel differentiable ranking loss that can
directly utilize the information of positive query
and corpus pairs. In addition, we include multiple
regularizers to improve generalization in this small
data regime where without intervention, the pre-
trained LLMs would end up with catastrophic for-
getting. Enabled by such design approach, one ma-
jor advantage of Search-Adaptor is that it does not
require access to the parameters of the pre-trained
LLMs – only the inference outputs of the LLMs are
needed. Commercial embedding APIs that show
state-of-the-art performance usually do not provide
access to their model parameters. In such cases,

Search-Adaptor can still be used to further improve
those API-based embedding models, in contrast to
alternative tuning methods. We demonstrate the
effectiveness of Search-Adaptor across 14 BEIR
datasets (Thakur et al., 2021) and 17 MIRACL
multilingual datasets (Zhang et al., 2022b) with
Google and OpenAI embedding APIs, applying the
Search-Adaptor on top. In addition, we evaluate
Search-Adaptor’s performance improvements with
open-source Sentence T5 models (Ni et al., 2021a).
Overall, Search-Adaptor provides significant im-
provements over alternatives, consistently across
different datasets and models. The contributions of
this paper are:

• We propose a novel adaptation framework for
information retrieval applications that can sig-
nificantly improve the pre-trained LLMs.

• We introduce a novel ranking loss and mul-
tiple regularizers that reduce overfitting and
forgetting and thereby improve the retrieval
performance even in the small data regime.

• We provide consistent and significant im-
provements for retrieval performance with a
range of datasets (from 1K to 500K positive
query-corpus training data pairs).

• We show that Search-Adaptor on smaller
LLMs can approach the performance of larger
LLMs in zero-shot setting, underlining its po-
tential for model distillation.

• We extend the application of Search-Adaptor
to multimodal learning and tool use scenarios,
demonstrating its significant benefits.

2 Related Work

Pre-trained LLMs for zero-shot retrieval.
LLMs to extract general text embeddings are com-
monly used in both academia and industry. AI
solution providers like Google (gcp) and OpenAI
have productionized general text embeddings that
can be directly used via simple APIs for zero-shot
retrieval applications. In addition, many previ-
ous efforts have introduced new general text em-
bedding models with various pre-training meth-
ods and datasets. GTE (Li et al., 2023) proposes
a multi-stage pre-training of embedding models
with diverse naturally paired text datasets. E5
(Wang et al., 2022) pre-trains the embedding mod-
els by weakly-supervised contrastive learning, uti-
lizing consistency-based filter to generate high
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quality text pairs for pre-training. Note that Search-
Adaptor can be applicable on top of any pre-trained
LLM embedding models to customize their embed-
dings for superior retrieval performances.

Embedding customization. Instead of using
one unified model for zero-shot retrieval, the em-
beddings can be customized for each dataset or
task. Instruction-based embedding customization
is one popular method. TART (Asai et al., 2022)
builds a retrieval system that adapts the retrieval
based on the instruction. Different retrieval tasks
(e.g., code, question, or answer) are given as the
instruction to further improve dense embedding
retrieval. InstructOR (Su et al., 2022) integrates
the task and domain descriptions prior to the input
to fine-tune the embeddings for retrieval. How-
ever, these do not directly utilize the provided rele-
vant query-corpus pairs. Full or parameter-efficient
fine-tuning (such as LoRA (Hu et al., 2021) and
(IA)3 (Liu et al., 2022)) can also be considered for
embedding customization. Pre-trained LLMs can
be fine-tuned with contrastive loss using positive
query-corpus paired data. Promptagator (Dai et al.,
2022) utilizes in-context learning to generate syn-
thetic query-corpus pairs using a few number of
original query-corpus pairs, and subsequently us-
ing those synthetic pairs to fine-tune the pre-trained
LLMs. However, all these are only applicable when
there is full access to the parameters of pre-trained
LLMs, which is often not possible for state-of-the-
art commercial text embedding models. On the
other hand, Search-Adaptor can be applied without
full access to the LLM parameters.

3 Problem Formulation

We formulate the retrieval problem with a given
query-corpus paired dataset. Assume a query set
denoted as Q = {q1, ..., qN} ∈ Q and a corpus set
denoted as C = {c1, ..., cM} ∈ C. Each positive
relationship between a query and corpus is repre-
sented as the triplet rij = (qi, cj , yij) with yij > 0
as the strength of the relationship between qi and cj .
We treat all other triplets as negative relationships
(yij = 0). The set of all query-corpus relationships
is denoted as R = {(qi, cj , yij)}i=1:N,j=1:M =
Rp∪Rn, whereRp = {(qi, cj , yij) ∈ R|yij > 0}
is the set of positive relationships and Rn =
{(qi, cj , yij) ∈ R|yij = 0} is the set of negative
relationships. Note that yij can be either binary or
continuous.

The retrieval system aims to find the relationship
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Figure 2: Block diagram of Search-Adaptor. Grey col-
ored blocks are fixed components (e.g., a text embed-
ding API); blue-colored blocks are additional trainable
building blocks; and red-colored blocks are for loss
computations. At inference, only query and corpus
adapters are utilized and the query predictor can be dis-
carded.

between the given query (qi) and corpus (cj) such
that the predicted relationship is highly correlated
with the ground truth relationship (yij). The scor-
ing function f : Q×C → R takes queries and cor-
pus data as inputs and outputs a score estimate on
the relationship between them. The optimal score
is the one that has the same order as the ground
truth relationship for each query.

4 Methods

Fig. 2 overviews the components of Search-
Adaptor, that are described in following sections.

4.1 Adapting pre-trained LLMs

Major real-world constraints for tuning the LLM
embedding models shape our methodological de-
sign. The tuning operation for high-capacity mod-
els can be very costly, and one often does not have
access to the parameters and the gradients of the
pre-trained models (e.g. LLMs with API-based
inference-only access). This motivates the need
for an adaptation method that can operate with
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fixed pre-trained embedding models with an effi-
cient adaptation module, to extend to the LLMs
with API-based inference-only access. In Search-
Adaptor, we propose modifying the embeddings ex-
tracted from pre-trained LLMs for superior search
and information retrieval.

Consider the query and corpus embeddings ex-
tracted using the pre-trained embedding model
E: QE = {qe1, ..., qeN} ∈ Rd and CE =
{ce1, ..., ceN} ∈ Rd where qei = E(qi) and
cej = E(cj). Note that both query and corpus
embeddings are in the same embedding space.

The objective of Search-Adaptor is to modify
embeddings extracted from pre-trained LLMs in
a way that maximizes retrieval performance. A
learnable adaptation function is defined as f :
Rd → Rd, which maps the original embedding
to a new embedding that is more favorable for
retrieval applications. The modified embeddings
are denoted as Q̂E = {q̂e1, ..., q̂eN} ∈ Rd and
ĈE = {ĉe1, ..., ĉeM} ∈ Rd where q̂ei = f(qei)
and ĉej = f(cej). The relevance scores between
modified query and corpus embeddings are defined
as follows:

ŝij = Cosine-Similarity(q̂ei, ĉej) =
q̂ei · ĉej
||q̂ei||||ĉej ||

.

Search-Adaptor consists of the following compo-
nents (see Fig. 2 for details):

• Adaptation function f . This function is
used to modify the query and corpus embed-
dings. We add a skip connection to f so
that it can only learn the residual between the
original and adapted embeddings as follows:
q̂ei = qei + f(qei) and ĉej = cei + f(cei).
Note that we use the shared adapter for both
query and corpus (see Sec. 6 for ablation stud-
ies). The ranking loss, reconstruction loss,
and prediction loss are used to train f .

• Query predictor p. This function is used
to predict the query embedding using the
adapted corpus embedding. The prediction
loss is used to train p.

At inference, we only use the adaptation functions
(f ) to modify the query and corpus embeddings.
We then compute the cosine similarity between the
modified query and corpus embeddings to estimate
the relevance between query and corpus. Query
predictor is not used at inference.

4.2 Ranking objective
As explained in Sec. 3, the objective of the retrieval
is to predict the correct order of the relevance be-
tween queries and corpus. Therefore, the most
critical part is to properly design the ranking loss.
We propose a ranking loss as follows:

LRank =

N∑

i=1

M∑

j=1

M∑

k=1

I(yij > yik) · (yij − yik)

· log(1 + e(sik−sij)),

where I(yij > yik) is an indicator function that
is equal to 1 if yij > yik and 0 otherwise. sij =
Cosine-Similarity(E(qi), E(cj)) is the relevance
score between query text (qi) and corpus text (cj).

The ranking loss penalizes the model more when
it predicts a lower score for a pair of query and cor-
pus that has a higher ground truth relevance (i.e.,
sij < sik even though yij > yik). The amount
of penalization is proportional to the difference in
ground truth relevance (yij − yik) and the differ-
ence in estimated scores log(1 + e(sik−sij)). Note
that log(1 + e(sik−sij)) can be replaced with any
monotonic function such as linear function. In
general, the ranking loss encourages the model to
predict higher scores for pairs of query and corpus
that have a higher ground truth relevance. Table 4
shows a comparison of this ranking loss to alterna-
tives and demonstrates its effectiveness.

4.3 Regularization
Introducing proper inductive biases via regular-
ization is important to improve adaptation from
pre-trained LLM embeddings without forgetting
too much information from the pre-trained LLMs.
Towards this end, we propose two regularization
methods:

Recovery. To increase generalizability, we pos-
tulate avoiding modification of the adapted embed-
ding too far away from the original embedding. As
such, we propose minimization of the difference be-
tween the original and adapted embeddings using
a recovery regularizer:

LRec =
1

N

N∑

i=1

||q̂ei−qei||1+
1

M

M∑

j=1

||ĉei−cei||1

where q̂ei is the adapted query embedding and qei
is the original query embedding. Similarly, ĉei is
the adapted corpus embedding and cei is the orig-
inal corpus embedding. The recovery regularizer
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encourages the adapted embeddings to be not too
far from the original embeddings.

Prediction. Intuitively, if the query and corpus
are highly relevant, we can use the corpus to predict
the query. Building upon this intuition, we propose
a regularizer in the form of prediction loss between
the query and corpus, calculated as follows:

LPred =

∑N
i=1

∑M
j=1 yij · ||q̂ei − p(ĉej)||1∑N

i=1

∑M
j=1 yij

where p : Rd → Rd is a function that predicts the
query given the corpus, and yij is a weight that is
assigned to the loss if the query and corpus are cor-
related. The prediction loss encourages the model
to predict the query well given the corpus, espe-
cially if the query and corpus are correlated. Note
that we do not include the prediction function from
query to corpus because usually corpora are signif-
icantly longer than queries which would render the
task challenging.

4.4 Training
Using the proposed ranking loss, recovery loss,
and prediction loss, we optimize the adaptation
function f and prediction function p by minimizing
the following loss function:

min
f,p
LRank(f) + αLRec(f) + βLPred(f, p),

where α ≥ 0 and β ≥ 0 are the hyper-parameters
that control the relative importance of the different
loss terms.1 Table 4 shows the results of ablation
studies on the effectiveness of the different loss
terms. All hyper-parameters are provided in Ap-
pendix C.

Note that the ranking loss compares all possi-
ble pairs between queries and corpus which needs
NM2 times computations per one epoch (M >>
N ). For efficient computation, we randomly sub-
sample the corpus for each query batch. While
doing so, we always include the corpus which has
positive relevance to queries in that batch.

5 Experiments

We evaluate the performance of Search-Adaptor
in multiple scenarios on numerous datasets.
We demonstrate that Search-Adaptor is model-
agnostic, applying it both on top of API-based

1In the experiments, we tune these hyper-parameters
based on validation set (α ∈ {0.0, 0.1, 1.0} and β ∈
{0.0, 0.01, 0.1}).

LLMs (merely via access to Google & OpenAI
APIs) and open-sourced LLMs (e.g., Sentence T5
(Ni et al., 2021a)). We also demonstrate that it
is data-agnostic by evaluating Search-Adaptor on
English, multilingual and multimodal datasets.

5.1 Experimental settings

We first consider the 14 retrieval datasets from the
BEIR repository (bei) to evaluate the performance
in English data, with corpus sizes ranging from
3.6K to 8.8M, and training pairs ranging from 0.7K
to 532K. For the datasets with only test data (e.g.,
Arguana, SciDocs), we split the data into disjoint
train and test sets with a 50/50 ratio, based on the
sorted query IDs. We also use MIRACL data (mir)
which consists of 17 multilingual datasets including
Japanese, Chinese, French, and Indonesian. More
dataset details can be found in Appendix A.

We use nDCG@10 as the main metric to quan-
tify the retrieval performance (see Appendix B for
more details). For model selection, we divide the
training data into disjoint training and validation
splits with an 80/20 ratio, and select the model with
the highest validation nDCG@10 value.

We consider both API-based and open-sourced
LLMs. As the API-based LLM, we use OpenAI
embedding API (ope) and Google embedding API
(gcp). As the open-sourced LLM, we use Sentence
T5 models2 of two different sizes, GTE-Large (Li
et al., 2023), GTR-Large (Ni et al., 2021b) and
Condenser-Retriever (Gao and Callan, 2021).

5.2 Adapting with API-based LLMs

One of the biggest advantages of Search-Adaptor
is that it can be applied on top of any API-based
LLM – without having access to the parameters of
LLMs, Search-Adaptor can further improve the re-
trieval performance. This is particularly important
as the state-of-the-art LLMs are actually API-based
models (owned by companies).

As can be seen in Fig. 3 and Table 1, we demon-
strate the retrieval performance improvements on
top of API-based text embedding models across
14 datasets from the BEIR repository. On aver-
age, Search-Adaptor achieves 0.0475 and 0.0349
nDCG@10 improvements for both Google and
OpenAI text embedding APIs. The improvements
of some datasets are quite significant indeed – e.g.,
0.1739 with Arguana, 0.0856 with Scifact datasets.

2https://tfhub.dev/google/sentence-t5/
st5-base/1
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Figure 3: Performance improvements with Search-Adaptor on top of Google’s LLM based embedding APIs
(gecko@latest, 768 dimensions) for 14 BEIR datasets.
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Datasets Zero- Search- OpenAI’s
shot Adaptor Solution

NFCorpus 0.3750 0.3785 0.2595
SciFact 0.7221 0.7904 0.6449
Arguana 0.5885 0.6493 0.6151
SciDocs 0.2003 0.2158 0.1941

FiQA 0.4366 0.4410 0.3119
Trec-Covid 0.7224 0.7733 0.7712

Touche 0.2590 0.3312 0.3157
Quora 0.8830 0.8869 0.8670

Table 1: Performance improvements with Search-
Adaptor and OpenAI’s embedding customization so-
lution (OpenAI’s solution) on top of OpenAI’s LLM
based embedding APIs (text-embedding-ada-002, 1536
dimensions) with 8 BEIR datasets.

We also compare with OpenAI’s embedding cus-
tomization solutions (OpenAI’s solution)3. Table 1

3https://github.com/openai/openai-cookbook/
blob/main/examples/Customizing_embeddings.ipynb

shows worse performance compared to not only
Search-Adaptor but also Zero-shot OpenAI em-
bedding in terms of ranking metrics (nDCG@10).
OpenAI’s solution tries to solve classification prob-
lems between positive and negatively correlated
text pairs. It adds “random negatives” to their posi-
tive paired samples and try to distinguish between
positive and “random negative” pairs using MSE
loss. This problem is much easier than the retrieval
problem (that Search-Adaptor tries to solve), where
the task is to identify the positive pairs from all
possible negative pairs (including hard negatives).
Also, Search-Adaptor utilizes ranking loss while
OpenAI’s solution utilizes MSE loss (which is ben-
eficial for classification or regression problems).
Lastly, OpenAI’s solution does not have regular-
izations that mitigate the high risks of overfitting
when the number of query-corpus pairs is small.
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Base models ST5-Base GTE-Large

Datasets Zero-shot Search-Adaptor Full Fine-tuning Zero-shot Search-Adaptor LoRA

NFCorpus 0.3100 0.3258 0.3501 0.3810 0.4063 0.3512
SciFact 0.5237 0.7255 0.7542 0.7419 0.8179 0.6433
Arguana 0.3646 0.5501 0.6239 0.5987 0.6292 0.6091
SciDocs 0.1393 0.1657 0.1640 0.2460 0.2531 0.2209

FiQA 0.4064 0.4416 0.4557 0.4362 0.4428 0.4328
Trec-Covid 0.5990 0.6986 0.4178 0.7242 0.7593 0.7656

Touche 0.2291 0.3393 0.1844 0.2566 0.2905 0.2752
Quora 0.7484 0.8664 0.7817 0.8831 0.8842 0.8871

Average 0.4151 0.5141 0.4151 0.5335 0.5604 0.5232

Table 2: Performance comparison with Search-Adaptor and fine-tuning baselines on top of open-sourced embed-
ding models (ST5-Base and GTE-Large) with 8 BEIR datasets.

5.2.1 Search-Adaptor on multilingual data
Search-Adaptor is also applicable on non-English
multilingual data. In Fig. 4, Search-Adaptor shows
consistent performance improvements on top of
Google Embedding API across 17 different lan-
guages (on average 0.0396 nDCG@10 improve-
ment). For some languages, it is particularly
significant, e.g. the improvement is 0.0687 for
Thai. These highlight Search-Adaptor being a
model-agnostic and data-agnostic approach. More
experiments with additional embedding models
(e.g., GTR-Large (Ni et al., 2021b) and Condenser-
Retriever (Gao and Callan, 2021)) can be found
in Appendix D. Qualitative analyses can be also
found in Appendix E.

5.3 Adapting with open-sourced LLMs

Beyond API-based LLMs, Search-Adaptor can be
applied to open-sourced LLMs. Here, we con-
sider Sentence T5-Base (Ni et al., 2021a) and GTE-
Large (Li et al., 2023) models as the open-sourced
LLMs to demonstrate the performance improve-
ments over the baselines.

As shown in Table 2, Search-Adaptor shows
consistent improvements over zero-shot ST5-Base
model. For the open-sourced LLMs, we can also
utilize full fine-tuning (with contrastive loss) and
LoRA (Hu et al., 2021) as alternatives of Search-
Adaptor, albeit the higher training cost. The ex-
perimental results on the considered benchmarks
show that on average, full fine-tuning and LoRA
performances can indeed be worse than Search-
Adaptor. Surprisingly, the performance of full
fine-tuning and LoRA can even be much worse
than the zero-shot baseline (e.g., for Trec-Covid,
Touche with full fine-tuning and NFCorpus, Sci-
Fact with LoRA) which is attributed to fine-tuning
being prone to overfitting and poor generalization

(Lin et al., 2023).
With a limited number of query-corpus pairs,

Search-Adaptor performs better than fine-tuning
methods due to lower risk of overfitting. Also, train-
ing cost (both memory and computations) is much
lower with Search-Adaptor than fine-tuning meth-
ods. On the other hand, with enough query-corpus
pairs, fine-tuning methods may perform better than
Search-Adaptor with open-source retrievers. Based
on these pros and cons, the appropriate customiza-
tion method can be selected given the specific appli-
cation scenario. If black-box retrievers work better
than open-source retrievers or when the number of
query-corpus pairs is small, then Search-Adaptor
would be a superior choice of customization. On
the other hand, if open-source retrievers work better
than black-box retrievers and the number of query-
corpus pairs is large, we can utilize fine-tuning
methods to customize their retrievers.

5.4 Search-Adaptor with multimodal data

Datasets Zero- Search- Gains
shot Adaptor (%)

Dresses 0.2315 0.2681 15.8%
Jackets 0.1652 0.2319 40.4%
Pants 0.1248 0.1821 45.9%
Skirts 0.1923 0.2282 18.7%
Tops 0.2270 0.2542 12.0%

Table 3: Multimodal retrieval performance (text to im-
age) with Search-Adaptor for Google Cloud’s LLM
based multimodal embedding API (1408 dimensions)
with Fashion-200K dataset.

Search-Adaptor makes consistent and signifi-
cant improvements when applied on text embed-
dings. We also extend Search-Adaptor from text-
only to multimodal data, with image and text, using
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Variants NFCorpus SciFact Arguana SciDocs FiQA Trec-covid

Zero-shot baseline 0.3100 0.5237 0.3646 0.1393 0.4064 0.5990
Original Search-Adaptor 0.3258 0.7255 0.5501 0.1657 0.4416 0.6986

(a) Architectural modifications

Without skip connection 0.3243 0.6465 0.5110 0.1579 0.4133 0.6380
With separate adapters 0.3047 0.5488 0.3659 0.1463 0.3977 0.6148

(b) Regularizer modifications

Without prediction loss 0.3235 0.6501 0.5456 0.1642 0.4078 0.6177
Without reconstruction loss 0.3245 0.6491 0.5439 0.1637 0.4127 0.6551

(c) Alternative ranking losses

Sigmoid cross entropy 0.3026 0.5917 0.4912 0.1567 0.4052 0.6702
Contrastive loss (Izacard et al., 2021b) 0.3046 0.5316 0.4822 0.1449 0.4091 0.6723
Softmax cross entropy (Bruch et al., 2019) 0.3097 0.5452 0.4874 0.1346 0.4121 0.6549
RankNet loss (Burges et al., 2005) 0.3119 0.5511 0.4699 0.1599 0.4155 0.6428

Table 4: Ablation studies with variants of Search-Adaptor. As ablation scenarios, we modify regularizers and
architectures of the original Search-Adaptor, and replace the proposed ranking loss with alternative ranking losses.

Google Cloud’s multimodal embedding API 4. We
use the Fashion-200K dataset (Han et al., 2017) for
the text to image retrieval task to show how much
Search-Adaptor can make further improvements on
top of base multimodal embedding API.

Table 3 shows that Search-Adaptor can
achieve 20-30% of performance improvement in
nDCG@10 across 5 sub datasets of Fashion-200K
datasets. Relevant qualitative analyses can be
found in Appendix F.

5.5 Search-Adaptor for tool retrieval

Datasets Zero- Search- Gains
shot Adaptor (%)

ToolE - single tool 0.5292 0.8321 57.2%
ToolBench - I1 0.6289 0.7320 16.4%
ToolBench - I2 0.5054 0.6774 34.0%
ToolBench - I3 0.5833 0.7917 35.7%

Table 5: Tool retrieval performance with Search-
Adaptor on top of Google’s LLM based embedding
API (gecko@latest) in terms of NDCG@1 metric.

In this subsection, we further extend Search-
Adaptor to tool retrieval application (Patil et al.,
2023) where agents choose which actions to per-
form to automate execution of a task given the input
query. The objective of tool retrieval is to retrieve
the proper tools for the new query based on the de-
scriptions of tools. On two datasets, ToolE (Huang
et al., 2023), ToolBench (Qin et al., 2023), we study
the potential of Search-Adaptor to improve the tool

4https://cloud.google.com/vertex-ai/
generative-ai/docs/embeddings/
get-multimodal-embeddings

retrieval performance, that would yield superior
agents. Table 5 shows that with Search-Adaptor,
significant retrieval performance improvements, 15-
50%, are obtained.

6 Discussions

6.1 Ablation studies

Search-Adaptor proposes multiple innovations to
improve the adaptation performance. We quantify
the contributions of proposed constituents to the
retrieval performance on various datasets with as
ST5-Base as the base embedding model, with the
results in Table 4. We consider various modifica-
tions to Search-Adaptor: (i) altering the architec-
ture, (ii) applying different regularizations, and (iii)
applying different losses. Using different losses
yields the largest performance degradation, under-
lining the importance of the proposed ranking loss.
Aside from the losses, if we use separate adapters
for query and corpus, it also yields a noticeable
performance drop. This shows the importance of
‘shared embedding space’ between the query and
corpus for retrieval. The skip connection and the
two regularization functions bring additional per-
formance gains but their impact is lower than the
ranking losses. Table 4(c) shows the impact of
the proposed ranking loss in comparison to alter-
natives: (i) point-wise sigmoid cross entropy, (ii)
contrastive loss (Izacard et al., 2021b), (iii) soft-
max cross entropy (Bruch et al., 2019) and (iv)
RankNet loss (Burges et al., 2005). With the pro-
posed ranking loss of the original Search-Adaptor,
significant outperformance is observed, compared
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to the alternative ranking losses.

6.2 Small LLMs with Search-Adaptor
outperform zero-shot large LLMs

One bottleneck for real-world LLM deployment
can be the prediction latency and cost, that are
highly dependent on the LLM model size. We
demonstrate that Search-Adaptor can achieve bet-
ter or comparable retrieval performance even with
much smaller LLMs, compared to to zero-shot re-
trieval with larger LLMs.

LLMs ST5-Base ST5-Large

Datasets Zero- Search- Zero- Search-
shot Adaptor shot Adaptor

NFCorpus 0.3100 0.3258 0.3354 0.3410
SciFact 0.5237 0.7255 0.5801 0.7530
Arguana 0.3646 0.5501 0.2662 0.4770
SciDocs 0.1393 0.1657 0.1618 0.1850

FiQA 0.4064 0.4416 0.4785 0.5028
Trec-covid 0.5990 0.6986 0.6471 0.7082

Touche 0.2291 0.3393 0.2624 0.3408
Quora 0.7484 0.8664 0.7560 0.9705

Average 0.4151 0.5141 0.4607 0.5223

Table 6: The performance of Search-Adaptors when
applied on Sentence-T5 models, (i) ST5-Base (110M
parameters) and (ii) ST5-Large (335M parameters), in
terms of nDCG@10 metric.

As shown in Table 6, Search-Adaptor with ST5-
Base model (110M parameters) performs much
better than ST5-Large (335M parameters). Search-
Adaptor can achieve better results with much
smaller encoders, positioning it as an effective dis-
tillation mechanism to significantly decrease the
serving cost and latency of retrieval systems. It
also reiterates the benefits of Search-Adaptor being
model agnostic.

7 Conclusions

In this paper, we focus on pushing the capabilities
of LLMs for information retrieval and search. We
propose a canonical efficient adaptation method,
Search-Adaptor, that can also be applied to LLMs
even with inference-only access. Search-Adaptor
is a low-cost tuning method that brings significant
and consistent improvements in retrieval perfor-
mance across diverse regimes of training data size,
encoder type, and corpus set. This is enabled by the
judicious design of its adaptor module, along with
training objectives and approaches. We have also
studied the extension of Search-Adaptor to multi-
modal learning and tool use scenarios, highlighting

the importance of embedding customization for
such applications.

8 Limitations and Future Works

Important future directions might include gener-
alizing the propose adaptation method to include
partial tuning of the embedding models as a way to
increase trainable degrees of freedom; extensions
to embedding tasks beyond retrieval; and exten-
sions to multimodal learning with many modalities.
There is no specific risk of the proposed method
other than the general risks of tuning methods that
they can lead to overfitting to certain tasks and they
can absorb the biases present in the target tuning
data.
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A Data Statistics

A.1 BEIR datasets

Datasets The number of train pairs The number of test pairs The number of corpus

NFCorpus 110575 12334 3.6K
SciFact 919 339 5K
Arguana 703 703 8.67K
SciDocs 14972 14956 25K

FiQA 14166 1706 57K
Trec-Covid 35460 30876 171K

Touche 1077 1137 382K
Quora 7626 15675 523K

NQ 2097 2104 2.68M
DBPedia 5673 43515 4.63M

HotPotQA 170000 14810 5.23M
Fever 140085 7937 5.42M

Climate-fever 2299 2382 5.42M
MSMarco 532751 9260 8.84M

Table 7: The statistics of the BEIR datasets (sorted by the number of corpus).

A.2 MIRACL datasets

Datasets The number of train pairs The number of test pairs The number of corpus

Yoruba (yo) 959 229 49043
Swahilli (sw) 9359 5092 131924
Bengali (bn) 16754 4206 297265

Hindi (hi) 11668 3494 506264
Telugu (te) 18608 1606 518079
Thai (th) 21293 7573 542166

Indonesian (id) 41358 9668 1446315
Korean (ko) 12767 3057 1486752
Finnish (fi) 20350 12008 1883509
Arabic (ar) 25382 29197 2061414
Persian (fa) 21844 6571 2207172
Chinese (zh) 13113 3928 4934368

Japanese (ja) 34387 8354 6953614
Russian (ru) 33921 13100 9543918
Spanish (es) 21531 6443 10373953
French (fr) 11426 3429 14636953

Germany (de) 2526 628 15866222

Table 8: The statistics of the MIRACL datasets (sorted by the number of corpus).

A.3 Fashion-200K datasets

Datasets The number of train pairs The number of test pairs The number of corpus

Dresses 15127 1567 72376
Jackets 8105 1511 71118
Pants 9264 1758 74470
Skirts 6822 1247 47931
Tops 13809 2536 72444

Table 9: The statistics of the Fashion-200K datasets.
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A.4 Tool retrieval datasets

Datasets The number of train pairs The number of test pairs The number of corpus

ToolE - single tool 16440 4110 199
ToolBench - I1 87322 97 10439
ToolBench - I2 84722 93 13142
ToolBench - I3 25155 96 1605

Table 10: The statistics of the tool retrieval datasets (ToolE and ToolBench).

B Metrics

For tasks that involve retrieving information, normalized discounted cumulative gain (nDCG) (Järvelin
and Kekäläinen, 2002) is a standard metric for evaluating performance. To define nDCG, we first consider
discounted cumulative gain (DCG):

DCG(y, s) =
∑

i

2yi

log2(rank(si) + 1)
,

where s is the relevance score computed by the model and y is the ground truth label. nDCG is then
defined as nDCG(y, s) = DCG(y,s)

DCG(y,y) , where the denominator assumes the optimal case where the ranking
of the scores (s) are exactly the same as the ranking of the ground truth label (y). nDCG@k is a widely
used variation of nDCG where only the top k scores are considered. In this paper, we use nDCG@10 as
the main retrieval metric.

C Hyper-parameters

We summarize the hyper-parameters used to train Search-Adaptor. In all experiments, we utilize the fixed
hyper-parameters (except α, β) that enable applying Search-Adaptor without extensive hyper-parameter
tuning. We use multi-layer perceptron as the adaptor architecture for both the encoder and the predictor.

Hyper-parameters Fixed values

Recovery loss coefficient (α) {0.0, 0.1, 1.0}
Prediction loss coefficient (β) {0.0, 0.01, 0.1}
Batch size for training 128
Maximum number of training iterations 2000
Patience for early stopping 125
Learning rates 0.001
Optimizer Adam
Negative pair subsampling ratio (compared with positive pairs) 10

Table 11: Hyper-parameters used to train Search-Adaptor in all experiments.
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D Additional Experiments

We include the additional results of Search-Adaptor with GTR-Large5 (Ni et al., 2021b) and Condenser-
Retriever 6 (Gao and Callan, 2021) as the base embedding models. As can be seen in Table. 12, the results
are consistent with the above results that Search-Adaptor shows consistent and significant improvements
on top of both GTR-Large and Condenser-Retriever models. For the Condenser-Retriever model, we
apply pooling and normalization on the token embeddings to extract the final text embeddings.

Datasets
GTR-Large Model Condenser-Retriever Model

Zero-shot Search-Adaptor Gains (%) Zero-shot Search-Adaptor Gains (%)

NFCorpus 0.3148 0.3242 2.99% 0.0882 0.2506 184.13%
SciFact 0.5331 0.7469 40.11% 0.2182 0.6783 210.86%
Arguana 0.5139 0.6360 23.76% 0.2744 0.3757 36.92%
SciDocs 0.1657 0.1687 1.81% 0.0659 0.1215 84.37%

FiQA 0.4069 0.4265 4.82% 0.0775 0.2445 215.48%
Trec-Covid 0.6912 0.7481 8.23% 0.3416 0.5769 68.88%

Touche 0.2723 0.3227 18.51% 0.0623 0.1928 8.34%
Quora 0.8428 0.8795 4.35% 0.7937 0.8599 8.34%

Average 0.4676 0.5315 13.68% 0.2402 0.4125 71.72%

Table 12: Performance improvements with Search-Adaptor on top of GTR-Large and Condenser-Retriever embed-
ding models.

5https://huggingface.co/sentence-transformers/gtr-t5-large
6https://huggingface.co/Luyu/co-condenser-marco-retriever
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E Qualitative Analysis

To understand the impact of Search-Adaptor, we first analyze the cosine similarity between query and
corpus, before and after Search-Adaptor training.
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(a) Score distribution before Search-Adaptor
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(b) Score distribution after Search-Adaptor

Figure 5: Cosine similarity score distributions before and after Search-Adaptor.

As can be seen in Fig. 5, after Search-Adaptor training, the distribution differences between relevant
and irrelevant pairs’ cosine similarity are larger which means that we can identify the relevant corpus per
each query better.

To further understand the distribution difference of query and corpus embeddings before and after
Search-Adaptor training, we plot tSNE graphs of them.
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Figure 6: tSNE distributions before and after Search-Adaptor. Red represents query embedding and blue represents
corpus embedding.

Fig. 6 shows the impact of Search-Adaptor. The left figure shows that the original query and corpus
embeddings are quite distinct. Most query embeddings are located in the restricted region. On the other
hand, after training with Search-Adaptor, query embedding distribution is observed to better overlap with
the corpus embedding distribution, which could result in more robust retrieval.
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We further investigate the success and failure cases of Search-Adaptor in comparison to the zero-shot
baseline. Bold represents the relevant corpus to the query.

Query Baseline Retrieval Search-Adaptor Retrieval

Suboptimal nutrition is
not predictive of chronic
disease

Maternal and child undernutrition: consequences
for adult health and human capital

Global, regional, and national comparative risk
assessment of 79 behavioural, environmental
and occupational, and metabolic risks or clus-
ters of risks, 1990–2015: a systematic analysis
for the Global Burden of Disease Study 2015

Effect of women’s nutrition before and during early
pregnancy on maternal and infant outcomes: a sys-
tematic review.

Dietary quality among men and women in 187 coun-
tries in 1990 and 2010: a systematic assessment

Dietary quality among men and women in 187 coun-
tries in 1990 and 2010: a systematic assessment

Biomarkers of endothelial dysfunction and risk of
type 2 diabetes mellitus.

The PRR MDA5 is a sen-
sor of RNA virus infec-
tion.

Ribose 2-O-methylation provides a molecular sig-
nature for the distinction of self and non-self mRNA
dependent on the RNA sensor Mda5

Immune signaling by RIG-I-like receptors.

Immune signaling by RIG-I-like receptors. Ribose 2-O-methylation provides a molecular sig-
nature for the distinction of self and non-self mRNA
dependent on the RNA sensor Mda5

RIG-I-mediated antiviral responses to single-
stranded RNA bearing 5’-phosphates.

RIG-I-mediated antiviral responses to single-
stranded RNA bearing 5’-phosphates.

A deficiency of vitamin
B12 increases blood lev-
els of homocysteine.

Preventing coronary heart disease: B vitamins and
homocysteine.

Folic acid improves endothelial function in coro-
nary artery disease via mechanisms largely in-
dependent of homocysteine lowering.

Effect of homocysteine lowering on mortality and
vascular disease in advanced chronic kidney dis-
ease and end-stage renal disease: a randomized
controlled trial.

Randomized trial of folic acid supplementation
and serum homocysteine levels.

Hyperhomocysteinemia and atherosclerotic vascu-
lar disease: pathophysiology, screening, and treat-
ment. off.

The effect of folic acid supplementation on plasma
homocysteine in an elderly population.

Table 13: Success cases: Examples of query and top-3 retrieved documents where relevant documents are ranked
higher in Search-Adaptor in comparison to baseline. Top-3 retrieved documents’ titles are listed above.
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Query Baseline Retrieval Search-Adaptor Retrieval

Antibiotic induced alterations in the
gut microbiome reduce resistance
against Clostridium difficile

Antibiotic-induced shifts in the mouse gut
microbiome and metabolome increase sus-
ceptibility to Clostridium difficile infec-
tion

Precision microbiome reconstitution restores
bile acid mediated resistance to Clostridium
difficile

Precision microbiome reconstitution restores
bile acid mediated resistance to Clostridium
difficile

Antibiotic-induced shifts in the mouse gut
microbiome and metabolome increase sus-
ceptibility to Clostridium difficile infec-
tion

Role of gut commensal microflora in the de-
velopment of experimental autoimmune en-
cephalomyelitis.

Microbiome-driven allergic lung inflamma-
tion is ameliorated by short-chain fatty acids

The genomic aberrations found in
matasteses are very similar to those
found in the primary tumor.

Evolution of metastasis revealed by mu-
tational landscapes of chemically induced
skin cancers

Intratumor heterogeneity and branched evo-
lution revealed by multiregion sequencing.

Molecular characterization of endometrial
cancer: a correlative study assessing mi-
crosatellite instability, MLH1 hypermethy-
lation, DNA mismatch repair protein expres-
sion, and PTEN, PIK3CA, KRAS, and BRAF
mutation analysis.

Diverse tumorigenic pathways in ovarian
serous carcinoma.

Deregulated DNA polymerase beta induces
chromosome instability and tumorigenesis.

Evolution of metastasis revealed by mu-
tational landscapes of chemically induced
skin cancers

Incidence rates of cervical cancer have
increased due to nationwide screening
programs based primarily on cytology
to detect uterine cervical cancer.

Mass screening programmes and trends
in cervical cancer in Finland and the
Netherlands.

The effect of mass screening on incidence
and mortality of squamous and adenocarci-
noma of cervix uteri.

The effect of mass screening on incidence
and mortality of squamous and adenocarci-
noma of cervix uteri.

Mass screening programmes and trends
in cervical cancer in Finland and the
Netherlands.

Efficacy of human papillomavirus testing for
the detection of invasive cervical cancers
and cervical intraepithelial neoplasia: a ran-
domised controlled trial.

Efficacy of human papillomavirus testing for
the detection of invasive cervical cancers
and cervical intraepithelial neoplasia: a ran-
domised controlled trial.

Table 14: Failure cases: Examples of query and top-3 retrieved documents where relevant documents are ranked
higher in baseline in comparison to Search-Adaptor. Top-3 retrieved documents’ titles are listed above.

As can be seen in Table. 13 and 14, in failure cases, Search-Adaptor still can retrieve the relevant corpus
in the top-3 corpus but the ranking is lower than the baseline. For the success cases, Search-Adaptor can
retrieve the correct corpus even though the baseline is completely failed. Quantitatively, with 300 test
samples, there are 9 cases where Search-Adaptor can retrieve the correct corpus in top-3 but Baseline
cannot retrieve any correct corpus in top-3. But there is no case for the opposite.
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F Qualitative Analysis on Multimodal Data

Text Query Ground Truth Zero-shot (Top-2) Search-Adaptor (Top-2)
multicolor fisher project
recycled cashmere

blazer

black women's bonded
crepe biker jacket

black freya wide leg
trouser waistband

blue plaid pull trousers

black cutout-back
sheath dress

beige sequin lace t-shirt
dress

Figure 7: Qualitative analyses of text to image retrieval with Search-Adaptor using Fashion-200K data.

Fig. 7 shows 6 examples in Fashion-200K datasets where Search-Adaptor makes better retrieved output
than the zero-shot baseline (Google Cloud’s multimodal embedding API). First column represents the
given text query. Second column represents the ground truth relevant image for the given text query. Third
column shows the top-2 retrieved outputs based on the zero-shot baseline. Last column shows the top-2
retrieved outputs based on Search-Adaptor. Note that the ground truths are included in top-2 retrieved
outputs by Search-Adaptor but not included in the baseline.
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