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Abstract

Accurate representation of procedures in re-
stricted scenarios, such as non-standardized
scientific experiments, requires precise depic-
tion of constraints. Unfortunately, Domain-
specific Language (DSL), as an effective tool
to express constraints structurally, often re-
quires case-by-case hand-crafting, necessitat-
ing customized, labor-intensive efforts. To
overcome this challenge, we introduce the
AutoDSL framework to automate DSL-based
constraint design across various domains. Uti-
lizing domain specified experimental proto-
col corpora, AutoDSL optimizes syntactic con-
straints and abstracts semantic constraints.
Quantitative and qualitative analyses of the
DSLs designed by AutoDSL across five dis-
tinct domains highlight its potential as an aux-
iliary module for language models, aiming to
improve procedural planning and execution.

1 Introduction

Comprehending and executing procedures artic-
ulated in natural language to achieve a speci-
fied goal represents a fundamental challenge for
Artificial Intelligence (AI) systems. With the boost
of Large Language Model (LLM) (Brown et al.,
2020; Raffel et al., 2020; Touvron et al., 2023), AI
systems possess the capability of reasoning over
and planning for procedural tasks intended for
both human and robotic execution across a broad
spectrum of everyday scenarios1 (Pareti et al.,
2014a,b; Tandon et al., 2020; Donatelli et al.,
2021; Zhou et al., 2022b), such as cooking accord-
ing to a recipe, obviating the necessity for external
representation of procedures beyond text.

However, contexts significantly more restricted
than everyday scenarios, such as conducting non-
standardized experiments in scientific laborato-
ries, need to follow specific protocols2. A proto-

1Visit www.wikiHow.com for demonstrations.
2Visit www.nature.com/nprot/ for examples.
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Figure 1: Representative constraints in protocols. (A) Pa-
rameter omission: This refers to the absence of essential pa-
rameter values within a predefined set, e.g., the lack of tem-
perature specification during the denaturation step in Pro-
tein Gel Electrophoresis. (B) Parameter under-specification:
This occurs when a quantitative parameter is described using
qualitative terms, leading to ambiguity, e.g., unclear mixture
configurations in DNA Extraction. (C) Action undefinition:
This involves the description of procedural steps at a high
level without grounding to the specific, executable actions re-
quired, e.g., the vague change operation in Cell Preparation.
(D) Iterative control logic: Loops that operate iteratively to
satisfy a final condition rather than straightforwardly, as seen
in PCR Optimization. (E) Memory management: Drawing a
parallel with computer memory mechanisms, laboratory pro-
cedures also face constraints on the availability of storage for
intermediates, necessitating explicit reallocation of contain-
ers and devices, such as managing buffers in Protein Diges-
tion. (F) Concurrent management: The synchronization of ac-
tions without dependencies to maximize time efficiency and
resource utilization, e.g., reagent splitting in RNA Extraction.

col delineates every aspect of an experiment’s pro-
cedure to facilitate its reproduction (Baker, 2016;
Munafò et al., 2017), emphasizing the necessity
for precision in every step, to ensure accurate ex-
ecution by an experimenter. The complexity of
procedures, limitation in resources, and suscepti-
bility to error in such scenarios render any de-
viation from the established protocols inadmis-
sible. Unfortunately, natural language inherently
possesses ambiguities (Russell, 1923). Within pro-
tocols, description of actions can be semantically
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Figure 2: Protocols in different structural representations

under-specified, and the logic of procedure may be
non-linear, as demonstrated in Fig. 1. Given these
unique distinctions against daily procedures, ac-
curate interpretation of protocols requires explicit
depiction of constraints (see Fig. 2 for example).

Intuitively, structural representation imposes
constraints on the processing of protocols. This
is achieved through purely symbolic approaches
that depict procedures as flow-graphs (Momouchi,
1980; Zhang et al., 2012; Kiddon et al., 2015),
and neuro-symbolic hybrid methods that super-
impose procedural structures onto neural net-
works (Puig et al., 2018; Huang et al., 2021, 2022;
Zhou et al., 2022a; Zhang et al., 2023; Brohan
et al., 2023). Both strategies impose constraints
on the interpretation of procedures, thereby reduc-
ing the incidence of superfluous operations. Sym-
bolic constraints range from elementary grammars
to general-purposed programming languages, with
the capability of a constraint system being piv-
otal in refining a coarse interpretation space into
a more precise one (Tarski, 1946; Chomsky, 1957;
Hopcroft et al., 1996; Russell and Norvig, 2010).

In light of the context, what level of capability
should we expect the constraint to possess? This
discourse introduces DSL, a category of symbolic
systems endowed with the most potent constraints.
DSLs are programming languages tailored to spe-
cific problem domains, encapsulating both syntac-
tic constraints and semantic constraints inherent
to those domains. For instance, BioCoder (Anan-
thanarayanan and Thies, 2010), developed by Mi-
crosoft, is a DSL explicitly designed to con-
strain experimental protocols. On the syntactic
level, the variable management mechanism inher-
ited from C/C++ enables DSLs to monitor the life-
cycle of each intermediate product, ensuring no
omissions or duplications. On the semantic level,
the precise definitions of actions, combinations of
reagents’ names and volumes, with subprocedures
abstracted from domain-specific concepts, guaran-
teeing procedural execution consistency.

Drawing inspiration from DSLs, can we de-
sign constraints for protocols in DSL fashion?
Hardly, due to the deterministic and substan-

tial cost. Structural constraints necessitate cus-
tom design for particular domains, which is pro-
hibitively expensive, given that these domains are
highly specialized and often diverge significantly
from the conventional purview of computer scien-
tists (Mernik et al., 2005; Fowler, 2010). The de-
velopment of a DSL necessitates a comprehensive
integration of in-depth domain knowledge. Fur-
thermore, the designed DSL must align with the-
oretical aspects of formal language design while
also meeting the distinct requirements of the spe-
cialized domain. This necessitates a bidirectional
alignment between computer scientists and do-
main experts, a process that is intrinsically case-
by-case, implying that a DSL developed for one
domain is unlikely to be applicable or easily adapt-
able to another, thus limiting the scalability of
DSL-based constraints across various domains.

In this study, our objective is to offer an ini-
tial proof-of-concept aimed at reducing the design
cost of DSL-based constraints for protocols. We
propose a scalable framework, termed AutoDSL,
that facilitates the automated creation of DSLs.
The framework approaches the task as a bidirec-
tional optimization problem, where the design of
a DSL is abstracted from domain-specific corpora
through a bottom-up process and concurrently de-
rived by general programming language design
principles in a top-down manner. This approach
emulates the iterative dialogue between computer
scientists and domain experts, progressively bridg-
ing the conceptual gap between their respective
fields of expertise. The syntactic constraint should
adequately define consecutive actions and their
repetitions, interruption, concurrence, subcompo-
nents, and reactants. Constructs of the semantics
constraint need to accurately reflect the domain’s
concepts and the relations between them, without
redundancy or incompleteness.

We utilize protocols from various domains
within the experimental sciences — namely Ge-
netics, Medical and Clinical Research, Ecology
and Environmental Research, Bioengineering, and
Computational Biology — as the primary test-
ing ground for our methodology, due to their in-
herent complexity, resource constraints, and sus-
ceptibility to errors. These domains exhibit sig-
nificant disparities both in syntactic and seman-
tic language features. Comprehensive experiments
demonstrate that AutoDSL is capable of general-
izing DSL-based constraints tailored to these di-
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verse domains, upholding the integrity from both
programming language design and domain exper-
tise perspectives. We further demonstrate that syn-
tactic and semantic constraints effectively work as
an auxiliary module of LLMs in the processing of
unseen protocols, thereby suggesting a promising
future for constraining protocols through a syner-
gistic blend of programs and natural language.

The contributions of this work are threefold: (i)
We introduce the AutoDSL framework for auto-
mated design of DSL-based constraints, which in-
cludes a bidirectional syntax optimization module
and a non-parametric learning module for seman-
tic reduction. (ii) We establish a systematic and
end-to-end evaluation platform to assess the qual-
ity of the designed DSLs-based constraints, em-
ploying both quantitative and qualitative metrics.
(iii) We showcase the efficacy of DSL-based con-
straints in processing new coming protocols with
syntactic complexity and semantic errors.

2 Constraints in protocols

In this section, we scrutinize the requirements for
precisely constraining protocols. The distinctive
challenges of engaging with such systems stem
from their complexity of procedures, limited in re-
sources, and vulnerability to errors.

Complexity of procedures The complexity
of protocols arises from the multitude of action
types necessary for conducting experiments, the

extensive categories of reagents involved, the vari-
ety of containers and devices for operational im-
plementation, and the broad array of additional
conditions affecting action execution, such as du-
ration, temperature, volume, lighting, and acid-
ity. For instance, whereas each daily procedure on
wikiHow involves about 14 steps, 27 actions, and
45 objects on average3, this figure substantially
increases in the context of the five experimental
science domains, where each protocol possesses
around 60 steps, 76 actions, and 180 objects on av-
erage, with an increment of 250% to 350%. This
necessitates the utilization of more specialized
data types — such as Operations, Reagents,
Conditions — over general data types like
integers, floats, characters, and strings. Conse-
quently, procedural workflows may include non-
linear elements like loops for repetition, branches
for parallel options, and subprocedures for nested
and reusable actions, requiring specialized control
flow structures to depict these complex scenarios.

Limitation in resources The execution of
protocols is limited by the availability of re-
sources, including a finite stock of reagents, a lim-
ited number of containers, and a scarcity of criti-
cal devices, characteristic of medium-scale exper-
imental science laboratories. This parallels the al-
location of registers and memory in computing,

3The statistics are calculated from the WikiHow Dataset,
with 230k procedures in total (Koupaee and Wang, 2018).
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where each action must account for the use of
memory spaces. In experimental procedure execu-
tion, if a device is currently in use, any operations
requiring that device must be deferred until it be-
comes available. This necessitates resource man-
agement strategies similar to those in computer
programming, such as allocating resources for use
and deallocating them post-use. When allocated,
the resource becomes inaccessible, creating bottle-
necks that introduce inefficiency. To mitigate this,
operations that do not compete for the same re-
sources may be executed in parallel.

Vulnerability to errors Execution of proto-
cols cannot tolerate errors, mandating strict adher-
ence to every operation. This makes the system
exceptionally vulnerable, in contrast to the robust-
ness of everyday procedural execution. In such a
context, protocol execution should encompass: (i)
syntactic constraints specifying how actions are
sequenced to form valid execution; and (ii) seman-
tic constraints verifying that the reactants and re-
action conditions are correctly utilized.

3 AutoDSL framework

This section describes our problem formulation
and solutions for the AutoDSL framework.

3.1 Problem formulation

Input The system input consists of natu-
ral language descriptions of protocols, namely a
domain-specific corpus. These descriptions en-
compass procedural knowledge of execution or-
ders and ingredient knowledge of reagents, con-
tainers, and devices involved in the experiments.
For a specific domain, the input corpus C “
tc1, c2, . . . , cNu includes N protocols.

Output The desired output is a DSL tS,Λu,
incorporating sets of constructs that define both
syntactic and semantic constraints specific to the
domain (Fowler, 2010), while retaining the ab-
stract qualities of a programming language. The
set S “ tφ1, . . . , φKu comprises K atomic syn-
tactic constraints with production rules, such as
control structures Loop, Parallel, Jump, and
Split. The set Λ “ tt1, . . . , tLu embodies L
atomic semantic constraints, such as operations
Add, Remove, Incubate, and Place.

3.2 Syntactic constraint optimization

Key insight Leveraging existing knowledge
on programming language design, our method

utilizes a bidirectional optimization strategy to
formulate the syntax of the target DSLs based
on the prerequisites of the domain corpora. The
algorithm employs an Expectation-Maximization
(EM) framework, where the E-Step abstracts syn-
tax from domain corpora and the M-Step derives
syntax from programming language principles.

Modeling The algorithm models latent syn-
tactic constraint assignments Z “ tz1, . . . , zNu
for each protocol ci. A filter set Θ “
tθ1, . . . , θK1u, where K 1 ą K, is designed to de-
termine if a segment of procedural text aligns with
the logic of any atomic syntactic constraint, com-
ing with the belief function ppΘ|Sq. The obser-
vational likelihood is computed as ppC|Z,Θq “śN

i“1 ppxi|zi, θziq. Hence, the overall joint proba-
bility of the model is given by:

ppC,Z,Θ|Sq “ ppC|Z,ΘqppZ|SqppΘ|Sq. (1)

Syntax prior Programming language design-
ers leverage a general set of syntactic production
rules as the prior ppZ|Sq for syntax specification.
We initialize the set S0 with a Context-free Gram-
mar (CFG) (Hopcroft et al., 1996) (see Fig. 4A).
Furthermore, we construct the prior belief function
ppΘ|Sq with a series of sliding-window-based fil-
ters f : C ÞÑ R, which gives a relaxed lower bound
for predicting the existence of an atomic syntactic
constraint. Please refer to Appx. C for details.

E-Step In each E-Step, we obtain the pos-
terior of latent variables ppZ|C,Θ,Sq applying
Bayes’ theorem, which is implemented by scan-
ning the filters over domain corpus. To note, as the
spaces of prior and observation are not intractably
large, we simply employ the naive version of E-
Step without variational approximations.

M-Step In each M-Step, we first maximize
the atomic syntactic constraints S by maximizing:

QpΘ̂,Θq “ EZ|C,Θ
“
log ppC,Z, Θ̂|Sq‰

, (2)

where Θ̂ is the updated Θ, resulting in the struc-
tural change of S0. These two steps alternate itera-
tively until convergence (see Fig. 4C), ensuring the
syntactic constraints are aligned with the domain.

3.3 Semantic constraint reduction

Key insight Following the adaptation of syn-
tactic constraints to the target domain, the se-
mantic reduction phase focuses on distilling fine-
grained semantic constraints. This stage addresses
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Figure 4: Illustration on syntactic constraint optimization and semantics constraint reduction. (A) Resulting syntactic
constraints derived from the CFG prior model. (B) Resulting semantic constraints. (C) Convergence curve of syntactic constraint
optimization. (D) Convergence curve of semantic constraint reduction. (E) Frequency profile of the semantic constraints of
Genetics-DSL and Medical-DSL. (F) Acquisition of different syntactic constraints on Ecology and Medical domain corpora.
(G) Syntactic constraint Function-procedure is differently acquired by the five distinct domains. (H) Confusion matrix
indicating the overlapped semantic constraints between the five distinct domains.

the absence of the domain-specific prior knowl-
edge on semantics by employing a non-parametric
approach, i.e., Dirichlet Process Mixture Model
(DPMM), which allows for the flexible identifica-
tion of semantic concepts and their relationships
inherent within the protocols (see Fig. 4B).

Modeling We transform the protocols into a
vectorized feature space, X “ tx1, . . . ,xNu, with
each xi encoding operation patterns in a one-hot
vector format (refer to Appx. C.3). The objective
is to model latent semantic constraint assignments,
W “ tw1, . . . , wNu, where each wi is an assign-
ment of atomic semantic constraint on xi. To note,
according to the definition, the size of the seman-
tics set Λ is not fixed and grows with the data.

Iteration Utilizing a DPMM facilitates the
non-parametric spectral clustering of these fea-
ture vectors into groups of unique atomic semantic
constraints. Each iteration in the DPMM process
involves Gibbs Sampling for estimating the pos-
terior of model’s parameters (see Fig. 4D). This
clustering not only identifies distinct semantic op-
erations but also adapts to the complexity and vari-
ability of semantic patterns across different do-
main corpora. Refer to Appx. C.4 for details.

3.4 Discussion

We identify the commonalities and distinctions
between the DSLs designed by AutoDSL corre-
sponding to the five experimental science domains
(see Fig. 4H). We find that the five domains share a
majority of syntactic constraints, such as Memory
and Branch (see Fig. 4F), while differing in other
constraints, such as Function-procedure
and Loop (see Fig. 4G). This implies that the do-
main specificity as an experimental protocol dom-
inates that of subject, regarding the syntax.

Different from syntactic constraints, the five do-
mains vary significantly on semantic constraints,
including fine-grained concepts such as opera-
tions, reagents, and conditions (see Fig. 4E). This
implies that the domain specificity of knowledge
ontology is dominant regarding the semantics.

4 Constraint design assessment

In this section, we evaluate the quality of the DSLs
automatically designed by our AutoDSL frame-
work across the five domains. We first discuss the
principles for the assessment, and then conduct
quantitative and qualitative analysis accordingly.
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4.1 Domain corpora

We compile a dataset of 16,194 experimental pro-
tocols across five domains: Genetics (8794 pro-
tocols), Medical and Clinical Research (7351,
“Medical” for abbreviation), Ecology and Envi-
ronmental Research (812, “Ecology”), Bioengi-
neering (3597, “BioEng”), and Computational Bi-
ology (348, “InfoBio”), with minimal overlap be-
tween them. This diverse dataset, essential for test-
ing our methodology, reflects the unique syntactic
and semantic requirements of each domain. Please
refer to Appx. D.1 for details on data collection.

4.2 What makes a good DSL?

We leverage a systematic approach to gain insight
into what constitutes the appropriate objectives
of DSLs, employing the frameworks introduced
by Guizzardi (2013) for quantitative and Karsai
et al. (2009) for empirical assessment.

Quantitative evaluation We check the map-
ping from ontology elements in the reference
model, i.e., concepts and relations in the domain
corpus, to DSL constructs of constraints, focus-
ing on four criteria: soundness, lucidity, complete-
ness, and laconicity. An ideal DSL should guar-
antee that (i) all ontology elements are mapped to
the construct set for soundness; (ii) every ontol-
ogy element is mapped to only one construct for
lucidity; (iii) the construct set does not possess
any redundancy beyond the ontology elements for
completeness; (iv) every construct refers to only
one ontology element for laconicity.

Empirical evaluation We take the design
guidelines of DSL as questions for assessing the
resulting DSLs by AutoDSL , from a user-centric
perspective. These questions range from the ob-
jective consistency for machine interpretation to
the subjective complexity for user understanding.
Specifically, the DSL should maintain (i) simplic-

ity, i.e., being easy to understand both syntac-
tically and semantically; (ii) clarity, i.e., prun-
ing unnecessary space for generalization; and (iii)
conciseness, i.e., avoiding redundant concepts and
relations. Please refer to Appx. E.2 for details.

4.3 Quantitative evaluation

Method To quantitatively evaluate the ef-
fectiveness of DSL-based constraints in proto-
col representation, we leverage maximum-recall
domain-specified ontology knowledge extracted
from domain-specific corpora. Such ontology, rep-
resented as a graph consisting of concept-relation
triplets, serves as the groundtruth for our assess-
ment on the DSLs designed by AutoDSL.

Results The analysis on the DSLs designed
by AutoDSL , comparing with BioCoder across
several domains, is detailed in Fig. 5A. Specif-
ically, our DSLs adeptly model 43.47% of the
concepts with precise constraints, i.e., sound-
ness, of which 25.93% showcase a direct one-
to-one correspondence, i.e., lucidity. Furthermore,
the completeness metric reveals that 50.51% of
DSL constraints correspond with specific do-
main concepts, and 37.74% of constraints are
uniquely aligned with a single domain concept,
i.e., laconicity. In contrast, BioCoder demonstrates
significantly lower performance metrics (lucid-
ity: 1.05%, soundness: 1.61%, laconicity: 5.46%,
completeness: 9.22%). This trend of a 5-to-20-fold
improvement in the resulting DSLs over BioCoder
on each metric is consistent across the five do-
mains, as highlighted in our results.

Discussion The quantitative evaluation un-
derscores the superiority of the DSLs designed
through AutoDSL over BioCoder, the established
DSL hand-crafted by domain experts, in terms
of four quantitative metrics. Despite the inherent
specificity of the protocols, this assessment high-
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lights that a compact subset of constraints can be
precisely defined and extracted. These results val-
idate our framework’s ability to model constraints
that more accurately and effectively encapsulate
domain-specified procedural knowledge.

4.4 Empirical evaluation

Method We institute an automatic evalua-
tion framework leveraging a state-of-the-art LLM,
e.g., GPT-4, augmented with a novel Question-
answering System (QA System) designed to sim-
ulate the analytical capabilities of human domain
experts. This QA System is engineered using an
index vector embedding technique to integrate
domain-specific corpora from the five domains
into the LLM. To facilitate nuanced and domain-
aware responses, we employed advanced prompt-
engineering strategies, including the Chain-of-
Thought (CoT) technique (Wei et al., 2022), en-
abling the QA System to generate assessments that
closely mirror those of a domain expert. The sys-
tem’s empirical evaluation was predicated on its
performance across a set of 50 meticulously de-
signed questions, as delineated in Appx. E.2.

Meta-evaluation Prior to deploying this auto-
mated evaluation mechanism across our DSLs, we
conduct a preliminary meta-evaluation to ascertain
the congruence between the QA System’s assess-
ments and those of human domain experts, fol-
lowing the routine of automatic evaluation (Schuff
et al., 2023). This process involves a compara-
tive analysis on four subsets extracted from our
DSLs and BioCoder, with both human domain ex-
perts pN “ 3q and the QA System providing rat-
ings. We observe no significant evidence support-
ing that human experts and the QA System rate
differently (tp99q “ ´1.282, µd ‰ 0, p “ .202),
validating the application of our automated evalu-
ation framework in assessing the resulting DSLs.

Results In the ensuing phase, the QA System
appraises the five DSLs, yielding ratings and con-
fidence scores. A subsequent analysis employ-
ing paired samples T-tests (see Fig. 5B; tp49q “
3.487, µd ď 0, p ă .005) substantiated that our
resulting DSLs exhibit quality metrics on par with
those of BioCoder — the benchmark DSL metic-
ulously crafted using C/C++.

Discussion The empirical evaluation not only
underscores the viability of our AutoDSL frame-
work in automating the design of domain-specific
languages, but also highlights its potential to

match or even surpass the quality of manually en-
gineered solutions like BioCoder. It is primarily
attributed to the design decisions to optimize a
broad language feature set for compact syntactic
constraints; and to tailor operations for the domain
for precise semantic constraints. These strategies
establish a clean and compact DSL-based con-
straint that adheres to domain conventions.

5 Constraint utility assessment

In this section, we evaluate the utility of leverag-
ing DSL-based constraints for the representation
of new coming experimental protocols across the
five domains, considering both syntax and seman-
tics. Please refer to Tab. 1 for a demonstration.

5.1 Materials

Our dataset includes 186 new coming protocols,
meticulously collected from recent experiments
by domain experts across the specified domains.
These protocols, which have been validated for ac-
curacy, serve as a testbed for evaluating the perfor-
mance of DSL-based constraints on unseen data
during the design phase. We identify the chal-
lenges with four syntactic features — Imperative
control flows, Type system, Concurrent, and Re-
active model. There are also three semantic errors
— Action undefinition, Parameter omission, and
Parameter under-specification.

For syntactic constraints, we determine the suc-
cess rate by calculating the proportion of sam-
ples where the target challenging syntactic fea-
tures are accurately constrained. Similarly, for se-
mantic constraints, the success rate is assessed by
the proportion of samples where the DSL suc-
cessfully identifies and resolves semantic errors.
For fair comparison, we transform the varied out-
puts from different approaches to a unified JSON-
style representation. For strings referring to names
of instances, we relax the exact-match criteria to
similarity-based score (Papineni et al., 2002).

5.2 Methods

We employ a multi-dimensional approach to as-
sess the utility of DSL-based constraints, compar-
ing them with several alternative methods. This
maintains the integrity of an end-to-end workflow
with minimal adjustments to the LLM.

Our DSL-based constraint & LLM Incor-
porating DSL as an external constraint involves
using it as an interpreter for the programs gener-
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Figure 6: Constraint utility assessment results on the five experimental science domains between DSL-based constraint
and alternative models. (A) Results on syntactic constraint utility assessment (higher is preferred). (B) Results on semantic
constraint utility assessment (lower is preferred). (C) New coming protocols represented with syntactic or semantic constraints.

ated by the LLM. Following protocols suggested
by recent research (Gao et al., 2023; Zhang et al.,
2023), we prompt the LLM with DSL syntax
grammar and semantics operation set with running
examples, directing it to translate procedural texts
into corresponding programs. These programs are
then verified and potentially corrected using the
DSL’s syntactic and semantic constraints. This ap-
proach minimizes external dependencies, striving
for a seamless plug-and-play integration between
DSLs and LLMs. We utilize GPT-3.5 as the back-
bone model, resulting in DSL-LLM.

Programming language & LLM As com-
parative baselines, we explore the use of an-
other DSL, BioCoder, and a general-purpose pro-
gramming language, Python, with GPT-3.5 as the
base model. These methodologies are denoted
as BioCoder-LLM and Python-LLM, respec-
tively. The main variance lies in the adoption
of one-shot generation for fair comparison, given
GPT’s pre-existing familiarity with both BioCoder
and Python’s coding paradigms.

Structural representation & LLM We also
examine the effectiveness of elementary structural
knowledge representation, specifically Knowledge
Graph (KG), as a simpler alternative. This method,
KG-LLM, leverages entity-relation extraction tech-
niques for knowledge structuring.

LLM only Finally, we assess the capability of
naive LLMs operating without any structural con-
straints, particularly using GPT-3.5 and GPT-4, to
gauge the impact of LLM advancements alone,
named after LLM-only and LLM-only+.

5.3 Results

Syntactic constraints Our investigation into
syntactic constraints shows that DSL-LLM sur-
passes all alternative approaches in terms of suc-
cess rate across the five domains (see Fig. 6A).
In the analysis of syntactic constraints across five
domains, DSL-LLM achieves a success rate of
93.5%, which significantly outperforms the coun-
terparts without programming language represen-
tation (χ2p1q “ 3.979, p ă .05), and also out-
performs the counterparts with general syntactic
constraints. This substantiates the efficacy of these
domain-specific syntactic constraints in meticu-
lously constraining non-trivial protocols.

Semantic constraints The assessment of se-
mantic constraints reveals that DSL-LLM outper-
forms both the strong and weak baselines (see
Fig. 6B) regarding the three types of errors. In
the context of Genetics domain, DSL-LLM yields
a success rate of 93.7% in addressing semantic
errors, significantly outperforms alternative meth-
ods, as indicated by statistical evidence (χ2p1q “
8.378, p ă .005 in action undefinition; tp185q “
´3.215, µd ă 0, p ă .005 in parameter omis-
sion; and tp185q “ ´2.164, µd ă 0, p ă .05 in
parameter under-specification). These underscore
the domain-specific semantic constraints’ capabil-
ity in enhancing accuracy of protocol representa-
tion, which is crucial for successful experiments.

5.4 Discussion

The performance of alternative approaches basi-
cally aligns with our expectation (see Fig. 6C).
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Table 1: Showcases of protocol representations with all approaches. (OP: original protocol; GT: ground truth; L+:
LLM-only+; each abbreviation consists of the two initials from both sides of the dash in each approach name)

OP RNA Determination: Add ammonium acetate
buffer and RNaseT2, then incubate.

Bile Processing: Use a centrifuge tube to spin
at 3000g for 10 min at 4°C.

Bile Collection: Collect bile into a sterile col-
lection bottle.

GT ADD: [[Reg: ammonium acetate
buffer], [Container: None],
[Volume: None], [Reg: RNaseT2]]
-> incubated RNaseT2

SPIN: [[Force: 3000g], [Time:
10min], [Temperature: 4°C],
[Container: centrifuge tube]]
-> centrifuged sample

COLLECT: [[Reg: bile], [Volume:
None], [Container: sterile
collection bottle]] -> bile
sample

DL ADD: [[Reg: ammonium acetate
buffer], [Container: None],
[Volume: None], [Reg: RNaseT2]]
-> incubated RNaseT2

SPIN: [[Force: 3000g], [Time:
10min], [Container: centrifuge
tube], [Temperature: 4°C]] ->
centrifuged sample

COLLECT: [[Reg: bile], [Volume:
None], [Container: sterile
collection bottle]] -> bile
sample

BL ADD: [[Reg: ammonium acetate
buffer], [Volume: None], [Reg:
RNaseT2]] -> incubated RNaseT2

SPIN: [[Container: tube],
[Force: 3000g], [Time: 10min],
[Temperature: 4°C]] ->

COLLECT: [[Container: sterile
collection bottle]] ->
centrifuged pellet

PL ADD: [[Reg: ammonium acetate
buffer], [Volume: None], [Reg:
RNaseT2]] -> incubated RNaseT2

SPIN: [[Force: 3000g], [Time:
10min], [Temperature: 4°C]] ->
centrifuged sample

CENTRIFUGE: [[Container:
bottle]] -> centrifuged bile

KL : [] -> STEP1: [[Force: 3000g], [Time:
10min], [Temperature: 4°C]] ->

: [] ->

LO : [] -> STEP: [[Device: centrifuge],
[Force: 3000g], [Time: 10min],
[Temperature: 4°C]] ->

CENTRIFUGE: [[Container:
sterile collection bottle]]
-> centrifuged bile

L+ ADD: [[Reg: ammonium acetate
buffer], [Reg: RNaseT2]] ->
incubated RNaseT2

SPIN: [[Device: tube], [Time:
10min], [Force: 3000g],
[Temperature: 4°C]] -> sample

CENTRIFUGE: [[Reg: bile],
[Container: sterile collection
bottle]] -> collected bile

Among them, DSL-LLM demonstrates the highest
performance in addressing both syntactic and se-
mantic constraints. While BioCoder-LLM and
Python-LLM, the strong baselines, are outper-
formed by DSL-LLM in most times, they still ex-
hibit substantial advantages over other baselines.
This phenomenon can be attributed to the mer-
its shared by programming languages, such as the
ability to represent structural knowledge at vari-
ous levels of granularity. Although not as effective
as semantics constraints, which exactly define the
structures and legal ranges for the space of opera-
tions, reagents, and conditions, this type of repre-
sentation still constrains the potential search space
to some extent. On the other hand, the flattened
structural representation of KGs cannot provide
the same level of expression capacity for KG-LLM
as programming languages. Despite the expecta-
tion that GPT-4 would be much more capable
than GPT-3.5, the performances of LLM-only
and LLM-only+ are comparable, suggesting that
a pure text representation may not be suitable for
processing complicated procedures like protocols.
The relative success of DSL-LLM indicates the po-
tential of DSLs as external constraints for LLMs.

6 General discussions

In this work, we present the AutoDSL framework
as a proof-of-concept to facilitate the automa-
tion of designing DSL-based constraints across
various domains. Through both quantitative and
qualitative evaluations of the DSLs designed by
AutoDSL in five distinct domains, we demonstrate

its capability as an auxiliary module for LLM.
Rationale behind DSL The decision to lever-

age DSL for constraint representation is rooted
in several considerations. Primarily, DSLs adeptly
capture domain-specified syntactic and semantic
constraints, aligning well with the hardness of rep-
resenting protocols with complicated control flows
and operations. Moreover, DSLs leverage a de-
terministic verification mechanism derived from
general-purpose programming languages, offering
a robust means of imposing constraints on the in-
herently nondeterministic outputs of LLMs. Ad-
ditionally, DSLs are user-friendly to both humans
and machines, maintaining a minimal set of lan-
guage features that facilitate ease of adoption.

No universal constraint It is unrealistic to
expect a one-size-fits-all protocol constraint appli-
cable across varied domains. For a constraint sys-
tem to accurately delineate the execution space of
a particular domain, it must encompass domain-
specific syntax and semantics. Though it is possi-
ble to devise a comprehensive set of constraints
that covers the requirements of all conceivable
domains, such an approach would yield a con-
straint system of prohibitive complexity, ren-
dering it impractical for end-users. Conversely,
simplifying this universal constraint to enhance
user-friendliness inevitably compromises its ca-
pability, leading to the expressivity-complexity
dilemma (Abelson and Sussman, 1996). Rather
than seeking an elusive generality, focusing on
domain-specific constraint development and striv-
ing for the automation of this process may offer a
pragmatic way to circumvent this dilemma.
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Ethics statement

Human participants The meta-evaluation
and data annotation included in this work has been
approved by the Institutional Review Board (IRB)
of Peking University. We have been committed
to upholding the highest ethical standards in con-
ducting this study and ensuring the protection of
the rights and welfare of all participants. Every do-
main expert was paid on a wage of $22.5 per hour
for participating in the meta-evaluation and data
annotation. We have obtained informed consent
from all participants, including clear and com-
prehensive information about the purpose of the
study, the procedures involved, the risks and bene-
fits, and the right to withdraw at any time without
penalty. Participants were also assured of the con-
fidentiality of their information. Any personal data
collected, including name, age, gender, institution,
and education background, was handled in accor-
dance with applicable laws and regulations.

Corpora collection We carefully ensure that
all experimental protocols incorporated into our
corpora strictly adhere to open access policies,
governed by the Creative Commons license. This
approach guarantees full compliance with copy-
right and intellectual property laws, eliminating
any potential infringement or unauthorized use of
protected materials. By exclusively utilizing re-
sources that are freely available and legally dis-
tributable, we uphold the highest standards of eth-
ical conduct in research, fostering an environment
of transparency and respect for the intellectual
property rights of others. This commitment en-
sures that our work not only advances the frontiers
of knowledge but does so in a manner that is both
legally sound and ethically responsible.

Limitations

As a proof-of-concept work, the design and eval-
uation of AutoDSL come with limitations, leading
to further investigations:
• We majorly consider the imperative program-

ming model as the prior model for DSL de-
sign in the work. This raises the question
of whether incorporating alternative program-
ming paradigms, such as functional and object-
oriented models, could enhance the representa-
tion of complex entities within protocols, partic-
ularly the properties of reagents.

• AutoDSL ’s current framework outputs only syn-
tactic and semantic constraints, lacking an ex-

plicit production system. This leads to the ques-
tion of whether it is feasible to augment the
AutoDSL framework to autonomously gener-
ate both a production system and a constraint
system, leveraging domain-specific corpora and
pre-existing knowledge on programming lan-
guages. Such an enhancement could signifi-
cantly improve DSL’s potential on planning.

• To ensure a fair comparison and to underscore
the plug-in capability of the developed DSLs,
only minimal prompt engineering is applied in
protocol processing. This posits the potential for
developing tools that could more effectively in-
tertwine DSLs with LLMs.

• Notably, the DSL-InfoBio’s quantitative evalu-
ation outcomes are markedly inferior to those
of its DSL counterparts. Considering the no-
tably smaller size of the InfoBio domain corpus
relative to other domain-specific corpora, this
prompts an investigation into the potential cor-
relation between the scale of a domain corpus
and the quality of the resulting DSL.

With many questions unanswered, we hope to ex-
plore more on automated design of DSL-based
constraints for procedural representation.
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A Additional remarks

A.1 AutoDSL and expert systems
The expert system is a highly structured representation of knowledge, and has been intensively studied
while widely applied in the past few decades. Compared with the statistical model, however, it often
requires more hand-crafted effort for development, and the workload increases dramatically with the
increasing generality level. This echoes the primary goal of our proposed AutoDSL framework, which
makes efforts to formulate the structure of knowledge representation, similar to classic expert systems
such as Buchanan and Feigenbaum (1978); Feigenbaum (1981), while adopting the power of data and
LLM for domain generality and adaptation.

A.2 AutoDSL framework and LLM
The current AutoDSL framework is essentially an LLM-in-the-loop approach. In the pre-processing of
raw protocols, we take full advantage of LLM for conducting state-of-the-art Information Extraction (IE),
obtaining key information from raw text, such as entities of operations, entities of conditions, and rela-
tions between different operations, etc. Such key information is taken as the input of our core algorithms
for syntactic constraint optimization and semantic constraint abstraction.

We would like to reiterate that AutoDSL is not an alternative for LLM. The proposed AutoDSL frame-
work is in essence yet another workflow for utilizing LLM to handle protocols with constraints. Com-
pared with pure end-to-end workflow of LLM for producing such constraints, our framework is designed
to be an explicit two-stage workflow. In the first stage, the framework automatically designs DSLs for
target domains in a bidirectional optimization fashion. In the second stage, the resulting DSLs serve as
plug-and-play constraint modules for all kinds of LLMs to handle protocols precisely, preventing them
from generating free-formed and non-determinstic procedural interpretations.

B On the generality of AutoDSL

B.1 Generalize in the context of experimental protocols
Regarding domains related to experimental sciences, there are syntactic constraints shared by domains
and those unique to domains respectively, as we have discussed in Sec. 3.4. These shared syntactic
constraints mainly reflect the procedural nature across domains, and unique ones attributed to the com-
position types and the interruption in procedure execution. Through the following demonstrations, we
aim to show that while semantic constraints are more diverse than syntactic constraints, there are still
substantial distinctions between syntactic constraints across different domains.

Shared syntactic constraints across domain There are some examples of syntactic constraints that
are shared across different areas:

• allocate-statement: Inoculate 5 ml LB medium containing 100 µg/ml ampicillin with bac-
teria.

• if-branch: If cells are to be treated with PTX, divide them into two groups: one receives 100
ng/ml PTX.

• parallel-for: Iterate different MgCl2 concentrations (1.5mM, 2.0mM, 2.5mM, and 3.0mM)
to find the optimal concentration for DNA amplification.

• temporal-type-declaration: Gently shake the reagent for 5 seconds to mix.

Unique syntactic constraints of one particular domain There are some examples of syntactic
constraints that are unique to particular domains respectively:

• In BioEng, container-type-declaration: Resuspend the pellet in PBS to refill the tube.

• In Ecology, string-type-declaration: Close the soundproof chamber as instruction man-
ual (see "https://—").

12189



• In InfoBio, raise-statement: If unbalanced spectral peaks, noisy data, and frame loss occur
during recording, ensure to subtract background noise and adjust for hemodynamic changes.

Unique semantic constraints of one particular domain There are some examples of semantic
constraints that are unique to particular domains respectively:

• In Genetics,

– DILUTE: Dilute the Spike-inAmpR fragment to a concentration of 65.6 nM.
– ATTACH: Attach a Slide-A-Lyzer Float Buoy to the top (single) dialysis clip.
– DELETE: Detect the flow-through samples from each step with SDS-PAGE gel.

• In Medical,

– ASPIRATE: Aspirate the DPBS and add 40 µ03bcL of Sigma Lysis Solution for Blood.
– ANESTHETIZE: Anesthetize the rat intraperitoneally (i.p.).
– DISSECT: Dissect the fly brain under a stereomicroscope with light sources.

• In Ecology,

– STERILIZE: Sterilize the seeds with 5% (v/v) sodium hypochlorite.
– QUANTIFY: Quantify the eggs by placing washed eggs in a 10-mL graduated cylinder.
– CALIBRATE: Calibrate the motion sensor using a two-axis actuator.

B.2 Generalize beyond experimental protocols
AutoDSL focuses on a specialized form of natural language: procedural text, and is designed to for-
malize this procedural text, offering a clear execution trace and a readily verifiable interface. We select
experimental sciences experiments for their demands on high interpretability, stringent execution, and
adaptable planning. This methodology can be easily applied to new domains beyond experimental sci-
ences, where such rigorous conditions are not necessary, including culinary recipes. Examples of various
syntactic constraints are provided in Tab. A1.

Table A1: Showcases of syntactic constraints in culinary recipes

Constraint Original recipe text

integer-type-declaration 8 [ounces] white fresh {pasta}
device-type-declaration Yield: 2 plates

floatingpoint-type-declaration 1/3 [cup] red {wine}
temporal-type-declaration After |2 minutes| more, add the beef.

We can also effectively design a DSL with such a corpus where actions happen in a kitchen instead of
a lab. We showcase a recipe example adopted from the Corel1 DSL as follows.

1 Pasta Bolognese

2
3 Yield: 2 plates

4
5 Ingredients:

6
7 - 8 [ounces] white fresh {pasta}

8 - 1 [floz] olive {oil}

9 - 1/4 [ounce] {garlic}; minced

10 - 4 [ounces] {onions}; chopped

11 - 4 [ounces] shallow fried {beef}; minced

12 - 1 - 1 1/2 [ounce] lean prepared {bacon}

13 - 1/3 [cup] red {wine}

1Visit https://fse.studenttheses.ub.rug.nl/25731/ for documentation.
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14 - 150 [gram] raw {carrots}; thinly sliced

15 - 2/3 [ounce] concentrated {tomato puree}

16 - 4 [ounces] red {sweet pepper}; cut julienne

17 - 1 [ounce] {parmesan} cheese

18
19 Instructions:

20
21 Add the @oil@ to a large saucepan, heat to <300 F>, and saute the @onions@.

22
23 After |2 minutes|, add the @garlic@.

24
25 Keep on medium to high heat, and don't stir.

26
27 After |2 minutes| more, add the @beef@.

28
29 Fry the @bacon@ in a separate pan, on high heat.

30
31 Remove liquified fat when done.

32
33 Boil @pasta@ in a medium pan, until al dente (~|8 minutes|).

34
35 Drain when done.

36
37 Once the @beef@ is done, add the @carrots@, @sweet pepper@ and @tomato puree@.

38
39 Slowly add the @wine@ as well, to not lower the temperature.

40
41 Let it simmer (but not boil) for |5-10 minutes|.

42
43 Add the @bacon@ to the large saucepan.

44
45 Serve with grated @parmesan@ cheese.

Based on the example, it is trivial to figure out that the constraints on cooking recipes are essentially in
a subset of those scientific procedures. The cooking procedures mainly focus on sequentially executing
the actions without switching their execution orders. Also, most of the culinary ingredients are processed
in single-thread fashion without duplication for different experimental groups. Hence, the Corel DSL
does not require some syntactic constraints for non-linear control flows, such as loop, branch, and
split, while these constraints are dominant in DSLs for protocols. AutoDSL will adaptively exclude
these unnecessary features when optimizing the DSL for culinary procedures given the corpus of recipes.
Regarding semantics constraints, there are fewer shared semantics on operations, ingredients, and condi-
tions between cooking and experimental sciences compared to those semantics shared between different
domains within experimental sciences. However, this increment of semantic diversity would not yield
significant challenge for AutoDSL , as our semantic reduction does not rely on domain transfer.

B.3 Extended discussions

When considering both syntactic and semantic constraints across different domains, we observe that
there are significant differences within the context of experimental sciences. However, when looking at a
more general context that encompasses all possible procedural knowledge worldwide, these differences
tend to converge. This suggests that DSLs may have a hierarchical structure in the general context. The
shared features of different DSLs are more common closer to the root, such as the operation incubate
shared by Genetics and Ecology in experimental sciences, and the operation add shared by Genetics,
Ecology, and cooking. These common DSL constructs possess general semantics. On the other hand, as
we move closer to the leaf, the majority of DSL constructs become specialized for unique domains. This
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parallels the spectrum of naturalism in sciences (Shi et al., 2023), ranging from a general community
with convergent high-level concepts to a specific community with divergent low-level knowledge.

C Implementation details

C.1 Implementation of the syntax prior model

We employ the CFG generally for designing modern imperative programming language as the prior
model ppZ|Sq for syntax optimization.

1 <program> ::= <statements>

2
3
4 <statements> ::= <statement>

5 | <statement> <statements>

6
7 /* All support */

8 <statements> ::= <imperative-model>

9 | <runtime-error-handling>

10 | <type-system>

11 | <concurrent>

12 | <react>

13
14
15 /* Imperative Model */

16 <imperative-model> ::= <if-statement>

17 | <loop-statement>

18 | <jump-statement>

19 | <memory-management>

20 | <function-procedure>

21 | <arithmetic-expression>

22 | <logical-expression>

23 | <assignment-expression>

24
25 <if-statement> ::= "if" "(" <expression> ")" "{" <statements> "}"

26 | "if" "(" <expression> ")" "{" <statements> "}" "else" "{" <

statements> "}"

27
28 <loop-statement> ::= "While" "(" <expression> ")" "{" <statements> "}"

29 | "For" "(" <assignment-expression> ";" <expression> ";" <

assignment-expression> ")" "{" <statements> "}"

30
31 <jump-statement> ::= "break"

32 | "continue"

33
34 <function-procedure> ::= "Call" <identifier> "(" <arguments> ")"

35 | "Function" <identifier> "(" <parameters> ")" "{" <

statements> "}"

36
37 <memory-management> ::= "allocate" <type> <identifier>

38 | "deallocate" <identifier>

39
40 <assignment-expression> ::= <identifier> "=" <expression>

41
42 <arithmetic-expression> ::= <expression> <arithmetic-operator> <expression>

43
44 <logical-expression> ::= <expression> <logical-operator> <expression>

12192



45
46 /* Runtime Error Handling */

47 <runtime-error-handling> ::= <raise-stmt>

48 | <resolve-stmt>

49
50 <raise-stmt> ::= "raise" "(" <expression> ")"

51
52 <resolve-stmt> ::= "try" "{" <statements> "}" "catch" "(" <identifier> ")" "{" <

statements> "}"

53
54 /* Type System */

55 <type-system> ::= <data-type>

56 | <class-type>

57 | <domain-specified-type>

58
59 <domain-specified-type> ::= "time"

60 | "reagent"

61 | "device"

62 | "container"

63 | <scientific-type>

64
65 <data-type> ::= "int"

66 | "float"

67 | "bool"

68 | "string"

69 | "set" "<" <type> ">"

70 | "dict" "<" <type> "," <type> ">"

71 | "vector" "<" <type> ">"

72
73 <class-type> ::= "class" <identifier> "{" <class-body> "}"

74
75 <kind-type> ::= "type" <identifier> "=" <type>

76
77 <class-body> ::= <class-members>

78
79 <class-members> ::= <class-member> | <class-member> <class-members>

80
81 <class-member> ::= <variable-declaration>

82 | <method-declaration>

83
84 <variable-declaration> ::= <assignment-expression>

85
86 <method-declaration> ::= <function-procedure>

87
88 /* Concurrent Programming */

89 <concurrent> ::= <data-parallel>

90 | <message-passing>

91
92 <data-parallel> ::= "parallelFor" "(" <parallel-range> ")" "{" <statements> "}"

93 | "parallelMap" "(" <collection> "," <function> ")"

94
95 <parallel-range> ::= "range" "(" <expression> "," <expression> ")" // Define start,

end of range

96
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97 <collection> ::= <identifier> // Reference to a collection of data, e.g., array,

list

98
99 <function> ::= <identifier> // Reference to a function to apply in parallel

100
101 <message-passing> ::= "spawnProcess" "(" <process-function> ")"

102 | "sendMessage" "(" <process-identifier> "," <message> ")"

103 | "receiveMessage" "(" <message-type> ")"

104
105 <process-function> ::= <identifier>

106
107 <process-identifier> ::= <identifier>

108
109 <message> ::= <expression>

110
111 <message-type> ::= <type>

112
113
114 /* React Model */

115 <react> ::= <event-stmt>

116 | <response-stmt>

117
118 <event-stmt> ::= "emit" "(" <event> ")"

119
120 <response-stmt> ::= "on" "(" <event> ")" "{" <statements> "}"

121
122 /* Auxiliary Definitions */

123 <type> ::= <data-type> | <class-type> | <kind-type> | "void"

124
125 <parameters> ::= <empty> | <parameter> | <parameter> "," <parameters>

126
127 <parameter> ::= <identifier> ":" <type>

128
129 <arguments> ::= <empty> | <expression> | <expression> "," <arguments>

130
131 <arithmetic-operator> ::= "+" | "-" | "*" | "/"

132
133 <logical-operator> ::= "&&" | "||" | "!"

134
135 <identifier> ::= <letter> (<letter> | <digit>)*
136
137 <letter> ::= "A" | "B" | ... | "Z" | "a" | "b" | ... | "z"

138
139 <digit> ::= "0" | "1" | "2" | ... | "9"

140
141 <event> ::= <identifier>
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C.2 Implementation of the prior belief function

ppθk|ciq serves as a prior and represents the probability that programming language features θk are
present within the experimental protocol ci.

ppθk|ciq “

$
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’%

max
Lpopcq
i“1 ExistspINTiq if θk “ interger-type-declaration

max
Lpopcq
i“1 ExistspFLOATiq if θk “ floatingpoint-type-declaration

max
Lpopcq
i“1 maxpExistspTRUEiq,ExistspFALSEiqq if θk “ boolean-type-declaration

max
Lpopcq
i“1 ExistspSTRINGiq if θk “ string-type-declaration

max
Lpopcq
i“1 maxtSpNOUNi,"vector"qu if θk “ vector-type-declaration

max
Lpopcq
i“1 maxtSpNOUNi,"dictionary"qu if θk “ dict-type-declaration

max
Lpopcq
i“1 maxtSpNOUNi,"set"qu if θk “ set-type-declaration

max
Lpopcq
i“1 ExistspTIMEiq if θk “ temporal-type-declaration

max
Lpopcq
i“1 maxtBelongTopNOUNi,Chemqu “ max

Lpopcq
i“1 ExistspCHEMiq if θk “ reg-type-declaration

1 if θk “ device-type-declaration

max
Lpopcq
i“1 maxtBelongTopNOUNi,Containerqu “ max

Lpopcq
i“1 ExistspCONTAINERiq if θk “ container-type-declaration

1 if θk “ scientific-type-declaration

max
Lpopcq
i“1 Spopci,"repeat"q if θk “ for-loop

max
Lpopcq
i“1 Spopci,"repeat"q ˆ !ExistspINTiq if θk “ while-loop

max
Lpopcq
i“1 ExistspIFiq if θk “ if-branch

max
Lpopcq
i“1 ExistspIFiq ˆ ExistspELSEiq if θk “ if-else-branch

max
Lpopcq
i“1 Spopci,"call"q if θk “ function-procedure-call

max
Lpopcq
i“1 Spopci,"call"q if θk “ function-procedure-declaration

Qpwhile-loop|cq ˆQpif-branch|ciq if θk “ break-statement
0 if θk “ continue-statement

max
Lpopcq
i“1 maxtBelongTopNOUNi,Chemq,BelongTopNOUNi,Containerqu if θk “ allocate-statement

max
Lpopcq
i“1 ExistspADDiq if θk “ add-arithmetic-operator

max
Lpopcq
i“1 ExistspMINUSiq if θk “ minus-arithmetic-operator

max
Lpopcq
i“1 ExistspMULTIPLYiq if θk “ multi-arithmetic-operator

max
Lpopcq
i“1 ExistspDEVIDEiq if θk “ devid-arithmetic-operator

max
Lpopcq
i“1 ExistspANDiq if θk “ and-arithmetic-operator

max
Lpopcq
i“1 ExistspORiq if θk “ or-arithmetic-operator

max
Lpopcq
i“1 ExistspNOTiq if θk “ not-arithmetic-operator

max
Lpopcq
i“1 ExistspEQUALiq if θk “ assignment-expression

max
Lpopcq
i“1 maxtSpNOUNi,"error"qu if θk “ raise-statement

max
Lpopcq
i“1 Spopci,"resolve"q ˆ maxtSpNOUNi,"error"qu if θk “ resolve-statement

D x P Chem :
řLpopcq

i“1 Existspx P NOUNiq ě ϵ if θk “ class-type-declaration

max
Lpopcq
i“1 ExistspPERSONSiq if θk “ spawn-process

Qpspawn-process|cq ˆ max
Lpopcq
i“1 Spopci,"say"q if θk “ send-message

Qpspawn-process|cq ˆ max
Lpopcq
i“1 Spopci,"say"q if θk “ receive-message

max
Lpopcq
i“1 ExistspWHENiq if θk “ event-statement

max
Lpopcq
i“1 ExistspWHENiq if θk “ response-statement

max
Lpopcq
i“1 ExistspLpNUMiq ě ϵq if θk “ parallel-for

max
Lpopcq´1
i“1 max

Lpopcq
j“i`1 ExistspCHEMiq ˆ ExistspCHEMi “ CHEMjqˆ

!ExistspPRONiq ˆ !ExistspPRONjq ˆ p1 ´ SpSentencei,Sentencejqq
if θk “ parallel-map

In the context of our prior belief function, Chem and Container are predefined sets. The set
Sentence includes all possible sentences, each of which begins with an opcode. These opcodes to-
gether constitute the set "opc." In our algorithm, we assign ϵ with 4 and assign δ with 0.5.

We derive these various sets from filtering based on specific rules.
For pre-processing, We utilize regular expressions to match a variety of elements, such as integers,

floating-point numbers, boolean values, strings, and control flow elements. Then, we employ speech
tagging to label nouns and pronouns (Schmid, 1999). Afterwards, we conduct entity recognition for the
identification of chemical elements.

To determine word similarity, we employ word embedding model to calculate cosine similari-
ties (Mikolov et al., 2013). To assess sentence similarity, pairwise word similarity scores are averaged
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across the words in the sentences. Furthermore, we use GPT-3.5 to extract initial specific scientific data
types. Subsequently, the preliminary extraction results are filtered through a list of candidate words to
obtain the final results.

The prompt is as follows:

1 You need to identify and list any physical chemistry scientific quantities mentioned

in the following experimental procedure.

2 Requirements:

3 1. The output format should be only one per line as "Original Text: Scientific

Quantity".

4 2. Please extract information from the given sentences without creating your own

summaries.

5 Output Example:

6 50mL: Volume

7 {}

8 The given experimental procedure are:

9 {}

The filtering word list is as follows:

1 "Volume", "Temperature", "Length",

2 "Energy", "Concentration", "Mass", "Speed", "Acceleration", "Density", "Frequency",

3 "Force", "Acidity", "Flow Rate", "Pressure", "Voltage"

C.3 Implementation of feature vector transformation

Each xi in the dataset X “ tx1,x2, ...,xNu is a feature vector representing an operation pattern extracted
from the corpora. To obtain this dataset, we extract all sentences starting with verbs from the dataset
using NLTK’s part-of-speech tagging firstly. We then utilize GPT to annotate the parameters within
these sentences and ultimately convert them into ont-hot feature vectors.

The prompt is as follows:

1 You need to complete an entity recognition task with defined entity categories: {}

2 Requirements:

3 1. The output format should be annotated on the original sentence, and only the

annotated sentence should be output.

4 2. Please extract information from the given sentences without creating your own

summaries.

5 3. Text is in a laboratory setting, please carefully analyze the specialized terms

in the fields of biology and chemistry.

6 4. Please extract as many entities as possible from this sentence.

7 Example:

8 {}

9 The given sentences are:

10 {}

C.4 Implementation of DPMM

Spectral clustering via DPMM The DPMM facilitates the spectral clustering of these feature vec-
tors into groups representing unique atomic semantic constraints, accommodating the variability and
complexity of semantic patterns across different domain corpora. The iterative clustering process, cen-
tered around Gibbs sampling, estimates the posterior distributions of the model’s parameters. This not
only identifies distinct semantic constraints but also adapts to the intricate semantic patterns prevalent in
various domain-specified corpora.

Algorithm symbols and initialization Key symbols include X for the dataset of feature vectors;
N , the total number of samples; and L, the flexible number of clusters within the mixture model. Latent
variables W indicate cluster assignments for each xi, while Ψ encompasses the set of parameters for each
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cluster. The concentration parameter α influences new cluster formation likelihood, with σm serving as
the regularization term for parameter updates.

Initially, K “ 1 and cluster parameters ψ0 are set with generic values, e.g., µ “ 0, σ “ 1, assigning
all data points to an initial cluster (wi “ 0 for each i).

Gibbs sampling and posterior inference The core of the algorithm lies in the Gibbs sampling
loop, which iterates until convergence. It updates the cluster assignment wi for each xi by evaluating the
posterior distribution that incorporates the current parameter estimates and α. The posterior probability
of xi belonging to cluster l integrates the likelihood of observing xi given the cluster parameters and the
prior probability of cluster membership, formalized as:

ppwi “ l|w´i,xi, α,Ψq 9 ppxi|ψlq ¨ ppwi “ l|w´i, αq, (A1)

where ppxi|ψlq is the likelihood of observing xi under the parameters of cluster l, and ppwi “ l|w´i, αq
reflects the adjusted prior probability for existing clusters and the potential for new cluster formation,
influenced by α.

Following the assignment update, cluster parameters Ψ are recalibrated using Maximum A Posteriori
(MAP), applying regularization with σm to ensure stability and prevent overfitting.

C.5 Exemplar output
There are several examples demonstrating the abstraction from natural language instructions to semantic
patterns, from domains of Medical, Genetics, and Ecology.

Medical:

1 {

2 "TRANSECT": [

3 {

4 "pattern": ["REG", "REG"],

5 "example": [

6 "Transect the [aorta]{REG} proximally to the origin of the [

brachiocephalic trunk]{REG}.",

7 "Transect the [bile duct]{REG} close to the [pancreas]{REG}.",

8 "Transect the [SHVC]{REG} along with part of the diaphragm and [IHVC

]{REG} at the level of the left renal vein when the donor liver became pallid.",

9 "Transect the liver parenchyma of the [caudate lobe]{REG} and the [

Spiegel lobe]{REG}.",

10 "Transect the [infrahepatic inferior vena cava (IHIVC)]{REG} and

mobilize the [lVC]{REG} from retroperitoneal tissue."

11 ],

12 },

13 {

14 "pattern": ["REG", "Device"],

15 "example": [

16 "Transect the [cranial nerves]{REG} with the [scissors]{Device}.",

17 "Transect the [PHA]{REG} of the recipient at its root to expose the

vascular lumen using [micro-scissors]{Device}.",

18 "Transect the [femoral artery]{REG} in the section located between

the distal and proximal knots using [spring scissors]{Device}."

19 ],

20 },

21 {

22 "pattern": ["REG", "Device", "REG"],

23 "example": [

24 "Transect the [aorta]{REG} with [fine sharp scissors]{Device} (see

Table of Materials) just proximal to the [subclavian artery]{REG} takeoff."

25 ],

12197



26 },

27 {

28 "pattern": ["REG"],

29 "example": [

30 "Transect the [colon]{REG}.",

31 "Transect the [umbilical ligament]{REG}.",

32 "Transect the [IVC]{REG} 1 cm above the diaphragm.",

33 "Transect the [stretcher/opener motor nerve]{REG}."

34 ],

35 }

36 ]

37 }

Genetics:

1 {

2 "RESOLVE": [

3 {

4 "pattern": ["REG", "REG", "REG", "Length"],

5 "example": [

6 "Resolved 1 \u00b5l of the [PCR reaction]{REG} on a [DNA gel]{REG}

to confirm the successful reaction with a [DNA band]{REG} at about [10 kb]{

Length}.",

7 "Resolve 2 \u00b5l of the [PCR reaction]{REG} on a [DNA gel]{REG} to

confirm the successful reaction to see if a [PCR product]{REG} of [3.5 kb]{

Length} is present."

8 ],

9 },

10 {

11 "pattern": ["Concentration", "Concentration"],

12 "example": [

13 "Resolve [0.05%]{Concentration} of the input (=extract/lysate) and

at least [10%]{Concentration} of the eluates on a 4\u201315% Mini-PROTEAN\u00ae

TGX\u2122 Precast SDS-PAA gel."

14 ],

15 },

16 {

17 "pattern": ["REG", "REG"],

18 "example": [

19 "Resolve the cell pellet in [PBS]{REG} and [centrifuge]{REG} again

.",

20 "Resolve [5 \u00b5L]{Volume} of the [PCR]{REG} from [6-12]{String}

representative samples on a [2% (w/v)]{Concentration} [agarose gel]{REG}.",

21 "Resolve [10 \u00b5l]{Volume} of [PCR reactions]{REG} on [1%]{

Concentration} [agarose gel]{Container} ([TAE]{REG} or [TBE]{REG}) with a [1 kb

]{Length} [DNA ladder]{REG} to check for positive amplification ([Figure 3C]{

String})."

22 ]

23 }

24 ]

25 }

Ecology:

1 {

2 "DRILL": [

3 {

4 "pattern": ["Device"],
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5 "example": [

6 "Drill a hole big enough to allow the [sensor]{Device} to be

inserted.",

7 "Drill a hole at this coordinate using a [medium tip burr]{Device} (

Figure 3)."

8 ],

9 },

10 {

11 "pattern": [

12 "Length"

13 ],

14 "example": [

15 "Drill a hole (approximately [7 mm]{Length}) in the skull above the

target area using coordinates from a brain atlas according to the animal used.",

16 "Drill a craniotomy of approximately [1 mm]{Length} in diameter in

this location.",

17 "Drill the [craniotomy]{Length}."

18 ],

19 },

20 {

21 "pattern": [

22 "REG"

23 ],

24 "example": [

25 "Drill out the hole in the [pulley]{REG} to match the diameter of

the [motor shaft]{REG}.",

26 "Drill the [skull]{REG} on the marked point using a .9 mm diameter

steel drill tip."

27 ],

28 },

29 {

30 "pattern": [

31 "Length",

32 "Device"

33 ],

34 "example": [

35 "Drill a [3 in]{Length} hole in the top panel for the [fan]{Device

}.",

36 "Drill a small burr hole (approximately [0.5 mm]{Length}) using the

[Micro-Drill]{Device} at the [coordinates]{REG}."

37 ],

38 }

39 ],

40 }

C.6 Extended discussions

On the assignments of K and K 1 Empirically, K 1 and K are in the same order of magnitude, with
a difference roughly ranging in 25% „ 35%, in the experiments we have conducted. Intuitively, K 1
denotes an estimation of syntactic constraints before optimization and K is the exact total number of
syntactic constraints after optimization.
K 1 is specified by an appropriate initialization. It is grounded to a predefined upper bound according to

the size of the general syntax tree for C/C++. During the optimization process, the syntax tree is pruned
according to the observed distribution of syntactic constraints on the corresponding domain corpus.
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On the scale of training corpus In our studies, we have found that approximately 348 protocols,
with an average of 121 steps per protocol, totaling 42,108 steps, are needed as a minimum amount
of domain-specific corpus for the AutoDSL framework to work on a specific domain and to design a
DSL accordingly. This threshold ensures that the dataset possesses sufficient richness of domain-specific
context and is robust for extracting syntax and semantic constraints.

D Data sources

D.1 Corpora

Our corpora come from five websites including Nature2, Cell3, Bio4, Wiley5 and Jove6. From a domain
perspective, our corpora are classified into 5 domains including BioEng, InfoBio, Medical, Ecology and
Genetics. We quantified each domain corpus in Table A2 by assessing the website sources, total number
of protocols, and the average number of steps, actions, and objects per protocol. We only use sentences
with subject-verb-object and predicate-object constructions to count the steps, actions, and objects. In
addition, we performed the part-of-speech tagging of each word in the sentence, treating the verb as an
action and the noun as an object. To note, we take the prototype of the verb or noun for the statistics.

Table A2: Statistics of the corpora across five domains

Domain Nature Cell Bio Wiley Jove total step action type object type

InfoBio 0 298 0 50 0 348 121 120 280
Ecology 55 166 0 34 557 812 71 88 193
BioEng 941 1404 0 22 1230 3597 70 80 188
Medical 290 1530 1061 116 4354 7351 65 80 189
Genetics 1045 2296 3522 134 1797 8794 58 73 175

We demonstrate procedure cases from five domains with respect to sources.

1 [BioEng/Nature]

2 1. Virulent S. aureus MB 2865 \(Smith strain) was grown overnight with aeration in

TSB medium.

3 2. Bacteria were harvested and washed with fresh TSB and serially diluted to achieve

an infective inoculum of 4 x 10<sup>3</sup> CFU/mL in 5% hog gastric mucin, and

0.5 mL was used to infect intraperitoneally.

4 3. The infected mice were anesthetized using isoflurane \(Abbott). 0.5 inch hollow

connectors were attached to the external section of the JVC catheter and the

mice were subsequently harnessed to the counter-balance arm inside a mouse cage.

5 4. Fluid primed PE 20 tubings attached to individual syringes on the infusion pump

were connected to the mice through the 0.5 inch hollow connector.

6 5. The infusion pump was initiated for 24 hours at a flow rate of 0.1 mL/hour.

7 6. Blood samples are taken by tail vein to determine serum drug concentration during

the infusion.

8 7. After the 24 hour period, the mice were euthanized and the kidneys were

aseptically removed and homogenized.

9 8. Serial dilutions of the homogenates were plated on Mannitol plates and incubated

overnight at 37 ˝C.
10 9. Bacterial counts were enumerated \(ref. 2).

1 [InfoBio/Cell]

2 Timing: 1 h per experiment (for step 3)

3 The copulation-triggered photostimulation system detects copulation events

2https://protocolexchange.researchsquare.com/
3https://star-protocols.cell.com/
4https://bio-protocol.org/en
5https://currentprotocols.onlinelibrary.wiley.com/
6https://www.jove.com/
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4 in real time and turns on the green laser required for GtACR1-mediated

5 inhibition of neural activity. This system allows for the inhibition of

6 specific neural circuits in males only during copulation. In this assay,

7 we use males that express GtACR111[href=https://www.wicell.org#bib10] in

8 piezo-expressing neurons (w1118; +/+; piezo-GAL4/UAS-GtACR1.d.EYFP). As a

mating partner, we use

9 wild-type females. See

10 key resources table[href=https://www.wicell.org#key-resources-table] for

details on fly

11 strains.

12 Prepare GtACR1-expressing male flies.

13 Set up the fly crosses. Introduce parental flies (4-5

14 piezo-GAL4 males and UAS-GtACR1 virgin females) into

15 vials containing fly media. The detailed genotypes are listed in the

16 key resources table[href=https://www.wicell.org#key-resources-table].

17
18 Transfer parental flies (F0 fly) to fresh vials every 5 days.

19 Collect F1 males of the desired genotypes according to step 1 in

20 before you begin[href=https://www.wicell.org#before-you-begin].

21
22 Note: F0 flies are transferred to fresh

23 vials up to 2 times.

24
25 Note: Set-up several vials at a time to

26 obtain enough F1 male flies.

27
28 Note: Wild-type females are prepared as

29 mating partners according to step 1 in Before you begin.

30
31 Pause point: The experimenter can

32 decide the timing of subsequent feeding of all-trans-retinal (ATR) as long

33 as the tested flies are within 5-8 days after eclosion at the time of the

34 optogenetic assay.

35 Feeding of ATR. Male flies of the experimental group are fed food

36 containing ATR. Control males are fed food containing ethanol (EtOH)

37 solvent.

38 Prepare plastic tubes containing ~150 µL of fly food.

39
40 For the experimental group, add 2 µL of ATR, 25 mg/mL dissolved in

41 99.5% EtOH (need to be prepared just before use) on the food

42 surface. For the control group, add 2 µL of 99.5% EtOH on the food

43 surface instead of ATR.

44 Transfer males to a plastic tube containing fly food with the

45 surface covered with ATR (or EtOH) 24-36 h before the experiment.

46 Keep the male flies on prepared food for 24-36 h in the dark before

47 being used for the assays.

1 [Medical/Bio]

2 Spleens were obtained from naive and malaria-infected C57BL/6 mice and were

homogenized at room temperature in 6-well plates with 6 ml of HBSS with 2% FCS

through a 70 µm cell strainer to form single-cell suspensions. Red blood cells

were lysed using 1 to 2 ml of RBC lysing buffer (depending on size of spleen)

and splenocytes were washed once at 200 x g 4 ˝C for 5 min with cold FACS buffer

(HBSS with 2% FCS). Splenocytes were resuspended by gentle tapping on a rack

in FACS buffer and kept on ice at all times to avoid background phosphorylation

of STAT proteins. Viability and cell counts were obtained by trypan blue
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exclusion using a haemocytometer. Cells were washed once with 1 ml AIM V®

Medium, resuspended at 20 x 106 cells/ml and rested on ice for a minimum of 20

min. 1 ˆ 106 cells were incubated with 20 ng/ml rIL-2 or 2.5 ng/ml rIL-12 for

10 min at 37 ˝C, 5% CO2 (final volume of 200 µl) and immediately fixed on ice

for 15 min by adding an equal volume of 4% paraformaldehyde. Cells were

washed with FACS buffer, resuspended in 500 µl of 90% ice-cold methanol and

immediately stored down at -20 ˝C for a minimum of 2 h (cells can be kept for up

to a month without affecting further staining). Splenocytes were washed

twice with FACS buffer and stained in FACS buffer at room temperature for 30 min

for CD4 (GK1.5), CD44 (IM7), CD62L (MEL-14), T-bet (4B10) and phosphorylated

STAT4 (at residue Y693, clone 38) or phosphorylated STAT5 (at residue Y694,

clone 47). Cells were washed with FACS buffer and analysed by flow cytometry.

Fluorescence minus one controls were included to validate flow cytometric

results. Flow cytometry acquisition was performed using an LSR II.

1 [Ecology/Wiley]

2 Generating primary transformants

3 1. Sow seeds of the transformation on GM medium containing gentamicin to select for

transgenic plants harboring the T-DNA.

4 2. Let the seeds maturate for 2 weeks at 22˝C in a growth chamber.

5 3. For GT: Pick at least 40 T1 plants containing pDe-EC-ttLbCas12a and transfer them

to soil until maturity.

6 4. For cleavage activity: Extract DNA from 20 primary transformants containing the

pDe-ttLbCas12a construct via the rapid DNA extraction method (see Edwards et al

., 1991[href=https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/cppb

.20117#cppb20117-bib-0002]). Analyze the mutagenesis efficiency by e.g., TIDE (

see Critical Parameters).

7 5. Extract DNA from one leaf of each plant and set up a suitable PCR to verify the

presence of your construct.

8 Obtaining heritable GT plants

9 6. Harvest the seeds of each T1 plant separately.

10 7. Sow about 100 seeds per line on GM medium.

11 8. Let the seeds maturate for 2 weeks at 22˝C.
12 9. Extract DNA from one leaf of 100 plants per line as a pool.

13 10. Screen for positive GT events using a suitable PCR (see Critical Parameters).

14 11. Extract DNA from each plant of the positive identified T1 pools separately after

another week of growth.

15 12. Analyze the T2 plants separately for heritable GT via PCR and confirm it by

sequencing (see Critical Parameters).

16 13. Transfer positive T2 plants to soil and cultivate them to maturity.

1 [Genetics/Jove]

2 All experiments involving the differentiation of human iPSC lines were performed in

compliance with the Institutional Review Board of Boston University (protocol

H33122). The dermal fibroblasts, procured for reprogramming to iPSCs, were

obtained from a donor with written informed consent, under the approval of the

Human Research Protection Office of Washington University School of Medicine, St

. Louis, MO. Reprogrammed iPSCs were generated at the Center for Regenerative

Medicine at Boston University and Boston Medical Center, Boston, MA.

3 1. Alveolosphere dissociation

4 Prepare complete serum-free differentiation media (cSFDM) as per the composition

mentioned in Table 1.

5 Prepare CK + DCI media in the prepared cSFDM base as per Table 2.

6 Thaw 2D (human embryonic stem cell-qualified) and/or 3D (growth-factor reduced)

matrix on ice as required for the experimental needs.
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7 Aspirate all the CK + DCI medium using a pipette or aspirating pipette with vacuum

from the 3D matrix droplets containing alveolospheres, derived from directed

differentiation19, in a 12-well plate.

8 Add 1 mL of dispase (2 mg/mL) per droplet. Gently pipette the droplet into the

dispase using a P1000 pipette. Incubate at 37 ˝C for 1 h, pipetting up and down

once after 30 min.

9 Transfer the dissociated organoids (from Step 1.5) from one matrix droplet in the

dispase to a 15 mL conical tube. To wash, add 10 mL of Iscove's Modified

Dulbecco's Medium (IMDM, see Table of Materials).

10 Centrifuge at 300 x g for 5 min at room temperature. Aspirate the supernatant using

a pipette or aspirating pipette with vacuum, leaving as little supernatant as

possible.

11 NOTE: It is important to remove all dispase as any remaining dispase may dissolve

the matrix that the cells will subsequently be seeded into. If a clear haze is

seen above the pellet, the dispase has not completely dissolved the matrix, and

more dispase can be added to the pellet for another 20-30 min at 37 ˝C.
12 Resuspend the cells in 1 mL of 0.05% trypsin per droplet and transfer back to the

12-well plate. Incubate at 37 ˝C for 12-15 min. Observe the dissociation under a

microscope. Avoid over-pipetting the cells at this stage.

13 NOTE: At the end of incubation, the cells need to achieve a single-cell

suspension after pipetting 3-5 times with a P1000 pipette. For passaging iAT2s

to ALI (Step 3), the trypsinization time needs to be minimized (maximum 12 min),

such that the cells are in 2-3-cell clumps rather than single-cell suspension

when ready for plating onto the cell culture insert.

14 Stop the action of trypsin with an equal volume of FBS-containing medium (10% ES-

qualified FBS in DMEM). Centrifuge at 300 x g for 5 min at room temperature.

15 Wash the cells with 10 mL of IMDM. Centrifuge at 300 x g for 5 min at room

temperature.

16 Resuspend the cells in an appropriate volume for counting, and then count the cells

using a hemocytometer (see Table of Materials).

17 NOTE: From one confluent 50 µL matrix droplet seeded at 400 cells/µL, the

expected yield is 500,000 to 1.5 x 106 cells per droplet.

18 Use the single-cell suspension of iAT2 cells to generate alveolospheres by plating

in the 3D matrix (Step 2) and/or plating on cell culture inserts for ALI culture

(Step 3).

19 2. 3D plating of iAT2s

20 After counting (Step 1.11), determine the number of desired cells to replate in the

3D matrix (400 cells/µL of the matrix with 50-100 µL of 3D matrix droplets per

well of a 12-well plate). Centrifuge the cells at 300 x g for 5 min at room

temperature. Remove as much supernatant as possible using a pipette.

21 Resuspend the cells in the 3D matrix. Resuspend quickly and on ice, if needed, to

prevent the matrix from polymerizing (which occurs when warm).

22 Use a P200 pipette to dispense one 3D matrix droplet per well into a pre-warmed 12-

well plate. Pipette carefully to avoid creating bubbles in the matrix droplet.

Do not allow the cell suspension to settle while dispensing multiple droplets.

23 Place the plate in a 37 ˝C incubator for 20-30 min to allow the matrix droplets to

polymerize.

24 Add 1 mL of CK + DCI + 10 µM of Y-27632 medium (see Table of Materials) per well to

cover the matrix droplet.

25 After 72 h, change the medium to CK + DCI without 10 µM of Y-27632.

26 Replace the medium with fresh CK + DCI every 48-72 h.

27 NOTE: iAT2s will typically need to be passaged approximately every 10-14

days, depending on cell line and plating density.
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D.2 Data preprocessing

We perform some preprocessing on the source data, including slice procedures and domain mapping.
Slice procedures We segment the procedures of the protocols without destroying their structure as

much as possible. Specifically, we first split the procedures according to the regular delimiter ’[znzr]+’
to obtain a series of sub-paragraphs. Then we merge the sub-paragraphs in order, and the token number
of merged paragraphs does not exceed the predetermined maximum token (i.e., 300). If the number of
tokens in the merged paragraph is never satisfied, we follow the separator ’.?!’ to split and re-merge the
paragraphs at a fine-grained level.

Domain mapping The protocols from the five data sources have their own subject areas. We mapped
the topic domains to the five domains developed by the experts according to the expert-set mapping table.

1 [Genetics]

2 Antibody

3 Biochemistry

4 Biomarkers

5 Biophysics

6 Cell Biology

7 Cell Differentiation

8 Cell Membrane

9 Chromatin Immunoprecipitation (ChIP)

10 Gene Expression

11 Genetics

12 Genomics

13 Human Genetics

14 Molecular Biology

15 Molecular/Chemical Probes

16 Mouse Biology

17 Protein Biochemistry

18 Protein Science

19 Proteomics

20 RNaseq

21 Sequence Analysis

22 Sequencing

23 Signal Transduction

24 Single Cell

25 Single-Molecule Assays

26 Structural Biology

27 Systems Biology

28 Microbiology

29 Developmental Biology

30 Model Organisms

31 -----------------------------------------

32 [Medical]

33 Cancer

34 Cancer Research

35 Cardiology

36 Diseases

37 Drug Discovery

38 Gastroenterology

39 Health Sciences

40 Immunology

41 In Situ Hybridization

42 lmmunology and Infection

43 Medicine

44 Neuroscience
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45 Oncology

46 Organoids

47 Physiology

48 Pharmacology

49 Psychology

50 Rheumatology

51 Stem Cells

52 Stem Cell Biology

53 Tissue Engineering

54 Toxicology

55 Urology

56 Health Humanities

57 -----------------------------------------

58 [Ecology]

59 Behavior

60 Ecology

61 Plant Sciences

62 Plant Biology

63 -----------------------------------------

64 [Bioeng]

65 Bioengineering

66 Biotechnology

67 Cell Culture

68 Microscopy

69 Biological Techniques

70 Cell Isolation

71 Cell Separation/Fractionation

72 Cell-Based Assays

73 Chemical Biology

74 Cytometry

75 Mass Cytometry

76 Protein Expression And Purification

77 -----------------------------------------

78 [Infobio]

79 Bioinformatics

80 Computational Biology and Bioinformatics

E Constraint design assessment details

E.1 Meta evaluation
For meta evaluation, the experts’ participation will include completing a survey and possibly partaking
in an interview. The survey will present a series of statements or questions about the DSL. For each item,
we request two responses from the experts: Opinion on a 1-5 Scale and Confidence in the Response on
a 1-5 Scale. This dual-scale approach will help quantify both the perspective on the DSL and confidence
in each response, providing a richer dataset for analysis.

In this part, we organized three experts in the field of experimental sciences to independently score
our DSL. Each expert scored the results of a single DSL output across 9 dimensions, with a total of
50 questions. This process will be repeated 5 times, with experts independently evaluating 5 different
subsets. We collected the scores from the three experts for subsequent processing and comparison.

The participants are instructed by the following guidance:

1 Invitation to Participate in the Evaluation of a New Domain-Specific Language for

Experimental Sciences

2
3 Dear Expert,
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4
5 We are reaching out to invite you to partake in a crucial evaluation of a newly

developed Domain-Specific Language (DSL) designed for life sciences. Your

expertise in this field is invaluable for this assessment.

6
7 Purpose of the Experiment:

8 Our team has developed a DSL to facilitate both computerized and manual

experimentation processes in life sciences. This evaluation aims to gather

detailed feedback from experts like you to refine the DSL's usability and

functionality.

9
10 What Will Be Involved:

11 Your participation will include completing a survey and possibly partaking in an

interview. The survey will present a series of statements or questions about the

DSL. For each item, we request two responses from you:

12 1. Opinion on a 1-5 Scale: Rate each item on a scale where 1 indicates 'Strongly

Disagree' and 5 indicates 'Strongly Agree'. The scale is nuanced as follows:

13 - 1: Strong Disagreement or Major Issues

14 - 2: Disagreement or Notable Concerns

15 - 3: Neutral or Mixed Feelings

16 - 4: Agreement or Minor Concerns

17 - 5: Strong Agreement or Highly Favorable

18 2. Confidence in Your Response on a 1-5 Scale: Indicate your level of confidence

in your response to each item, where 1 is 'Not Confident at All' and 5 is '

Extremely Confident'. The scale implies:

19 - 1: Very Low Confidence

20 - 2: Low Confidence

21 - 3: Moderate Confidence

22 - 4: High Confidence

23 - 5: Very High Confidence

24
25 This dual-scale approach will help quantify both your perspective on the DSL and

your confidence in each response, providing a richer dataset for analysis.

26
27 In the interview, we will delve deeper into your experiences with the DSL, allowing

you to share more comprehensive insights and suggestions.

28
29 Estimated Time Commitment:

30 The survey should take approximately 60 minutes to complete. The interview, if you

choose to participate, will be a 1-hour session, scheduled at your convenience.

31
32 Confidentiality and Use of Data:

33 Your responses will be kept strictly confidential and will be used solely for

improving the DSL. We adhere to the highest ethical standards in our research.

34
35 Your expertise and nuanced feedback are vital for the success of this project, and

we greatly appreciate your consideration.

36
37 Thank you for your time and expertise.

E.2 Empirical evaluation

We take the GPT-4 as our expert in machine empirical evaluation. We built a knowledge augmentation
system using Langchain 7 to provide additional domain knowledge to GPT-4. We designed our instruction

7https://www.langchain.com/
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template following the prompt format of Zheng et al. (2023) and utilizing the Plan-and-Solve decompo-
sition idea (Wang et al., 2023). The machine evaluation results on DSL of five domains and BioCoder
are shown in Table A3.
Table A3: Empirical evaluation by the QA System expert on the five DSLs corresponding to five domains and BioCoder

Domain Opinion Confidence

BioCoder 4.35 3.96
InfoBio 4.38 3.97
Ecology 4.39 3.96
BioEng 4.41 3.97
Medical 4.40 3.97
Genetics 4.41 3.97

The instruction template is displayed as follows:

1 Please act as an impartial judge and evaluate the given developed Domain-Specific

Language ([DSL]) according to the [Rating Basis], [Rating Criteria], and related

[Domain Knowledges]. Please follow the [Instruction]. Moreover, the [Background

] describes something about Domain-Specific Language ([DSL]).

2 ---------------------------------------------------------------

3 [Background]

4 Domain experts expect to describe the experimental protocols of the specific domain

with the \ac{dsl} programs.

5 Domain experts expect to be guided by the \ac{dsl} programs step-by-step, where the

input, output, and configurations of each step is well-detailed.

6 Domain experts come without any training on programming.

7 Domain experts are subjective and their mindsets come from the specific domain.

8
9 [Instruction]

10 The [Rating Basis] presents a series of statements or questions about the [DSL].

Please evaluate your opinion and confidence level in the statements or questions

referring to related domain knowledge.

11 That is, your evaluation should be based primarily [Rating Basis]. You should refer

to and use [Domain Knowledge] to help you evaluate. Begin your evaluation by

providing a short explanation. After providing your explanation, please rate the

[DSL] on [Rating Criteria] by strictly following this format: "Rating: [[<

opinion>, <confidence>]]", for example: "Rating: [[3, 4]]".

12
13 [Rating Criteria]

14 For each item, you need give an <Opinion> and <Confidence> rate:

15 Opinion on a 1-5 Scale (int): Rate each item on a scale where 1 indicates 'Strongly

Disagree' and 5 indicates 'Strongly Agree'. The scale is nuanced as follows:

16 1: Strong Disagreement or Major Issues

17 2: Disagreement or Notable Concerns

18 3: Neutral or Mixed Feelings

19 4: Agreement or Minor Concerns

20 5: Strong Agreement or Highly Favorable

21 Confidence in Your Response on a 1-5 Scale (int): Indicate your level of confidence

in your response to each item, where 1 is 'Not Confident at All' and 5 is '

Extremely Confident'. The scale implies:

22 1: Very Low Confidence

23 2: Low Confidence

24 3: Moderate Confidence

25 4: High Confidence

26 5: Very High Confidence

27

12207



28 [Rating Basis]

29 {}

30
31 [DSL]

32 {}

33
34 [Domain Knowledges]

35 {}

36
37 [Output]

38 Let's first understand/follow the [Instruction] to evaluate the [DSL] and give an

explanation about rating.

39 Then let's give a final rating based on the explanation.

[Rating Basis] refers to our designed questions or statements.

1 "The DSL clearly represents the essential concepts necessary for life sciences

experiments."

2 "All domain concepts included in the DSL are relevant and contribute directly to my

tasks in life sciences."

3 "I can easily express all necessary domain concepts for my experiments using the DSL

."

4 "The DSL does not include complex concepts that are unnecessary for my work in life

sciences."

5 "The DSL seems to have been developed with practical feedback from domain experts,

ensuring its relevance to my work."

6 "The design of the DSL focuses on the tasks I need to accomplish in life sciences,

avoiding irrelevant features."

7 "The DSL is simple and straightforward to understand and use in my life sciences

work."

8 "Learning to use the DSL does not require extensive time or effort, even for those

new to this kind of language."

9 "The tools and features of the DSL are clear and intuitive to use in my everyday

tasks."

10 "The simplicity of the DSL enhances my productivity in conducting life sciences

experiments."

11 "The straightforward nature of the DSL lowers the barrier to its adoption in my

professional environment."

12 "The DSL specifically addresses the unique concepts and needs of my work in life

sciences, without unnecessary generalizations."

13 "All concepts and features in the DSL are directly applicable and useful for my life

sciences tasks."

14 "The DSL avoids overly complex or overly generalized concepts that is uneasy for me

to understand, making it more practical for my work."

15 "The focused nature of the DSL facilitates its quick and successful introduction

into my life sciences work."

16 "The DSL is concise and precise, focusing only on what is necessary for life

sciences, without extraneous features."

17 "The DSL effectively meets the current needs of my work in life sciences without

complicating future changes in the domain."

18 "The number of elements in the DSL is appropriate and manageable for my work in life

sciences, making it easy to understand."

19 "The DSL effectively uses specialized sublanguages (or subsets) for different

aspects of life sciences, enhancing clarity and focus."

20 "Despite having a limited number of elements, the DSL is effective in handling the

complex tasks of my life sciences work."
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21 "The DSL's approach to representing different aspects of life sciences work (like

structure, behavior, etc.) is clear and well-organized."

22 "The DSL's limited elements are versatile enough to be applicable across a wide

range of life sciences applications."

23 "Each concept in the DSL is distinct and clearly defined, with no overlap or

redundancy in their functions or purposes."

24 "I find it straightforward to express ideas in my life sciences work using the DSL,

as it avoids unnecessary duplication of concepts."

25 "The DSL allows for consistent modeling of facts and processes in life sciences,

without confusion due to redundant concepts."

26 "Remembering and applying different concepts in the DSL is easy, as it avoids minor

variations that could lead to confusion."

27 "The DSL effectively represents life sciences data and processes without

complicating them through redundant concepts."

28 "The non-redundant design of the DSL positively impacts my workflow in life sciences

by providing clarity and efficiency."

29 "The notations used in the DSL are familiar to me, reflecting those commonly used in

my life sciences work."

30 "Transitioning to using the DSL was easy for me because it adopts notations and

terminologies I'm already accustomed to in life sciences."

31 "I did not have to spend much time learning new syntaxes or notations when starting

with the DSL, thanks to its use of familiar concepts."

32 "The syntax and notation of the DSL are well-suited for the specific tasks I perform

in life sciences."

33 "The DSL effectively integrates languages or notations that are commonly accepted

and used in my field (like SQL for database queries, if relevant)."

34 "The DSL aligns closely with the existing notations and terminologies that are

standard in the life sciences domain."

35 "In the DSL, different elements are clearly distinguishable from one another,

enhancing my understanding and ease of use."

36 "In textual aspects of the DSL, keywords and language elements are positioned in a

way that makes the content easy to read and understand."

37 "The DSL effectively avoids ambiguity in representing different domain concepts,

making it simple for me to interpret the models or text."

38 "The design of the DSL prioritizes readability and understanding for the reader,

rather than writing efficiency."

39 "The DSL allows me to easily add comments to model elements, aiding in documentation

and explanation."

40 "Comments within the DSL models significantly enhance the understandability and

clarity of my work."

41 "The ability to comment on model elements in the DSL simplifies and supports

collaborative efforts in my life sciences projects."

42 "The DSL offers flexibility in commenting styles, such as line comments and block

comments for textual languages or annotations for graphical elements."

43 "Comments in the DSL can be effectively used for detailed documentation, similar to

generating HTML pages or Javadoc."

44 "The DSL encourages or enforces a consistent style of documentation through its

comment structure, improving overall model quality."

45 "The usage conventions defined for the DSL contribute to its clarity and

comprehensibility, making it easier for me to use in my life sciences work."

46 "The DSL strikes a good balance between providing guidance through usage conventions

and allowing flexibility in how I use it."

47 "The established conventions in the DSL aid in maintaining the quality and

consistency of my work."

48 "Following the usage conventions in the DSL is straightforward and does not add
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unnecessary complexity to my tasks."

49 "The conventions in the DSL, such as the notation of identifiers and the order of

elements, enhance the overall comprehensibility of the language."

50 "The usage conventions of the DSL positively impact its overall usability and

practicality in my life sciences work."

Rationale of scoring We showcase some non-cherry-picked scoring rationales given by both human
expert and our QA System expert in.

Table A4: Showcases of scoring rationales.(the corresponding scoring is attached [Opinion, Confidence])

Criteria human expert QA System expert

"The DSL clearly represents the essen-
tial concepts necessary for life sciences
experiments."

The DSL precisely covers key life sci-
ences experiments, enhancing protocol
clarity and accuracy. [5, 4]

The DSL for life sciences effec-
tively encapsulates key experimental
actions—ASPIRATE, ADD, CLEAN,
COMBINE, PUT—covering essential
concepts from aspirating liquids to
placing items. Its design and domain-
specific actions provide a comprehen-
sive framework for describing experi-
ments, reflecting its adequacy for the
life sciences domain. [5, 4]

"The DSL allows for consistent mod-
eling of facts and processes in life sci-
ences, without confusion due to redun-
dant concepts."

The DSL clarifies life sciences proto-
cols, potentially outperforming tradi-
tional methods with its precision. [4, 4]

The DSL effectively captures key ex-
perimental actions in life sciences, of-
fering clarity with specific patterns and
examples for each action. Rated with
high confidence, it ensures precise pro-
tocol definition, minimizing confusion
and redundancy. Further analysis could
enhance its validation against existing
standards. [4, 4]

"The DSL is simple and straightfor-
ward to understand and use in my life
sciences work."

The DSL simplifies life sciences pro-
tocols with clear commands and exam-
ples, though it may benefit from ex-
panded flexibility. [4, 4]

The DSL is effectively designed for
life sciences, offering domain-specific
commands like ASPIRATE and ADD
with clear examples, facilitating ex-
perimental protocols without program-
ming knowledge. While comprehen-
sive and user-friendly, potential areas
for additional commands or flexibility
could further enhance its utility. [4, 4]

"The DSL’s limited elements are ver-
satile enough to be applicable across
a wide range of life sciences applica-
tions."

The DSL streamlines essential life sci-
ences experiments but may fall short in
specialized contexts, justifying a cau-
tious yet positive rating of 4. [4, 4]

The DSL effectively guides life sci-
ences experts through standard experi-
ments with commands like ASPIRATE
and ADD, balancing simplicity and
specificity. Rated at 4, it offers a solid
foundation for common protocols but
may need expansion for more special-
ized experiments. [4, 4]

E.3 Ontology extraction
We take a zero-short IE tool as our backbone to extract ontologies from protocols. We add the domain-
related definition to the Stage-I prompt of RE task in ChatIE, which is defined as follows: ...In this
task, an entity type may be a ’OpCode’ (operations, a one-word verb,
like ADD and REMOVE); ’REG’ (reagents taking part in an operation,
like cells and MDDC culture media); ’COND’ (conditions of executing
an operation, like <temperature> 37C, <time> 30min, <device> a small
scissor and <container> PCR tubes)....

In addition, we present the entity relation mapping dictionary as follows:

1 {

2 'is concurrent with': ['OpCode', 'OpCode'],

3 'is instruction of': ['OpCode', 'REG/COND'],

4 'is predecessor of': ['OpCode', 'OpCode'],
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5 'is product of': ['REG', 'OpCode'],

6 'is reaction acceleration of': ['Acceleration', 'OpCode'],

7 'is reaction centrifugal force of': ['Centrifugal Force', 'OpCode'],

8 'is reaction condition of': ['COND', 'OpCode'],

9 'is reaction container of': ['Container', 'OpCode'],

10 'is reaction density of': ['Density', 'OpCode'],

11 'is reaction device of': ['Device', 'OpCode'],

12 'is reaction energy of': ['Energy', 'OpCode'],

13 'is reaction flow rate of': ['Flow Rate', 'OpCode'],

14 'is reaction force of': ['Force', 'OpCode'],

15 'is reaction frequency of': ['Frequency', 'OpCode'],

16 'is reaction iteration count of': ['Iteration Count', 'OpCode'],

17 'is reaction pressure of': ['Pressure', 'OpCode'],

18 'is reaction rotation of': ['Rotation', 'OpCode'],

19 'is reaction speed of': ['Speed', 'OpCode'],

20 'is reaction temperature of': ['Temperature', 'OpCode'],

21 'is reaction time of': ['Time', 'OpCode'],

22 'is reaction voltage of': ['Voltage', 'OpCode'],

23 'is reagent acidity of': ['Acidity', 'OpCode'],

24 'is reagent coating of': ['Coating', 'OpCode'],

25 'is reagent concentration of': ['Concentration', 'OpCode'],

26 'is reagent density of': ['Density', 'OpCode'],

27 'is reagent length of': ['Length', 'OpCode'],

28 'is reagent mass of': ['Mass', 'OpCode'],

29 'is reagent medium of': ['Medium', 'OpCode'],

30 'is reagent of': ['REG', 'OpCode'],

31 'is reagent quantity of': ['Quantity', 'OpCode'],

32 'is reagent size of': ['Size', 'OpCode'],

33 'is reagent thickness of': ['Thickness', 'OpCode'],

34 'is reagent volume of': ['Volume', 'OpCode'],

35 'is successor of': ['OpCode', 'OpCode']

36 }

F Constraint utility assessment details

F.1 Protocol source
In order to better analyze the subsequent DSLs, we created a protocol dataset of five domains in the life
sciences in this paper, where all the protocols are not pre-existing protocols, but NOVEL ones, designed
by ourselves, and of course most of these designed protocols are unpublished and written with reference
to a large number of existing protocols.

F.2 Protocol constraint
The protocol dataset we built covers both syntactic constraints and semantic constraints. We categorized
these two main features into multiple types and built specific and typical protocols for each subclass,
which can encompass most of the experimental scenarios.

Syntactic constraint Syntactic constraints can be primarily divided into four categories: the first
category, the imperative model, includes loop, branch, jump, memory (allocation and de-allocation),
function/(sub)procedure, and logical test. The second category, the type system, encompasses integer
types, real/floating types, set types, scientific types, reagent types, and container types. The third category,
concurrent, contains data parallel. The fourth category is the reactive model, which responds to a certain
event.

1 {

2 Loop constraint

3 Cell culture:
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4 1. Prepare medium: prepare appropriate medium according to cell type.

5 2. Inoculate: Add cell suspension to culture flasks containing culture medium.

6 3. Continuous monitoring: Observe the cell growth status and density periodically.

Repeat the culture as long as the cells have not reached the harvested density.

7 4. Harvest cells: When the cells reach the expected density, harvest the cells for

the next experiment or for passaging culture.

8 }

9 {

10 Branch constraint

11 Brown Adipocyte Respiration Protocol: Prepare cells as described in the first two

steps of the intact brown adipocyte respiration protocol. On the day of the

experiment, thaw 1x MAS and pre-made substrate solutions. Prepare 10x solutions

of inhibitors in 1x MAS. If using fatty acid substrates, prepare them freshly as

described. Soak the cartridge for at least 3 hours before loading. Load

specified volumes into ports A-D and calibrate the cartridge. Prepare 7.5 nM PMP

in 1x MAS, gently wash cells with 1x MAS once, completely evacuate the wash,

and add 450 µl 1x MAS with 7.5 nM PMP. Perform the Seahorse assay with 2-3

measurements per condition, ensuring not to exceed 1 hour before injecting

Antimycin A to maintain mitochondrial integrity.

12 }

13 {

14 Memory constraint

15 Bile Processing Protocol: Collect bile in sterile bottles from patients with biliary

tubes. Centrifuge at 3000g for 10 minutes at 4˝C to remove sediment and debris.

Aliquot the clear bile into 1 ml volumes in microcentrifuge tubes. Store the

aliquots at -20˝C for future use.

16 }

17 {

18 Function procedure constraint

19 Isolation of G4 Deletion Alleles in C. elegans: Clone out dog-1 animals onto plates,

optionally freeze half as backup. Rinse worms in M9, transfer to PCR plates,

add lysis buffer, and proceed with lysis and proteinase K inactivation. Perform

nested PCR on lysis mix to identify positive populations for germline mutations.

Analyze PCR products on agarose gel. For positive populations, chunk

corresponding plate, grow to starvation, and repeat the process to confirm

deletions. Perform nested PCR on progeny to confirm homozygosity of deletion

alleles. Sequence PCR product for deletion characterization. Backcross new

strain to N2 to clean genetic background.

20 }

21 {

22 Parallel constraint

23 Centrifugation and RNA Isolation from Serum or Plasma: Start with 1 ml of serum or

plasma for each replicate. First centrifugation: Bring volume up with PBS and

centrifuge all samples at once for 90 min at 100,000 x g. Second centrifugation:

After discarding supernatant and resuspending pellets, centrifuge again for 70

min at 100,000 x g. Parallel processing: Process multiple samples through two

rounds of centrifugation and subsequent RNA isolation, highlighting batch

processing of samples.

24 }

25 {

26 Reactive model constraint

27 Cell Growth and Transfection Response: Thaw and culture cells until 80% confluency.

Response to 80% confluency: Split cells for further growth or prepare for

freezing. Transfect cells at low density, then change media based on purpose (

growth or differentiation). Response to transfection: Monitor for complete
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differentiation, adjusting care based on confluency or media type."

28 }

Semantic constraint Semantic constraints mainly include two types: (i) Use of undefined action;
(ii) Incomplete parameter, where the first category is required parameters do not exist, and the second
category is Required parameter under-specified (is not grounded to the granularity for execution).

F.3 Prompt engineering for utility assessment
Following methods suggested by recent research (Gao et al., 2023; Zhang et al., 2023), we prompt the
LLM with examples of DSL syntax and semantics, directing it to translate procedural texts into corre-
sponding programs. To ensure a fair comparison and to underscore the plug-and-play capability of the
DSLs designed by AutoDSL , only minimal prompt engineering is applied in protocol processing. The
resulting prompt text under the ideas is demonstrated as follows.

1 You are an expert in life science and computer science. Now you are prompted with a

grammar of programming language defined by production rules, several experiment

steps described in natural language, and a construct (which is the left part in

the production rule). Your task is to determine whether the natural language

description consists of parts that can be parsed using this production rule. If

the natural language string can be parsed, please output "Yes", otherwise,

output "No".

2
3 The production rule:

4 for (initialization; condition; increment) statement

5
6 The nature language experimental protocol:

7 Study design: Timing: 3 days for protocol development. IRB/ethics review and

revision can take 4-8 weeks. Repeat with number from 1 to 11:1. Define the

crisis situation.2. Select existing algorithms for study.3. Define hypothetical

triage algorithms for study.4. Select primary and secondary clinical endpoints

.5. Determine the clinical data needed.6. Select the patient cohort for study.7.

Assess availability of necessary clinical data.8. Adapt the triage algorithm

scoring scheme.9. Submit the proposed study to the IRB or ethics panel.

Calculating priority scores: Timing: 3 weeks to 3 months. Repeat with number

from 1 to 8:1. Create a case report form.2. Select a data management system.3.

Select the method of data entry. 4. Perform pilot data acquisition. 5. Complete

the case report form for all patients.6. Apply the triage algorithms and

calculate priority scores. Testing algorithm accuracy Timing: 1 day.1. Determine

the accuracy of the priority scores Simulation of clinical decision-making:

Selection from a smaller group Timing: 1 day. Repeat with number from 1 to 4:1.

Format input files.2. Run CSC script.3. Assess bootstrap analysis output.

Sensitivity analyses: Timing: 1 week. Repeat with number from 1 to 4:1. Test the

effect of data processing methods.2. Test the effect of patient characteristics

. 3. Test the effect of triage algorithm components.

8 yes

9
10 The production rule:

11 for (initialization; condition; increment) statement

12
13 The nature language experimental protocol:

14 Mitochondria Sonication Experiment:Repeat sonication of mitochondria in a Branson

450 sonicator using aconitase buffer (50 mM Tris, 30 mM sodium citrate, 0.5 mM

MnCl2, 0.2 mM NADP, pH 7.3) four times, each for 15 seconds.Monitor the citrate

to alpha-ketoglutarate conversion at 340 nm at 25˝C, utilizing 2 units/ml of

isocitrate dehydrogenase in 50 mM Tris, 1 mM cysteine, 1 mM sodium citrate, 0.5

mM MnCl2 at pH 7.4. Reactivate aconitase with 2 mM dithiothreitol and 0.2 mM
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ferrous ammonium sulfate for 5 minutes, then repeat the enzymatic activity assay

once.

15
16 Task:

17 Please use a JSON format to describe the protocol (Only output a json).

18
19 Note:

20 1. Read the protocol carefully.

21 2. Choose items and conditions from the protocol to describe the protocol.

22 3. Your desired output format resembles this: {"opcode": [['Datatype', 'Data'], ...

, ["output", "Data"]]}. In this format, "Data" = None indicates a missing value.

23 4. You must specify the output in json, and only one output in json is allowed.

24
25 Example:

26 GROW:[['REG', 'GFP-fusion'], ["REG", "solid media"], ["Device", "spinning disk

confocal microscope"]] -> Z-stack images

27 Output: {"GROW": [['REG', 'GFP-fusion'], ["REG", "solid media"], ["Device", "

spinning disk confocal microscope"], ["output", "Z-stack images"]]}
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