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Abstract
Despite the significant success of large vision-
language models (LVLMs), some studies have
revealed that LVLMs suffer from the hal-
lucination problem, where the LVLMs’ re-
sponse contains descriptions of non-existent
objects. Although various benchmarks have
been proposed to investigate this problem, they
mostly focus on single-turn evaluation and
overlook the hallucination raised by textual in-
puts. To investigate the hallucination prob-
lem of LVLMs when given long-term mislead-
ing textual history, we propose a novel vi-
sual dialogue hallucination evaluation bench-
mark VisDiaHalBench. The benchmark con-
sists of samples with five-turn questions about
an edited image and its original version. Vis-
DiaHalBench differs from previous hallucina-
tion benchmarks in the following three points:
1) The questions and answers are unambigu-
ously grounded by annotated scene graphs.
2) The images are uncommonly edited to in-
spect the visual model and common-object
hallucination in LLMs. 3) The carefully de-
signed dialogue refers a same object in dif-
ferent turns to assess the image consistency
and influence of history for LVLMs. The
detailed analysis of several state-of-the-art
LVLMs across image consistency, visual un-
derstanding, history influence, and other di-
mensions reveals their substantial performance
gap with single-turn VQA tasks. The bench-
mark is released in: https://github.com/
qingxingcao/VisDiaHalBench

1 Introduction

Large language models (LLMs) (Chung et al.,
2022; Touvron et al., 2023; Chiang et al., 2023;
Achiam et al., 2023) have shown exceptional ca-
pabilities in semantic understanding, reasoning,
and commonsense utilization. To expand their
capabilities into the vision domain, recent re-
search integrated vision-pretrained models with

* Corresponding author.

LLMs, resulting in Large Vision-Language Mod-
els (LVLMs) (Dai et al., 2023; Liu et al., 2023c;
Zhu et al., 2023; Li et al., 2023a; Achiam et al.,
2023). Through instruction finetuning on text-
image paired data, LVLMs achieved great per-
formance on a variety of multimodal tasks that
require a vast range of skills. Despite the re-
cent success, LVLMs also suffer from the hallu-
cination problem, where the responses are non-
factual or contradictory to the given inputs. To
study this problem, recent works (Yifan Li and
Wen, 2023; Wang et al., 2023; Liu et al., 2023b,a)
have proposed different benchmarks and methods
to diagnose hallucination within LVLMs. How-
ever, while previous works have shown that LLM
will over-commit to early mistakes and leading to
snowballing hallucination (Zhang et al., 2023; Yao
et al., 2023), these studies in multi-modal domains
mostly focus on the visual side, neglecting to fully
investigate the textual inputs, such as misleading
dialogue history or prior responses.

Given that LVLMs are built upon LLMs, there
is a strong likelihood that LVLMs inherit the sim-
ilar hallucination problem from LLMs. As shown
in the second example of Figure 1, GPT-4V cor-
rectly answers the relation of the frisbee but sub-
sequently hallucinates about a non-existent “white
frisbee” given a follow-up similar question.

To analyze hallucinations in LVLMs when
faced with multi-turn visual and textual inputs,
we introduce VisDiaHalBench, a novel visual
dialogue benchmark grounded by image scene
graphs. Each sample in VisDiaHalBench contains
an edited image and its original version to eval-
uate LVLMs’ performance with unseen images;
A scene graph to ground questions-answers for
unambiguous evaluation; And a five-turn coher-
ent dialogue with last turn references to investi-
gate image consistency and history influence of
LVLMs. For example, a correct answer about the
edited brown frisbee will be an incorrect descrip-
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Figure 1: Three examples of our proposed VisDiaHalBench and GPT-4V results. Each sample contains five ques-
tions, where the first four questions query the edited image and the last one queries the original image. Incorrect
answers are marked in red, while the groundtruth answers are provided in parentheses.

tion of the original white frisbee, which may affect
LVLMs when answering the last question.

To construct the benchmark, we leverage the
normalized scene graphs and corresponding im-
ages from the GQA (Hudson and Manning, 2019)
dataset to construct VisDiaHalBench. For each
image, we first edit the GQA image as well as
the scene graph by removing or changing an ob-
ject. Then in each turn, we sample a question
type and scene graph paths based on the last turn
object, attribute, or relation. With the grounded
path and predetermined answers, we employ GPT-
4 (Achiam et al., 2023) to generate a natural lan-
guage question. We further benchmark several
SOTA LVLMs and conduct comprehensive studies
of their hallucination results. Our analysis reveals
that current LVLMs still suffer from insufficient
capabilities in vision understanding and handling
complex dialogue history.

Our contribution can be summarized as follows:
1) we introduce the first visual dialogue bench-
mark focusing on diagnosing hallucinations raised
by visual and long-term textual inputs. 2) We con-
duct comprehensive studies on SOTA LVLMs to
investigate their image consistency, history han-
dling, and other relevant aspects. We hope our
benchmark and analysis can shed light on further
research in addressing the hallucination problem
in both language and vision domains.

2 Related Works

2.1 Large Visual-Language Models
With the success of the large language models
(LLMs) (Chung et al., 2022; Touvron et al., 2023;
Chiang et al., 2023; Achiam et al., 2023), some

works (Alayrac et al., 2022; Li et al., 2023b) at-
tempt to leverage the LLMs’ powerful capability
of semantic reasoning in vision domains, resulting
Large Visual-Language Models(LVLMs). These
works bridge the vision tokens to LLMs by only
training a projector. Most recent works (Dai et al.,
2023; Liu et al., 2023c; Zhu et al., 2023; Li et al.,
2023a; Liu et al., 2023b) employ instruction tun-
ing, where the model can be trained on different
multi-modal tasks in a unified manner, and achieve
impressive results on various downstream tasks.

2.2 LVLMs Hallucination and Evaluation

Despite the success of LVLMs, recent works
suggest they suffer from the hallucination prob-
lem (Liu et al., 2023a; Zhou et al., 2023), where
the response has inaccurate descriptions of a given
image. Recent works (Yifan Li and Wen, 2023;
Wang et al., 2023; Liu et al., 2023b) have pro-
posed different methods and benchmarks to deeply
inspect this phenomenon. POPE (Yifan Li and
Wen, 2023), HaELM (Wang et al., 2023) and
GAVIE (Liu et al., 2023b) differently prompt a
LLM to score LVLMs’ response. Liu et al.
(2023a) and Cui et al. (2023) manually edit visual
inputs and label question-answering pairs to assess
LVLMs. Different from these works, we propose
a visual dialogue benchmark to thoroughly investi-
gate the hallucination in LVLMs from both vision
and long-term text aspects.

2.3 Visual Dialogue

Given an image, a dialogue history, and a ques-
tion about the image, Visual dialogue (VD) (Das
et al., 2017) requires an agent to generate an ac-
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Figure 2: The construction pipeline for our proposed VisDiaHalBench. We first edit the image and corresponding
scene graph. Then sample questions type and scene graph path based on previous questions. Lastly, we prompt
GPT-4 to generate natural language questions.

curate response based on the image and informed
by the dialogue history. Recent advance in pre-
trained visual-language models (Su et al., 2020;
Li et al., 2022a) also inspired related models in
VD, such as VisDial-BERT (Murahari et al., 2020),
VD-BERT (Wang et al., 2020) ICMU (Chen et al.,
2022b), UTC (Chen et al., 2022a), BLIP (Li et al.,
2022a) and AlignVD (Chen et al., 2022c). Un-
like the single-turn Visual Question Answering,
the challenge of VD lies in the need to address ref-
erential and ambiguity issues present in the histor-
ical dialogue (Chen et al., 2020). Previous stud-
ies explored how to increase the dialogue mod-
els’ robustness. Yu and Rieser (2023) study the
adversarial robustness of visual dialogue models
by attacking the vulnerable words within ques-
tions or history. Kang et al. (2023) propose a
Generative Self-Training (GST) method that can
automatically generate dialogue samples for data
augmentation and model training. Our work also
aims to evaluate model robustness concerning dia-
logue history but employ the history generated by
LVLMs themselves without modification, study-
ing a more general phenomenon that severely hin-
ders the further application of LVLMs.

3 VisDiaHalBench

We introduce VisDiaHalBench, a new visual di-
alogue benchmark to analyze hallucination in
LVLMs under different visual and textual inputs.
Based on the normalized scene graph and im-
age in the GQA dataset, each sample contains an
edited image, a five-turn dialogue, and grounding
scene graph paths. The questions are associated

with the edited object in different aspects, includ-
ing queries about the uncommon edited results,
pronoun-based reference, and misleading history.

To construct the benchmark, we first edit the
image by randomly changing an object’s attribute,
swapping it with another object, or removing it
from the image. Then at each turn, we sample a
question type and scene graph path based on the
edited object or previous questions. Lastly, we
prompt GPT-4 (Achiam et al., 2023) to generate
a natural language question strictly grounded to
the supporting paths and ground truth answer. The
overall generation pipeline is shown in Figure 2.

To ensure the unambiguity of generated ques-
tions and answers, we rely on sampling scene
graph path that can uniquely identify an object.
Also, by designating the start or end object of a
path, we can generate coherent multi-turn ques-
tions concerning the last-turn context. To better
illustrate the construction process, we first present
our path sampling method and question type de-
tails, then describe each construction step.

3.1 Scene Graph Path Sampling
We generate unambiguous questions and answers
grounded by paths in the scene graph. A scene
graph path is a sequence of connected object nodes
and relations. For example, a 0-hop path is just an
object like “frisbee”, a 1-hop path could be “(fris-
bee, left, man)”, and a 2-hop path might extend to
“(frisbee, left, man), (man, wearing, shorts)”.

To sample a n-hop path, we begin at an ob-
ject node, randomly select one of its relations,
and traverse to the corresponding node n times.
Then we verify whether the path is unique in the
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Question Type Path Example Question Example
Input

Reference
Output Reference

exist:
Query the existence of a object

[(frisbee,left,<obj>),
(<obj>,<name>,man)]

Is there a man that a
frisbee on its left?

Object
Object (if answer is

“Yes”)

query object:
Query a object name

[(man,wearing,<obj>),
(<obj>,<name>,shorts)]

What is the man wearing? Object Object

query attribute:
Query a object’s attribute

<input>: frisbee,
[(frisbee,<attribute>,yellow)]

What color is it? Object Object, Attribute

query relation:
Query relation of two objects

<input>: frisbee, [frisbee],
[air]

What is the relationship
between it and the air?

Object Object, Relation

verify attribute:
Query if object has a attribute

[(frisbee,<attribute>,yellow)]
Query: white

Is the frisbee white? Object Object, Attribute

verify relation:
Query if two objects have a
relation

[(frisbee,<attribute>,white)],
[man] Query: left

Does the white frisbee to
the left of the man

Object Object, Relation

verify target attribute:
Query if object has a
mentioned attribute

<input>: white, [frisbee]
Does the frisbee has the
same color?

Attribute Object

verify target relation:
Query if two objects have a
mentioned relation

:
<input>: left, [cone], [people]

Does the cone and the
people have the same
relation?

Relation Object

Table 1: The details of all question types in VisDiaHalBench. Path and question examples give a possible scene
graph path and corresponding question. Input and output reference represents the object or answer that can be used
in this turn or passed to the next turn.

scene graph. We obtain all objects with the same
name and check whether these objects have the
same relation recursively. For example, we verify
whether “(frisbee, left, <obj1>), (<obj1>, wearing,
<obj2>)” is unique in the scene graph, such that the
shorts can be unambiguously referred to as “the
thing wearing by one a frisbee left of”.

In our benchmark, we sample 1-hop and 2-hop
when questions target object names without giv-
ing away the object name. For other questions, we
sample 0-hop and 1-hop paths.

Coherent path sampling To construct coherent
dialogue, we sample paths and question types that
can accept the object or answer mentioned in the
last turn, as shown in Table 1. If the last turn refers
to an object, we sample a path starting from it and
use pronouns to refer to this object. If the last turn
has an attribute or relation, we first sample the an-
swer “Yes/No”, then sample a path that ends with
an object that has or does not have this attribute/re-
lation according to the answer.

Sampling Retry During the random sampling
process, if a sample path is not unique, or the sam-
pled query object has no attribute or relation to
the query, we re-sample the whole dialogue un-
til reach a predefined attempt limit. If the limit

is reached, we discard this sample and continue to
sample the next one.

3.2 Question Types

The questions in VisDiaHalBenchhave following
eight types: “exist”, “query object”, “query at-
tribute”, “query relation”, “verify attribute”, “ver-
ify relation”, “verify target relation” , “verify tar-
get attribute”. These question types represent
queries about the existence of an object, its name,
attribute, or relations to another object. Or verify
whether they possess certain attribute or relation.
In each turn, we first sample a question type from
its subset according to the turn number and last
turn question. The details are shown in Table 1.

For the question that verifies whether the object
has an attribute or relation, we need to sample an
unrelated query target if the answer is “no”. We se-
lect the name/attribute/relation that is similar to a
correct one. Specifically, we first extract all object
names, attributes, and relations in the dataset and
form three dictionaries, then embed these words
or phrases with GPT2-large (Lagler et al., 2013).
Given a correct name/attribute/relation, we select
its similar words by computing its embedding dis-
tance with other names/attributes/relations respec-
tively. We randomly select one from the top 10
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to obtain a similar name/attribute/relation and ex-
clude the top 5 to avoid retrieving synonym words.
The retrieved words are used for questioning.

To balance the number of each question type,
we set the probability of selecting different types
according to their generated number. The proba-
bility for type T is 1− number of questions type T

number of total question . Thus
types with more samples will have a lower proba-
bility of being selected.

3.3 Image Editing
Since most of the current LVLMs achieve great
performance on the GQA dataset, we edit the
GQA image to explore whether the hallucination
comes from the biases in training data. To obtain
a visually reasonable image, we only modify a cer-
tain object in one of three different ways: remove
it from the image, swap it with another object, and
change its color. We randomly choose the edition
type and target so that the image can be counter-
factual for usual scenarios. First, we use the seg-
mentation model SAM (Kirillov et al., 2023) to ob-
tain objects’ mask according to their scene graph
bounding boxes. Subsequently, we employ vari-
ous strategies for image editing.

Remove object To remove an object, we first se-
lect the object that can be uniquely determined by
0-2 hop path in the original scene graph, so that
the following questions and answers are not am-
biguous. For example, the answer for "Is there
an umbrella in the image" remains the same "Yes"
if there exists multiple umbrellas but only one of
them is removed.

Given the identifiable object, we retrieve its
bounding boxes from the annotated scene graph
and instruct the pretrained image editing model IP-
adapter (Ye et al., 2023) to remove it from the im-
age. Specifically, we utilize the inpainting mode
in the IP-Adapter to remove the corresponding ob-
jects. By setting the prompt to "empty" and the
negative prompt to "nobj" which represents the
name of the object to be removed, we can obtain
images without the specified objects. Lastly, we
modify the scene graph correspondingly by remov-
ing this object and all relations to other objects.

Change object We change the whole selected
object by replacing it with another object in the
GQA dataset such that the object is recognizable
but unseen in the image. Specifically, we extract
all the object names in the dataset and randomly se-
lect a similar one based on GPT-2 embedding, the

same as the method described in Section 3.2. With
the candidate object name, we randomly select an
object that has this name from all the images in
GQA dataset as the reference object.

We change the original object to the refer-
ence object through Anydoor (Chen et al., 2023)
method. We input the two masks and correspond-
ing images to the Anydoor and copy the reference
object to the original object mask. Lastly, we cor-
respondingly modify the scene graph by setting
the object name and the attributes to the reference
image but keeping the relations unchanged.

Modify attribute Since the GQA annotation has
various attribute types, including actions that are
only applicable to some objects, adding an at-
tribute does not necessarily replace an existing one.
Thus, to obtain a reasonable attribute and avoid
ambiguity, we only change the object color. Simi-
lar to the object name, we first obtain all attributes
in the GQA dataset, then filter the color using the
matplotlib (Hunter and Dale, 2007) colors package
and form a color set. Then we select the object that
has a color attribute and replace its color attribute
with another different one randomly selected from
the color set.

Given the original color, reference color, and
the object mask obtained by SAM, we instruct the
Blended latent diffusion (Avrahami et al., 2023)
model with prompt "cnew + nobj" to perform the
editing. Where cnew represents the new color se-
lected and nobj represents the object’s name. Fi-
nally, we change the object in the scene graph by
removing its original color and adding the refer-
ence color to its attribute set.

3.4 Dialogue Sampling
After image editing, we generate dialogue ques-
tions to investigate different aspects of LVLM hal-
lucination. Each dialogue contains five turn ques-
tions that query the visual information related to
the edited object. At each turn, we sample a ques-
tion type then sample scene graph paths and an-
swer. We constrain sampling strategy in different
ways to inspect different aspects of LVLMs. The
details of each turn is shown in the following.

Turn 1 : The first question directly queries the
edited part of the object to inspect the vision
model of LVLMs. For “remove object”, we query
whether the object “exist” by sampling a 0 or 1-
hop path ended with the edited object from the
original scene graph. For “change object”, we use
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querry object

5%

modify object

1%

Figure 3: The data distribution of VisDiaHalBench, sorted by (a)question type (b)answer type (c)edit type

query query query verify verify verify verify
exist object attribute relation attribute relation target attribute target relation Total

remove 2054 168 485 612 240 623 268 685 5135
modify attribute 0 390 5889 2809 5056 1800 2186 1630 19760
modify object 0 44 9 17 19 15 1 0 105
Total 2054 602 6383 3438 5315 2438 2455 2315 25000

Table 2: Number of samples for different question types and edit types in VisDiaHalBench.

“query object” to query the name of the changed
object, and sample 1 or 2-hop path from the edited
scene graph to avoid directly refer the object with
its name. For “modify attribute” edition, we ran-
domly choose “query attribute” and “verify at-
tribute” and sample 0 or 1-hop scene graph path. If
the question type is “verify attribute” and the ran-
domly selected answer is “no”, we used the origi-
nal attribute to generate the question. For example,
if we change a frisbee from white to brown, we
will have questions: “Is the frisbee white?”.

Turn 2 : This question queries the other part of
the image related to the turn 1 question to study
the dialogue ability of LVLMs. We refer to the last
turn object or answer with a pronoun and sample
scene graph path with method in Section 3.1

Turn 3 : We mention the edited object with its
original name or attribute to generate misleading
questions that can not be answered. This turn is de-
signed to explore whether the LVLMs hallucinate
the answer or consistent with turn 1. For exam-
ple, given a frisbee changed from white to brown,
“What is the white frisbee related to the air?” has
no answer since no white frisbee in the image.
LVLMs should not answer if it is consistent with
Turn 1 where it knows the frisbee is brown.

Turn 4 : Similar to turn 2, the turn 4 sample path
is based on the last turn question. However, since
the last turn object and answer are not valid, this
question is also unanswerable. We employ this

question to further study the robustness of LVLMs
in handling corrupted history.

Turn 5 : We employ the question identical to
turn 1 but provide the unedited image. Current
LVLMs should be able to easily answer this GQA-
like question. We study the performance gap be-
tween answering it directly or in dialogue to evalu-
ate how much the dialogue history affects LVLMs.

3.5 Question Generation

Given the object path, related attributes, and rela-
tions in each turn, we can obtain the unambiguous
answer grounding by supporting paths. We obtain
the natural language question by prompting GPT-
4 to generate it that strictly grounding to the sup-
porting triplets and answer. The specific prompt
can be found in the appendix B. We resample the
question if it contains words of last turn reference,
or not contains the grounded attributes and name.

3.6 Dataset Statistic

Following the aforementioned editing method, we
edited 5000 images from GQA and subsequently
generated 5000 diverse visual dialogues, each di-
alogue consists of 5 turns of conversation, total-
ing 25,000 visual question-answers. As shown in
figure 3, our dataset includes 8 types of question
types, 4 types of answer types, and 3 types of edit
types. Table 2 enumerates the specific quantities
for different question types and edit types.
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Model
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Average

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
w/ image:
BLIP2 19.24 25.21 0.04 17.42 0.0 35.47 0.0 32.51 0.0 18.26 3.85 25.77
Cheetah 19.96 27.55 19.56 30.14 0.25 25.01 0.22 23.27 18.98 25.89 11.80 35.73
MiniGPT4 5.31 13.22 26.36 36.89 0.07 28.72 0.36 27.59 71.74 79.02 20.77 37.08
LRV-instruct 17.78 26.86 24.36 40.18 0.07 33.63 0 35.48 22.50 34.23 12.94 33.66
HalluDoctor 39.95 49.22 34.18 44.57 0.0 27.02 0.23 25.86 35.79 43.21 22.03 37.98
LLaVA 26.32 32.52 38.72 54.58 0.07 25.91 0.25 17.97 54.29 57.67 23.93 37.99
GPT-4V 25.51 38.23 33.50 47.81 38.72 55.61 17.83 35.93 46.11 55.45 33.01 48.26
Q-Probing 21.49 31.83 27.40 37.66 3.00 31.10 1.65 28.25 61.57 70.06 23.02 39.78
w/ scene graph:
LLaVA 35.72 41.22 53.74 61.78 10.06 35.36 1.57 23.02 88.26 90.42 37.87 50.36
GPT-4V 82.22 85.34 63.97 70.75 32.25 65.34 20.09 43.58 99.07 99.39 59.12 72.88
Human 89.21 93.75 88.24 94.55 100 100 100 100 99 99 95.29 97.46

Table 3: Evaluation results of different LVLMs on VisDiaHalBench.

4 Experiments

4.1 Methods

Q-Probing Previous research has shown
that LLM may hallucinate due to early mis-
takes (Zhang et al., 2023). To alleviate this
problem, we propose a simple baseline approach
“Q-Probing” that instructs LVLMs to probing
the relevant question to reduce the hallucination.
Specifically, the Q-Probing approach involves
instructing the LVLM to generate several closely
related questions based on the image and current
question. These generated questions act as
reference points. During the question-answering
phase, we prompt the LVLM with the instruction
"Please consider these questions before answer-
ing", encouraging it to pay attention to additional
crucial information and logical fallacies when
formulating responses, thereby mitigating the
phenomenon of hallucination. In the experi-
mental section, we built our model based on
MiniGPT-4 (Zhu et al., 2023) and demonstrated
its effectiveness. Further details about the prompts
can be found in appendix B.

SOTA methods We conduct an evaluation of
several state-of-the-art LVLMs: BLIP2 (Li et al.,
2023b), LRV-instruction (Liu et al., 2023b), Hallu-
Doctor (Liu et al., 2024), MiniGPT4 (Zhu et al.,
2023), Cheetah (Li et al., 2023a), LLaVA (Liu
et al., 2023c), and GPT-4V on our benchmark. The
implementation details are in appendix C.

4.2 Evaluation Metrics

We conduct a comprehensive evaluation of
the baseline models, focusing on their perfor-
mance in evidence retrieval and answer extrac-

tion. Following previous multimodal conversa-
tional dataset (Li et al., 2022b), we reported macro-
average F1 in the word level and Exact Match
(EM) to estimate the performance of answer ex-
traction after extracting the model’s output results
through keyword filtering.

4.3 Main Results

Table 3 presents the performance of each model
on VisDiaHalBench. All models exhibit subpar
performance on average, the best-performing GPT-
4 achieves 33.01 EM and 48.26 F1, far worse
than its performance on GQA. This discrepancy
indicates that our benchmark poses a new chal-
lenge for current LVLMs. All open-sourced mod-
els except Cheetah perform better in Turn 2 and
Turn 5 compared to Turn 1. Since turn 2 and 5
query the unedited object, this result indicates that
these LVLMs struggle with correctly perceiving
the edited image. Furthermore, all models exhibit
their worst performance in Turn 4, indicating that
referring to a non-existent object, which misleads
models in both the visual and textual domains, is
the most challenging task for current LVLMs.

HalluDoctor and LRV-instruct are both based
on MiniGPT4 and they greatly improve over base-
line MiniGPT4 in perceiving edited objects, show-
ing their effectiveness in handling object halluci-
nation. However, their performance drop signif-
icantly in Turn 3-5. Especially in Turn 5, they
perform much worse than the baseline MiniGPT4,
showing the two single-turn hallucination mitiga-
tion may hinder LVLMs ability to handle multi-
turn dialogues effectively.

The proposed "Q-Probing" outperforms both
MiniGPT4 and LRV-instruct in average perfor-
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Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Average
LLaVA(Order 12345) 26.32 38.72 0.07 0.25 54.29 23.93
LLaVA(Order 34125) 0 0.15 36.69 30.55 49.16 23.31
GPT-4V(Order 12345) 25.51 33.50 38.72 17.83 46.11 33.01
GPT-4V(Order 34125) 44.16 27.44 27.29 21.14 47.79 33.56

Table 4: The exact match of LVLMs in different dialogue orders. “Order 34125” represent the performance when
first answer the unanswerable turn 3 and 4 questions without misleading turn 1 and turn 2 answers.

Model
Turn 1

w/ misleading history w/ history w/o history
Non-existence object Original object Non-existence object Original object Original object

EM EM F1 EM F1 EM F1 EM F1 EM F1
Cheetah 19.96 0.18 20.22 18.58 23.42 0.27 27.31 19.08 27.49 53.67 65.44
LLaVA 26.32 0.14 30.32 32.60 45.17 0.05 13.44 62.04 71.29 73.02 82.72
GPT-4V 25.51 39.76 59.23 38.35 50.29 38.35 49.23 53.04 68.72 77.16 88.01

Table 5: The performance of LVLMs under different conditions. “w/ misleading history” means LVLMs correctly
answer the Turn 1 question and “w/ history” means otherwise. Turn 3 and Turn 5 questions query a “Non-existence
object” and the unedited “original object”. “w/o history” shows the performance of LVLMs answering the Turn 5
question outside the dialogue.

mance. Compared with LRV-instruct, Q-Probing
achieves large improvement in turn 1 and turn
5, whose questions query about the edited ob-
ject and original object with misleading history.
The results show that relevant questions can allow
LVLMs to be more aware of additional logical and
visual information and mitigate hallucinations.

4.4 More Analytical Study

Hallucination with misleading questions Turn
3 and 4 are designed to present LVLMs with
misleading prompts that pose ambiguous ques-
tions. The objective was to assess whether LVLMs
would recognize the flawed nature of these queries
and respond appropriately with ’Unanswerable’.
According to the results in table 3, there is a sig-
nificant performance drop for all models in turns
3 and 4, suggesting that misleading prompts can
easily lead to the generation of hallucinations, em-
phasizing the challenges associated with handling
ambiguous queries accurately.

Hallucination without misleading history We
evaluate the performance of LLaVA and GPT-4V
with different orders in dialogue. Specifically,
Since turn 2 and turn 4 questions refer to previ-
ous objects or answers, changing their order will
lead to incorrect GT answers. Thus we change
the order from the original 1 2 3 4 5 to 3 4 1 2 5,
where the LVLMs firstly answer the original turn
3 and turn 4 questions. In this way, the LVLMs
will not be affected by misleading history when an-
swering the hardest unanswerable questions. The
exact match (EM) results are shown in Table 4. It

is shown that the GPT-4V can identify more an-
swerable questions without misleading history, im-
proving EM from 38.72 to 44.16. The unanswer-
able response also helps GPT-4V perceive edited
objects, improving EM from 25.51 to 27.29.

Visual understanding To assess the effective-
ness of the visual encoder, we conduct addi-
tional evaluations by providing LVLMs with scene
graphs instead of images. The results, presented
in the lower part of Table 3, reveal that LVLMs
achieve superior performance compared to the
image-based outputs. This indicates the bottleneck
of current LVLMs may lie in the visual encoder.

Image consistency To inspect whether the LLM
hallucinates regardless of the visual information,
we evaluate whether a LVLM can generate consis-
tent output about a same object. As Turn 1, 3, and
5 query the same object based on edited and origi-
nal image, we evaluate the performance of LVLMs
in Turn 3 and Turn 5, given that Turn 1 was an-
swered correctly. As shown in Table 5 “w/ mis-
leading history”, if the LVLM correctly answers
Turn 1, LVLM will has misleading history and
tends to obtain better performance in turn 3(Non-
existence object) but shows a significant drop on
turn 5(original object), which contains a similar
question but a different image. These findings sug-
gest that LVLMs are influenced by their previous
responses and tend to hallucinate answers without
effectively utilizing visual inputs.

Influence of history To investigate whether the
previous dialogue would affect the efficacy of the
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Accuracy Agreement Ratio
GT answer 98% 95.58%

Table 6: Accuracy of groundtruth answer evaluated
by human.

Accuracy Agreement Ratio
Edition Correctness 1.8 86%
Image Quality 1.7 82%

Table 7: Human evaluation of the edited images.

F1 EM Human
pearson spearmanr kendalltau pearson spearmanr kendalltau Accuracy Agreement

LLaVA 0.6723 0.5532 0.5031 0.7896 0.7896 0.7896 26% 92.4%
GPT4-V 0.6611 0.5123 0.4912 0.7527 0.7526 0.7527 44.8% 88%

Table 8: The human evaluation results of LVLMs and the correlation coefficient to the EM and F1.

current response of LVLMs, we evaluate the GQA-
like question in turn 5 given the premise that turn
1 was answered correctly or incorrectly. As de-
scribed above, if LVLMs answer correctly in Turn
1, the outcomes in Turn 5 with similar image will
be affected. Additionally, we evaluate the per-
formance of LVLMs when directly asking Turn 5
questions outside of the dialogue context. The im-
pressive results, presented in Table 5, indicate that
LVLMs perform well when directly asked Turn 5
questions without the influence of prior dialogue.
The performance gap observed in these evalua-
tions indicates the existence of hallucination in-
duced by the dialogue history.

More study of LVLMs’ performance on differ-
ent edit types is in appendix A.

4.5 Human studies on VisDiaHalBench

Generated images To validate our generated im-
ages, we randomly select 50 images and ask two
annotators to rate an edited image from 0 2, based
on whether the edition follows the instructions and
whether the image seems natural. The results are
shown in Table 7. The agreement ratio represents
the extent to which the rating provided by the two
annotators matches. As shown in the table, the
diffusion models can correctly edit the objects in
most cases given the annotators have an average
rating of 1.8 and 86% of rating agreement.

Correctness of GT answers We ask two hu-
man annotators to answer the questions for 50
sampled dialogues with a total of 250 questions.
We present the annotator with possible color can-
didates to avoid answering with color synonyms.
The results are shown in the last line of Table 3.
Human-labeled answers achieve a 95.29% accu-
racy compared to the groundtruth answers. When
querying object names, some human answers are
synonyms of the groundtruth, leading to lower ex-
act match (EM) but higher F1 scores. After label-

ing some samples, the human annotator became
aware that Turn 3 and 4 consistently yield the
fixed answer "unanswerable," resulting in a 100%
EM. In conclusion, human annotator achieves F1
scores greater than 90 in all turns, indicating that
the samples generated with the scene graph can be
utilized to evaluate LVLMs.

We also evaluate whether the groundtruth an-
swer is the same as human evaluation. The re-
sults are shown in Table 6. The "Accuracy" rep-
resents the correctness of the groundtruth answer
evaluated by humans. The agreement ratio repre-
sents that two annotators have the same label for
95.58% of answers. The results align with the pre-
vious table, where groundtruth and human annota-
tors reach an agreement in approximately 98% of
the answers. These two tables show the correct-
ness of generating questions and answers.

Evaluation metrics To study the correctness of
the EM/F1 evaluation metrics, we conduct a hu-
man evaluation of the LLaVA and GPT4-V out-
puts. Specifically, we ask two annotators to score
each answer in 50 dialogues with 0/1. The cor-
relation coefficient between human and automatic
evaluation metrics are shown in Table 8. The
agreement ratio represents the extent to which the
answers provided by the two annotators match.
The table demonstrates a strong correlation be-
tween the automatic evaluation metrics and human
evaluation.

5 Conclusion

In this work, we propose VisDiaHalBench, a novel
visual dialogue benchmark specifically designed
to investigate the hallucination phenomenon in
Large Vision-Language Models (LVLMs). Our
comprehensive analysis shows the weaknesses of
current LVLMs in terms of image consistency and
dialogue history, highlight the challenge of hallu-
cination in vision-language understanding.
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6 Limitations

Although we carefully designed the construction
process and prompt to generate the natural lan-
guage questions, some question texts are not flu-
ent. Besides, although the question-answer is
grounded by an annotated scene graph, an open-
ended question can still have multiple answers
with similar meanings. To better evaluate the
answering accuracy objectively, the benchmark
could have Yes/No questions only. The potential
issue might include the misuse of the edited im-
ages might be misused for unexpected purposes.
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A Performance analysis on edit types

Table 15 shows the LVLMs’ performance on dif-
ferent types of edited image. It is shown that
LVLMs perform worse on "modified objects" im-
ages because the questions and edited images are
harder than the other two edit types.

Removing an object will impaint the region
with its surrounding background, which makes the
image still plausible in a natural context. Further-
more, querying its existence is the only valid ques-
tion for a removed object. Thus, an LVLM only
needs to answer yes/no for this edit type and has a
higher answering accuracy.

Modifying attributes will change an object’s
color. Although the color may be unusual for
the object, the object itself is reasonable for the
scene. Thus, an LVLM can correctly answer some
of these questions.

Modifying an object will replace the original ob-
ject with another one that does not fit the scene.
Additionally, the answering vocabulary for object
names is much larger than for colors. The diffi-
culty in both the image and the question leads to
lower performance. The results also suggest that
LVLMs may pay more attention to the common-
sense inside the LVLM instead of visual tokens.

B Instruct prompts

Our prompt for question generation is listed in ta-
ble 9. The prompt for Q-Probing to generate rel-
evant questions and answer original questions are
listed in Table 10 and Table 11 respectively.

C Model details in our benchmark

Cheetah integrates visual information and lan-
guage understanding to handle zero-shot tasks,
meaning it can execute tasks without prior ex-
amples. To enhance the model’s performance in
understanding complex visual and verbal instruc-
tions, Cheetah incorporates the VPG-C module,
which is specifically designed to capture and sup-
plement detail information. Moreover, Cheetah
fine-tunes the VPG-C through a synthetic discrim-
inative training strategy, thereby reducing the re-
liance on labeled demonstration data. The model
variant evaluated in our experiments is "cheetah-
llama-2-7b". The evaluation process is completed
over a period of 50 GPU hours, utilizing one
NVIDIA GeForce RTX 3090 GPU with 25GB of
memory.

LLaVA propose a framework that fuses the ca-
pabilities of a visual encoder, specifically the ViT-
L/14 from CLIP(Radford et al., 2021), with the
language decoder abilities of LLaMA(Touvron
et al., 2023). This integration is achieved using
an intermediary fully-connected (FC) layer. The
training process begins with the FC layer being
trained in isolation on a dataset of 595,000 image-
text pairs, with the pre-existing parameters of both
the visual encoder and the language model re-
maining unchanged. Subsequent to this phase,
a fine-tuning step is conducted where both the
FC layer and the language model are jointly op-
timized. This fine-tuning employs a specialized
dataset consisting of 158,000 pairs of instructional
vision-language data. The model variant evaluated
in our experiments is "LLaVA-v1.5-13b.". The
evaluation process is completed over a period of
30 GPU hours, utilizing one NVIDIA GeForce
RTX 3090 GPU with 25GB of memory.

MiniGPT-4 employs a fully-connected (FC)
layer to facilitate communication between a vi-
sual encoder and a text encoder. The initial train-
ing phase involves the FC layer learning from a
dataset with 5 million image-text pairs. Follow-
ing this, the model undergoes fine-tuning with
a targeted set of 3,500 instructional image-text
pairs. MiniGPT-4 relies on the integration of a pre-
trained BLIP2 visual encoder(Li et al., 2023c) and
a LLaMA language model.The model variant eval-
uated in our experiments is "MiniGPT4-aligned-
with-llama2-7b". The evaluation process is com-
pleted over a period of 50 GPU hours, utilizing one
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NVIDIA GeForce RTX 3090 GPU with 25GB of
memory.

LRV-instruct aims to enhance the accuracy and
robustness of multimodal artificial intelligence
models when processing visual instructions. It
trains models by including 120,000 positive and
negative visual instructions to identify and avoid
hallucinations that occur during task execution.
The model variant evaluated in our experiments is
"LRV-MiniGPT4-7b". The evaluation process is
completed over a period of 60 GPU hours, utiliz-
ing one NVIDIA GeForce RTX 3090 GPU with
25GB of memory.

Blip-2 is an efficient pre-training strategy that
initiates visual language pre-training by utilizing
pre-existing frozen pre-trained image encoders
and frozen large-scale language models. The
model variant evaluated in our experiments is
"BLIP w/ ViT-L". The evaluation process is com-
pleted over a period of 40 GPU hours, utilizing one
NVIDIA GeForce RTX 3090 GPU with 25GB of
memory.

Hallucidoctor is a novel illusion detection
and elimination framework based on the cross-
checking paradigm, aiming to automatically iden-
tify and eliminate illusions in training data. The
model variant evaluated in our experiments is
"Minigpt4-vicuna-LLaVA+". The evaluation pro-
cess is completed over a period of 80 GPU hours,
utilizing one NVIDIA GeForce RTX 3090 GPU
with 25GB of memory.

GPT-4 is the latest generation of closed-source
large language models released by OpenAI, which
has seen significant enhancements in terms of the
scale of data training and computational complex-
ity. GPT-4V adds visual capabilities to GPT-4, en-
abling the model to not only understand and gener-
ate text but also to comprehend and analyze image
content.The model variant evaluated in our exper-
iments is "gpt-4-vision-preview". The evaluation
process is completed over a period of 40 hours, us-
ing the API interface provided by OpenAI.

D GQA dataset

The GQA (Hudson and Manning, 2019) dataset
consists of real-world images with synthesized
questions. Each image is associated with a cleaner
scene graph of image objects, their attributes, and
relations. Each question is associated with a struc-

tured functional program, that refers objects and
relations to specify the reasoning route in the
scene graph for the final answer. This dataset is
distributed under license CC BY 4.0.

E Intended use of VisDiaHalBench

The VisDiaHalBench is distributed for research
purposes. The VisDiaHalBench is constructed
based on images and scene graphs from the GQA
dataset, thus does not contains any information
that names or uniquely identifies individual people
or offensive content same to the GQA.

F Detailed experimental results

Table 12,13,14,15 presents the detailed experimen-
tal results from different perspectives.

G Supplementary examples

Figures 4, 5 show supplementary examples from
VisDiaHalBench.
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As a question asker, could you please provide a question according to my request?
You will receive a "question type" where "exist" represents asking whether there is a
object; "queryrel" requires asking about the relative relationship between obj1 and
obj2; "verifyRel" indicates asking whether these two objects have a certain relative
relationship,(for example, is the book on the left of a yellow thing?) "queryRel"
asks for the relative relationship between the two objects. "verifyTargetRel" stands
for the query whether A and B have the relationship mentioned in the "last round".(for
example, does this relationship(last round) of position also exist between the banana
and the table?)."verifyattr" should ask whether obj possesses a certain attribute;
"verifyTargetAttr" asks whether a certain object possesses a specific attribute
mentioned in the "last round".(for example, Do the book have the same color with
it(last round)?). And for "queryAttr," the answer should be the attribute of the
queried object.(For example, what is the color of the object on the table?). Next, you
will receive a "last round," for example, "logo." If provided, please use pronouns
(such as "it," "her") to refer to it in your question. Then, you will receive
a "prompt" where <obj> represents the objects that can appear in your question
(including their relationships and properties), and "<answer triplet>" represents
the information about the subject object of the question.(example: "tractors, <name>,
tractors" represents the object as "tractors"."bike, <attribute>, navy" represents
the object as "bike" and it has the attribute "navy". Attention, please make sure to
include its attribute when you mention the obj.) The "<answer>" serves as the correct
answer for your question.You should make the best use of all the information available.
Now based on this information:[question type:question type,last round":{last round
input},"prompt":prompt.] ,generate a question:

Table 9: Prompt for GPT-4 to generate questions with fixed answers.

As a keen questioner, you need to generate three questions related to the current
issue and image that include potentially information in the format [Q1, Q2, Q3] (e.g.,
Is A present in the image? Where is the specific location of A? What is the color of
A?).image:<Img><ImageHere></Img>, question: {question}, ###your proposed question:

Table 10: The prompt of Q-Probing to generate relevant questions.

Give the following image: <Img>ImageContent</Img>. You will be able to see
the image once I provide it to you. Please answer my questions according to the
dialogue.###Human: History:{historty_dialogue}, Image now:<Img><ImageHere></Img>,
Question:{question}. (Before answering, please take a moment to consider these
questions (do not need to answer): {Q1, Q2, Q3}) ###Assistant:

Table 11: The prompt of Q-Probing to answer a question given generate relevant questions.

Model
Y/N Object Attribute Relation

EM F1 EM F1 EM F1 EM F1
Cheetah 11.79 26.37 5.99 24.99 4.44 23.03 3.50 28.20
LRV-instruct 12.95 34.08 8.45 35.74 13.26 37.17 1.64 35.30
MiniGPT4 20.77 37.09 4.63 30.09 8.65 34.68 3.72 30.21
Q-Probing 23.02 39.78 3.88 32.11 10.72 36.27 8.01 34.26
LLaVA 23.93 37.73 3.54 28.86 18.89 39.85 9.03 36.28
GPT-4V 32.33 46.61 22.52 50.15 29.16 50.44 25.21 49.37

Table 12: Average evaluation results under different answer types.
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Model
exist query object query attribute query relation verify attribute verify relation verify target attribute verify target relation

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Cheetah 25.31 29.02 5.99 24.99 4.44 23.02 3.50 28.20 23.31 29.15 12.52 27.48 11.33 25.75 0.07 22.37
LRV-instruct 27.26 31.62 8.44 35.74 13.25 37.17 1.64 35.29 16.10 26.89 13.57 37.87 14.31 37.23 0.01 34.85
MiniGPT4 52.58 52.74 4.63 30.09 8.65 34.69 3.71 30.20 43.78 46.77 19.87 35.94 6.70 22.73 0.21 26.98
Q-Probing 59.41 59.57 3.87 32.11 10.72 36.27 8.00 34.27 53.38 55.98 21.36 36.84 9.90 23.20 1.87 27.68
LLaVA 49.56 49.56 3.54 28.86 18.88 39.85 0.92 36.27 38.59 40.15 20.29 30.10 36.72 45.46 0.07 16.95
GPT-4V 47.70 48.83 22.52 50.15 29.16 50.44 25.21 49.37 40.24 44.83 37.89 47.30 33.47 43.46 18.51 36.06

Table 13: Average evaluation results under different qeustion types.

Model
None modify obj none exist modify attr none exist refer none exist remove none exist

EM F1 EM F1 EM F1 EM F1 EM F1
Cheetah 19.50 27.86 0.01 19.45 0.45 25.31 0.22 23.27 0.21 24.50
LRV-instruct 21.55 33.76 0.01 33.04 0.01 31.72 0.01 35.48 0.01 33.24
MiniGPT4 34.47 43.04 0.02 25.53 0.01 27.39 0.13 29.42 0.01 28.32
Q-Probing 36.82 46.51 0.03 22.54 4.13 30.03 1.65 28.26 0.97 29.15
LLaVA 39.78 48.26 0.01 18.15 0.15 26.97 0.06 25.92 0.01 0.25
GPT-4V 35.04 47.16 60.00 70.67 22.65 43.78 17.83 35.93 36.00 52.27

Table 14: Average evaluation results under different hallucination types.

Model
remove modify attr modify obj

EM F1 EM F1 EM F1
Cheetah 13.85 27.23 10.61 25.86 6.62 26.05
LRV-instruct 16.43 34.99 10.88 33.51 9.52 34.95
MiniGPT4 26.68 40.04 17.37 35.38 7.62 30.82
Q-Probing 30.99 44.31 21.24 38.76 2.85 29.87
LLaVA 25.88 38.19 22.95 37.55 8.57 29.81
GPT-4V 40.12 50.59 31.04 45.94 16.67 39.39

Table 15: Average evaluation results under different edit types.
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Figure 4: Supplement example 1 of VisDiaHalBench

Figure 5: Supplement example 2 of VisDiaHalBench
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