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Abstract

Recent advancements in large language mod-
els (LLMs) have shown promising results in
multilingual translation even with limited bilin-
gual supervision. The major challenges are
catastrophic forgetting and parameter interfer-
ence1 for finetuning LLMs when provided par-
allel training data. To address these challenges,
we propose LANDeRMT, a Language-Aware
Neuron Detecting and Routing framework
that selectively finetunes LLMs to Machine
Translation with diverse translation training
data. In LANDeRMT, we evaluate the aware-
ness of neurons to MT tasks and catego-
rize them into language-general and language-
specific neurons. This categorization enables
selective parameter updates during finetuning,
mitigating parameter interference and catas-
trophic forgetting issues. For the detected
neurons, we further propose a conditional
awareness-based routing mechanism to dynam-
ically adjust language-general and language-
specific capacity within LLMs, guided by trans-
lation signals. Experimental results demon-
strate that the proposed LANDeRMT is very
effective in learning translation knowledge, sig-
nificantly improving translation quality over
various strong baselines for multiple language
pairs.

1 Introduction

Conventional neural machine translation (NMT)
usually requires a huge amount of parallel training
data (Costa-jussà et al., 2022; Fedus et al., 2022;
Zhu et al., 2023, 2024b). In contrast, multilingual
LLMs, e.g., BLOOM (Scao et al., 2022), LLaMA2
(Touvron et al., 2023), in spite of being trained with

†Equal contribution.
*Corresponding author.
1Regarding catastrophic forgetting and parameter interfer-

ence, we are specifically addressing issues between languages
rather than those between machine translation tasks and other
tasks in this paper.

mainly monolingual data, require only a few ex-
amples to demonstrate remarkable prowess in mul-
tilingual translation via in-context learning (ICL)
(He et al., 2023; Lyu et al., 2023). However, such
LLM-based MT exhibits a major drawback that
the quality of yielded translations is highly sensi-
tive to the provided examples in ICL (Vilar et al.,
2023) and outputs might suffer from overgenera-
tion (Bawden and Yvon, 2023).

To address these issues, existing studies attempt
to use various finetuning methods, such as adapter-
based method (Alves et al., 2023), instruction-
based tuning method (Li et al., 2023a). However,
these approaches primarily focus on balancing be-
tween the original LLMs and new finetuning trans-
lation data They use only incremental data to ac-
quire new knowledge without considering catas-
trophic forgetting of knowledge originally captured
by LLMs (Liu et al., 2021; Shao and Feng, 2022;
Huang et al., 2023). Many studies have shown
that catastrophic forgetting indeed exists across
languages as LLMs are fine-tuned on one language
pair and then used to translate another language on
which LLMs are not fine-tuned (Li et al., 2023b;
Zhu et al., 2024a). Additionally, as LLMs are usu-
ally generally developed for multiple tasks (i.e.,
sharing parameters across different tasks), finetun-
ing LLMs for MT task may cause parameter in-
terference for other tasks (Luo et al., 2023). In
Section 4.3, we find that full-parameter finetuning
of LLMs cannot always improve translation quality
on all language pairs. Therefore, is it possible to
design a new finetuning method for LLMs, which
can mitigate the issues of catastrophic forgetting
and parameter interference during the finetuning
process of LLMs to multilingual machine transla-
tion?

In multilingual NMT, previous efforts evaluate
the importance of model neurons to each language
pair and only tune language-specific neurons for
the current language pair during training (Xie et al.,
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2021). Recent studies on LLM unveils that many
neurons in the feed-forward networks (FFN) are
only activated for specific tasks and become “dead”
for irrelevant tasks (Voita et al., 2023; Conmy et al.,
2023).

Inspired by these studies, we propose LAN-
DeRMT, a language-aware neuron detecting and
routing framework for selectively finetuning LLMs
to MT, which aims to mitigate the issues of catas-
trophic forgetting and parameter interference. First,
we evaluate the MT awareness of each neuron in
FFNs. For neurons that are related to multilin-
gual MT tasks, we further evaluate the relevance
of each neuron to each language pair. Accord-
ing to their MT/language “awareness/relevance”,
we divide neurons into the unactivated neurons,
language-general neurons and language-specific
neurons. After that, we finetune LLMs on multilin-
gual parallel training data. During finetuning, only
the parameters of language-general neurons and
language-specific neurons for the current language
pair are tuned. This selective finetuning process
can alleviate the parameter interference issue.

As language-general and language-specific ca-
pacity matters for MT (Zhang et al., 2021;
Koishekenov et al., 2023), we propose a condi-
tional awareness routing mechanism to dynam-
ically schedule language-general and language-
specific capacity across sub-layers in LLMs under
the guidance of translation signals. In doing so, we
can alleviate the catastrophic forgetting issue and
facilitate LLMs to be adapted to MT.

The main contributions of this work are summa-
rized as follows:

• We propose LANDeRMT that aims at mitigat-
ing the catastrophic forgetting and parameter
interference issues for efficiently finetuning
LLMs to MT.

• To well schedule language-general and
language-specific capacity across sub-layers
in LLMs, we propose a conditional awareness-
based routing mechanism.

• Experiments on ten language pairs show that
our model achieves the state-of-the-art results
compared to previous strong baselines and
demonstrate the robustness of the proposed
model in various settings.

2 Related Work

LLMs, with a few examples provided via in-context
learning, have demonstrated impressive capabilities
in machine translation without requiring explicit
supervision from parallel training data (Moslem
et al., 2023; Ghazvininejad et al., 2023; Sia and
Duh, 2023; Han et al., 2022). However, LLMs with
ICL for MT suffer from the sensitiveness to the
provided examples (Vilar et al., 2023) and yielded
translations might be overgenerated (Bawden and
Yvon, 2023).

Another line of research on LLMs, known as
domain-adaptive pretraining, focuses on finetuning
LLMs to downstream tasks (Cheng et al., 2023;
Dong et al., 2023). Although these approaches have
demonstrated efficacy in adapting various LLMs
and result in enhanced performance on downstream
tasks (Wu et al., 2023; Gupta et al., 2023; Wu et al.,
2024; Zhu and Xiong, 2023), they rarely apply
to multilingual generation tasks, e.g., multilingual
MT.

In order to efficiently adapt LLMs to MT, re-
cent years have witnessed efforts on finetuning
LLMs for MT (Vilar et al., 2023; Alves et al., 2023).
Alves et al. (2023) show that adapter-based fine-
tuning with LoRA (Hu et al., 2022) matches the
performance of traditional finetuning while reduc-
ing the number of training parameters by a factor
of 50. Li et al. (2023a) investigate the multilingual
generalization when finetuning LLMs. However,
they do not explicitly overcome catastrophic forget-
ting and parameter interference issues. To address
these issues, our work starts with analyzing the
neurons within the model, and finetunes LLMs by
distinguishing neurons.

Research interests in understanding the inner
workings of LLMs and NMT models have been
growing recently (Räuker et al., 2022; Bills et al.,
2023; Garde et al., 2023). Voita et al. (2023) focus
on neurons inside FFNs and find that the network
is sparse and represents many discrete features in
LLMs. They find many of the alive neurons are
reserved for discrete features and act as token and
n-gram detectors for different languages. In addi-
tion, previous NMT efforts evaluate the importance
of NMT neurons in each language pair and only
finetune language-specific neurons for the current
language pair participate in training for conven-
tional multilingual NMT (Xie et al., 2021; Patel
et al., 2022). Partially motivated by these stud-
ies, we propose a language-aware neuron detecting
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Figure 1: Illustration of the proposed LANDeRMT.

and routing framework for selectively finetuning
LLMs to MT. In our method, we use awareness-
based evaluation of neurons in LLMs and divide
the neurons into language-general and language-
specific neurons. We only update the parameters of
language-general neurons and the corresponding
language-specific neurons for the current language
pair during training to overcome catastrophic for-
getting and parameter interference to enhance the
multilingual translation ability of LLMs.

3 Methodology

The proposed LANDeRMT is illustrated in Figure
1. We first propose a method to analyse which FFN
layers of LLMs have strong relevance to source-
target language pair. This allows us to exclusively
concentrate on layers that are related to the MT
task, hence reducing the distraction from unrelated
parameters. Then, we employ Taylor Expansion
(TE) (Xie et al., 2021) to evaluate the strength of
awareness (relevance) of neurons at those layers to
the given language pairs of the MT task. Finally,
we only route and finetune the detected language-
aware neurons for the MT task. This can ensure
that we only need to update a small number of
relevant parameters of LLMs for MT.

3.1 Detecting Language-Pair-Relevant Layers
We introduce a representation analysis (RA)
method to detect language-pair-relevant layers,
which is based on the difference in activations be-

tween FFN layers. RA aims to measure the changes
in the response of each FFN layer to the input
source sentence during the LLM forward prop-
agation process that “translates” the source sen-
tence into the target sentence, so as to identify FFN
alignment layers that are highly “activated” for the
source-target language pair. For each consecutive
pair of layers i and i+ 1 within the LLM, we com-
pute the activation difference D, to estimate the
degree of change in information representation be-
tween these two layers. The estimation is computed
as follows:

Di =

∣∣∣∣∣
1

N

N∑

n=1

Ai,n − 1

N

N∑

n=1

Ai+1,n

∣∣∣∣∣ (1)

where Ai,n and Ai+1,n represent the activation val-
ues at the i-th and i + 1-th layers during the n-th
forward propagation, and N is the total number
of forward propagations. In this manner, Di cap-
tures the extent of change in activation values be-
tween adjacent layers along the depth of the model
when the input source language is translated into
the target language. The most significant changes
in layer representations indicate the most critical
layers that are related to the source-target language
pair. Therefore, our layer selection criterion fo-
cuses on identifying those layers with the top-k D
values as follows:
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LLPR = argmax
topk

{D1, D2, ..., Dk} (2)

where LLPR denotes the optimal language-pair-
relevant layers.

3.2 Evaluating the Language Awareness of
Neurons

Once we find the language-pair-relevant layer, do
we need to finetune all neurons of the layer for
the corresponding language pair? Our experiments
show that this all-neuron-finetuning strategy is not
as expected (see Section 4.4). The main reasons
are two fold. First, if all parameters of the de-
tected FFNs are updated for all language pairs,
catastrophic forgetting problem still remains (Liu
et al., 2021). Second, there is no effective mecha-
nism to overcome the parameter interference issue
to preserve the language-general and the language-
specific knowledge.

Partially inspired by the studies on the
importance-based neuron finetuning for NMT (Xie
et al., 2021) and neuron interpretability in LLMs
(Voita et al., 2023), we propose to use the TE to
evaluate which neurons are essential to all lan-
guages and which neurons are responsible for spe-
cific languages. We first define the awareness score
Φ(i) of a neuron to a certain language:

Φ(i) = |∆L(hi)| , i ∈ Lj (3)

Lj is the j-th layer that is the detected language-
pair-relevant layer. hi is the output of neuron i.
∆L(hi) is the loss change between setting hi to
0 and keeping it at its original value. It can be
transformed by TE into the following form:

|∆L (hi)| =
∣∣∣∣
∂L
∂hi

hi

∣∣∣∣ (4)

We estimate the loss change as the product of
the gradient of the loss function with respect to the
activation value and the activation value itself. The
detailed proof can be found in the appendix A.2,
which is similar to that by Xie et al. (2021). Then,
we determine which neurons are shared across all
language pairs (i.e., language-general neurons) and
which neurons are only related to specific language
pairs.

We define Xi as the vector of awareness scores
of the i-th neuron for each language. For each neu-
ron, we calculate the variance σ(Xi) of the aware-
ness scores across different languages. Within a
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Figure 2: The model architecture used for routing and
training.

specific layer, we sort the neuron awareness scores
based on their variance from the highest to the low-
est. A variance threshold λ(i) is calculated to dis-
tinguish language-general neurons from language-
specific neurons as follows:

λ(i) = sort(σ(Xi))⌊ϵ×p⌋, i ∈ Lj (5)

where p is the number of neurons in the Lj layer,
ϵ is a predefined ratio. For neurons with language
awareness score variances below the estimated
threshold λ(i), we categorize them as language-
general neurons, otherwise as language-specific
neurons. Each detected language-specific neuron
is assigned to the language with the highest aware-
ness score.

The set of neurons that are specific either to the
source language or to the target language are ag-
gregated as the neurons exclusive to that language
pair.

3.3 Routing and Finetuning
In our proposed framework, for a given bilin-
gual dataset of a specific language pair, only the
language-general and language-specific neurons
of the detected FFNs for this language pair partici-
pate in the forward computation and the parameters
associated with them are updated during the back-
ward propagation, as illustrated in Figure 2. Never-
theless, it has been empirically shown that the lan-
guage signals from language indicator tokens alone
are not sufficient (Arivazhagan et al., 2019), mak-
ing modules or mechanisms dedicated to language-
general and language-specific modeling a necessity
(Zhang et al., 2020, 2021). To address this issue,
we propose a conditional awareness-based rout-
ing mechanism (CAR) that allows the model to
decide and learn what proportion of the outputs
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of language-general and language-specific neurons
should be allocated for the translation of the lan-
guage pair. For an input token xt, CAR is evaluated
as follows:

CAR(xt) =
∑N

i=1Φ(i)∑N
i=1Φ(i) +

∑M
j=1Φ(j)

(6)

hG(xt) = FFNG(CAR(xt).xt) (7)

hS(xt) = FFNS((1− CAR(xt)).xt) (8)

where G denotes language-general and S language-
specific. FFNG and FFNS are language-general
and language-specific neurons, respectively. N
is the total number of language-specific neurons
in a FFN layers for a language pair. M is the
total number of language-general neurons in a FFN
layers. We combine FFNG and FFNS to alleviate
the parameter interference. The fusion output Hf

is given by:

Hf = hG(xt) + hS(xt) (9)

Uppercase Hf is just a notation here for the ad-
dition result of hG(xt) and hS(xt), which is only
used to distinguish it from hG(xt) and hS(xt). Dur-
ing the finetuning stage, we only update the parame-
ters of language-general and language-specific neu-
rons for a specific language pair and freeze other
parameters of LLMs.

4 Experiments

We conducted extensive experiments with involv-
ing multiple models across various translation
directions to evaluate the proposed framework
against a set of strong baselines.

4.1 Dataset

During the finetuning stage, we selected 5 language
pairs to tune LLMs. All the original training data
came from the recent WMT general translation
track. All data followed the license that can be
freely used for research purposes. In addition, we
used the way in (Huang et al., 2023) to clean train-
ing data. All datasets originated from the Workshop
on Machine Translation (WMT)2. Specifically, we

2https://www.statmt.org/

extracted 200,000 sentence pairs for each transla-
tion direction. In addition, we employed ten transla-
tion instruction finetuning templates sourced from
FLAN v2 (Longpre et al., 2023), adopting them to
our parallel data. Each sentence pair from paral-
lel corpus was randomly assigned one translation
instruction template. We assessed our model’s per-
formance using established test sets like WMT16,
WMT14 and OPUS-100.

4.2 Settings and Baselines

Settings In the language-pair-relevant layers de-
tection phase, we set k to 4. We executed a freezing
operation on the parameters of the remaining layers
while exclusively finetuning the parameters within
the chosen four layers. In the language-aware neu-
rons evaluation phase, we categorized the parame-
ters within the selected layer into language-general
and language-specific parameters, setting ϵ to 0.9.
During the model finetuning stage, we configured
the fintuning hytper-parameters as follows: the fine-
tuning epoch was set to 1, the number of language
pairs was specified as 10, the number of iterations
per epoch for each language pair was set to 12,500,
the batch size was set 8, and the AdamW optimizer
was employed. Additionally, the learning rate was
set to 5e-5. Furthermore, we introduced a gradient
accumulation operation, updating the model param-
eters every 10 iterations to enhance convergence.
The LLMs used for our experiments are BLOOM-
7b1 (Scao et al., 2022) and Baichuan2-7B-Base
(Yang et al., 2023).

Baselines We compared our approach to the fol-
lowing strong baselines.

• 0-shot: This approach uses instructions di-
rectly to make the model perform downstream
tasks without providing any in-context demon-
strations.

• In-context (Zhang et al., 2023): This is a
training-free approach that allows the LLMs
to perform downstream tasks. In particular,
we use 5 random shots as in-context demon-
strations.

• Adapter: This method facilitates the acqui-
sition of new knowledge by incorporating
additional adapter modules following model-
specific layers, effectively addressing the is-
sue of catastrophic forgetting.
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Methods Params WMT16 WMT16 WMT14 OPUS-100 OPUS-100
en-de de-en en-it it-en en-fr fr-en en-ar ar-en en-zh zh-en

Full finetuning 7B 16.12 19.39 17.98 24.18 29.13 28.15 15.40 28.83 20.87 25.52
0-shot —— 11.71 17.82 8.07 16.05 19.58 18.88 9.46 26.37 6.14 22.02
In-context —— 11.49 14.57 9.80 13.12 18.74 15.29 10.01 21.24 6.83 17.19
Adapter 806M 15.61 19.67 15.25 23.63 28.08 27.26 11.28 28.07 15.18 25.05
LoRA 31M 15.12 19.03 14.82 22.85 27.16 27.72 11.15 27.74 15.72 25.12
Adapter-LoRA 806M 16.31 20.23 15.83 23.82 28.05 28.22 11.78 28.46 16.32 25.61
LANDeRMT (Ours) 805M 18.85 22.03 19.82 25.99 31.91 30.55 16.97 31.44 22.47 28.11

Table 1: BLEU scores on the 10 language pairs for xx-to-English and English-to-xx translation. The highest score
on each translation direction is highlighted in bold.

• LoRA (Hu et al., 2022): This method effi-
ciently finetunes a model for a downstream
task by converting certain structures into low-
rank matrices and subsequently finetuning
them to suit the task.

• Adapter-LoRA (Alves et al., 2023): It uses
adapter-based finetuning with LoRA, which
matches the performance of traditional fine-
tuning while reducing the number of training
parameters.

4.3 Main Results

For evaluating translation performance, we used
two automatic evaluation metrics sacreBLEU3.

Comparison with ICL In order to examine the
effectiveness of our proposed method, we evalu-
ated LANDeRMT on various test set and multiple
language pairs. As shown in Table 1, our method
can use new parallel training data to enhance the
translation ability of LLMs.

Comparison with finetuning baselines Com-
pared to the baselines, our method is the best for all
translation directions in Table 1. For relatively low-
resource language pairs, such as English-Chinese,
our method achieves significant improvements over
baselines. Compared to the full parameter finetun-
ing approach, our method has a clear parametric
advantage since it only fine-tunes parameters in
four layers in the model. Our approach exhibits a
notable advantage in terms of the number of param-
eters to be tuned. In comparison to other efficient
finetuning methods, e.g., the adapter baseline ap-
proach, our method finetunes basically the same
number of parameters as it. However, our method
is much better than the adapter-based approach in
terms of translation quality.

en-fr fr-en en-zh zh-en

Layers 27.63 27.12 22.81 24.28
LANDeRMT-LS 22.27 21.46 16.18 23.16
LANDeRMT-LG 28.15 27.83 23.52 25.08

LANDeRMT (Ours) 31.91 30.55 22.47 28.11

Table 2: Translation results achieved by finetuning the
BLOOM-7b1 model using different ablation experiment
settings.

4.4 Ablation Study

In the ablation experiments, we employed four
distinct experimental setups, denoted as Layers,
LANDeRMT-LS, LANDeRMT-LG, and LAN-
DeRMT. The Layers configuration finetuned all
parameters of the lanuage-pair-relevant layer for
each language direction. In the LANDeRMT-LS
setup, we finetuned only the language-specific pa-
rameters of the selected layers, with each language
direction adjusting parameters specific to that lan-
guage direction. The LANDeRMT-LG setup fo-
cused on finetuning only the language-general pa-
rameters of the selected layers, with all language
directions adjusting the same language-general pa-
rameters. The LANDeRMT method, proposed in
this paper, finetuned both the language-general pa-
rameters and language-sepecific parameters to each
language pair.

From Table 2, we observe that LANDeRMT-LS
underperforms the Layers method, likely due to
its smaller parameter size, which constitutes only
10% of the parameters in Layers. In details, we can
observe that LANDeRMT achieves a 4.28 BLEU
improvement over Layers in en-fr, a 9.64 BLEU
improvement over LANDeRMT-LS, and a 3.76
BLEU improvement over LANDeRMT-LG. These
experiments demonstrate the effectiveness of CAR.
Surprisingly, LANDeRMT-LG achieves better re-

3BLEU+case.mixed+numrefs.1+smooth.none+tok.13a
+version.2.2.1
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Figure 3: BLEU scores improvement achieved on
other language pairs using the LANDeRMT method
for finetuning only one language pair on the BLOOM-
7b model.

sults despite finetuning fewer parameters than Lay-
ers. This suggests that our selection of language-
general parameters effectively captures language
alignment, significantly improving translation per-
formance. However, finetuning the language-
general parameters alone, as in LANDeRMT-LG,
is insufficient to fully grasp language-specific in-
formation.

5 Analysis

5.1 LANDeRMT Improves Transfer Learning
across Languages

We examined the transfer learning ability of LAN-
DeRMT in different translation directions. We fine-
tuned the model using only parallel data from a
particular language direction. In other words, we
finetuned only the language-general and language-
specific parameters for that language pair, and then
observed the performance of the model in other lan-
guage directions. The Y-axis of Figure 3 shows the
single language direction that we have finetuned,
and the X-axis shows the language direction of the
test data, which is plotted as the improvement in
the model’s translation performance before and af-
ter the finetuning. Since BLOOM-7b is a model
that is not mainly trained on a parallel corpus, its
translation performance before finetuning is poor,
which is the reason for the large improvement in
the model’s translation performance. We observe
that when finetuning one language direction, the
results of other language directions can also be sig-
nificantly improved, which proves that our method
is effective in facilitating transfer learning between
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Figure 4: Layer-wise average activation across various
language pair settings in the BLOOM-7b model.
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Figure 5: Layer-wise delta average activation across
various language pair settings in the BLOOM-7b model.

languages. However, there are some exceptions.
For example, when finetuning the de-en direction,
the ar-en direction does not improve significantly
or even decrease to some extent. We believe that
this may be due to the fact that Arabic belongs to a
different language family from German, and that
the distance between the languages is far, making
it difficult for cross-lingual transfer learning.

5.2 Language-Pair-Relevant Layers for
Different Language Pairs

Figure 4 illustrates the variation in the average acti-
vation values across each layer of the model when
inputting translation instructions generated using
diverse language pairs. It is noteworthy that the
average activation values of various language pairs
exhibit a similar trend of change, particularly in the
shallower layers of the model. Moreover, when in-
terchanging the source and target languages within
language pairs, the average activation values consis-
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Figure 6: Layer-wise average language-general neuron awareness scores across various language settings in the
BLOOM-7b1 model.
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Figure 7: Layer-wise average language-specific neuron awareness scores across various language settings in the
BLOOM-7b1 model.

tently follow a more uniform trend, as evidenced by
the translation directions of ar-en and en-ar. This
indicate that not only the semantic remains consis-
tent between the source and target languages within
the same language pair, but the identical semantic
is still existing on across different language pairs.

The absolute value of activation value changes
from layer to layer can be calculated by using the
average activation values of each layer, as illus-
trated in Figure 5. We can find that early and late-
stage layers in the model harbor information per-
taining to language pairs. For instance, layers 6 and
7, as well as the final layers, exhibit higher absolute
values of activation value changes. Furthermore,
an observation can be made that the early layers of
the model encapsulate language pair-related infor-
mation that is language pair-general, displaying a
substantial overlap across different language pairs.
Conversely, the layers towards the end of the model
contain language pair-related information that is
language pair-specific, characterized by a dimin-
ished overlap among different language pairs.

5.3 Neuron Awareness for Different
Languages: General and Specific

The main idea of our proposed method is to dis-
tinguish language-general from language-specific

neurons. To verify whether this goal has been
achieved, we conducted the following experiments.
As mentioned in Section 3.2, we categorize neurons
based on their awareness scores, and we observed
significant differences in the awareness scores of
language-general and language-specific neurons
across layers requiring fine-tuning. We illustrate
this in Figure 6 and Figure 7. We can find that
for almost all language pairs, there are noticeable
differences in awareness scores between certain
intermediate layers and the final layers. This indi-
cates that our categorization of neurons based on
layers accurately reflects the practical scenario. It
also suggests that language-general and language-
specific neurons exhibit varying levels of impor-
tance across different layers of the model, partic-
ularly in layers targeted for finetuning. Such dif-
ferences likely stem from the distinct roles that
language-general and language-specific neurons
play in capturing and processing language-specific
and language-general information.

5.4 Neuron Awareness for Different Language
Pairs

Figure 8 depicts the average neuron awareness
scores for each layer of the model, computed us-
ing TE with monolingual data inputs in various
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Figure 8: Layer-wise average neuron awareness scores across various language settings in the BLOOM-7b model.

language pairs. The employed multidirectionally
aligned monolingual data ensures semantic one-to-
one correspondence. The results show consistent
trends in neuron awareness scores across different
language pairs, particularly in the intermediate lay-
ers, indicating the model’s ability to capture seman-
tic information consistently across language pairs.
Additionally, related languages such as Spanish,
English, and French exhibit more similar trends,
supporting our hypothesis.

Furthermore, we observed that language-specific
neurons tend to have higher awareness scores in the
last layers of the model. This suggests a heightened
focus on encoding and retaining language-specific
semantic information during the output phase, par-
ticularly in deeper layers. Notably, language-
specific neurons related to English consistently ex-
hibit high awareness scores across all language
pairs. This can be attributed to the prevalence of
English data during the model’s pre-training phase,
indicating robust representation and preservation of
English language-specific information throughout
the model.

5.5 Results on Other LLMs

We also finetuned the Baichuan-7B-Base model us-
ing the LANDeRMT method and compared it with
the adapter-LoRA finetuning approach. Results are
shown in Figure 9. We observe that across the 10
language directions selected our proposed method
outperforms the adapter-LoRA finetuning method.
This demonstrates the applicability of the LAN-
DeRMT method across different models, achieving
optimal results not only in the BLOOM-7b models
but also in the Baichuan model.

6 Conclusion

In this paper, we have presented a novel approach
that not only improves translation quality but also
mitigates the risk of forgetting previous knowledge

en-ar

en-de

en-fren-it

en-zh

ar-en

de-en

fr-en it-en

zh-en

5 10 15 20 25 30 35

LANDeRMT
Adapter-LoRA

Figure 9: Comparison of BLEU scores on the OPUS
100 test set across ten language directions for finetuning
the Baichuan-7b-base model using adapter-LoRA and
our proposed method LANDeRMT.

while adapting to new data. We propose a TE to
evaluate neuron awareness scores for MT tasks
and categorize them into language-general neu-
rons and language-specific neurons. The proposed
routing mechanism ensures optimal allocation of
resources across language-specific and language-
general capacities, further enhancing the adaptabil-
ity of LLMs. Our experimental results, conducted
across ten language pairs, validate the effectiveness
of our model, showcasing superior performance
compared to existing baselines.
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Limitations

Although LANDeRMT is a new approach to fine-
tune LLMs to enhance the translation ability of
LLMs. The finetuning procedure is shorter than
training LLMs as the amount of data required dur-
ing the finetuning stage is much smaller than during
the training stage. This significantly reduces the
cost of training model from scratch but maybe still
totally overcome parameters interference as we not
fully update the parameters of LLMs. Additionally,
due to computational constraints, we are currently
unable to design additional experiments to validate
how our method enhances the upper limit of trans-
lation capabilities of LLMs when more training
data is added.
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A Appendix

A.1 Language Details
We introduce the characteristics of different lan-
guages as shown in Table 3.

Code Language Genus Order
en English Romance SVO
ar Arabic Semitic VSO
fr French Romance SVO
de German Germanic SVO
zh Chinese Sinitic SVO
it Italian Romance SVO

Table 3: The characteristics of languages in our setting.

A.2 Taylor Expansion
We first express ∆L(hi) as loss change as shown
in the following equation.

|∆L (hi)| = |L (H,hi = 0)− L (H,hi)|

H is the representation produced by a neuron
other than i in the same structure as the i neuron.
We then perform a first-order Taylor expansion of
L(H,hi) at hi = 0.

L (H,hi) = L (H,hi = 0)+
∂L (H,hi)

∂hi
hi+R1 (hi)

The term R1 (hi) can be ignored since the deriva-
tives of the activation function of second order and
higher in the model tend to zero. So the above
equation can be reduced to the following form.

L (H,hi) ≈ L (H,hi = 0) +
∂L (H,hi)

∂hi
hi

Therefore |∆L(hi)| can eventually be simplified
to the following form.

|∆L (hi)| ≈
∣∣∣∣
∂L (H,hi)

∂hi
hi

∣∣∣∣

A.3 Effect of Hyperparameter k

When the relation of layers for different languages
is determined, the number of language pairs asso-
ciated with each layer can be adjusted according
to k. When k = 30, the threshold is max, so all
layers will be allocated to tune LLMs, and when k
= 0, the threshold is 0 so none layers will be tuning
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Figure 10: Mean BLEU scores for all language direc-
tions at different k value settings.
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Figure 11: Mean BLEU scores for all language direc-
tions at different ϵ value settings.

for all language pairs just like the 0-shot ICL. To
better show the overall impact of the hyperparam-
eter k, we vary it from 0 to 30 and the results are
shown in Figure 10. As we can see, the translation
performance of the proposed approach increases
with the increment of k and reach the best perfor-
mance when k equals 4. As k continues to increase,
the performance deteriorates, which indicates that
the over-specific layers are bad at capturing the
common language-pair-relevant alignment and will
lead to performance degradation.

A.4 Effect of Hyperparameter ϵ

We set several different sets of ϵ values to classify
language-general neurons and language-specific
neurons. The experimental outcomes are depicted
in Figure 11. The figure reveals that the average
value of all language-specific BLEU scores peaks
when language-general neurons constitute 0.9 of
the total neuron count. Below this threshold, the
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Figure 12: Clustering of representations generated by
language-general neurons in the mlp.dense_h_to_4h
structure in layer 10 of the BLOOM-7b1 model.
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Figure 13: Clustering of representations generated by
language-specific neurons in the mlp.dense_h_to_4h
structure in layer 10 of the BLOOM-7b1 model.

translation efficacy diminishes as the proportion of
language-general neurons decreases. Conversely,
exceeding the 0.9 threshold results in a decline in
performance, with a higher proportion of language-
general neurons leading to poorer results.

A.5 Language Cluster

The main idea of our proposed method is to let the
language-general and the language-specific knowl-
edge be captured by different neurons. To vali-
date whether the language-general and language-
specific neurons of FFNs within LLMs general or
specific language knowledge, we plotted the dis-
tribution of different neurons across various lan-
guages in 10-th layer, as shown in Figure 12 and
Figure 13. From these figures, it is evident that
for the language-general FFNs neurons, the dis-

tributions for various languages intersect without
clear boundaries, indicating a shared representa-
tion of language knowledge. In contrast, for the
language-specific neurons, the boundaries between
language distributions are highly distinct, highlight-
ing the independence of language-specific knowl-
edge. This observation underscores our neurons
awareness can make neurons capture and integrate
language knowledge in a general manner across
multiple languages within the language-general
FFNs. Conversely, the distinct boundaries in the
distributions of language-specific FFNs neurons
suggest that these neurons are dedicated to encod-
ing language-specific nuances and characteristics.
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