
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11521–11567
August 11-16, 2024 ©2024 Association for Computational Linguistics

Aya Dataset:
An Open-Access Collection for Multilingual Instruction Tuning

Shivalika Singh♦1 Freddie Vargus♦1 Daniel D’souza♦1 Börje F. Karlsson♦2

Abinaya Mahendiran♦1 Wei-Yin Ko♦3

Herumb Shandilya1 Jay Patel4 Deividas Mataciunas1 Laura O’Mahony5 Mike Zhang6

Ramith Hettiarachchi7 Joseph Wilson8 Marina Machado3 Luisa Souza Moura3
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Abstract

Datasets are foundational to many break-
throughs in modern artificial intelligence (AI).
Many recent achievements in the space of
natural language processing (NLP) can be
attributed to the fine-tuning of pre-trained
models on a diverse set of tasks that enables
a large language model (LLM) to respond
to instructions. Instruction fine-tuning (IFT)
requires specifically constructed and annotated
datasets. However, existing datasets are almost
all in the English language. In this work, our
primary goal is to bridge the language gap by
building a human-curated instruction-following
dataset spanning 65 languages. We worked
with fluent speakers of languages from around
the world to collect natural instances of instruc-
tions and completions. Furthermore, we create
the most extensive multilingual collection to
date, comprising 513 million instances through
templating and augmenting existing datasets
across 114 languages. In total, we contribute
three key resources: we develop and open-
source the Aya 1 Dataset, the Aya Collection,
and the Aya Evaluation Suite. The Aya ini-
tiative also serves as a valuable case study in
participatory research, involving collaborators
from 119 countries. We see this as an important
framework for future research collaborations
that aim to bridge gaps in resources.

♦ First authors.
1The word Aya has its origins in the Akan (Twi) language

and is translated as “fern” in English (Willis, 1998).

1 Introduction

Datasets are static representations of the world, far
from the rich, ever-evolving environment we nav-
igate as humans. Yet, these frozen snapshots in
time are the foundation upon which progress in
AI has been built. Many recent breakthroughs in
language modeling can be attributed to fine-tuning
pre-trained models on a diverse set of tasks that
enable a large language model (LLM) to follow in-
structions (McCann et al., 2018; Sanh et al., 2022;
Wei et al., 2022a; Muennighoff et al., 2023c; Long-
pre et al., 2023a). Instruction fine-tuning (IFT)
leverages the precept that Natural Language Pro-
cessing (NLP) tasks can be described via natural
language instructions, such as “What were the re-
views like for the Barbie movie?”.

The factors underlying the construction of the
datasets impact how models perform for users
around the world. Models perform better on the
distribution they are trained to mimic (Kunchukut-
tan et al., 2021). This often introduces known bi-
ases towards languages and dialects not included
during training and introduces critical security
flaws (Yong et al., 2023a; Nasr et al., 2023; Li
et al., 2023b; Lukas et al., 2023; Deng et al., 2023).
In this work, our goal is to reduce this linguistic
inequality. Efforts that aim to improve multilingual
performance have often focused on improving data
coverage (Chen et al., 2023b). However, most of
the limited effort to date has focused on multilin-
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O xaxado tem origens associadas ao 
Cangaço, onde cangaceiros, normalmente 
homens, dançavam com rifles em 
celebrações. Com a entrada de mulheres nos 
grupos, a participação feminina na dança 
também se expandiu.

 دماوند در اساطیر ایران جایگاه ویژه ای دارد. شهرت آن
 بیش از هر چیز در این است که فریدون از شخصیت های

 اساطیری ایران، ضحاک را در آنجا در غاری به بند
 کشیده است و ضحاک آنجا زندانی ست تا آخرالزمان که
 بند بگسلد و کشتن خلق آغاز کند و سرانجام به دست
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Jawapannya ialah Microsoft kerana "Microsoft 
Windows" (perkataan "window" bermaksud 
tingkap dalam bahasa Inggeris) ialah salah 
satu sistem operasi yang banyak digunakan 
oleh ramai orang di seluruh dunia.

Is é Baile Átha Cliath, nó Dublin i mBéarla, 
príomhchathair na hÉireann agus é ar an 
gcathair is mó sa tír freisin. Tá sé suite in 
oirthear na tíre, cois Life agus ar imeall Mhuir 
Éireann. Tá breis is 1.6 milliún duine ina gcónaí 
i mórcheantar Bhaile Átha Cliath agus deirtear 
go dtiocfaidh borradh agus fás ar an daonra sa 
todhchaí.

Shay ay Soomaali badan cunaan maalin walba 
oo dadk qaar ay ku adagtahay la'aantiisa in ay 
cuntada cunaan waa Mooska. Mooska dad 
badan oo Soomali ah way jecelyihiin, wuxuuna 
ka mid yahay waxyaabaha dalka uu ku caan 
baxay in uu dhoofiyo.
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Berikan jawapan untuk teka-teki berikut: 
Apakah jenama tingkap yang paling ramai 
orang guna?
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Maxaa waaye shay ay Soomaali badan cunaan 
maalin walba oo dadk qaar ay ku adagtahay 
la'aantiisa in ay cuntada cunaan?
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Prompt 65 Completion

Classify the sentiment of the following tweet with 
either positive, negative, or neutral \n{{tweet}}

Prompt

Completion

I would classify the given tweet as: {{label}}

What category does this question come from: 
{{question['text']}}?

This question can come from category: 
{{document[‘kind']}}.
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Figure 1: Aya Dataset, Aya Collection & Aya Evaluation Suite. On the left, we show examples of contributions
in the Aya Dataset. These are original human-curated prompt-completion pairs written by fluent speakers of 65
languages. On the right, we have the Aya Collection, an aggregation of 44 monolingual and multilingual templated
instruction datasets and 19 translated datasets ranging over 114 languages. The bottom block showcases the
Aya Evaluation Suite for multilingual open-ended generation. We indicate the number of languages in a dataset with
the value in the blue ovals in the figure. (Translated datasets have been visually merged due to space constraints).

gual pre-training (Scao et al., 2022a; Wei et al.,
2023; Lample and Conneau, 2019; Strømberg-
Derczynski et al., 2021) with even less work cen-
tered on imparting instruction following abilities.

A key aspect of our work is focused on col-
lecting harder-to-obtain human-curated data
from fluent speakers of a language. This cura-
tion process has received far less attention due to
the lack of access to fluent speakers, especially in
low-resource languages (Joshi et al., 2019). We set
about to close this gap by conducting a year-long
participatory research initiative that involved work-
ing with fluent speakers of languages from around
the world to collect human-curated instances of
instructions and completions. Overall, Aya con-
tributes three key resources (See Figure 1):

1. Aya Dataset : We create the largest human-
annotated multilingual instruction fine-tuning
dataset to date, consisting of over 204K in-

stances that cover 65 languages.

2. Aya Collection : We collect instruction-style
templates from fluent speakers and applied
them to a curated list of 44 datasets, including
tasks such as Text Classification, Text Gen-
eration, Machine Translation, Paraphrasing,
and Open-domain Question Answering. Some
of these datasets also include equivalent mul-
tilingual versions produced through transla-
tion. We release 513M instances that cover
114 languages. These contributions are made
available as an open-source collection.

3. Aya Evaluation Suite : We curate and re-
lease a diverse evaluation suite for multilin-
gual open-ended generation. It consists of
250 human-written prompts for each of 7 lan-
guages, 200 human-selected and automati-
cally translated prompts for 101 languages

11522



(114 dialects), human-edited prompts for 6
languages, and the English originals. The
first set represents culturally-grounded and
original prompts, while the translated and
post-edited prompts are sourced from English
Dolly (Conover et al., 2023) and selected for
their cross-cultural relevance.

By fully open-sourcing the Aya Dataset, Aya Col-
lection and Aya Evaluation Suite with a permis-
sive Apache 2.0 License2 we hope to empower
researchers and practitioners to further advance
multilingual models and applications. All datasets
are accessible for download.345

2 Aya Dataset

The goal of the Aya project is to facilitate anno-
tations to a crowd-sourced dataset by individuals
fluent in different languages. Inputs from speakers
of each language ensure that the dataset is more
likely to be organic, articulate, and representative
of the speakers’ cultures.

The Aya project was initiated to provide anno-
tations for the 101 languages available in the mT5
model (Xue et al., 2021). Ultimately, some of these
languages did not receive enough contributions to
include them in the final dataset. Conversely, we
received substantial contributions from languages
not initially part of the original list, like Wolof,
leading to their inclusion; the final Aya Dataset
covers 65 languages. Table E.4 provides details of
these languages.

2.1 Annotation Tasks

On the Aya Annotation Platform, contributors
were able to contribute to three different tasks,
following the find-fix-verify paradigm (Bernstein
et al., 2015): Writing new examples from scratch
(Original Annotations), editing existing examples
to improve the quality and comprehensiveness (Re-
annotations), and giving feedback on the quality
of existing contributions (Annotation Feedback).
We describe each briefly below:

Original Annotations. This task facilitates the
inclusion of human-generated organic content by

2https://www.apache.org/licenses/LICENSE-2.0
3https://hf.co/datasets/CohereForAI/aya_dataset
4https://hf.co/datasets/CohereForAI/aya_

collection
5https://hf.co/datasets/CohereForAI/aya_

evaluation_suite

allowing annotators to submit original prompt-
completion pairs in their language. Existing multi-
lingual models have been shown to produce gener-
ations influenced by Western culture (Yuan et al.,
2021; Naous et al., 2023; Lee et al., 2023) reflect-
ing the underlying representation bias (Mehrabi
et al., 2021) of their training datasets. This task
aims to encourage annotators to submit fresh sam-
ples that are representative of their language, cul-
ture, literature, history, and region. The guidelines
for contributors are available in Appendix C.2.

Re-Annotations. The purpose of this task is to
facilitate the re-annotation or editing of prompt
and completion pairs. The decision to add a re-
annotation task partly stems from the need to
help annotators understand the expected format of
instruction-style datasets and to convey the vari-
ety of tasks in existing datasets, including ques-
tion answering (Saad-Falcon et al., 2023; Arefeen
et al., 2023), summarization (Stiennon et al., 2020;
Wu et al., 2021), paraphrasing (Witteveen and
Andrews, 2019; Reimers and Gurevych, 2019),
and translation (NLLB-Team et al., 2022; Bar-
rault et al., 2023). Editing examples from exist-
ing datasets not only helped familiarize annotators
with the expected format but also allowed for hu-
man evaluation and rating of existing widely used
instruction-style datasets.

In total, we collected datasets from 19 public
data sources and translated them into 114 avail-
able languages, including dialects using the NLLB
3.3B parameter machine translation model (NLLB-
Team et al., 2022). From each collection, we ran-
domly chose 100 examples (per dataset, per lan-
guage and per split), creating our dataset for anno-
tation, after which we had 1M translated prompt-
completion pairs initially populated in the Aya UI
as re-annotation tasks. These translated pairs
served as a starting point for prompts and comple-
tions which annotators could improve. We release
the raw translations as part of the Aya Collection,
provide more details about the provenance of the
translated datasets, and how they were selected
in Section 3.2. In addition to translated exam-
ples, there are other available data sources suitable
for re-annotation: original Aya pairs, pre-existing
instruction-style datasets (e.g., xP3), and the trans-
formation of datasets into an instruction-style for-
mat, i.e., templated datasets. By re-annotating
examples from different sources, we simultane-
ously enhance the quality of individual examples
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while obtaining a signal on the overall quality of
the dataset in a specific language.

Annotation Feedback. Data quality is critical
to ensure that a model can represent a language
well. Learning from noisy, low-quality datasets
harms the overall model performance and the rela-
tively high cost of encoding these noisy examples
is a misuse of capacity (Hsueh et al., 2009; Dodge
et al., 2021; Luccioni and Viviano, 2021; Kreutzer
et al., 2022). Prior work has shown that improve-
ments to quality through data pruning or selection
can have a significant impact on the downstream
performance of a model (Longpre et al., 2023b;
Marion et al., 2023; Boubdir et al., 2023; Yang
et al., 2023). In particular, for instruction-tuning
datasets, a small subset of higher-quality instruc-
tions can greatly outperform a larger volume of
lower-quality instructions (AlShikh et al., 2023;
Zhou et al., 2023; Chen et al., 2023a). Given these
findings, ensuring high quality contributions is of
paramount importance. Ensuring consistent qual-
ity is particularly challenging in an open science
initiative with a large number of contributors.

2.2 Validating the quality of contributions

We follow a peer-review approach where each an-
notator acts as a reviewer for the other annotators
working on the same language. These reviews form
the basis for a quality Aya score which is displayed
on the leaderboard in the UI. The quality score for
an annotator is calculated by averaging the com-
bined average ratings of their examples provided by
other annotators who serve as reviewers. All three
tasks in the Aya UI are connected in a sequential
pipeline where submissions from “Original An-
notations” are reviewed in the “Re-Annotations”
task, and the re-annotations are further reviewed
as part of the “Annotation Feedback” task. This
systematic approach allows for a robust evaluation
and enhancement of the collected data.

2.3 Criteria for Inclusion in Aya Dataset

The Aya Dataset includes all original annotations
and a subset of all re-annotations. We only release
re-annotations if there is a difference between the
original and the edited version. To determine this
subset, we compute the sum of edit distances d
(Levenshtein distance (Levenshtein et al., 1966))
between the original and re-annotated prompts and
completions on the character level and use an ac-
ceptance threshold of (d ≥ 5). This ensures that

Count

Original Annotations 138,844

Re-Annotations
xP3 datasets 2859
Translated datasets 7757
Templated datasets 11013
Original Annotations 43641

Aya Dataset Total 204,114

Table 1: Aya Dataset Statistics. We show the number
of pairs of prompts and completions obtained through
various annotation tasks.

we do not release duplicates of existing data.
Only languages with at least 50 contributions

were included in the final release of Aya Dataset.
This threshold was picked as it represents a bal-
ance between achieving a reasonable level of data
quality and considering the practical limitations of
human resources for some languages. The goal is
to include as many languages as possible without
lowering the overall quality of the dataset.

2.4 Analysis of the Aya Dataset

The Aya Dataset contains a total of 204,114 in-
stances collected via the Aya Annotation Plat-
form. Table 1 provides the breakdown of original
annotations and re-annotations in the final dataset.
The dataset covers 65 languages: 22 high-resource,
12 mid-resource, and 31 low-resource languages
(see Appendix C.3 for more details on our lan-
guage mappings). One objective of this project was
to collect fluid original human prompts and com-
pletions. Table E.9 provides examples of prompts
and completions from the Aya Dataset. During the
data collection process, annotators were provided
with examples and guidelines but were also trusted
to explore their own creativity and cultural back-
ground to come up with new examples. As a result,
it is meaningful to understand differences in aggre-
gate statistics like length across datasets, language
type and relationship with perceived quality.

Impact of Re-Annotation. When editing exist-
ing instances, we instructed the annotators to prior-
itize improving both the quality and richness of the
prompts and completions. The average length of
completions before and after edits are shown in Fig-
ure 2. We observe that across all data sources, the
average length of completions increased after edit-
ing. On average, the length of completions after
edits is 25% longer than before edits. We observed
the largest increase for Aya original annotations

11524



xP3* Translated* Templated* AYA original 
 annotations*

0

100

200

300

400

500

600
Av

er
ag

e 
Co

m
pl

et
io

n 
Le

ng
th

Initial Length Edited Length

Figure 2: Average Completion Length Before and
After Re-annotation. Here (*) indicates the subset
of all dataset categories (xP3, translated, templated,
and Aya original annotations) that were included in
the Aya Dataset after re-annotation. Re-annotation im-
proves average completion length across all datasets.

surfaced in the UI—which were 40% longer on
average than the original length.

Length vs. Perceived Data Quality. Although
longer completions can be valuable for training
models to generate long and natural text, it does
not necessarily imply higher quality. Using anno-
tators’ feedback in the UI, we further investigate
the impact of length on the perceived quality of the
samples. We observe in Figure 4 a positive cor-
relation between how long the prompts and com-
pletions are and their resulting average approval
ratio. Specifically, when we plot combined prompt
and completion length against quality, we observe
a correlation coefficient of 0.27. This finding em-
phasizes the importance of using longer prompts
and completions and incorporating complete sen-
tences to ensure a positive human experience when
engaging with such a model.

Comparison in Completion length Across
Datasets. The Aya Dataset has considerably
longer completions on average when compared
with other data collections as shown in Figure 3.
This is particularly noteworthy given that the
Aya Dataset is human-curated. Given the pres-
ence of longer completions in the training data for
many low-resource languages, we expect that mod-
els trained on the Aya Dataset will generate longer
and more natural responses.
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Aya Collection 
 (Translations)
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Figure 3: Comparison of Completion Lengths. We
show the differences in completion lengths between the
Aya Dataset, the Aya Collection, and xP3 (excluding
the “code” split).

3 Aya Collection

We introduce the Aya Collection, a comprehen-
sive, large corpus of datasets that can be used by
researchers around the world to train multilingual
models. Our goal is only to include datasets with
permissive licensing for manipulation and redis-
tribution.6 The Aya Collection consists of three
different sources of data: 1 Templated data: We
collaborated with fluent speakers to create tem-
plates that allowed for the automatic expansion of
existing datasets into various languages. 2 Trans-
lated data: We translated a hand-selected subset
of 19 datasets into 101 languages (114 dialects)
using the NLLB 3.3B parameter machine trans-
lation model (NLLB-Team et al., 2022). The full
list of datasets translated is listed in Table E.8. 3
Aya Dataset: We release the Aya Dataset described
in Section 2 as a subset of the overall collection. It
is the only dataset in the collection that is human-
annotated in its entirety.

Dataset Selection Criteria. The templated and
translated datasets in the Aya Collection were se-
lected to achieve a mix of different task types. Our
criteria prioritized datasets with high-quality nat-
ural and complete sentences, suitable for creat-
ing pairs of prompts and completions. Datasets
that could potentially yield single-word answers
were excluded. Finally, to create a high-quality
collection, we examined all datasets and excluded
those identified as unclean or noisy, primarily at-
tributable to their automatic creation processes.

6https://en.wikipedia.org/wiki/Permissive_
software_license
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Figure 4: Relationship between Prompt and Completion Length against Quality. We show the trend between
the average number of characters in the prompt and completion length and the average approval rate of the example.

3.1 Templating Existing Datasets

We explored the automatic expansion of existing
datasets in various languages with human-written
prompt templates, following previous work (Mishra
et al., 2022; Bach et al., 2022; Wei et al., 2022a;
Wang et al., 2022d). Unlike prior work that still
either use English prompts in a multilingual dataset
or rely on automatic translation to generate multi-
lingual prompts, to our knowledge, the Aya Col-
lection is the first broad effort to involve fluent
speakers in creating prompts in their language
to expand existing datasets for IFT. We used the
PromptSource framework (Bach et al., 2022) to
template these datasets. The Aya community mem-
bers submitted instructions and created templates
for datasets in the languages they were proficient
in. Our process includes: 1 Templating datasets
with instructions in the same language as the origi-
nal dataset; 2 if the dataset is not in English, we
create instructions in English. Our input prompts
can be monolingual or code-mixed, depending on
whether we apply templates in the same language
or in English to the dataset of a particular language.
Note that code-mixed input prompts here refer to
a structured mix of English instructions with non-
English monolingual data (Lin et al., 2022), which
is different from the typical sociolinguistic defi-
nition of code-mixing (or code-switching) of lan-
guages in natural conversational utterances (Srivas-
tava and Singh, 2021; Winata et al., 2023a; Yong
et al., 2023c; Doğruöz et al., 2023). We used the
suggested templates to convert each dataset into an
instruction-style format. We release these datasets
under the Aya Collection. We list the details of all
datasets we apply templates to in Table E.7.

3.2 Automatic Translation

Despite the potential drawbacks of having lower
quality than naturally found data, training models
with translated data can yield significant benefits
(Aharoni et al., 2019; Zhang et al., 2018; Tang
et al., 2021). We thus experimented with improv-
ing coverage of low-resource languages by selec-
tively translating high-quality datasets from various
existing collections.

Setup. We chose 19 high-quality IFT datasets
from xP3 (Muennighoff et al., 2023c), the Flan
Collection (Longpre et al., 2023a), Dolly (Conover
et al., 2023), along with additional sources such as
SODA (Kim et al., 2022) and Mintaka (Sen et al.,
2022). Datasets were prioritized for translation
based on the richness of task diversity and length
of completions. The complete list of these datasets
is given in Table E.8. We process datasets for trans-
lation using the No Language Left Behind (NLLB
3.3B; NLLB-Team et al., 2022) machine translation
model, which is capable of single-sentence transla-
tions between 200 different languages and dialects
in various scripts. We open-source all translations
as part of the Aya Collection.

4 Analysis of Aya Collection

Overview. The Aya Collection consists of exist-
ing NLP datasets that are templated to include in-
structions as well as datasets already in instruction
format submitted by the Aya community. Table E.7
in the Appendix shows the detailed list of datasets.
The final Aya Collection consists of 44 multilin-
gual and non-English templated and 19 translated
datasets, with 513M individual instances. Overall,
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the collection covers 114 languages7.

Language Balance. One of the objectives of
templating (and translating) existing datasets is to
broaden the available resources for languages that
have limited digital data. To examine if our final
collection adheres to a similar distribution pattern,
we use the number of Wikipedia pages in each
language as a proxy for the online presence of its
fluent speakers. Figure 5 showcases that although
the number of instances for languages varies in the
Aya Collection (templated subset), it does not dis-
advantage languages with fewer Wikipedia pages.
The distribution still ensures a reasonable coverage
across all languages. It is imperative to emphasize
that our analysis does not involve a direct compar-
ison of absolute values, given the disparate units
of measurement involved. Instead, we examine
the patterns of data scarcity for various languages
in our collection versus Wikipedia. Including the
translated datasets in the Aya Collection further
reduces disparities between languages and con-
tributes to creating a more balanced collection as
seen in Figure F.8 in the Appendix.

5 Aya Evaluation Suite

Lastly, we release an evaluation suite tailored to
multilingual models. This set aims to tackle the
scarcity of multilingual data, a challenge that be-
comes even more apparent when considering eval-
uation sets. While there are several test sets avail-
able for evaluating multilingual models (Conneau
et al., 2018; Hu et al., 2020; Ponti et al., 2020;
Lin et al., 2022; Leong et al., 2023; Ruder et al.,
2023), they focus primarily on discriminative tasks
or on regional subgroups of languages. To evalu-
ate multilingual models’ generations, the literature
includes task-specific evaluation sets such as Trans-
lation (Goyal et al., 2021b), Summarization (Hasan
et al., 2021) and Question Answering (Clark et al.,
2020), as well as combinations thereof (Gehrmann
et al., 2022). However, there exists a gap in evalu-
ating open-ended generation capabilities of LLMs
within a multilingual context. We aim to address
this gap by curating a multilingual evaluation set
tailored for assessing the open-ended generation
capabilities of LLMs, such as brainstorming, plan-
ning, and other unstructured, long-form responses.

7We release the Aya Dataset as part of the Aya Collec-
tion, bringing the total number of languages in the collection
to 115. However, for the sake of clarity, when referencing
the Aya Collection statistics in this paper, we exclude the
Aya Dataset.

To strike a balance between language cover-
age and the quality that comes with human atten-
tion, we create an evaluation suite that includes (1)
human-curated examples in a limited set of lan-
guages, (2) automatic translations of handpicked
examples into a more extensive number of lan-
guages, and (3) human-post-edited translations into
a small number of languages. We consider two
primary sources of data: original annotations from
Aya dataset (comprising new examples culturally
curated for different languages) and Dolly prompts
(high-quality, human-written examples carefully
selected to have a universal reach). The subsets
comprising the Aya evaluation suite are:

AYA-HUMAN-ANNOTATED Test Set. We parti-
tioned the Aya dataset into train and test splits. The
test set of the Aya Dataset contains 1,750 of the to-
tal instances (250 instances from 7 languages), ran-
domly selected from original annotations. To guar-
antee enough data remains for training, we focused
on languages with at least 2000 original annota-
tions. To ensure linguistic diversity, we included
languages that were varied in terms of resourced-
ness, script and language family. For these reasons,
the test set consists of English (high-resource,
Latin script, Indo-European), Portuguese (high-
resource, Latin script, Indo-European), Simplified
Chinese (high-resource, Han, Sino-Tibetan), Stan-
dard Arabic (high-resource, Arabic script, Afro-
Asiatic), Telugu (low-resource, Telugu script,
Dravidian), Turkish (high-resource, Latin script,
Turkic), and Yoruba (low-resource, Latin script,
Atlantic-Congo).

DOLLY-MACHINE-TRANSLATED Test Set. We
curate a subset of 200 Dolly prompts (Conover
et al., 2023) to serve as an additional translated
evaluation set. Our aim with this selection was to
exclude any culturally or geographically specific
prompts and completions. Hence, two reviewers
initially inspected a set of 500 English prompts that
were uniformly sampled based on the task cate-
gories in Dolly. The reviewers excluded prompts
that rely on prompts such as “Why is NFL foot-
ball called football when players use their hands
mainly?” that rely on overly specific cultural ref-
erences. When two reviewers disagreed, a third
reviewer was asked to break the tie. This selection
aimed to gather a test set that allows us to eval-
uate the fluency and quality of responses in var-
ious languages while avoiding model assessment
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Figure 5: Number of Prompt–Completion Pairs in Each Language in the Aya Collection (templated). Many
languages with limited digital presence, as indicated by a low number of Wikipedia pages, are well-represented in
the templated portion of the Aya Collection. Note that both axes are in log-scale.

on prompts tied to specific cultural or geographic
references that might have language-dependent va-
lidity. We automatically translate the prompts with
NLLB into 101 languages and their dialects that are
captured by NLLB. Including the original English
prompts this dataset covers 115 dialects.

DOLLY-HUMAN-EDITED Test Set. The auto-
matic translation process may introduce errors in
the prompts that render them nonsensical. To en-
hance the reliability of testing on these prompts, we
therefore enlist professional human annotators to
post-edit the examples (e.g. for the example above
“Alburno o Cansado” (=“[Fish name] or Tired”).
We post-edit the prompts for a subset of six lan-
guages: Arabic, Hindi, Spanish, French, Serbian
and Russian. Appendix E.1 describes the post-
editing process and effort in more detail. The exam-
ple above illustrates that some prompts, even when
translated correctly, might still not transfer well into
other languages—which is the main difference be-
tween a translated English-centric set like this and
an evaluation set originally written in each target
language like AYA-HUMAN-ANNOTATED.

We open-source the DOLLY-MACHINE-
TRANSLATED Test Set to be an additional
resource for researchers, although warn that the
expressiveness of a translated evaluation set is

limited by the quality of the translation model (and
human post-editing) and may adversely impact an
estimate of ability in languages where translations
are inadequate (Nogara et al., 2023). Ultimately,
this is a compromise between having evaluation
coverage in a more complete set of languages
(101 languages and 114 dialects in total) versus
having human-annotated evaluation sets. We
recommend pairing evaluation on the automatically
DOLLY-MACHINE-TRANSLATED test set with
evaluation on the professionally post-edited
DOLLY-HUMAN-EDITED for 6 languages, or the
AYA-HUMAN-ANNOTATED test set created by
proficient speakers in 7 languages. We additionally
recommend using human evaluation strategies to
assess generated outputs on this evaluation suite.
Automatic metrics underperform in creative tasks
and non-English outputs, making them unsuited
for this application (Gehrmann et al., 2023).

6 Conclusion

Open participatory research continues to be under-
resourced and undervalued, particularly when that
work focuses on data creation (Sambasivan et al.,
2021). Aya involved participants from many dif-
ferent countries, different ages, and different levels
of familiarity with the field of natural language
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processing. We see continued opportunities for
computational linguists and machine-learning en-
gineers to collaborate with social scientists such
as sociolinguists, anthropologists, sociologists, and
media studies scholars. As new norms in open
science emerge (Krishna, 2020; Bowser et al.,
2020), collaborations like these can help ensure that
projects in NLP are motivated by an understanding
of what language means to the people who use it ev-
ery day. With Aya we hope to change the way data
is created for multilingual NLP research. In line
with this view, we release the Aya Dataset which
is the first human-curated open-source, multilin-
gual instruction-style dataset consisting of 204,114
prompt-completion pairs covering 65 languages.
This dataset was built with the help of our open-
science community of 2,997 collaborators from
119 countries over a period of eight months.

We also release the Aya Collection , which con-
sists of 44 instruction-style datasets. These were
prepared by transforming existing NLP datasets
into prompt-completion pairs that can be leveraged
for instruction tuning. Furthermore, we translate
several high-quality datasets into 101 languages,
thereby expanding coverage, particularly for many
low-resource languages. This collection consists of
513M prompt and completion pairs covering 114
languages in total and is the largest multilingual
instruction fine-tuning collection today. Addition-
ally, we release Aya Evaluation Suite , consisting
of human-curated examples in 13 languages and
translation of carefully selected prompts in 101
languages.

7 Limitations

Language and Dialect Coverage. The
Aya Dataset and Aya Collection cover 65 and
114 languages respectively—significantly more
than existing multilingual datasets. However,
this is still only a tiny fraction of the world’s
linguistic diversity. Of the world’s approximately
7,000 languages, only half of them are captured
in any sort of written form (Adda et al., 2016).
Of this half, only a few hundred are included on
the internet in machine readable corpora (Adda
et al., 2016). This means that 93% of the world’s
languages are still not being used to train LLMs.
It is also notoriously difficult to determine the
dividing line between different languages and
different dialects of the same language (Rooy,
2021). Geo-cultural variation within a language

often gives rise to new dialects or creole languages
over time (Zampieri et al., 2020; Wolfram, 1997;
Brown et al., 2020; Lent et al., 2022; Blaschke
et al., 2023) and, as such, dialects can serve an
important function in establishing and maintaining
cultural identity (Falck et al., 2012). Many different
dialects that are generally recognized as belonging
to a single parent language are not represented in
the dataset. For example, in the case of Malay,
one of the largest Southeast Asian languages in
the dataset, there are no contributions for regional
dialects that are widely spoken in certain parts
of Malaysia. Contributions by volunteers who
wished to self-identify as speaking a particular
dialect were tagged as such in the data to allow
for limited analysis of the use of regional dialects
in annotations. Lastly, socio-linguistic data show
that multilingual speakers often ‘code-switch’
between languages or dialects depending on
context (Myers-Scotton, 2017), but in this project,
we kept the languages isolated to make them
easier to classify and to be used downstream for
language-specific applications. The current project
setup is not able to serve languages without a
written tradition.

Imbalanced Distribution of Contribution. As
explored in Appendix C.5, despite the large num-
ber of participants, the activity of annotators was
skewed, with a ‘long tail’ of annotators only con-
tributing one or two annotations. Relatively few
contributors accounted for the most annotations.
Similarly, there is a huge gap between languages
with the highest number of contributions and ones
with the lowest number of contributions. Con-
sequently, this suggests a potential imbalance in
dataset distributions across different languages and
a lack of annotator diversity within some languages
dominated by one or two prolific contributors.

Cultural or Personal Bias. Some languages in
our dataset have limited representation, with only a
few annotators responsible for annotating the bulk
of their data. This might mean that data for a par-
ticular language is dominated by annotations that
represent the opinions and perspectives of a partic-
ular contributor or a narrow selection of cultural
viewpoints. For example, annotations in French
might contain many examples about the history of
France, its food, songs, and other cultural practices,
but not much information about the cultural her-
itage of French-speaking communities in Québec,
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Togo, or Senegal (Vigouroux, 2013). This bias
is particularly problematic given the skewed dis-
tribution of the most active annotators. There is
also a potential bias in the availability of particular
kinds of content. For example, it is easier to find
online text from news sites for many African lan-
guages than it is to find text from other domains.
Accordingly, these datasets will be skewed towards
the grammar and lexicon used in news reports in-
stead of the kind of natural language people use in
everyday life (Hovy and Prabhumoye, 2021).

Toxic or Offensive Speech. The Aya Annotation
Platform did not contain specific flags for toxic,
harmful, or offensive speech, so it is possible that
malicious users could submit unsafe data. We be-
lieve this is of relatively low risk because of the
high rate of human-verified annotations and peer-
review, making it unlikely that toxic prompts or
completions made it into the final dataset. How-
ever, there is no guarantee that every entry was
audited. While data poisoning has rarely been ob-
served as a viable threat in practice, it has been
demonstrated to be of concern for instruction-
tuning with very few examples (Xu et al., 2023b;
Wan et al., 2023) and for pre-training under real-
istic conditions (Carlini et al., 2023). During the
eight months of crowd-sourced annotating, there
were no reported cases of hateful or toxic speech in
the existing datasets nor were there any instances
of offensive speech reported in the peer-reviewing
phase of new annotations.

Ethics Statement

This work was carried out as an open science ini-
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A A Participatory Approach to Research

Recent breakthroughs in NLP have predominantly
come from narrow collaborations that involve re-
searchers from a handful of institutions and regions
of the world (Nakamura et al., 2023). This re-
liance on small, specialized collaboration networks
has been shown to hinder innovation (Park et al.,
2023). Dataset creation as a process has often been
undervalued, with minimization of the value of
creators’ contributions (Andress et al., 2020; Peng
et al., 2021; Hanley et al., 2020). Under such con-
ditions, the richness and diversity of the data are
often compromised, as it reflects a limited perspec-
tive that aligns with the interests of those who wield
greater power in these transactions. Data is not, as
metaphors such as ‘data mining’ (Puschmann and
Burgess, 2014) or ‘data is the new oil’ (Stark and
Hoffmann, 2019; Awati and Shum, 2015) might
suggest, a natural resource waiting to be exploited.
Whenever we engage with data, we are also engag-
ing with the connections that data has to the people
who produce, prepare, and distribute it (Seaver,
2021; Pinel C, 2020; Crawford, 2021). Participa-
tory approaches in AI design and research are one
way to address gaps in access to resources needed
for research: through collaborative partnerships
with language speakers and local communities.

Aya is an example of a participatory research
project (Birhane et al., 2022; Corbett et al., 2023;
Delgado et al., 2023). Here, the research is the
result of a broad cross-institutional, global collabo-
ration. This type of cross-sectional work facilitates
the collection of vital linguistic data and commu-
nity engagement, which is crucial for developing
effective language technologies (Joshi et al., 2019;
∀ et al., 2020). We describe below some of the
guiding principles we followed throughout the year-
long Aya project.

Fluid Ownership and Growth. Our open sci-
ence framework allowed us to challenge the norms
of how computer science usually proceeds (Wit-
tenburg, 2021; Sabou et al., 2012). Traditional
research approaches often involve rigid hierarchies;
typically, research is conducted within academic
institutions or corporate labs where roles are clearly
defined, and collaboration is mostly synchronous,
relying on in-person meetings or real-time commu-
nication. In contrast, Aya took a decentralized and
democratic approach to collaboration, supporting
fluid leadership and flexible role adoption. This

empowered members to take initiative and lead
in areas where they had passion or expertise, re-
gardless of their position in academia, or when
they became involved in the project. For example,
members became Language Ambassadors at many
different points during the year-long project, and
mentorship roles evolved naturally with more ex-
perienced researchers providing guidance to those
more junior (see Appendix G for more details of
different roles in the project).

Organizational Structure. The communication
channels and organizational structure of Aya were
designed to facilitate rich collaboration that could
evolve with the interests of participating researchers
over the year-long project. For example, most com-
munication between independent researchers in-
volved within Aya was asynchronous over Discord,
which allowed researchers in different time zones to
participate in discussions. Monthly meetings were
open for anyone to attend and were recorded for
asynchronous viewing. We describe the structure
of meetings and communication more thoroughly
in Appendix G.3.1 and Appendix G.3.2.

Inclusion and Access. The open nature of
the Aya UI allowed us to bypass the gate-
keeping mechanisms of academic science that often
marginalize non-English speakers and people with-
out formal academic credentials (West et al., 2020).
Expertise in the command of a spoken or written
language is clearly distinct from expertise in ma-
chine learning. The inclusion of such a wide range
of volunteers gave us more representative data in a
wide variety of languages and also gave volunteers
a glimpse into the often obscure world of machine
learning.

Who Participated in Aya . The motivations of
contributors were not based on financial remuner-
ation but on ideals of community, identity, and
social justice. Participants saw their roles as Lan-
guage Ambassadors and contributors as crucial to
ensuring the inclusion of their languages in the
ongoing transition to a digital, information-driven
economy. The Language Ambassador for Mala-
gasy, a language driven to the risk of extinction
by colonial French rule in Madagascar (Spolsky,
2018), is planning hackathons in 2024 to use the
Aya Dataset to create voice-to-text apps that will
help non-literate speakers of Malagasy participate
in the modern economy. In Telugu, a traditional
genre of poetry known as Sathakam is an integral

11545



part of the educational system. However, chatbots
that can translate text into Telugu have little to no
understanding of the Sathakam form. The Telugu
Language Ambassador told a newspaper in Toronto
that “in Aya , we made sure to include as many
Sathakams as we could find” (Castaldo, 2023).

These motivations are not peripheral to the
strength of the final Aya Dataset but are key fac-
tors in the data’s provenance (Loukissas, 2019).
These qualitative dimensions remind us that lan-
guage is, for the people who use it every day, an
intimately social phenomenon. Beyond the sym-
bolic notation that connects tokens to referents in
the real world, we find a robust network of social
relations that are necessary for languages to flour-
ish (Sidnell and Enfield, 2012; Goodwin, 2017;
Agha, 2006). The social interactions between con-
tributors, ML researchers, and social scientists in
the Aya project were crucial to its success. Contrib-
utors shared playlists of their favorite songs from
their home country, recipes from their childhood,
and snapshots of the views from their home of-
fices. They debated subtle nuances of how they
wanted their language represented in the dataset
and pushed back on some of the assumptions made
by project coordinators on what constituted a dis-
tinct language as opposed to a regional dialect
(see Section 7). More than one contributor sat
down with their grandparents to contribute to a
language that spanned three generations of use.

The realities of the conditions under which many
people work and live were present every day. For
example, Zoom meetings were cut short for some
volunteers due to power outages in their coun-
tries or lack of access to a stable internet connec-
tion. Burmese, a language spoken in Myanmar,
started out strong in the project with a group of
35 motivated volunteers but saw a sudden pause in
contributions as civil war broke out in the coun-
try resulting in the withdrawal of the volunteers
from the project (Petty, 2023). The Language Am-
bassador for Armenian also had to drop out of
the project because of a conflict in that country
(Reuters, 2023). In some countries, postal services
only functioned a few days per month because of
ongoing warfare, creating challenges for organizers
when mailing out Aya gifts to thank committed
volunteers. Ultimately, organizers were not able
to send gifts to thank volunteers who participated
from Somalia, Yemen and Palestine. For Somalia
and Yemen, both Canada Post, DHL and Fedex

were not able to support shipments. For Palestine,
the cost of shipment proved to be prohibitively ex-
pensive – with an estimated shipping cost of 294
US dollars per t-shirt. These geo-political realities
shaped both our contributors’ experience as well as
the progress of the project.

Including these factors in our post-mortem anal-
ysis of the project is crucial to understanding both
the motivation of people willing to volunteer for
open-science projects, and also to understanding
the data itself: its breadth, its provenance, its short-
comings, and its living history.

B Related Work

B.1 Multilingual datasets
Low-resource languages have long been a challenge
in NLP, with limited data impacting task perfor-
mance (Kunchukuttan et al., 2021). To address
this, researchers have explored techniques like data
augmentation (Sennrich et al., 2016; Dhole et al.,
2021), transfer learning (Zoph et al., 2016), re-
peating (Luukkonen et al., 2023; Muennighoff
et al., 2023b), and multilingual models (Dabre
et al., 2020; Muennighoff et al., 2023c; Yong et al.,
2023b), achieving promising results in areas like
machine translation. Here, we focus on efforts that
are centered on multilingual dataset creation.

Several works have created large-scale multi-
lingual corpora. These are often unstructured
texts, ideal for large-scale unsupervised pre-
training (Abadji et al., 2021; Ortiz Su’arez et al.,
2019; Scao et al., 2022a,b; Laurençon et al., 2022;
Kudugunta et al., 2023; Whitehouse et al., 2023).
Another group of multilingual datasets is focused
on machine translation (Lucia Specia et al., 2010;
Fan et al., 2021). They consist of parallel texts
in two or more languages, enabling models to
learn the mappings between them. Ideally, ma-
chine translation datasets encompass diverse do-
mains and language pairs, from commonly spoken
languages to resource-scarce ones, promoting in-
clusivity and linguistic diversity. One of the most
extensive collections of parallel corpora is available
at the OPUS project website8 (Tiedemann, 2012).
Large capacity models for language understanding
may obtain strong performance on high-resource
languages while greatly improving low-resource
languages (Goyal et al., 2021a). In (Whitehouse
et al., 2023), the effectiveness of LLM-powered
data augmentation in cross-lingual commonsense

8https://opus.nlpl.eu
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reasoning was demonstrated. Improved perfor-
mance was shown when smaller cross-lingual mod-
els were fine-tuned with data generated by LLMs.
Some recently released datasets focus on special-
ized language domains such as law (Niklaus et al.,
2023), education (Zhang et al., 2023c), or health-
care (Wang et al., 2023).

These corpora often suffer from inadequate data
quality and require extensive cleaning (Abadji
et al., 2022; Kreutzer et al., 2022). Task-specific
datasets (Ponti et al., 2020; Conneau et al., 2018)
are often smaller in scale but offer higher quality
data targeted at a specific model capability such
as cross-lingual understanding and transfer learn-
ing. This type of data is crucial for evaluating
and enhancing the performance of models in di-
verse linguistic contexts. Such datasets are ag-
gregated in multilingual benchmarks (Hu et al.,
2020; Ruder et al., 2021; Cahyawijaya et al., 2021).
Recently, (Ruder et al., 2023) released XTREME-
UP, which covers data in 88 under-represented lan-
guages across 9 user-centric technologies.

No Language Left Behind (NLLB-Team et al.,
2022) open-sourced bitext, mined bitext, and data
generated using back-translation in 200+ languages
specifically for text-to-text translation. While
Seamless4MT (Barrault et al., 2023) released
the metadata of SeamlessAlign, an open mul-
timodal translation dataset, there are relatively
fewer works for data creation/curation in low-
resource languages. (Cahyawijaya et al., 2023)
introduced NusaCrowd, a standardized collection
of 137 datasets covering 19 Indonesian local lan-
guages in text, speech, and image modalities. Our
work differs from previous datasets as we create
a large-scale instruction-tuning dataset spanning
hundreds of different tasks, yet retain high quality
by involving human annotation and rigorous quality
control across the entire data creation process.

B.2 Instruction-tuning datasets

Instruction-tuning datasets are collections of
human-curated instructions and response pairs,
templatized NLP tasks, or synthetic instructions
generated by a language model. There are a grow-
ing number of NLP meta-datasets such as Natural
instructions (Mishra et al., 2022), SuperNatural
Instructions(Wang et al., 2022c), Flan 2021 (Wei
et al., 2022a), Flan 2022 (Longpre et al., 2023a),
Public Pool of Prompts (P3) (Sanh et al., 2022), Un-
natural Instructions (Honovich et al., 2023), OPT-

IML (Iyer et al., 2022), inter alia (Khashabi et al.,
2020; Ye et al., 2021; Min et al., 2021) that collate
numerous instruction fine-tuned datasets together.
Some work focuses on specific applications such as
dialogue (Köpf et al., 2023), structured knowledge
grounding (Xie et al., 2022), or chain-of-thought
reasoning (Wei et al., 2022b; Kim et al., 2023).
Manual efforts include Open Assistant (Köpf et al.,
2023) crowd-sourcing volunteers who wrote both
instructions and responses, Databricks employees
creating 15k examples in Dolly (Conover et al.,
2023), and LIMA (Zhou et al., 2023) which is a
collection of 1,000 author-curated IFT examples.

Synthetic instruction-tuning datasets comprise
instructions sampled from a language model, such
as the Self-Instruct dataset (Wang et al., 2022a)
generated by GPT-3 (Brown et al., 2020), the Al-
paca dataset (Taori et al., 2023) generated by GPT-
3.5, and the Guanaco dataset (Joseph Cheung,
2023). Increasingly, the synthetic generation of in-
struction fine-tuned datasets is more sophisticated.
(Xu et al., 2023a) propose a novel Evol-Instruct
framework to obtain complex and difficult instruc-
tions gradually. (Luo et al., 2023) and (Gunasekar
et al., 2023) further expand this idea to promote
reasoning, code generation, and algorithmic skills.
InstructionWild (Ni et al., 2023) and ShareGPT9

are collections of user-shared conversations with
ChatGPT.

B.3 Multilingual Instruction-Tuning Datasets

Despite ever-larger collections of IFT datasets,
prior work has been largely English-centric.
Most approaches to extend instruction fine-tuned
datasets outside of English have relied on 1) trans-
lating English datasets into other languages (Holm-
ström and Doostmohammadi, 2023; Li et al.,
2023a; Winata et al., 2023b), 2) template-based
dataset creation (Yu et al., 2023; Gupta et al., 2023)
or 3) human curation of instruction datasets in non-
English languages (Muennighoff et al., 2023c; Li
et al., 2023c; Wang et al., 2022b). There have
been some notable exceptions with large propor-
tions of non-English data (Joseph Cheung, 2023;
Köpf et al., 2023; Lai et al., 2023; Li et al., 2023a;
Longpre et al., 2023a; Muennighoff et al., 2023a,c;
Zhuo et al., 2024; Nguyen et al., 2023).

Template-Based Datasets. The most relevant
effort is recent work by (Muennighoff et al., 2023c)
releasing Crosslingual Public Pool of Prompts

9https://sharegpt.com/
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(xP3). xP3 expands the P3 taxonomy and adds 28
new multilingual datasets. However, their datasets
usually use the same template in different lan-
guages, thus limiting task diversity. For example,
a random batch from their dataset may include the
same sample in different languages multiple times.
Their xP3 corpus has task instructions exclusively
in English. In (Muennighoff et al., 2023c), the
experiments with matching the task instruction to
the respective language of the sample via machine
translation (xP3mt) showed slightly improved per-
formance for non-English task instructions at in-
ference. Our work is distinct in that our human-
curated constructed dataset is unique for each of the
65 languages. Such diversity has been emphasized
as a key ingredient for instruction tuning (Long-
pre et al., 2023a). Further, we create non-English
task instructions via human annotators, ensuring
these are of high-quality, which is another pillar of
a good performance (Zhou et al., 2023).

Machine Translated Datasets. The most rele-
vant effort is recent work by (Muennighoff et al.,
2023c) releasing Crosslingual Public Pool of
Prompts (xP3). xP3 expands the P3 taxonomy and
adds 28 new multilingual datasets. However, their
datasets usually use the same template in different
languages, thus limiting task diversity. For exam-
ple, a random batch from their dataset may include
the same sample in different languages multiple
times. Their xP3 corpus has task instructions exclu-
sively in English. In (Muennighoff et al., 2023c),
automatically translating the task instruction to the
respective language of the sample (xP3mt) showed
slightly improved performance. Our work is dis-
tinct in that our human-created dataset is unique
for each of the 65 languages. Such diversity has
been emphasized as a key ingredient for instruction
tuning (Longpre et al., 2023a). Further, we create
non-English task instructions via human annota-
tors, ensuring these are of high-quality, which is
another pillar of good performance (Zhou et al.,
2023).

Machine Translated Datasets Machine-
translated prompts often lack variability and the
cultural nuance inherent in natively written text.
However, they are still useful for expanding the
language coverage of the training data and can
help bridge the resource gap for languages with
limited training data (Urbizu et al., 2023; Lin
et al., 2022). They can also adapt already-trained

instruction-tuned language models to follow
instructions in new languages (Yong et al., 2023b).
Furthermore, LLMs trained on designed prompts
have also been shown to be successful at tasks
like EAE (Event Argument Extraction) from
multilingual data in a zero-shot setup (Huang
et al., 2022). (Zhang et al., 2023a) constructed
high-quality Chinese instructions from existing
English instruction datasets. They first translated
the English instructions into Chinese and then used
a human verification process to determine whether
these translations were usable; the verified dataset
set consists of around 200k Chinese instruction-
tuning samples. (Li et al., 2023a) constructed
instruction data for 52 popular languages using
Google Translate to translate English prompts and
completions from Alpaca (Taori et al., 2023) (52K)
and Dolly (Conover et al., 2023) (15K) datasets,
then used this data to fine-tune LLaMA (Touvron
et al., 2023) using LoRA (Hu et al., 2021). (Zhang
et al., 2023b) fine-tuned LLaMA on multi-turn
interactive translations, improving its multilingual
translation abilities.

Human-Curated Multilingual Examples. Most
relevant to our work on the Aya dataset are other
datasets that have been curated by humans, often
in English. Databricks collected a 15k instruc-
tion dataset databricks-dolly-15k by relying on
its employees as annotators (Conover et al., 2023).
Annotators were instructed to curate prompt / re-
sponse pairs in each of eight different instruction
categories. (Köpf et al., 2023) released the Ope-
nAssistant corpus with over 10,000 dialogues from
more than 13,500 international annotators. While
this dataset contains multilingual annotations, this
was not an explicit goal of the initiative. In contrast
to our corpus which only has 2.05% contributions
in English, 42.8% of the OpenAssistant data is in
English (Köpf et al., 2023).

B.4 Participatory Research in Machine
Learning

Prior participatory research initiatives have cen-
tered around regions or specific tasks like trans-
lation or character recognition. For example,
(Clanuwat et al., 2018) tackles the problem of read-
ing and understanding Kuzushiji, a cursive style of
Japanese writing no longer in common use. An-
other example of culturally diverse data collection
is (Liu et al., 2021), which recruited native speakers
from five languages (Indonesian, Swahili, Tamil,
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Turkish, and Mandarin Chinese) that are typo-
logically, genealogically, and geographically di-
verse, to provide images of concepts that are rep-
resentative of their cultures. Then, they recruited
native-speaking professional linguists to write cap-
tions for these images. However, this dataset is
small (less than 8,000 data points) and thus limited
to evaluation only. It is worth noting that these
works are solely focused on the image domain,
unlike our work, which concentrates on text.

More relevant to our work are participatory
data creation initiatives focused on NLP. (Guevara-
Rukoz et al., 2020) presents a study focusing on
the creation of a crowd-sourced corpus for Latin
American Spanish dialects to address the scarcity
of resources for these languages. (∀ et al., 2020) fo-
cuses on the task of Machine Translation (MT), and
curates a dataset in 30 under-represented African
languages according to a participatory research
framework. Our work is very much in the spirit
of these prior efforts, with differences in terms of
global rather than regional focus. In contrast to
these works, which have a specific regional focus,
Aya collaborators came from multiple continents
covering a diverse range of languages.

Several works have explored the organizational
structures required to facilitate the development
of research communities around under-represented
languages. (Siminyu et al., 2021) details work
on the AI4D - African Language Program, which
aimed to enhance language resources for African
languages. The outcome included creating over
nine open-source African language datasets and
establishing baseline models, demonstrating the
program’s significant impact on language technol-
ogy for African languages. (Azunre et al., 2021)
describe the establishment of NLP Ghana, with
its collaborative open-source community. (Strassel
and Tracey, 2016) discuss the challenges of devel-
oping resources for low-resource languages under
the LORELEI (Low Resource Languages for Emer-
gent Incidents) program. They focus on the press-
ing need for digital resources in these languages,
particularly in critical situations such as mitigating
the effects of natural disasters.

Open science community initiatives like
Aya yield significant advancements in language
modeling. Related efforts (in terms of compute
and resources required) can be found in the
BigScience Workshop (Akiki et al., 2022),
which began in 2021. The BigScience project

was initiated to address the limitations in LLM
development, emphasizing open science and
inclusive collaboration. Leveraging open science
principles, it united a global network of researchers
working to collaboratively and ethically enhance
machine learning. Their work culminated in key
developments like the BLOOM model (Scao
et al., 2022a) and ROOTS corpus (Laurençon
et al., 2022). These achievements underscore
the value of community-driven, ethical, and
diverse research programs for large-scale language
technologies. Similar to Big Science, there have
been other recent efforts on open science in
language modeling (Groeneveld et al., 2024;
Soldaini et al., 2024; Srivastava et al., 2022).

C Aya Dataset: Additional Analysis

C.1 Contributors

We aimed to include individuals from diverse
backgrounds—not limited to AI experts—enabling
anyone proficient in a language to contribute. Dur-
ing the registration process, we request demo-
graphic information from each Aya UI user such as
country of residence, languages of fluent commu-
nication, gender, age range, and familiar dialects.
The Aya community of contributors includes 2,997
registered users across 134 languages.

Figure C.1 illustrates the demographics of regis-
tered Aya UI users by age and gender. Regarding
the age profiles of users, more than two-thirds were
aged between 18 and 35. Approximately 68.1% of
users identified as male and 28.5% as female. Over-
all, 6.6% of users self-reported dialects. Within this
group, 75% specified one dialect, 20% specified
two dialects, and the remaining 5% specified three
or more dialects, with a maximum of six.

C.2 Annotation Guidelines

The annotators were provided with the following
evaluation criteria for what a good prompt and
completion pair must look like. Re-annotations
were then performed if they determined that the
prompts or completions needed editing.

1. No grammatical or spelling mistakes in both
the prompt and completion text.

2. The prompt provides clear instructions on
what the task is.

3. The completion answers the prompt correctly.
Both the prompts and completions should be
in full sentences and coherent, with reasonable
length.
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Figure C.1: Left: Distribution of registered users on the Aya UI by age using specified values. Right: Distribution
of registered users on the Aya UI by gender using specified values

4. For original annotations, the prompts and
completions should not be generated from
other language models.

Re-Annotations. Before editing, annotators
rated the quality of existing prompt and completion
pairs by choosing either the thumbs-up or thumbs-
down option. If the provided prompt and comple-
tion pair were already of good quality according to
the criteria above, then annotators rated them with
thumbs up and moved ahead without editing. Over-
all, annotators were encouraged to re-annotate the
completions, in particular by adding more details
and context to them since many of them were often
short one-word answers.

C.3 Language Groupings

In this work we will refer to groups of languages
to be “lower-”, “mid-” or “higher”-resourced ac-
cording to their recorded, written, and catalogued
NLP resources (Joshi et al., 2020). (Joshi et al.,
2020) group languages into 5 distinct clusters based
on the amount of data from a combined range of
sources (LDC catalog10, ELRA Map11, Wikipedia
12), which we interpret as a proxy for data avail-
ability for pretraining and IFT training of LLMs.
We group these 5 distinct clusters into a rough tax-
onomy of lower-resourced (LR), mid-resourced
(MR) and higher-resourced (HR) (See Table C.1).
See Table E.4 for full mapping of languages to cat-
egories. We note that this grouping is inevitably

10https://catalog.ldc.upenn.edu/
11https://catalog.elra.info/en-us/
12https://wikipedia.org/

imperfect; languages and their varieties cannot ab-
solutely nor universally be classified based on this
single dimension (Hämäläinen, 2021; Lignos et al.,
2022; Bird, 2022). The categorization in our case
serves the purpose of aggregation in our analysis
of the data distribution.

C.4 Length difference by language

Figure F.6 in the Appendix illustrates the statis-
tics per language. We observe an array of pat-
terns that differ across languages. For instance in
Japanese, completions are on average 31% shorter
than prompts. On the other end, for Urdu and
Yoruba, completions are notably long relative to
prompts. On average, completions are 1258% and
2516% longer than the corresponding prompts for
Urdu and Yoruba, respectively. The average com-
pletion length in Yoruba is 1591% longer than the
average prompt length in Japanese. Figure F.6
provides the average length of the combination of
prompts and completions per language.

C.5 Annotator Skew

A feature of participatory research projects is the
challenge of establishing and maintaining a bal-
anced number of annotations across groups of an-
notators. In the Aya project, the number of annota-
tors per language varied due to numerous factors.
As a result, the distribution of annotators is not
uniform across languages. Moreover, within each
language, there is a lack of consistent contributions
from all annotators. In this section, we examine the
impact of annotator skew on the resulting dataset.
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Group Category Languages Examples

Higher-Resourced 5 7 Arabic, Chinese, English, French, Spanish
4 18 Hindi, Italian, Portuguese, Russian, Turkish

Mid-Resourced 3 25 Afrikaans, Indonesian, Kazakh, Malay, Latvian

Lower-Resourced
2 13 Hausa, Icelandic, Irish, Lao, Maltese
1 39 Albanian, Gujarati, Igbo, Luxembourgish
0 12∗ Kurdish, Kyrgyz, Sinhala, Yiddish

Table C.1: Language grouping for the Aya Collection. We assign categories to languages based on (Joshi et al.,
2020). (*) We assign label 0 to two languages not found in Joshi et al. (2020)’s taxonomy (manipuri and ngaju).

C.5.1 Annotator Skew Across Languages
Annotators were encouraged to contribute to any
language in which they could comfortably read and
write and were asked to focus most of their ef-
forts on languages other than English. Although
a significant number of participants registered for
many languages, the engagement level of annota-
tors was not equal, which resulted in considerable
differences in the number of contributions across
languages. Figure C.2 (top) provides an overview
of the percentage of each language present in the
final compilation. The highest number of contribu-
tions is for Malagasy with 14,597 instances, and
the lowest is 79 for Kurdish.

C.5.2 Annotator Skew Within a Language.
The final contributions for each language in the
Aya Dataset are not evenly distributed among an-
notators. The median number of annotators per
language is 15 (mean is 24.75) with one language
having only a single active annotator (Sindhi) and
some having over 80 annotators (English and Por-
tuguese). Note that annotators made contributions
at varying rates, and there is no direct correlation
between the number of annotators and the ulti-
mate count of language contributions. A limited
pool of annotators for some languages implies that
most instances in that language originate from a
smaller group of individuals. Figure C.2 (bottom)
illustrates the proportion of instances in a language
originating from the most active annotators. We ob-
serve a skewed pattern where for 12 languages, the
5 most active annotators contributed all examples.
There is an uneven distribution of contributions
for many languages because those languages had a
smaller number of voluntary annotators through-
out the entire project despite rigorous outreach.
Additionally, we did not establish a specific quota
for annotators to meet; everyone contributed as
they desired, resulting in varying levels of activity

among annotators.
The most extreme cases are Zulu and Sindhi,

where one annotator in each language volun-
teered for all contributions in Annotation and Re-
annotation tasks. Thus, in Figure C.2 their top-1
contributor ratio is 1.0 and does not change when
moving to top-2 or further. The languages with the
least skewed distributions are Malagasy, Tamil,
Nepali, Hindi, English and Portuguese. English
also had the highest number of unique annotators
with 130 individuals out of which 95 annotators
contributed to English as their second language for
annotation purposes. Given the uneven distribution
of annotators per language, it is important to ac-
knowledge that individual annotator quality has a
disproportionate influence on some languages.

D Aya Collection: Additional Analysis

D.1 Translation Quality

Figure D.3 shows the translation quality across lan-
guages grouped by their resourcefulness. The mean
ChrF++ score on FLORES is 48.17 (min: 10.9,
max: 69.6) for translations out of English, with a
few outliers for HR and LR. We interpret this op-
timistically as strong enough to sufficiently serve
our translation needs. However, upon inspection of
translation outputs for fine-tuning data, we encoun-
tered significant translation errors with Standard
Arabic in Latin script and Minangkabau in Arabic
script, so we excluded them from our translated
dataset. In total, 19 public datasets were translated
into 101 languages (114 dialects).

In addition to releasing the translated datasets
used as a basis for re-annotation, we also trans-
lated Dolly (Conover et al., 2023). Dolly com-
prises 15k instructions that Databricks collected by
relying on its employees as annotators (Conover
et al., 2023). Annotators were instructed to cu-
rate prompt and completion pairs in each of eight
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Figure D.3: ChrF++ scores for the NLLB translation
model, averaged across resourcefulness buckets.

different instruction categories. In contrast to the
mentioned NLP datasets, Dolly was purposefully
designed to align language models with human ex-
pectations. It stands out as a high-quality, manually
curated dataset covering a range of topics including
brainstorming, classification, closed question an-
swering, generation, information extraction, open
question answering, and summarization. The ad-
dition of the translated Dolly datasets is a valuable
resource for languages that face a scarcity of con-
versational instruction fine-tuning data. The list
of datasets, along with the number of languages,
templates, and other statistics, can be found in Ta-
ble E.8.

D.2 Tasks Covered Across Templated and
Translated Datasets

We aim to include datasets from various tasks in
the collection while ensuring that they follow our
selection criteria. Table D.2 illustrates our task
coverage in the Aya Collection, drawing inspira-
tion from xP3 and the Flan Collection. We have a

total of three main task types: Question Answering
(QA), Natural Language Generation (NLG), and
Text Classification (TC). Within these larger um-
brella tasks, we define several finer-grained task
types based on the datasets, resulting in a total of 11
finer-grained task types. These finer-grained task
types are determined by the frequency of datasets
in the Aya Collection encapsulating that task. For
QA, we decided to keep only the main task type,
as the intended goal of question-answering tasks
is clear: Answer a proposed question. The type of
the question can be different: open-ended, close-
ended, multiple-choice, single response. For NLG,
finer-grained task types include Summarization,
Translation, Paraphrasing, Dialogue (Generation),
and Text Simplification. For TC, we include the
following finer-grained task types: Sentiment Anal-
ysis, Information Extraction, Named Entity Recog-
nition, Event Linking, Natural Language Inference,
and Scientific Document Representation. Finally,
we label the task categories of each dataset in the
Aya Collection in Table E.5 and Table E.6. If we
are not able to find a fine-grained task type for the
dataset, we keep the main task type.

D.3 Prompt and Completion Lengths
Figure D.4 shows the distribution of length across
languages. No discernible pattern is observed
when examining lengths for high-resource lan-
guages compared to low-resource languages. Low-
resource languages appear at both ends of the dis-
tribution, occupying both the head and tail. In the
Aya Collection some low-resource languages (e.g.,
Somali and Amharic) have longer average com-
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Main Task Type Fine-grained Task Type

Question Answering —

Natural Language Generation Summarization
Translation
Paraphrasing
Dialogue
Text Simplification

Text Classification Sentiment Analysis
Information Extraction
Named Entity Recognition
Event Linking
Natural Language Inference
Document Representation

Table D.2: Task Taxonomy of NLP tasks in the Aya Col-
lection.

pletions length than medium or even high-resource
languages. The dedication of individual partici-
pants in identifying datasets in their own language
and templating them has made a significant differ-
ence for many languages.

D.4 Quality Assessment of All Different Data
Sources

As previously stated, contributors could provide
binary feedback on the quality of the prompt-
completion pairings. We define the average ap-
proval ratio per dataset which serves as a valuable
metric for assessing the quality of datasets across
various languages and diverse data sources. We
compute the average approval ratio as T+/T , where
T+ represents the total number of upvotes (thumbs-
up), and T represents the total number of votes per
dataset. An average approval ratio of 1.0 would
indicate that every annotation was perceived to be
of good quality and all prompts and completions
had received a thumbs-up. An average approval
ratio of 0.0 would indicate that every annotation
was perceived to be of poor quality, and all prompts
and completions had received a thumbs-down. We
constrained our quality analysis to the 40 datasets
in our pool for which we had at least 20 instances
of feedback.

Overall, we observe that the majority of datasets
had an approval ratio of over 0.5, with all translated
data as well as Original Annotations being above
this threshold. However, across all the datasets
within each group —xP3, Templated, Translated,
and Aya original annotations— Aya original anno-
tations were perceived to be of the highest quality,
with an approval ratio of 0.81, compared to the
lowest quality dataset, xP3, which only had a ratio
of 0.50. This corroborates our intuition that a man-
ual curation process leads to the highest-quality

annotations. Figure D.5 provides a summary of the
results for each group. Figure F.7 in the Appendix
provides approval ratios per dataset in each group.

E Aya Evaluation Suite: Additional
Analysis

E.1 Post-Editing the
DOLLY-MACHINE-TRANSLATED Test Set

E.1.1 Annotators

Annotator Selection. The primary demographic
make-up of the participants in the evaluations was
recruited based on their proficiency in the language
groups. The proficiency was self-reported, and our
requirements were natively proficient or profes-
sionally proficient in the specific languages needed
for the project. Outside of this, the participants
come from diverse social backgrounds comprised
of students and individuals with full-time or part-
time jobs that do annotation as a “side gig”.

Socio-Demographics. The annotator pool is
comprised of people from diverse backgrounds,
and this spans across socioeconomic backgrounds,
careers, levels of education, and self-reported gen-
der and sexual identities. We do not ask any an-
notators to share or report any of these statistical
pieces of information in a formal way; any insights
into this are gathered organically and through self-
reporting by the annotators.

Quality Considerations. We do not believe that
any socio-demographic characteristics have led to
any impact on the data that has been annotated.
Through every part of the project we have reiterated
the importance of this work and the fact that this is
helping to support a global-scale research project.
We are confident in the trust we have built with
the annotators in this project, and they care greatly
about the overall outcome and therefore have been
diligent in completing the task with a high degree
of accuracy. Where possible, we have done our
best to have annotators work on this project and be
representatives of the communities that the project
aims to support.

Compensation. The annotators were paid 30
CAD per hour. No special consideration was made
to the hourly rate as that is the standard rate of-
fered to Cohere’s annotators who work on highly
complex tasks.
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Figure D.4: The average length of prompts and completions for high (HR), medium (MR) and low-resource (LR)
languages in Aya Collection.

Figure D.5: Average approval ratio per dataset group,
for datasets with at least 20 votes.

E.1.2 Annotation Process
Communication. Annotators were briefed by
one of the authors in a virtual introduction session,
and were able to ask questions and raise issues
throughout the annotation task in a Slack channel.
They were also encouraged to share frequent error
patterns, artifacts, or hard decisions that they en-
countered throughout the task with the authors and
other annotators.

Schedule. There was no fixed time schedule for
the annotations and annotators contributed a vary-
ing amount of hours and ratings, depending on
their availabilities and speed. Each translation was
post-edited by one annotator, and there were 3–4

annotators involved in each task. After post-edits
were completed, a second annotator (not the orig-
inal post-editor) assessed the post-edit for quality
and proposed new final edits if necessary.

Interface. Post-edits were collected on Google
Sheets with an interface built-in Google Apps
Script.

E.1.3 Instructions
The instructions given to professional annotators
for the DOLLY-MACHINE-TRANSLATED test set
post-edits were the following: “As an annotator,
you have the task to improve the quality of
the prompts for our multilingual model! The
prompts are originally machine-translated from
English, and sometimes the translation introduces
errors in the prompts that make them hard to follow.

We need your help to identify these cases, and to
edit these translations so that they...

1. Convey the same instruction/task/request as
the English original — not more and not less.

2. Are grammatically correct.

3. Are free from phrases too literally translated
from English (we call this “Translationese”).

This is how:
For each pair of English prompt and translated
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prompt shown, decide whether the prompt is okay
as it is (according to the above criteria), or needs
an edit.

• If it needs an edit, edit the prompt until the
quality is satisfactory (in the field “Edited
Prompt”). Try to keep your edits minimal.
Then confirm that the edited prompt fulfills
the above three criteria.

• If it’s okay as is, just proceed (without editing
the “Edited Prompt” field) to confirm that it
fulfills the above three criteria.

Annotations were done through an interface built
on top of Google Sheets. One annotator edited each
prompt, and another verified the edit, if necessary
had a discussion and edited the original edit. Three
to four editors collaborated on each language.

E.1.4 Post-Editing Effort
For each prompt, we measure the post-editing ef-
fort with Human-targeted Translation Error Rate
(HTER) (Specia and Farzindar, 2010), an edit-
distance metric that compares the original machine
translation with the post-edited version in terms
of edit operations on units of words. This also
gives us an estimate of how severe the errors in
the original translations were, and how critically
the post-editors assessed the original translations.
Analogously, we estimate with a Human-targeted
Character F-Score (HChrF) score how much the
original translation overlaps with the final post-
edited translation. This metric is based on the ChrF
score (Popović, 2015) and operates on character-
level matches. Computations of HTER and HChrF
are based on the sacrebleu implementation (Post,
2018).

Table E.3 reports these statistics for the six lan-
guages of the DOLLY-MACHINE-TRANSLATED test
set. We find that editors edited at least 41% of
prompts in all languages, a surprisingly high num-
ber. This indicates that translation errors in the
DOLLY-MACHINE-TRANSLATED test set are quite
common. For Russian, the post-editing effort was
overall largest, with an average of 37.43 HTER,
which means that 37.43% of words in the final
post-edit had to be edited from the original. This
stands in contrast with the post-edits for French,
where a similar ratio of original prompts was edited
(84.5% compared to 86.5% for Russian), but to a
much lesser extent (5.56 HTER).

Language % of Prompts Edited HTER HChrF

Arabic 41.0% 10.78 92.74
French 84.5% 5.56 96.81
Hindi 60.0% 6.16 95.00
Russian 86.5% 37.43 75.92
Serbian 72.5% 9.06 92.79
Spanish 75.5% 9.13 93.25

Table E.3: Post-editing effort measured by the overall
percentage of edited dolly test prompts, HTER (Human-
targeted Translation Error Rate: the higher, the more
effort), and HChrF (Human-Targeted Character F-Score:
the lower, the more effort).

11555



ISO Code Language Script Family Subgrouping Resources Included

ace Achinese Arabic/Latin Austronesian Malayo-Polynesian Low ♠♤
afr Afrikaans Latin Indo-European Germanic Mid ♠♤
amh Amharic Ge’ez Afro-Asiatic Semitic Low ♦♢ ♠♤
ara Arabic Arabic Afro-Asiatic Semitic High ♦♢ ♠♤
aze Azerbaijani Arabic/Latin Turkic Common Turkic Low ♠♤
ban Balinese Latin Austronesian Malayo-Polynesian Low ♠♤
bbc Toba Batak Latin Austronesian Malayo-Polynesian Low ♠♤
bel Belarusian Cyrillic Indo-European Balto-Slavic Mid ♠♤
bem Bemba Latin Niger-Congo Atlantic-Congo Low ♠♤
ben Bengali Bengali Indo-European Indo-Aryan Mid ♦♢ ♠♤
bjn Banjar Arabic/Latin Austronesian Malayo-Polynesian Low ♠♤
bul Bulgarian Cyrillic Indo-European Balto-Slavic Mid ♠♤
cat Catalan Latin Indo-European Italic High ♠♤
ceb Cebuano Latin Austronesian Malayo-Polynesian Mid ♦♢ ♠♤
ces Czech Latin Indo-European Balto-Slavic High ♠♤
cym Welsh Latin Indo-European Celtic Low ♠♤
dan Danish Latin Indo-European Germanic Mid ♦♢ ♠♤
deu German Latin Indo-European Germanic High ♦♢ ♠♤
ell Greek Greek Indo-European Graeco-Phrygian Mid ♦♢ ♠♤
eng English Latin Indo-European Germanic High ♦♢ ♠♤
epo Esperanto Latin Constructed Esperantic Low ♠♤
est Estonian Latin Uralic Finnic Mid ♠♤
eus Basque Latin Basque - High ♦♢ ♠♤
fil Filipino Latin Austronesian Malayo-Polynesian Mid ♦♢ ♠♤
fin Finnish Latin Uralic Finnic Mid ♦♢ ♠♤
fon Fon Latin Niger-Congo Atlantic-Congo Low ♠♤
fra French Latin Indo-European Italic High ♦♢ ♠♤
gla Scottish Gaelic Latin Indo-European Celtic Low ♠♤
gle Irish Latin Indo-European Celtic Low ♦♢ ♠♤
glg Galician Latin Indo-European Italic Mid ♠♤
guj Gujarati Gujarati Indo-European Indo-Aryan Low ♦♢ ♠♤
hat Haitian Creole Latin Indo-European Italic Low ♦♢ ♠♤
hau Hausa Latin Afro-Asiatic Chadic Low ♦♢ ♠♤
heb Hebrew Hebrew Afro-Asiatic Semitic Mid ♠♤
hin Hindi Devanagari Indo-European Indo-Aryan High ♦♢ ♠♤
hrv Croatian Latin Indo-European Balto-Slavic. High ♠♤
hun Hungarian Latin Uralic - High ♦♢ ♠♤
hye Armenian Armenian Indo-European Armenic Low ♠♤
ibo Igbo Latin Atlantic-Congo Benue-Congo Low ♦♢ ♠♤
ind Indonesian Latin Austronesian Malayo-Polynesian Mid ♦♢ ♠♤
isl Icelandic Latin Indo-European Germanic Low ♠♤
ita Italian Latin Indo-European Italic High ♦♢ ♠♤
jav Javanese Latin Austronesian Malayo-Polynesian Low ♦♢ ♠♤
jpn Japanese Japanese Japonic Japanesic High ♦♢ ♠♤
kan Kannada Kannada Dravidian South Dravidian Low ♦♢ ♠♤
kas Kashmiri Arabic Indo-European Indo-Aryan Low ♠♤
kat Georgian Georgian Kartvelian Georgian-Zan Mid ♠♤
kau Kanuri Arabic/Latin Saharan Western Saharan Low ♠♤
kaz Kazakh Cyrillic Turkic Common Turkic Mid ♠♤
khm Khmer Khmer Austroasiatic Khmeric Low ♠♤
kin Kinyarwanda Latin Niger-Congo Atlantic-Congo Low ♠♤
kir Kyrgyz Cyrillic Turkic Common Turkic Low ♦♢ ♠♤
kor Korean Hangul Koreanic Korean Mid ♦♢ ♠♤
kur Kurdish Latin Indo-European Iranian Low ♦♢ ♠♤
lao Lao Lao Tai-Kadai Kam-Tai Low ♠♤
lav Latvian Latin Indo-European Balto-Slavic Mid ♠♤
lij Ligurian Latin Indo-European Italic Low ♠♤
lit Lithuanian Latin Indo-European Balto-Slavic Mid ♦♢ ♠♤
ltz Luxembourgish Latin Indo-European Germanic Low ♠♤
mad Madurese Latin Austronesian Malayo-Polynesian Low ♠♤
mal Malayalam Malayalam Dravidian South Dravidian Low ♦♢ ♠♤
man Manipuri Bengali Sino-Tibetan Kuki-Chin-Naga Low ♠♤
mar Marathi Devanagari Indo-European Indo-Aryan Low ♦♢ ♠♤
min Minangkabau Latin Austronesian Malayo-Polynesian Low ♠♤
mkd Macedonian Cyrillic Indo-European Balto-Slavic Low ♠♤
mlg Malagasy Latin Austronesian Malayo-Polynesian Low ♦♢ ♠♤
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mlt Maltese Latin Afro-Asiatic Semitic High ♠♤
mon Mongolian Cyrillic Mongolic-Khitan Mongolic Low ♠♤
mri Maori Latin Austronesian Malayo-Polynesian Low ♠♤
msa Malay Latin Austronesian Malayo-Polynesian Mid ♦♢ ♠♤
mya Burmese Myanmar Sino-Tibetan Burmo-Qiangic Low ♦♢ ♠♤
nep Nepali Devanagari Indo-European Indo-Aryan Low ♦♢ ♠♤
nij Ngaju Latin Austronesian Malayo-Polynesian Low ♠♤
nld Dutch Latin Indo-European Germanic High ♦♢ ♠♤
nor Norwegian Latin Indo-European Germanic Low ♠♤
nso Northern Sotho Latin Atlantic-Congo Benue-Congo Low ♦♢ ♠♤
nya Chichewa Latin Atlantic-Congo Benue-Congo Low ♦♢
pan Punjabi Gurmukhi Indo-European Indo-Aryan Low ♦♢ ♠♤
pes Persian Arabic Indo-European Iranian High ♦♢ ♠♤
pol Polish Latin Indo-European Balto-Slavic High ♦♢ ♠♤
por Portuguese Latin Indo-European Italic High ♦♢ ♠♤
pus Pashto Arabic Indo-European Iranian Low ♦♢ ♠♤
ron Romanian Latin Indo-European Italic Mid ♠♤
rus Russian Cyrillic Indo-European Balto-Slavic High ♦♢ ♠♤
sin Sinhala Sinhala Indo-European Indo-Aryan Low ♦♢ ♠♤
slk Slovak Latin Indo-European Balto-Slavic Mid ♠♤
slv Slovenian Latin Indo-European Balto-Slavic Mid ♠♤
smo Samoan Latin Austronesian Malayo-Polynesian Low ♠♤
sna Shona Latin Indo-European Indo-Aryan Low ♦♢ ♠♤
snd Sindhi Arabic Indo-European Indo-Aryan Low ♦♢ ♠♤
som Somali Latin Afro-Asiatic Cushitic Low ♦♢ ♠♤
sot Southern Sotho Latin Atlantic-Congo Benue-Congo Low ♠♤
spa Spanish Latin Indo-European Italic High ♦♢ ♠♤
sqi Albanian Latin Indo-European Albanian Low ♦♢ ♠♤
srp Serbian Cyrillic Indo-European Balto-Slavic High ♦♢ ♠♤
sun Sundanese Latin Austronesian Malayo-Polynesian Low ♦♢ ♠♤
swa Swahili Latin Atlantic-Congo Benue-Congo Low ♦♢ ♠♤
swe Swedish Latin Indo-European Germanic High ♦♢ ♠♤
tam Tamil Tamil Dravidian South Dravidian Mid ♦♢ ♠♤
taq Tamasheq Latin/Tifinagh Afro-Asiatic Berber Low ♠♤
tel Telugu Telugu Dravidian South Dravidian Low ♦♢ ♠♤
tgk Tajik Cyrillic Indo-European Iranian Low ♠♤
tha Thai Thai Tai-Kadai Kam-Tai Mid ♦♢ ♠♤
tur Turkish Latin Turkic Common Turkic High ♦♢ ♠♤
twi Twi Latin Niger-Congo Atlantic-Congo Low ♠♤
ukr Ukrainian Cyrillic Indo-European Balto-Slavic Mid ♦♢ ♠♤
urd Urdu Arabic Indo-European Indo-Aryan Mid ♦♢ ♠♤
uzb Uzbek Latin Turkic Common Turkic Mid ♠♤
vie Vietnamese Latin Austroasiatic Vietic High ♦♢ ♠♤
wol Wolof Latin Atlantic-Congo North-Central Atlantic Low ♦♢ ♠♤
xho Xhosa Latin Atlantic-Congo Benue-Congo Low ♦♢ ♠♤
yid Yiddish Hebrew Indo-European Germanic Low ♠♤
yor Yorùbá Latin Atlantic-Congo Benue-Congo Low ♦♢ ♠♤
zho Chinese Han Sino-Tibetan Sinitic High ♦♢ ♠♤
zul Zulu Latin Atlantic-Congo Benue-Congo Low ♦♢ ♠♤

Table E.4: 65 languages in the Aya Dataset and 114 languages in the Aya Collection, each language’s corresponding
script, family, subgrouping, and if it is classified as “lower-”, “mid-” or “higher”-resourced according to the
taxonomy classes by (Joshi et al., 2020) (low: [0, 1, 2], mid: [3], high: [4, 5]). The language is either included in the
Aya Dataset (♦♢), Aya Collection (♠♤), or both. Note that Ngaju (nij) and Toba Batak (bbc) are not listed in (Joshi
et al., 2020).

Main Task Type Fine-grained Task Type Dataset

Question Answering AfriQA-inst (Ogundepo et al., 2023)
Amharic QA (Abedissa et al., 2023)
LLM-Japanese-Vanilla-inst (Tellarin.ai, 2023a)
Mintaka-inst (Sen et al., 2022)
X-CSQA-inst (Lin et al., 2021)
TeluguRiddles (desik98, 2023)

Natural Language Summarization News-summary-instruct (TahmidH, 2023)
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Generation Persian-instruct-pn (Shafagh, 2023a)
Hindi-article-summarization (ganeshjcs, 2023a)
XWikis-inst (Perez-Beltrachini and Lapata, 2021)

Translation IndicSentiment-inst (George, 2023a)
Indo-stories-instruct (Iftitahu, 2023a,b,c)
Lijnews-instruct (ConseggioLigure, 2023a,b)
SCB-MT-2020-prompt (PyThaiNLP, 2023a,b)
Thai-USEmbassy-prompt (PyThaiNLP, 2023e,f)
SEED-instruct-lij (ConseggioLigure, 2023c,d)

Paraphrasing Arpa-instruct (syntaxshill, 2023)
IndicXParaphrase-inst (George, 2023b; SuryaKrishna02, 2023d)
Turku-paraphrase-inst (TurkuNLP, 2023)

Text Simplification Wiki-split-inst (Botha et al., 2018)

Dialogue SODA-inst (Kim et al., 2022)

NL Generation Telugu-food-recipes (SuryaKrishna02, 2023a)
Telugu-jokes (SuryaKrishna02, 2023b)
Telugu-news-articles (SuryaKrishna02, 2023c)
Telugu-poems (SuryaKrishna02, 2023e)
TamilStories (AI Tamil Nadu, 2023a)
Joke-explaination-inst (theblackcat102, 2023)
Thirukkural-instruct (AI Tamil Nadu, 2023b)
Hindi-article-generation (ganeshjcs, 2023b)
Thai-Wiktionary-inst (PyThaiNLP, 2023d)
UA-Gec-inst (osyvokon, 2023)
Urdu-News-Gen-Article (AhmadMustafa, 2023a)
Urdu-News-Gen-Headline (AhmadMustafa, 2023c)
Thai-POS-inst (PyThaiNLP, 2023c)

Text Classification Sentiment Analysis AfriSenti-inst (Muhammad et al., 2023)
IMDB-Dutch-instruct (jjzha, 2023)
NusaX-senti-inst (Winata et al., 2023b)

Information Extraction NTX-LLM-inst (Tellarin.ai, 2023b)

Named Entity Recognition UNER-LLM-inst (Universal NER, 2023)

Natural Language Inference FarsTail-Instruct (hghader1, 2023)

Event Linking Xlel_wd-inst (Pratapa et al., 2022)

Sci. Doc. Representation Scirepeval-biomimicry-inst (Singh et al., 2022)

Text Classification Urdu-News-Category-Class (AhmadMustafa, 2023b)
MasakhaNEWS-inst (Adelani et al., 2023)

Table E.5: Task Taxonomy of Templated Datasets (Aya Collection). We classify the templated datasets with
a standard task taxonomy of three main tasks: Question Answering, Natural Language Generation, and Text
Classification (Table D.2). We then have a fine-grained task taxonomy within each task, such as Summarization,
Translation, Paraphrasing, Sentiment Analysis, Information Extraction, and Named Entity Recognition. If there is
not a recognized fine-grained task taxonomy for a specific dataset, we put it in the main task type category.

Main Task Type Fine-grained Task Type Dataset

Question Answering Adversarial QA (T) (Bartolo et al., 2020)
Flan-Coqa (T) (Wei et al., 2022a; Reddy et al., 2019)
Flan-unified-QA (T) (Wei et al., 2022a; Khashabi et al., 2020)
HotpotQA (T) (Yang et al., 2018)
Mintaka-inst (T) (Sen et al., 2022)
MLQA-en (T) (Lewis et al., 2020)
NQ-Open (T) (Kwiatkowski et al., 2019)
PIQA (T) (Bisk et al., 2020)
WIKI QA (T) (Yang et al., 2015)

Natural Language Summarization CNN-Daily-Mail (T) (See et al., 2017) (Hermann et al., 2015)
Generation Flan-GEM-wiki-lingua (T)(Wei et al., 2022a; Ladhak et al., 2020)

Text Simplification Wiki-split-inst (T) (Botha et al., 2018)

Dialogue SODA-inst (T) (Kim et al., 2022)

NL Generation Joke-explaination-inst (T) (theblackcat102, 2023)
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Flan-CoT-submix (T)(Wei et al., 2022a)
Flan-lambada (T) (Wei et al., 2022a; Paperno et al., 2016)
Dolly-v2 (T) (Conover et al., 2023)

Text Classification Event Linking Xlel_wd-inst (T) (Pratapa et al., 2022)

Paraphrase Identification PAWS-Wiki (T) (Zhang et al., 2019)

Table E.6: Task Taxonomy of Translated Datasets (Aya Collection). We classify the translated datasets similar to
templated datasets (Table E.5). If there is not a recognized fine-grained task taxonomy for a specific dataset, we put
it in the main task type category.

Dataset #Langs Template lang Dataset lang L̄prompt L̄compl. License Task

AfriQA-inst (Ogundepo et al.,
2023) 12

bem, fon, hau, ibo, kin,
swh, twi, wol, yor, zul,
eng, fra

46 15 CC BY 4.0 Question Answering

AfriSenti-inst (Muhammad et al.,
2023) 9 amh, arq, hau, ibo, kin,

ary, por, swh, twi 168 44 CC BY 4.0 Sentiment Analysis

Amharic QA (Abedissa et al., 2023) 1 amh amh 1114 33 MIT license Question Answering
News-summary-instruct (TahmidH,
2023) 1 ben ben 174 67 CC0 1.0 Summarization

Arpa-instruct (syntaxshill, 2023) 1 hye hye 165 118 Artistic-2.0 Paraphrasing
Telugu-food-recipes
(SuryaKrishna02, 2023a) 1 tel tel 70 870 Apache 2.0 Generation

Telugu-jokes (SuryaKrishna02,
2023b) 1 tel tel 80 276 Apache 2.0 Generation

Telugu-news-articles
(SuryaKrishna02, 2023c) 1 tel tel 448 426 Apache 2.0 Generation

Telugu-poems (SuryaKrishna02,
2023e) 1 tel tel 357 198 Apache 2.0 Generation

FarsTail-Instruct (Amirkhani et al.,
2023; hghader1, 2023) 1 pes pes 224 112 Apache 2.0 Natural Language

Inference
Hindi-article-summarization
(ganeshjcs, 2023a) 1 hin hin 3813 175 CC BY-SA 4.0 Summarization

Hindi-article-generation (ganeshjcs,
2023b) 1 hin hin 102 3683 CC BY-SA 4.0 Generation

IMDB-Dutch-instruct (Maas et al.,
2011; jjzha, 2023) 1 nld nld 1470 31 Apache 2.0 Sentiment Analysis

IndicSentiment-inst (Doddapaneni
et al., 2023; George, 2023a) 11 eng

ben, guj, hni, kan, mal,
mar, pan, tam, tel, urd,
eng

174 141 MIT Translation

IndicXParaphrase-inst
(Doddapaneni et al., 2023; George,
2023b; SuryaKrishna02, 2023d)

7 ben, guj, hin, mar, pan,
mal, tel

ben, guj, hin, mar, pan,
mal, tel 132 93 MIT Paraphrase

Identification

Indo-stories-instruct (Iftitahu,
2023a,b,c) 3 ind, sun, jav ind, sun, jav 345 322 CC BY 4.0 Translation

Joke-explaination-inst
(theblackcat102, 2023) 1 eng 118 548 MIT Generation

Lijnews-instruct (ConseggioLigure,
2023a,b) 2 ita, lij it, lij 893 898 CC BY 4.0 Translation

LLM-Japanese-Vanilla-inst (Suzuki
et al., 2023; Tellarin.ai, 2023a) 1 jpn jpn 60 97 CC BY-SA 4.0 Question Answering

MasakhaNEWS-inst (Adelani et al.,
2023) 16

amh, eng, fra, hau, ibo,
lin, cgg, orm, pcm, run,
sna, som, swh, tir, xho,
yor

1483 1459 AFL-3.0 Text Classification

Mintaka-inst (Sen et al., 2022) 9 eng arb, deu, spa, fra, jpn,
por, hin, ita, eng 102 49 CC BY 4.0 Question Answering

NTX-LLM-inst (Chen et al., 2023c;
Tellarin.ai, 2023b), 13

arb, zho, nld, eng, fra,
deu, hin, ita, jpn, kor,
por, spa, tur

arb, zho, nld, eng, fra,
deu, hin, ita, jpn, kor,
por, spa, tur

917 493 CC BY-SA 4.0 Information Extraction

NusaX-senti-inst (Winata et al.,
2023b) 12

ace, ban, bjn, bug, eng,
ind, jav, mad, min, nij,
sun, bbc

219 22 Apache 2.0 Sentiment Analysis

Persian-instruct-pn (Farahani et al.,
2021; Shafagh, 2023a,b) 1 pes pes 1713 128 MIT Summarization

SCB-MT-2020-prompt
(Lowphansirikul et al., 2022;
PyThaiNLP, 2023a,b)

2 tha, eng tha, eng 181 127 CC BY-SA 4.0 Translation

Scirepeval-biomimicry-inst (Singh
et al., 2022) 1 eng 996 523 ODC-BY Scientific Document

Representation
Seed-instruct-lij (Maillard et al.,
2023; ConseggioLigure, 2023c,d) 2 lij, eng lij, eng 184 186 CC BY-SA 4.0 Translation

SODA-inst (Kim et al., 2022) 1 eng 412 328 CC BY 4.0 Dialogue
TamilStories (AI Tamil Nadu,
2023a) 1 tam tam 2266 2172 Apache 2.0 Generation

TeluguRiddles (desik98, 2023) 1 tel tel 74 44 Apache 2.0 Question Answering
Thai-USEmbassy-prompt
(PyThaiNLP, 2023e,f) 2 tha, eng tha, eng 2131 2077 CC0 1.0 Translation

Thai-POS-inst (PyThaiNLP, 2023c) 1 tha tha 72 36 CC BY-SA 3.0 Generation
Thai-Wiktionary-inst (PyThaiNLP,
2023d) 1 tha tha 35 147 CC BY-SA 3.0 Generation

Thirukkural-instruct (AI Tamil
Nadu, 2023b) 1 tam tam 133 542 Apache 2.0 Generation

Turku-paraphrase-inst (Kanerva
et al., 2021; TurkuNLP, 2023) 1 fin fin 108 59 CC BY-SA 4.0 Paraphrase

Identification
UA-Gec-inst (Syvokon et al., 2023;
osyvokon, 2023) 1 ukr ukr 192 148 CC BY 4.0 Generation

UNER-LLM-inst (Mayhew et al.,
2023; Universal NER, 2023) 11

zho, hrv, dan, eng, deu,
por, rus, srp, slk, swe,
tgl

zho, hrv, dan, eng, deu,
por, rus, srp, slk, swe,
tgl

768 109 CC BY-SA 4.0 Named Entity
Recognition
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Urdu-News-Gen-Article (Hussain
et al., 2021; AhmadMustafa, 2023a) 1 urd urd 109 1313 CC BY 4.0 Generation

Urdu-News-Category-Class
(Hussain et al., 2021;
AhmadMustafa, 2023b)

1 urd urd 1407 43 CC BY 4.0 Text Classification

Urdu-News-Gen-Headline (Hussain
et al., 2021; AhmadMustafa, 2023c) 1 urd urd 1314 94 CC BY 4.0 Generation

Wiki-split-inst (Botha et al., 2018) 1 eng 200 166 CC BY 4.0 Text Simplification

X-CSQA-inst (Lin et al., 2021) 16

eng, zho, deu, spa, fra,
ita, jpn, nld, pol, por,
rus, arb, vie, hin, swa,
urd

197 21 MIT Question Answering

Xlel_wd-inst (Pratapa et al., 2022) 44 379 190 CC BY 4.0 Event Linking
XWikis-inst (Perez-Beltrachini and
Lapata, 2021) 4 ces, fra, eng, deu 5662 346 MIT Summarization

Table E.7: List of datasets in Aya Collection (templated datasets).

Dataset #Langs L̄prompt L̄compl. License Task

Adversarial QA (T) (Bartolo et al., 2020) 101 159 721 CC BY-SA 3.0 Question Answering
CNN-Daily-Mail (T) (See et al., 2017) (Hermann et al., 2015) 101 1980 305 Apache 2.0 Summarization
Flan-Coqa (T) (Wei et al., 2022a; Reddy et al., 2019) 101 2143 364 Multiple* Question Answering
Flan-CoT-submix (T) (Wei et al., 2022a) 101 239 160 Unknown Generation
Flan-GEM-wiki-lingua (T) (Wei et al., 2022a; Ladhak et al.,
2020) 101 1732 572 CC BY-NC-SA 3.0 Summarization

Flan-lambada (T) (Wei et al., 2022a; Paperno et al., 2016) 101 232 7 CC BY 4.0 Generation
Flan-unified-QA (T) (Wei et al., 2022a; Khashabi et al., 2020) 101 281 13 Apache 2.0 Question Answering
HotpotQA (T) (Yang et al., 2018) 101 129 15 CC BY-SA 4.0 Question Answering
Joke-explaination-inst (T) (theblackcat102, 2023) 101 111 545 MIT Generation
Mintaka-inst (T) (Sen et al., 2022) 101 54 67 CC BY 4.0 Question Answering
MLQA-en (T) (Lewis et al., 2020) 101 819 20 CC BY-SA 3.0 Question Answering
NQ-Open (T) (Kwiatkowski et al., 2019) 101 68 14 CC BY-SA 3.0 Question Answering

PAWS-Wiki (T) (Zhang et al., 2019) 101 308 6 Custom license,
attribution

Paraphrase
Identification

PIQA (T) (Bisk et al., 2020) 101 304 100 Unknown Question Answering
SODA-inst (T) (Kim et al., 2022) 101 86 208 CC BY 4.0 Dialogue
WIKI QA (T) (Yang et al., 2015) 101 205 36 MSR DLA* Question Answering
Wiki-split-inst (T) (Botha et al., 2018) 101 126 220 CC BY-SA 4.0 Text Simplification
Xlel_wd-inst (T) (Pratapa et al., 2022) 101 300 274 CC BY 4.0 Event Linking
Dolly-v2 (T) (Conover et al., 2023) 101 427 357 CC BY-SA 3.0 Generation

Table E.8: List of datasets in Aya Collection (translated datasets).

Lang Prompt Completion

fra Qui a écrit le livre La Sagouine? Antonine Maillet a écrit La Sagouine en 1971. Elle a écrit beaucoup
d’histoires sur les Acadiens (les francophones de la côte Est du Canada)
et a fait connaı̂tre l’Acadie au monde.

ibo Kedu ka ndị Igbo si eme emume
ji ọhụrụ?

Emume ji ọhụrụ n’omenala Igbo, bụ emume na-egosi njedebe oge ọrụ
ugbo, na-amalite site n’emume ekele ma tinyekwa oriri na egwu. Ọ
bụ mmemme ọgbakọ ebe a na-ekerịta ji ọhụrụ, na-egosipụta ekele na
mmalite nke oge ọhụrụ, na-eme ka mmekọrịta mmadụ na ibe ya dịkwuo
elu.

por Qual é a capital do estado da
Bahia?

A capital do estado da Bahia, no Brasil, é Salvador. Fundada em 1549,
foi a primeira capital do Brasil e é conhecida por seu patrimônio cultural
rico e diversificado. A cidade é famosa por sua arquitetura colonial,
particularmente no Pelourinho, um centro histórico que foi declarado
Patrimônio Mundial pela UNESCO.

msa Apakah nasi lemak? Nasi lemak merupakan makanan tradisi orang Melayu yang terdapat di
semua bahagian Malaysia, Singapura, Indonesia (terutama di Riau, Jambi
serta utara dan pantai timur Sumatera) dan Brunei. Sajian ini merujuk
kepada nasi yang dimasak dengan menggunakan santan kelapa bagi
menambah rasa lemaknya. Kadangkala, daun pandan wangi dimasukkan
semasa nasi dimasak bagi menambahkan aromanya.

Table E.9: Examples of prompt and completion from the Aya Dataset.
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Figure F.6: Average prompt and completion length across different languages in Aya Dataset.
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Figure F.7: Average Approval Ratio per dataset, constrained to datasets receiving at least 20 votes.
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Figure F.9: NLLB Translation Quality: ChrF++ scores on FLORES for translations from English into the Aya target
languages that are covered by NLLB, grouped by their resourcedness according to (Joshi et al., 2020). Top: Low-
resource Languages, classes 0, 1, 2; middle: Mid-resource Languages, class 3; bottom: High-resource Languages,
classes 4, 5, following (Joshi et al., 2020)
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G Language Representation via
Community

G.1 Division by Regions
We chose to divide languages into four primary
regions: Africa, Asia, Europe, and Latin America.
These four regions were established in order to fa-
cilitate the administration of user contributions and
were not intended to prescribe boundaries within
which certain languages are exclusively spoken.

The language statistics by region are as follows:
Africa (14 languages), Asia (41 languages), Europe
(42 languages), and Latin America (4 languages).
Almost all the languages were assigned to a region
but there are some exceptions, Maori and Samoan
were unassigned to any specific region as they
didn’t align with the predefined regions. English
was left unassigned, serving as a common language
across all regions. Additionally, contributions in
Spanish and Portuguese were distributed between
Europe and Latin America based on contributors’
countries. Similarly, Arabic contributions were
shared between Africa and Asia depending on the
contributors’ country of origin. Additional dialects
of Arabic were included in regions separate from
that of their parent language because we had a sig-
nificant number of speakers from these regions ea-
ger to contribute to their respective dialects. Each
region had at least one “Regional Lead” respon-
sible for coordinating “Language Ambassadors,”
and for recruiting fluent speakers for the languages
within their area.

G.2 Language Ambassadors
The Language Ambassador’s role was pivotal in
bridging the gap between the data collected in
a language and its speakers. An essential crite-
rion for selection was native fluency in the spe-
cific language. The Language Ambassador’s ex-
pertise in specific languages and familiarity with
the cultures of the language speakers was invalu-
able. They assisted not only in spreading aware-
ness among participants but also in identifying and
addressing potential data issues specific to each
language, such as languages incorrectly assigned
to their region. Their cultural and linguistic in-
sights enabled them to make informed decisions,
like choosing suitable data sources for collection in
their respective languages. Not every language had
a designated Language Ambassador, and some had
more than one. In total, we had 84 Language Am-
bassadors over the course of the initiative. Their

combined efforts played a vital role in broaden-
ing the contributor base for each language. Sup-
port for the Language Ambassadors’ progress and
trouble-shooting challenges they faced was coordi-
nated asynchronously and through weekly online
meetups, discussed in Appendix G.3.1 and Ap-
pendix G.3.2.

G.2.1 Regional Leads
There were a total of six Regional Leads: two for
Latin America, one for Africa, one for Asia, and
two for Europe. The selection for Regional Lead
roles was on a voluntary basis, with the only re-
quirement being that they must originate from the
regions they intended to lead. The invitation for
this role was specifically extended to individuals
who were already actively participating in our com-
munity projects or engaged in other open science
projects. Regional Leads had several key roles
throughout the project, such as selecting Language
Ambassadors and aiding their efforts in attracting
more annotators and maintaining their engagement.

G.3 Communication

G.3.1 Platforms
We established a Discord server for coordination
between Regional Leads, Language Ambassadors
and annotators. The server provided basic chan-
nels for internal communications: introductions,
inquiries, and announcements, as well as specific
channels for Language Ambassadors, for each re-
gion, and for each language, along with any other
channels that proved useful for the particular re-
gion. For external communications, we used social
media platforms (e.g., X, LinkedIn, WhatsApp,
Facebook), recognizing that the choice of com-
munication platform varied based on cultural and
regional preferences. Using multiple platforms
not only facilitated internal organization but also
broadened our project’s outreach by providing flex-
ible and inclusive means of outreach to diverse
communities and audiences.

G.3.2 Meetings
In addition to asynchronous communication
through Discord, we conducted meetings to main-
tain team collaboration and cohesion:

Regional Leads and Language Ambassadors
Meeting. A weekly meeting in which Regional
Leads and Language Ambassadors shared project
updates, exchanged ideas, and addressed questions
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from Language Ambassadors. It served as an ex-
cellent platform for gathering ideas from Language
Ambassadors and brainstorming new strategies to
engage annotators effectively.

New Contributor Introduction Meeting. Held
weekly, this meeting aimed to introduce new con-
tributors to the project’s specifics. It included ex-
planations about the motivations behind the project,
a walk-through of the Aya UI, and a sharing of
regional statistics. Additionally, this meeting pro-
vided examples of both good and bad annotations
and edits to guide new annotators in their work.
It concluded with a synchronous challenge for the
annotators to submit a few initial annotations in
real time to familiarize them with the process and
allow them to ask questions if they got stuck.

Regional Leads Meeting. Held bi-weekly, this
meeting brought together Regional Leads to assess
progress, discuss upcoming steps, and provide ad-
vice on how to engage and sustain contributions for
their respective regions. Furthermore, this meeting
facilitated collaborative troubleshooting efforts and
helped make important decisions for the following
week.

Technical Update. This meeting was dedicated
to sharing technical updates, with a focus on recent
UI progress, data, and benchmarking. The purpose
of this monthly update was to ensure all team mem-
bers and annotators were well-informed about the
project’s current status and upcoming priorities. It
was a place for open discussion to hear feedback
from everyone interested in the project.

Language Specific Meeting. Held weekly or bi-
weekly, these meetings were co-working sessions
or datathons led by the language ambassadors with
their respective annotators to submit annotations
synchronously. It also acted as an onboarding ses-
sion to welcome new contributors from regions that
could not join the New Contributor Introduction
Meeting due to conflicting time zones. Demon-
strations on using the UI, as well as brainstorming
sessions, were conducted to improve the represen-
tation of specific languages in the project.
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H Data Cards

Following Pushkarna et al. (2022) and the HuggingFace data card template13, we present the data card for
the Aya Dataset.

Data Card for the Aya Dataset

The Aya Dataset is a multilingual instruction fine-tuning dataset curated by an open-science community. The
dataset contains a total of 204,114 annotated prompt-completion pairs.

• Curated by: 2,007 contributors from 110 countries

• Language(s): 65 languages

• License: Apache 2.0

• Repository: https://huggingface.co/datasets/CohereForAI/aya_dataset

Authorship

Publishing Organization:
Cohere For AI

Industry Type:
Not-for-profit - Tech

Contact Details:
https://aya.for.ai/

Example of Data Points

The dataset contains multilingual prompts and completions in the following format:

{
" inputs " : "What c u l t u r a l events or f e s t i v a l s . . . " ,
" t a r g e t s " : "Colombo' s c u l t u r a l ca l endar i s a d o r n ed . . . " ,
" language " : " Engl i sh " ,
" language_code" : "eng" ,
" annotation_type " : " o r i g i n a l - annotat ions " ,
" user_id " : " f 0 f f 6 9570a f 7 05b75 c5a0851883 e . . . "

}

Motivations & Intentions

Curation Rationale: The curation effort employed an open-science approach to create a diverse instruction-style
dataset through annotators across the globe that ensures comprehensive representation across all languages. The
success of the curation effort, led by volunteers across diverse backgrounds, was significantly influenced by their
hope to meaningfully bring NLP advancements to their languages.

Provenance

Methods Used
Crowd-sourced through volunteer annotations, fol-
lowed by a quality assessment phase in which samples
from the dataset were checked.

Methodology Details
Source: Original annotations and edits of open-source
NLP datasets
Platform: Aya Annotation Platform
Dates of Collection: Jun 2023 - Dec 2023

Dataset Version and Maintenance

Maintenance Status
Actively Maintained

Version Details
Current version: 1.0
Last Update: 12/2023
First Release: 02/2024

Maintenance Plan
Updates will be periodically made
available based on volunteer con-
tributions

13https://huggingface.co/docs/datasets/v2.15.0/en/dataset_card
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Data Card for the Aya Collection

The Aya Collection incorporates instruction-style templates from fluent speakers and applies them to a curated list
of 44 datasets. It also includes translations of 19 instruction-style datasets into 101 languages. This collection
provides 513,579,625 instances of prompts and completions covering a wide range of tasks.

• Curated by: 2007 contributors from 110 countries

• Language(s): 114 languages

• License: Apache 2.0

• Repository: https://huggingface.co/datasets/CohereForAI/aya_collection

Authorship

Publishing Organization:
Cohere For AI

Industry Type:
Not-for-profit - Tech

Contact Details:
https://aya.for.ai

Example of Data Points

The dataset contains multilingual prompts and completions in the following format:

{
" id " : 246001 ,
" inputs " : "The f o l l ow i n g query in Engl i sh i s taken f r om . . " ,
" t a r g e t s " : "The answer i s Mount Lucania . " ,
"dataset_name" : "Mintaka - i n s t " ,
"sub_dataset_name" : " - " ,
" task_type" : " quest ion - answering " ,
" template_id" : 3 ,
" language " : "eng" ,
" s p l i t " : " t r a i n " ,
" s c r i p t " : "Latn"

}

Motivations & Intentions

Curation Rationale: Automatic augmentation of existing datasets serves to enhance the available linguistic
resources for multiple languages. List of languages were established from mT5 and aligned with annotators’
language list and NLLB translation model. The datasets were translated directly from English for all languages.

Provenance

Methods Used
Combination of crowd-sourced templating and auto-
matic translation.

Methodology Details
Source: Existing NLP datasets
Platform: Aya Annotation Platform
Dates of Collection: Jun 2023 - Dec 2023

Dataset Version and Maintenance

Maintenance Status
Actively Maintained

Version Details
Current version: 1.0
Last updated: 12/2023
Release date: 02/2024

Maintenance Plan
No updates planned.
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Data Card for the Aya Evaluation Suite

The Aya Evaluation Suite contains a total of 25,750 open-ended conversation-style prompts covering 114 languages
of three subsets:
AYA-HUMAN-ANNOTATED: 250 original human-written prompts in 7 languages each.
DOLLY-MACHINE-TRANSLATED: 200 human-selected prompts from (Conover et al., 2023), automatically
translated with the NLLB model (NLLB-Team et al., 2022) from English into 101 languages.
DOLLY-HUMAN-EDITED: 200 DOLLY-MACHINE-TRANSLATED prompts post-edited by fluent speakers for 6
languages.

• Curated by: contributors, professional annotators, and synthetic generation

• Language(s): 101 languages

• License: Apache 2.0

• Repository: https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite

Authorship

Publishing Organization:
Cohere For AI

Industry Type:
Not-for-profit - Tech

Contact Details:
https://aya.for.ai

Example of Data Points

The dataset contains multilingual prompts in the following format. Note that ‘source_id’ is applicable only for subsets
DOLLY-MACHINE-TRANSLATED and DOLLY-HUMAN-EDITED. Furthermore, the ‘target’ field is not applicable for
DOLLY-HUMAN-EDITED.

{
" id " : 2 ,
" inputs " : "How to escape from a h e l i c o p t e r trapped in water ?" ,
" t a r g e t s " : " I f you are ever trapped i n s i d e a h e l i c o p t e r . . . " ,
" language " : "eng" ,
" s c r i p t " : "Latn" ,
" source_id " : 6060

}

Motivations & Intentions

Curation Rationale: This evaluation suite is tailored for testing the generation quality of multilingual models,
with the aim to balance language coverage and human-sourced quality. It covers prompts originally written in each
language, as well as English-centric translated and manually curated or edited prompts for a linguistically broad but
rich testbed. The list of languages was established from mT5 and aligned with annotators’ language list and the
NLLB translation model.

Provenance

Methods Used
Combination of original annotations by volunteers, au-
tomatic translation, and post-editing of translations by
professional annotators.

Methodology Details
Source: Original annotations and translations and
post-edits of Dolly
Platform: Aya Annotation Platform
Dates of Collection: Jun 2023 - Dec 2023

Dataset Version and Maintenance

Maintenance Status
Actively Maintained

Version Details
Current version: 1.0
Last updated: 02/2024
Release date: 02/2024

Maintenance Plan
No updates planned.
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