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Abstract

We present a novel inference scheme, self-
speculative decoding, for accelerating Large
Language Models (LLMs) without the need for
an auxiliary model. This approach is charac-
terized by a two-stage process: drafting and
verification. The drafting stage generates draft
tokens at a slightly lower quality but more
quickly, which is achieved by selectively skip-
ping certain intermediate layers during draft-
ing. Subsequently, the verification stage em-
ploys the original LLM to validate those draft
output tokens in one forward pass. This pro-
cess ensures the final output remains identi-
cal to that produced by the unaltered LLM.
Moreover, the proposed method requires no
additional neural network training and no extra
memory footprint, making it a plug-and-play
and cost-effective solution for inference accel-
eration. Benchmarks with LLaMA-2 and its
variants demonstrated a speedup up to 1.99×.1

1 Introduction

Transformer-based Large Language Models
(LLMs), such as GPT-3/4, PaLM, and LLaMA,
have been widely adopted in various real-world
applications (Bommasani et al., 2021; Liang et al.,
2022; Brown et al., 2020; Min et al., 2022; Chan
et al., 2022; Touvron et al., 2023). However, their
inference costs have raised significant concerns,
especially for latency-sensitive scenarios (Pope
et al., 2022). The main efficiency bottleneck
is the autoregressive decoding process. This
process decodes each output token sequentially,
leading to a high number of Transformer calls;
furthermore, each Transformer call is typically
memory bandwidth-bound, resulting in low
computation utility and thus longer wall-clock
time (Shazeer, 2019). For instance, decoding 128
tokens autoregressively using LLaMA-2-13B on

∗Huan Li and Lidan Shou are the corresponding authors.
1Code is available at https://github.com/dilab-zju/

self-speculative-decoding.

an A100 GPU can take up to 100× longer than a
sequence-level forward pass on the same number
of tokens, highlighting the substantial inefficiency
inherent in the current decoding process.

Established model compression techniques such
as quantization (Han et al., 2015), pruning
(Molchanov et al., 2016), and distillation (Hinton
et al., 2015) have been employed to alleviate these
costs. While these solutions have proven extremely
effective, they usually require changing the model
architecture, changing the training procedure, re-
training or fine-tuning the models, and do not main-
tain identical outputs.

In parallel to model compression, speculative
execution is being explored to accelerate the autore-
gressive decoding process (Leviathan et al., 2023;
Chen et al., 2023). These methods train an auxiliary
draft model that can quickly generate some draft
output tokens. Subsequently, the original LLM,
referred to as the verify model, then checks the
acceptability of these draft tokens with one single
forward pass. This verification step ensures that
the outputs are derived from the original LLM’s
probability distribution.

However, an essential issue of existing specu-
lative execution methods is the need to identify
or train a suitable draft model that can generate
outputs consistent with the verify model. It be-
comes more tricky when the LLM is already a fine-
tuned model, e.g. LLaMA-2-Chat (Touvron et al.,
2023), CodeLLaMA (Rozière et al., 2023). How
to find or train a draft model that can effectively
mimic the outputs of such a tailored model is a
formidable task, with no straightforward or guaran-
teed solutions. Furthermore, the introduction of an
additional draft model escalates the GPU memory
overhead, increasing deployment challenges partic-
ularly on devices with restricted memory capacity.

In this paper, we present self-speculative decod-
ing, a novel approach to accelerate the inference
of LLMs. This method builds on the principles of
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Figure 1: Visualization of the self-speculative decoding process. The verification stage evaluates all drafted tokens in
a single forward pass, with accepted tokens marked in green and rejected tokens highlighted in red. Each verification
step also predicts one more token, which is denoted in blue.

Figure 2: Impact of the number of draft tokens (K) and
acceptance rate on end-to-end speedup. The draft model
is assumed to be 2× faster than the verify model.

speculative execution, but with a unique twist: it
utilizes one LLM for both drafting and verification
stages. The key insight driving our approach is the
observation that skipping certain layers in LLMs
does not significantly compromise the generation
quality (Liu et al., 2023). As such, by selectively
bypassing some intermediate layers, we can use the
LLM itself to generate draft tokens. These tokens
are then verified by the original LLM in a single
forward pass. Figure 1 illustrates this two-stage
decoding process. The blue arrow indicates the in-
ference path of the original model, while the green
arrow depicts the inference path during the drafting
stage. Notably, both inference paths share the same
model so we do not need a standalone draft model
with extra memory overhead.

Implementing self-speculative decoding poses
two main challenges: (a) determining which layers
and the number of layers to skip during drafting,
and (b) deciding the timing to stop generating draft
tokens. To tackle the first challenge, we formulate it
as an optimization problem, which accepts the com-
binations of layers to bypass as input and aims to
minimize the average inference time per token. We
employ Bayesian optimization (Jones et al., 1998)
to solve this problem. The optimization is per-
formed offline at the model level, and the searched

layer combinations are fixed. The second challenge
pertains to determining the optimal number of draft
tokens (K) to generate. As shown in Figure 2, the
choice of K significantly influences the end-to-end
speedup: for an acceptance rate below 80%, K = 1
is optimal, and for rates above 80%, a larger K
is necessary. This observation underscores that a
static K is not universally applicable. To tackle this
variability, we introduce an adaptive draft-exiting
mechanism, which stops generating draft tokens
once its confidence level drops below a threshold.
This intervention prevents unnecessary computa-
tion and potential discard of additional draft tokens,
thereby enhancing efficiency.

To summarize, our main contributions are: (1)
Inference scheme: we propose self-speculative de-
coding, a practical, plug-and-play solution for in-
ference acceleration that does not require further
neural network training and avoids additional mem-
ory overhead; (2) Optimization strategies: we adopt
Bayesian optimization to select which layers to skip
during drafting and propose a simple yet effective
method to adaptively determine the number of draft
tokens; (3) Evaluation: we evaluate our method on
text summarization and code generation tasks, and
the experimental results indicate that our method
can achieve up to 1.99× in end-to-end speedup.

2 Related Work

Transformer-based LLM inference. As LLMs
continue to evolve rapidly, we are seeing a surge of
systems specifically engineered for LLM inference,
including Faster Transformer (NVIDIA), Orca (Yu
et al., 2022), LightSeq (Wang et al., 2021), PaLM
inference (Pope et al., 2022), TurboTransformers
(Fang et al., 2021), Deepspeed Inference (Am-
inabadi et al., 2022), FlexGen (Sheng et al., 2023),
Text Generation Inference (HuggingFace, 2023),
etc. The token generation phase typically takes up
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the majority of the end-to-end inference time com-
pared to the prompting encoding phase. Despite
the introduction of system optimizations by those
state-of-the-art systems to improve the inference
speed, there is still a gap in the careful co-design of
algorithms and systems. This is necessary to fully
harness the potential of hardware efficiency during
LLM inference computation.

Model Compression. Various model compres-
sion methods have been studied for model infer-
ence. For example, quantization (Han et al., 2015;
Jacob et al., 2018; Nagel et al., 2019; Zhao et al.,
2019; Yao et al., 2022; Park et al., 2022; Dettmers
et al., 2022; Xiao et al., 2022; Frantar et al., 2022),
pruning or sparsification (Molchanov et al., 2016;
Liu et al., 2018; He et al., 2019; Hoefler et al., 2021;
Frantar and Alistarh, 2023; Liu et al., 2023; Bansal
et al., 2022), and distillation (Hinton et al., 2015;
Cho and Hariharan, 2019; Tang et al., 2019; Tou-
vron et al., 2021) have been applied to speed up the
inference of the machine learning model, particu-
larly LLMs. While these solutions are extremely
effective, they often necessitate modifications to
the model architecture and the training procedure.
This usually involves re-training or fine-tuning the
models. And it is important to note that these meth-
ods do not result in identical outputs.

Speculative Execution. Speculative execution
(Burton, 1985; Hennessy and Patterson, 2011) is
employed in computer architecture where a system
performs some task in advance if that task is known
to be required after the previous task. Speculative
decoding (Chen et al., 2023; Leviathan et al., 2023)
has been proposed as an effective strategy to boost
the inference speed of LLMs. Previously, (Stern
et al., 2018) proposed to use block-wise parallel de-
coding to accelerate greedy decoding of attention
models. However, these methods need to train or
select a high-quality draft model, and also result
in increased memory overhead. Yang et al. (2023)
proposed to copy the reference text tokens and vali-
date them in a forward pass. However, this method
relies on the repetitiveness assumption, and thus
does not apply to general scenario generation. In
contrast, our approach does not incur additional
memory overhead and does not hinge on explicit
assumptions about data distribution.

Early Exit. Early exit allows the model to choose
different calculation paths based on the input dur-
ing the inference process to achieve acceleration.

Algorithm 1 Autoregressive Decoding (Greedy)
1: Given model p(x|x1, ..., xt), prompt x1, ..., xt and target

sequence length T .
2: for i = t, ..., T-1 do
3: xi+1 ← argmax p(x|x1, ..., xi)

4: return x1, ..., xT

Various early exit techniques for encoder-only
Transformers (Devlin et al., 2019) have been pro-
posed (Xin et al., 2020b; Schwartz et al., 2020; Liu
et al., 2020; Xin et al., 2020a; Hou et al., 2020;
Zhou et al., 2020; Liao et al., 2021; Zhu, 2021; Li
et al., 2021; Sun et al., 2022). Recently, (Schus-
ter et al., 2022) further verified the effectiveness
of early exit on the encoder-decoder LLM (Raffel
et al., 2020). Inspired by these works, we opt to
skip certain intermediate layers during drafting.

3 Method

In this section, we first go through the standard au-
toregressive decoding. Subsequently, we provide a
detailed depiction of our proposed method, includ-
ing selectively skipping layers during drafting, and
adaptively determining the number of draft tokens.

3.1 Standard Autoregressive Decoding

Existing LLMs typically follow an autoregres-
sive decoding process. Given a prompt sequence
x1, ..., xt, the model calculates the probability dis-
tribution of the next token p(x|x1, ..., xt). We
present a greedy decoding process in Algorithm 1.
In practice, instead of choosing the token with the
highest probability (as in greedy decoding), we
can sample tokens based on their probability dis-
tribution, which introduces some randomness and
generates more diverse outputs.

Ideally, the computational cost of autoregressive
decoding is comparable to that of sequence-level
forward processing for an equivalent number of
tokens.2 However, this decoding process is signif-
icantly bounded by the memory bandwidth of the
device. When decoding each token, all the model
parameters need to pass through the accelerator
chip. So the model size divided by the memory
bandwidth gives a hard ceiling on the decoding
speed, resulting in a much longer inference time.

2In fact, due to the causal nature of language modeling,
autoregressive decoding could potentially save some attention
computation.
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Algorithm 2 Self-Speculative Decoding (Greedy)
1: LLM p(x|z∗, x1, ..., xt) where x1, ..., xt is the prompt,

z∗ is a vector that represents the specific layers to bypass;
target sequence length T ; max draft tokens to generate K.
The p(x|⃗0, x1, ..., xt) denotes original LLM, where 0⃗ is
a zero vector, indicating all layers are used in inference.

2: i← t
3: while i < T do
4: for j ← i, ..., i+K do ▷ Drafting Stage
5: xj+1 ← argmax p(x|z∗, x1, ..., xj)
6: if need to exit drafting (§3.4) then
7: Break
8: for i← i, ..., j do ▷ Verification Stage
9: if xi+1 ̸= argmax p(x|⃗0, x1, ..., xi) then

10: xi+1 ← argmax p(x|⃗0, x1, ..., xi)
11: Break
12: i← i+ 1
13: If all draft tokens are accepted, generate next token

xi+1 ← argmax p(x|⃗0, x1, ..., xi) and i← i+ 1

14: return x1, ..., xT

3.2 Self-Speculative Decoding

To mitigate the inherent inefficiency of autoregres-
sive decoding, speculative decoding can be em-
ployed to enhance the inference speed of LLMs.
This strategy involves two models: an LLM that we
want to optimize, and a draft model that runs faster,
albeit potentially at a lower quality. Speculative
decoding can be explained as a two-stage process:
(1) drafting: the draft model first generates K draft
tokens from a given prompt sequence x1, ..., xi,
denoted as xi+1, ..., xi+K . (2) verification: follow-
ing the drafting stage, the original LLM is then
employed to validate these draft tokens. This val-
idation is accomplished in a single forward pass,
where the LLM predicts the probability distribu-
tions for each draft token and assesses whether they
align with the draft tokens. Once a draft token xj is
not validated, we use the original LLM’s prediction
to override xj , and start the next round of drafting
beginning from token xj+1.

The above process is based on the observation
that computing the forward pass of a short con-
tinuation of tokens in parallel is not much slower
than that of a single token. Consequently, the veri-
fication stage could be significantly more efficient
than decoding tokens using the original LLM in
standard autoregressive decoding.

In contrast to existing methods that use a stan-
dalone draft model to obtain draft tokens, our paper
proposes a novel ‘self-speculative’ approach. We
employ the original LLM itself for both the draft-
ing and verification stages. During the drafting
stage, the LLM selectively skips some of its in-
termediate layers so as to generate draft tokens

quicker. Subsequently, these draft tokens are ver-
ified by the original LLM. Algorithm 2 presents
a detailed description of the greedy decoding pro-
cess. A complete sampling-based decoding process
is elaborated in Appendix L.

Despite the simplicity of the main idea of self-
speculative decoding, it poses several challenges:

Challenge 1: First, it is non-trivial to determine
which layers and the number of layers to skip dur-
ing drafting. If an excessive number of layers are
skipped, the quality of the draft could be signifi-
cantly compromised. This could result in a low ac-
ceptance rate in the verification stage, consequently
increasing the overall inference time. On the other
hand, if fewer layers are skipped, it ensures a higher
acceptance, but also caps the maximum speedup
that could be achieved.

Challenge 2: It is hard to decide when to stop
the generation of draft tokens. As shown in Fig-
ure 2, the choice of the number of draft tokens
to generate significantly influences the end-to-end
speedup. In speculative decoding, if a draft token
is rejected, all subsequent draft tokens will be dis-
carded. Therefore, generating an excessive number
of draft tokens could lead to unnecessary computa-
tion, thereby increasing the inference time.

In Sections 3.3 and 3.4, we will detail our ap-
proach to address these two challenges respectively.

3.3 Selection of Skipped Layers

The selection of skipped layers is essential in our
method, shaping the configuration of the draft
model and, consequently, the speedup achieved
via self-speculative decoding. This selection pro-
cess must carefully balance two key factors: the
draft model’s ‘effectiveness’ and ‘efficiency.’ Both
are intrinsically linked to the selection of skipped
layers and significantly influence the overall perfor-
mance of our method. Specifically:

(1) The ‘effectiveness’ of the draft model is quan-
tified by the acceptance rate, which measures the
agreement between the draft and verify models.
However, we note that an exclusive focus on opti-
mizing the acceptance rate could lead to no layers
being skipped, i.e. the draft model identical to the
verify model, resulting in an acceptance rate of
100%, but without any speedup.

(2) On the other hand, the ‘efficiency’ of the draft
model can be quantified by the number of layers in
the draft model. Indeed, minimizing the number of
layers can reduce the inference latency of the draft
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in the lowest average token inference time.

model, but an extreme setup where all layers are
skipped would result in the draft model generating
low-quality tokens. This would drastically lower
the acceptance rate, negating any potential speedup.

In this section, we frame the layer selection pro-
cess as an optimization problem, our primary ob-
jective is to optimize the average inference time
per verified token. This metric provides a compre-
hensive measure of the end-to-end inference time,
including both drafting and verifying stages, nor-
malized by the number of verified tokens.

Objective Function. This metric is a function
of the selection of layers to be skipped in the draft
model. The function, represented as f(z), takes
the selection of layers (z) as input and returns the
average inference time per verified token on a de-
velopment set. Here, z is a vector that represents
the layers to be skipped.

Optimization Problem. The optimization prob-
lem’s goal is to find the input z∗ that minimizes
the objective function f(z). This problem can be
formally expressed as:

z∗ = argmin
z

f(z), s.t. z ∈ {0, 1}L. (1)

While a brute force search could find the glob-
ally optimal solution for smaller models with a
manageable solving space, it becomes prohibitively
expensive for larger language models with many
layers (e.g., L = 160 for LLaMA-2-70B).

To tackle this, we employ Bayesian optimization
(Jones et al., 1998). As shown in Figure 3, it itera-
tively selects new inputs z∗ for evaluation, based
on a surrogate model of the objective function,
i.e. Gaussian process (Rasmussen et al., 2006), and
an acquisition function. The latter balances explo-
ration (testing inputs where the model’s prediction
is uncertain) and exploitation (testing inputs where
the model anticipates a favorable result). This pro-
cedure continues until a predetermined number of
iterations is reached. We use the obtained z∗ to

accelerate text generation, and z∗ is fixed for each
model (i.e., generating draft model at model-level)
without further updating. When the draft model’s
target tasks vary significantly, task-level optimiza-
tion is more appropriate to achieve good perfor-
mance. Specifically, building the development set
of optimization process from a single data source
to mitigate inter-task interference.

In addition, while we here adopt skipping inter-
mediate layers as a simple yet effective strategy to
expedite the drafting stage, our scheme can be inte-
grated with quantization (Dettmers et al., 2022) and
sparsification (Sun et al., 2023) to further reduce
resource consumption, as detailed in Appendix G.

3.4 Adaptive Draft-Exiting Mechanism

Our self-speculative decoding approach incorpo-
rates an adaptive draft-exiting mechanism to en-
hance computational efficiency during the drafting
stage. In speculative decoding, if a draft token is
rejected, all subsequent draft tokens will be dis-
carded accordingly. The draft-exiting mechanism
prevents the wasteful allocation of computational
resources toward draft tokens that are less likely to
be accepted in the verification stage.

Specifically, it compares the predicted probabil-
ity of each draft token against a threshold γ. If
the predicted probability falls below γ such that
p(xt+1|x1, ..., xt) < γ, indicating low confidence,
it immediately stops drafting. This approach en-
sures a better use of computing by focusing on the
generation and verification of high-quality tokens,
thereby improving the overall efficiency.

Moreover, it is worth noting that a static thresh-
old may not accurately reflect the actual acceptance
rate between the drafting and verification stages.
For example, more challenging examples with a
lower acceptance rate would be better served by a
higher γ. To avoid the need for case-by-case thresh-
old determination, we use an adaptive threshold
that adjusts dynamically according to an updating
rule, thereby allowing for an accurate reflection of
the acceptance rate and better handling of examples
in different difficulties. We denote the acceptance
rate (AR) at e-th drafting stage as ARe. Conse-
quently, the update rule is defined as follows:

AR← β1AR+ (1− β1)ARe, (2)

γ̃ =

{
γ + ϵ, if AR ≤ α

γ − ϵ, otherwise
, (3)

γ ← β2γ + (1− β2)γ̃, (4)
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where α represents a target acceptance rate (another
anchor is discussed in Appendix K), ϵ is the update
step-size, and β1 and β2 are factors designed to
mitigate fluctuations of γ and AR respectively. No-
tably, when e is 1, β1 = 0. We update γ after each
verification stage. This updating rule ensures that
the acceptance rate remains in close proximity to a
target acceptance rate α.

4 Evaluation

4.1 Setup

We evaluate a diverse range of models in-
cluding LLaMA-2-13B, LLaMA-2-13B-Chat,
CodeLLaMA-13B, and LLaMA-2-70B. Detailed
setup can be found in Appendix B. We perform
Bayesian optimization3 (BO) for 1000 iterations
to select the skipped layers in the drafting stage4.
Results of tuning the number of BO iterations
are reported in Appendix D. The datasets include
CNN/Daily Mail (CNN/DM), Extreme Summa-
rization (XSum), and HumanEval. These tasks
cover the evaluation of text and code generation
capabilities. Appendix H shows effectiveness on
more diverse tasks such as solving math problems
and open-domain chitchat. We perform 1-shot
evaluation for CNN/DM and XSum, and compare
the ROUGE-2 (Lin, 2004). We compare pass@1
and pass@10 (Kulal et al., 2019) for HumanEval.
We randomly sample 1000 instances from the
testset for CNN/DM and XSum.

4.2 Main Results

We evaluate the performance of our decoding
scheme, denoted as ‘Self-Speculative’, with both
greedy decoding (temperature = 0.0) and random
sampling (temperature = 0.2/0.6), across text and
code generation. The baseline is ‘Autoregressive’,
which uses the original model to perform standard
autoregressive decoding. The experiments involve
various scales of LLaMA-2 and its fine-tuned mod-
els. The results can be found in Tables 1 and 2. We
visualize the layer skipping distribution for differ-
ent models in Section 4.8.

For text generation tasks, Table 1 shows that our
method, when applied with temperature settings of
0.0 and 0.2 achieves considerable speedups rang-
ing from 1.210× to 1.992×. Another important
observation from these results is the minimal to

3https://github.com/bayesian-optimization/
BayesianOptimization (MIT License) is used.

4Appendix B reports the offline BO time at model-level.

nonexistent loss in ROUGE-25, which verifies a
core advantage of our decoding scheme, namely
consistent output quality. In Appendix J.1, we com-
pare the ROUGE-2 with other mainstream LLMs
and evaluate the various metrics (ROUGE-1 and
ROUGE-L) to quantitatively show our output qual-
ity. Moreover, the case study in Appendix J.2 quali-
tatively presents consistent output examples. In par-
ticular, our approach can be effectively applied on
LLaMA-2-13B-Chat, a fine-tuned LLaMA-2-13B
for conversation scenarios, indicating the compati-
bility of our method with fine-tuned models. This
effectively addresses the dependency of the origi-
nal speculative decoding method on high-quality
draft models, which can be challenging to train and
obtain, especially for fine-tuned models. Further-
more, the higher speedup achieved on LLaMA-2-
70B suggests that larger models introduce more
redundancy. This allows the drafting stage to skip
a larger percentage of intermediate layers, thereby
enhancing the overall speedup.

We also tested CodeLLaMA-13B, another fine-
tuned LLaMA-2-13B for code generation. The per-
formance on larger CodeLLaMA-34B is presented
in Appendix I. We used the HumanEval bench-
mark. Table 2 shows that we achieve speedups
of 1.345× and 1.456×, respectively, while main-
taining similar task scores in terms of pass@1 and
pass@10. This further validates the compatibility
of our scheme for coding.

4.3 Impact of Skipped Layer Selection

To investigate the impact of skipped layer selection,
we conduct experiments on LLaMA-2-13B, which
comprises 80 layers. Throughout the BO process,
we track the number of layers skipped, denoted as
||z∗||, and the speedup relative to the autoregres-
sive baseline. Figure 4 shows the results, where
the dashed line indicates the maximum speedup for
runs that skip the same number of layers.

These results reveal that: (1) The peak end-to-
end speedup is observed when about half of the
layers are skipped during the drafting stage; (2) The
specific combination of layers skipped also plays
a significant role. In particular, an inappropriate
combination of skipped layers can actually result
in a decrease in the end-to-end inference speed. (3)
There is a noticeable drop in speedup when more
than 42 layers are skipped. This suggests that the

5We attribute any slight differences observed in the case of
greedy decoding to numerical rounding errors.
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Model Method Temp. CNN/DM XSum

ROUGE-2 Speedup ROUGE-2 Speedup

LLaMA-2-13B Autoregressive 0.0 0.106 1.000× 0.124 1.000×
LLaMA-2-13B Self-Speculative 0.0 0.108 1.572× 0.125 1.429×
LLaMA-2-13B Autoregressive 0.2 0.111 1.000× 0.117 1.000×
LLaMA-2-13B Self-Speculative 0.2 0.111 1.529× 0.117 1.377×
LLaMA-2-13B-Chat Autoregressive 0.0 0.144 1.000× 0.109 1.000×
LLaMA-2-13B-Chat Self-Speculative 0.0 0.143 1.409× 0.109 1.224×
LLaMA-2-13B-Chat Autoregressive 0.2 0.143 1.000× 0.106 1.000×
LLaMA-2-13B-Chat Self-Speculative 0.2 0.145 1.383× 0.108 1.210×
LLaMA-2-70B Autoregressive 0.0 0.130 1.000× 0.118 1.000×
LLaMA-2-70B Self-Speculative 0.0 0.130 1.992× 0.118 1.598×
LLaMA-2-70B Autoregressive 0.2 0.131 1.000× 0.108 1.000×
LLaMA-2-70B Self-Speculative 0.2 0.131 1.964× 0.110 1.560×

Table 1: Evaluation on text generation tasks. ‘Speedup’ represents the acceleration of average inference time per
token compared to the ‘Autoregressive’ baseline on the same setting.

Model Method HumanEval Speedup

CodeLLaMA-13B Autoreg. pass@1 0.311 1.000×
CodeLLaMA-13B Self-Spec. pass@1 0.317 1.456×
CodeLLaMA-13B Autoreg. pass@10 0.659 1.000×
CodeLLaMA-13B Self-Spec. pass@10 0.659 1.345×

Table 2: Evaluation on code generation tasks. We use
greedy decoding for pass@1 and random sampling with
a temperature of 0.6 for pass@10.

quality of drafting significantly deteriorates when
an excessive number of layers are omitted.

These findings indicate the importance of layer
selection in the implementation of self-speculative
decoding. However, alternative layer skipping
strategies do not achieve satisfactory speedup com-
pared to BO, as detailed in Appendix C.

Performance degradation in drafting may be
compensated by adopting aggressive skipping strat-
egy and further training the draft model on a small
amount of data, as described in Appendix E. This
finding aligns with the Sheared-LLaMA (Xia et al.,
2023), which shows the effectiveness of pruning
followed by fine-tuning on a small corpus.

4.4 Effectiveness of Draft-Exiting
Here we explore the effectiveness of the adaptive
draft exit mechanism, specifically whether a thresh-
old is needed and whether a static threshold is suf-
ficient. Our settings are LLaMA-2-13B, CNN/DM,
and greedy decoding.

Fixed Number of Draft Tokens. We evaluated
a self-speculative decoding variant where the draft
model generates a constant number K of tokens.
As Table 3 shows, speedup initially increases with
K, then decreases. This pattern arises as a large K
(e.g., K = 8) produces many tokens likely to fail
verification, wasting computation in drafting.

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Number of sub-layers to skip

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Figure 4: Speedup vs the number of skipped layers.
These results are derived from the BO process.

While an appropriate K, e.g. K = 4, can par-
tially alleviate this issue, a static setting limits the
draft model’s potential and achieves only a modest
speedup (1.44×). This is because a static K does
not adapt to the complexity of different instances.
Ideally, we should use a larger K for simpler in-
stances and a smaller K for challenging ones.

Moreover, Table 3 reveals that the acceptance
rate and speedup do not have a direct proportion-
ality. For instance, when K = 2, the acceptance
rate peaks at 0.924, yet the speedup is only 1.37×.
This discrepancy is due to the overly conservative
K = 2, which underutilizes the draft model’s ca-
pacity. By generating fewer draft tokens, we miss
opportunities to produce more valid draft tokens,
thus limiting the overall speedup.

Draft-Exiting with Static Threshold. Another
variant is to stop generating draft tokens if the
confidence score falls below a predefined static
threshold. Table 4 shows that different static
thresholds have large differences in acceleration
(1.38×~1.58×). This highlights the importance of
adaptively determining the appropriate threshold
to optimize the speedup. Specifically, we observe
that high thresholds (γ=0.8) tend to underestimate
the capabilities of the drafting model. Despite a
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K 2 4 6 8 Adaptive

ROUGE-2 0.107 0.107 0.107 0.107 0.108
AR 0.924 0.865 0.807 0.748 0.919
Speedup 1.37× 1.44× 1.42× 1.36× 1.57×

Table 3: Drafting with different K values.

γ 0.2 0.4 0.6 0.8 Adaptive

ROUGE-2 0.107 0.107 0.107 0.107 0.108
AR 0.749 0.852 0.909 0.935 0.919
Speedup 1.38× 1.52× 1.58× 1.55× 1.57×

Table 4: Static draft-exiting threshold γ with K = 12.

high acceptance rate (AR=0.935), this does not
necessarily result in the best speedup due to a re-
duced number of drafting tokens (1.55×). Con-
versely, a lower threshold (γ=0.2) tends to overes-
timate the drafting model’s capabilities, leading to
a significantly lower acceptance rate (AR=0.749),
wasting computational resources during the draft-
ing stage, and thereby leading to slower inference
speed (1.38×).

Draft-Exiting with Adaptive Threshold. To
address the issue of optimal threshold determina-
tion, we propose an adaptive draft-exiting mech-
anism. Specifically, we evaluate the acceptance
rate and compare it to a target acceptance rate.
The threshold is updated with an updating rule
depicted in Section 3.3. Table 4 shows that the
speedup achieved by our adaptive threshold update
method (1.57×) is comparable to, if not superior to,
the speedup achieved with careful tuning of static
thresholds. This indicates that dynamic threshold
updating yields efficient and stable inference ac-
celeration. This is mainly because the acceptance
rate gets closer to the target AR by adjusting the γ
value in a timely manner for instances of varying
difficulties. Also, Appendix F reveals the adaptive
draft-exiting is insensitive to changes in K.

4.5 Evolution of Draft-Exiting Threshold

Figure 5 captures the evolution of the draft-exiting
threshold across different models and datasets over
approximately 5,000 drafting and verification iter-
ations. We can observe that our strategy adeptly
adjusts the threshold, facilitating effective acceler-
ation. However, the substantial variability across
different models and datasets confirms the limita-
tion of static threshold settings and the necessity
for adaptive updates.
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Figure 5: Threshold γ varies with models and data. We
calculate a moving average for every 64 cycles and plot
the standard deviation. The initial γ is set to 0.4.

Operation Autoregressive Self-Speculative

Drafting - 25.5±1.14 ms
- Attention - 14.6±0.65 ms
- MLP - 9.46±0.42 ms
Verification - 10.7±2.81 ms
- Attention - 7.55±1.91 ms
- MLP - 2.73±0.80 ms
γ update - 0.61±0.14 µs

Latency * 56.3±1.23 ms 36.8±3.23 ms
- Attention 39.7±0.91 ms 22.2±2.33 ms
- MLP 14.3±0.29 ms 12.2±1.22 ms

Table 5: Breakdown of computation. * denotes the
average inference latency per token for 10 instances
sampled from CNN/DM test set on LLaMA-2-13B.

4.6 Breakdown of Computation

Table 5 presents a computation breakdown compar-
ing the baseline with our ‘Self-Speculative’ decod-
ing method. Our approach exhibits a significant
speedup in average inference time per token com-
pared to ‘Autoregressive’. This speedup is primar-
ily attributed to two key techniques: the selection
of skipped layers and the adaptive draft-exiting.
Notably, the drafting stage consumes the majority
of inference latency, highlighting the need for draft
model optimizations to improve overall inference
speedup. Importantly, our adaptive exit mechanism
(γ update) incurs negligible computational cost as
it does not involve neural network calculations.

4.7 Impact of Target Acceptance Rate

Here, we explore the impact of the target accep-
tance rate α on LLaMA-2-13B and CNN/DM. As
shown in Table 6, the results reveal several insights.
As the target acceptance rate increases, the infer-
ence speed acceleration ratio initially increases and
then decreases. A higher predefined acceptance
rate can enhance generation speed. Additionally,
we find that at higher acceptance rates (greater than
0.8), the speedup ratio remains relatively stable,
indicating that setting the target acceptance rate is
straightforward.
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α 0.20 0.40 0.60 0.80 0.85 0.90 0.95

ROUGE-2 0.107 0.108 0.108 0.108 0.108 0.108 0.108
AR 0.677 0.713 0.772 0.851 0.880 0.910 0.934
Speedup 1.25× 1.31× 1.40× 1.50× 1.53× 1.53× 1.51×

Table 6: Drafting with different α values.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) LLaMA-2-13B

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) LLaMA-2-13B-Chat

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) CodeLLaMA-13B

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) The first half of LLaMA-2-70B

MLP 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160

ATT 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159

(e) The second half of LLaMA-2-70B

Figure 6: Visualization of layer skip distributions in draft models for various base models. Gray squares indicate
retained layers, red squares denote skipped attention layers, and blue squares signify skipped MLP layers.

4.8 Which Layers Are Skipped?

Figure 6 visualizes the distinct base models corre-
sponding to layer skip distributions within the draft
model. Two key observations are made as follows:

First, we observe that there are more skips in the
attention layer compared to the MLP layer, suggest-
ing the attention layer is more effective for reducing
inference time. This is reinforced by the results in
Table 5, where the time spent in the attention layer
significantly contributes to the average inference
latency per token.

Second, regardless of whether it is the MLP layer
or the attention layer, the skipped layers tend to
cluster in the latter half of the model. This pat-
tern suggests that most tokens can be accurately
predicted in the first half of the model, leaving the
second half of the model relatively redundant.

5 Conclusion

In this paper, we introduced self-speculative de-
coding, a novel and efficient inference scheme that
accelerates Transformer-based LLMs. Our method
does not depend on additional neural network train-
ing and incurs no extra device memory, making it

a highly practical and cost-effective solution for in-
ference acceleration. Moreover, we used Bayesian
optimization to search for layers to skip in drafting
and proposed an adaptive draft-exiting mechanism
to improve the end-to-end inference speed. Bench-
mark tests with LLaMA-2 and its fine-tuned mod-
els demonstrated a speedup of up to 1.99×. For
future work, we aim to explore more sophisticated
model compression strategies to further accelerate
the drafting stage for low-resource scenarios.
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8 Limitations

While our self-speculative decoding scheme
presents benefits for accelerating LLMs, there are
a few limitations to consider. Firstly, the utilization
of Bayesian optimization to determine the layers
to be skipped during the drafting stage may require
several hours. Nonetheless, this limitation is not
critical, as this process is a one-time, offline execu-
tion at the model level. Secondly, our method does
not involve any neural network training, which im-
poses a constraint on the number of layers that
can be skipped. An excessive reduction in layers
could result in a significant drop in the acceptance
rate, thereby diminishing the achieved speedup. Al-
though fine-tuning the draft model–a sub-graph of
the original model–could potentially mitigate this
issue and yield a better speedup, as shown in Ap-
pendix E, it incurs additional memory overhead
since the draft model no longer shares the same pa-
rameters with the original model. In addition, we
can refer to FlashAttention (Dao, 2023) and vLLM
(Kwon et al., 2023) and similar works to further
adapt our technique for batched decoding.
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A Data

The datasets that we have selected for evaluation
are CNN/Daily Mail (CNN/DM), Extreme Sum-
marization (XSum), and HumanEval. These tasks
cover a broad spectrum of language processing
capabilities, including text and code generation
capabilities. We perform 1-shot evaluation for
CNN/DM and XSum, and compare the ROUGE-
2. We compare pass@10 for HumanEval. For the
results of efficiency, we randomly sample 1000
instances from the testset for CNN/DM and XSum.

CNN/Daily Mail (CNN/DM): This task involves
summarizing news articles from the CNN and Daily
Mail websites. The models are required to gener-
ate a concise summary of each article, testing their
ability to understand and condense complex infor-
mation.

Extreme Summarization (XSum): In the XSum
task, models are asked to produce a single-sentence
summary of a news article. This task tests the mod-
els’ capability to extract the most salient informa-
tion from a text and express it in a single, coherent
sentence.

HumanEval: The HumanEval task is a bench-
mark for Python programming. This task chal-
lenges the models with a variety of coding prob-
lems that require a wide range of skills, from basic
programming to complex problem-solving abilities.
It serves to evaluate the models’ understanding
of Python syntax, their ability to implement algo-
rithms, and their proficiency in problem-solving

using code. This benchmark provides a unique per-
spective on the models’ capabilities in the realm
of programming, complementing the language-
focused tasks.

B Setup

We present the hyperparameter settings of the ex-
periments in Table 7, including the parameters in-
volved in the decoding process, the adaptive draft-
exiting mechanism, and the random sampling. For
the adaptive draft-exiting mechanism, we set the
initial threshold γ = 0.6, ϵ = 0.01, β1 = 0.5,
β2 = 0.9, and α is slightly tuned for the data and
model, as detailed in Table 7. For sampling-based
inference, we by default use top_p = 0.85 for text
summarization tasks, and 0.95 for code generation
tasks.

In addition, the key experimental environments
on the A100-40GB are CUDA 11.6, PyTorch
1.13.1, and Transformer 4.33.1; For the A100-
80GB, the environment is CUDA 11.8, PyTorch
2.0.1, and Transformer 4.33.1. We use an A100-
40GB to conduct experiments for LLaMA-2-13B,
LLaMA-2-13B-Chat, and CodeLLaMA-13B. We
use two A100-80GB with HuggingFace’s acceler-
ate6 to conduct experiments for LLaMA-2-70B.

We randomly select 8 instances from the train
set and use them to evaluate the inference time
per token for Bayesian optimization. This random-
ness not only ensures the generalizability of our
approach but also mitigates any potential bias that
could be introduced by the data selection process.
The offline Bayesian optimization time for 1000
iterations is about 2.5 hours for LLaMA-2-13B,
LLaMA-2-13B-Chat, and CodeLLaMA-13B, and
about 6 hours for LLaMA-2-70B.

C Effect of Skip Strategy

Here, we explore the effect of various skip strate-
gies on the performance of generated draft models.
We evaluate the CNN/DM on LLaMA-2-13B. Ini-
tially, we determine the number of skipped layers
using Bayesian optimization, as illustrated in Fig-
ure 6(a). We find that the attention layer skips 24
layers, while the MLP layer skips 12 layers. We
proceed to apply four strategies, each involving an
equal number of layer skips: skipping the initial
layers ("First"), middle layers ("Mid."), final layers

6https://github.com/huggingface/accelerate
(Apache-2.0 License)
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Data Model Decoding Adaptive Draft-Exiting Random Sampling

T K α ϵ β1 β2 γ0 top_p temperature

CNN/DM LLaMA-2-13B 512 12 0.90 0.01 0.50 0.90 0.60 0.85 0.20
CNN/DM LLaMA-2-13B-Chat 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
CNN/DM LLaMA-2-70B 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-13B 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-13B-Chat 512 12 0.70 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-70B 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
HumanEval CodeLLaMA-13B 512 12 0.90 0.01 0.50 0.90 0.60 0.95 0.60
GSM8K CodeLLaMA-13B 512 12 0.90 0.01 0.50 0.90 0.60 0.95 0.60
GSM8K CodeLLaMA-13B-Instruct 512 12 0.80 0.01 0.50 0.90 0.60 0.95 0.60
MT-bench LLaMA-2-13B-Chat 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20

Table 7: Hyperparameter settings. γ0 represents the default initial value of γ.

Strategy First Mid. Last Rand. BO

ROUGE-2 0.108 0.108 0.107 0.107 0.108
AR 0.091 0.393 0.508 0.592 0.919
Speedup 0.696× 0.887× 0.951× 1.01× 1.57×

Table 8: The effects of different skip strategies on the
performance of CNN/DM on LLaMA-2-13B.

#Iteration 200 400 600 800 1000

ROUGE-2 0.108 0.107 0.108 0.108 0.108
AR 0.903 0.938 0.920 0.919 0.919
Speedup 1.35× 1.52× 1.58× 1.57× 1.57×

Table 9: The effect of the number of iterations of
Bayesian optimization.

#Token 0 20M 40M 60M 75M

ROUGE-2 0.106 0.106 0.106 0.106 0.106
AR 0.695 0.902 0.901 0.900 0.893
Speedup 1.15× 1.91× 1.94× 1.96× 1.85×

Table 10: The effect of the number of tokens on aggres-
sive skip performance.

K 10 12 14 16 18

ROUGE-2 0.107 0.108 0.108 0.108 0.107
AR 0.924 0.919 0.916 0.913 0.911
Speedup 1.57× 1.57× 1.58× 1.58× 1.58×

Table 11: The effect of the max draft token under the
adaptive draft-exiting mechanism.

("Last"), and randomly sampling layers ("Rand.").
The layer skip distribution is visualized in Figure 7.

Table 8 reveals that the fixed strategies of layer
skip (first, middle, last) or random skip yield mini-
mal acceleration compared to Bayesian optimiza-
tion (BO) results. These suboptimal strategies, not
optimized for average inference time, result in a
draft model with subpar performance (manifested
as very low AR), inefficient resource utilization
in the drafting phase, and ultimately, a lack of
speedup. Furthermore, a slightly enhanced speedup

is observed when skipping the last layers, likely due
to the more severe redundancy in the model’s final
portion.

D Number of Iterations of BO

Subsequently, we explore the influence of the it-
eration number of Bayesian optimization on the
performance of our decoding scheme and report
the results in Table 9. The layer skip distribution
corresponding to different iteration numbers is de-
picted in Figure 8.

When applied to the LLaMA-2-13B for the
CNN/DM task, we observe that while a higher
number of iterations can yield increased acceler-
ation, even a relatively modest number of itera-
tions (e.g., 200) effectively reduces inference time,
achieving a speedup of 1.35×. Notably, the per-
formance metrics for the 800 and 1000 iterations
exhibit consistency due to the same layers being
skipped, as shown in Figure 8.

E Aggressive Skip

In pursuit of higher inference acceleration for users
with ample resources, we explore a more aggres-
sive skip strategy to obtain the draft model. To
mitigate the performance degradation associated
with the aggressive skip, we further train the draft
model using 50,000 instances from the Pile dataset
(Gao et al., 2020), truncating the length of each
to 512 tokens, which total up to 25 million tokens.
We repeat this training for 3 epochs, resulting in a
cumulative utilization of 75 million tokens.

The implementation of the aggressive skip in-
volves skipping the top-K layers based on Bayesian
optimization probabilities. For instance, in the case
of LLaMA-2-13B, as illustrated in Figure 9, we opt
to skip 75% of the attention layers (30 layers) and
32.5% of the MLP layers (13 layers).
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Table 10 reveals that when we employ a more
aggressive skip without further training (#token
is 0), there is a noticeable decrease in the draft
model’s quality, with an average acceptance rate of
only 0.695. This leads to a significantly reduced
speedup of merely 1.15×. Nevertheless, by dedicat-
ing a portion of the corpus to training, we notably
enhance the draft model’s quality, increasing the
AR to 0.900, in line with the target acceptance
rate of 0.90. This enhancement enables a further
improvement in speedup from 1.57× (shown in Ta-
ble 1) to 1.96× (trained for 60M tokens), as more
layers are skipped7. After training on 75 million to-
kens, the reason for the reduced acceleration is that
we believe the model has a certain degree of overfit-
ting. It is essential to highlight that the aggressive
skip strategy necessitates both an extended train-
ing process and the additional storage of trained
draft models. However, this trade-off is deemed
acceptable for users with rich resources.

F Effect of Max # of Draft Tokens

Ideally, increasing the maximum number of draft
tokens K while maintaining a high acceptance rate
should lead to further improvements in inference
acceleration. To explore this, we test the CNN/DM
task using LLaMA-2-13B, varying the max draft
token K, and present the results in Table 11. It
is noteworthy that as K increases, the speedup re-
mains relatively stable. This observation is pri-
marily attributed to the fact that most tokens do
not benefit from excessively large K and tend to
exit early. In summary, our inference approach
shows insensitivity to K thanks to the adaptive
draft-exiting mechanism. Moreover, setting a rela-
tively large value for K (our default is 12) allows
this mechanism to perform optimally.

G Adaptation

We here adopt skipping intermediate layers as a
simple yet effective strategy to expedite the draft-
ing stage. While other acceleration techniques such
as quantization and structured pruning exist, they
fail to offer speed-up proportional to their compres-
sion ratio. Meanwhile, they require a separate copy
of the altered model parameters, thereby increas-
ing memory overhead. This contradicts the key
requirement of no extra memory. Consequently,

7This finding aligns with the recent Sheared-LLaMA (Xia
et al., 2023), which shows the effectiveness of pruning fol-
lowed by further training on a small amount of data.

Quantization bf16 fp8 fp4 nf4

ROUGE-2 ↑ 0.107 0.105 0.101 0.114
AR ↑ 0.910 0.911 0.913 0.910
VRAM (GB) ↓ 37.2 27.5 19.6 19.7
Latency (ms) ↓ 32.4 113 152 126
Speedup ↑ 1.53× 1.61× 1.36× 1.35×

Table 12: Performance of self-speculative decod-
ing combined with different quantization schemes of
LLM.int8().

Sparsification dense unstructured 4:8 2:4

ROUGE-2 ↑ 0.107 0.114 0.115 0.110
AR ↑ 0.910 0.918 0.912 0.911
VRAM (GB) ↓ 37.2 35.9 35.9 35.9
Latency (ms) ↓ 32.4 30.4 29.2 30.9
Speedup ↑ 1.57× 1.50× 1.47× 1.48×

Table 13: Performance of self-speculative decoding
combined with different sparsification schemes of
wanda.

we adopt layer skipping in our approach. How-
ever, our scheme can be integrated with quantiza-
tion (Dettmers et al., 2022) and sparsification (Sun
et al., 2023) to further reduce resource consump-
tion. In this section, we explore the combination
of self-speculative decoding with quantization and
sparsification techniques to adapt to users with lim-
ited computing resources. We conduct experiments
on the CNN/DM task using LLaMA-2-13B, and the
layer skip distribution corresponding to the draft
model is shown in Figure 10.

G.1 Quantization
First, we integrate our inference approach with
the quantization technique, LLM.int8()8 (Dettmers
et al., 2022). We evaluate the performance of three
quantization schemes: fp8 (8-bit floating-point),
fp4 (4-bit floating-point), and nf4 (4-bit normal-
ized float), in comparison to the default bf16 (16-
bit brain float point). The results are presented in
Table 12. In all quantization settings, we skip the
‘lm head’ layer of the model and do not employ
double quantization to save an additional 0.4 bits.

Table 12 illustrates that all three quantization
schemes effectively reduce the video memory de-
mand during inference. Notably, the fp4 quanti-
zation results in up to a nearly two-fold reduction
in memory demand to just 19.6 GB. While there
may be an increase in the average inference latency
per token due to the dequantization process, this
approach makes LLM suitable for scenarios with

8https://github.com/TimDettmers/bitsandbytes
(MIT License)
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Data Model Method Perfor. Speedup

GSM8K CodeLLaMA-13B Autoreg. 0.104 1.000×
GSM8K CodeLLaMA-13B Self-Spec. 0.101 1.351×
GSM8K CodeLLaMA-13B-Ins. Autoreg. 0.223 1.000×
GSM8K CodeLLaMA-13B-Ins. Self-Spec. 0.213 1.263×
MT-bench LLaMA-2-13B-Chat Autoreg. 6.940 1.000×
MT-bench LLaMA-2-13B-Chat Self-Spec. 6.930 1.269×

Table 14: Evaluation on solving math problem and open-
domain chitchat tasks. We use greedy decoding for the
accuracy of GSM8K. We use random sampling for the
average score at task-level of the MT-bench with various
temperatures of 0.7 for ‘writing’ and ‘roleplay’, 0.1 for
‘stem’ and ‘humanities’, and greedy decoding for the
rest of the tasks, according to (Zheng et al., 2023).

limited device memory.

G.2 Sparsification

Subsequently, we assess the performance of self-
speculative decoding combined with sparsification
techniques, specifically wanda9 (Sun et al., 2023),
which includes unstructured sparsity and structured
N:M sparsity (4:8 and 2:4) with the sparsity ratio
of 0.5. The N:M sparsity constraint specifies that
no more than N out of every M contiguous weights
can be non-zero.

Table 13 shows that while sparsification may
not dramatically reduce VRAM requirements, it
does result in a reduction in the average inference
latency per token to varying degrees. However, the
speedup is slightly down because the base model
is also accelerated.

H Exploration of Diverse Tasks

We want to mention that our approach does not
require model fine-tuning and its lossless charac-
teristic is task-agnostic. However, we are open
to evaluating the effectiveness of our approach on
more diverse tasks. Here, we further explore the
performance of our decoding scheme on solving
math problems (Grade School Math 8K (Cobbe
et al., 2021)) and open-domain chitchat (MT-bench
(Zheng et al., 2023)). For GSM8K, we evaluate on
base model CodeLLaMA-13B and CodeLLaMA-
13B-Instruct and report the problem-solving accu-
racy of 1318 questions in the test set. For MT-
bench, our base model is LLaMA-2-13B-Chat, and
we use its program script to ask GPT-4 to give a
score of 10 points for each round using their prompt
templates and report the average score for a total
of 160 answers for two turns of 80 questions.

9https://github.com/locuslab/wanda (MIT License)

Model Method HumanEval Speedup

CodeLLaMA-13B Autoreg. pass@10 0.659 1.000×
CodeLLaMA-13B Self-Spec. pass@10 0.659 1.345×
CodeLLaMA-34B Autoreg. pass@10 0.671 1.000×
CodeLLaMA-34B Self-Spec. pass@10 0.695 1.330×

Table 15: Evaluation of code generation tasks with dif-
ferent model sizes. We use random sampling with a
temperature of 0.6 for pass@10.

Grade School Math 8K (GSM8K): A dataset
of 8.5K high-quality linguistically diverse grade
school math word problems. The dataset was cre-
ated to support the task of question answering on
basic mathematical problems that require multi-
step reasoning. Solutions primarily involve per-
forming a sequence of elementary calculations us-
ing basic arithmetic operations (+-×÷) to reach the
final answer. This task is generally used to test
logic and math in language modeling.

MT-bench: A benchmark consisting of 80 high-
quality multi-turn questions. MT-bench is designed
to test multi-turn conversation and instruction-
following ability, covering common use cases and
focusing on challenging questions to differentiate
models. The tasks identify 8 common categories
of user prompts to guide its construction: writ-
ing, roleplay, extraction, reasoning, math, coding,
knowledge I (STEM), and knowledge II (human-
ities/social science). For each category, The task
manually designed 10 multi-turn questions.

Regarding using Bayesian optimization 1,000
iterations to generate a draft model, for GSM8K,
we randomly sampled 4 samples from the training
set as a development set; for MT-bench, we let
GPT-3.5 generate 8 examples according to 8 topics
to form an optimized use development set. Other
relevant hyperparameters are shown in Table 7.

For GSM8K, we achieve a 1.35× acceleration
without compromising task performance. Regard-
ing MT-bench, spanning writing, roleplay, reason-
ing, math, coding, extraction, stem, and human-
ities, presents substantial task diversity, posing
challenges for generating high-quality and diverse
output from draft models. Nevertheless, we still
achieve a speedup of about 1.27× with lossless
task performance. These findings demonstrate the
robustness and commendable performance of our
approach across diverse tasks.
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Model CNN/DM XSum

LLaMA-2-13B (ours) 0.106 0.124
LLaMA-2-13B-Chat (ours) 0.144 0.109
LLaMA-2-70B (ours) 0.130 0.118
OPT (66B) 0.136 0.126
Davinci (175B) 0.127 0.126
Palmyra X (43B) 0.049 0.149
GPT-NeoX (20B) 0.123 0.102
Luminous Base (13B) 0.110 0.105
BLOOM (176B) 0.080 0.030
YaLM (100B) 0.017 0.021

Table 16: Our model with self-speculative decoding vs.
Mainstream LLMs with autoregressive.

I Exploration of Other Model Sizes

The model size may also have an impact on
speedup, thus additional results on CodeLLaMa-
34B can further validate the effectiveness of the
proposed approach. As shown in Table 15, we ob-
served that the speedup of CodeLLaMa-34B com-
pared to CodeLLaMa-13B is not significant. We
attribute this to the inherent low redundancy in
CodeLLaMa-34B. To verify this, we further calcu-
lated the proportion of skipped layers in both mod-
els. We found that CodeLLaMa-34B skips 45.8%
of the layers, while CodeLLaMa-13B skips 42.5%,
indicating no significant difference in the skipped
layer proportions. In contrast, for the more notice-
ably accelerated transition from LLaMa-2-13B to
LLaMa-2-70B, there is a 10% increase in the pro-
portion of skipped layers. Additionally, according
to the analysis in Table 5 of the original paper, for
the attention layer, which incurs higher time costs,
there is a 5% decrease from CodeLLaMa-13B to
CodeLLaMa-34B. Therefore, we believe that the
limited inherent redundancy in CodeLLaMa-34B
leads to an insignificant improvement in accelera-
tion.

J Exploration of Output Quality

J.1 Quantitative Analysis

LLMs Comparison. Considering this non-fine-
tuned, one-shot setting, our score is indeed quite
competitive. We attach in Table 16 the perfor-
mance of other mainstream large language models
on CNN/DM and XSum as a reference (data from
HELM leaderboard (Liang et al., 2022)).
Diverse Metrics. Our experimental setup mainly
follows the work of DeepMind (Chen et al., 2023).
For summarization tasks, ROUGE-2 is a widely
recognized evaluation metric, as adopted by (Chen
et al., 2023; Liang et al., 2022), in addition to

Model Method ROUGE Speedup
1 2 L

CNN/DM Autoreg. 0.263 0.106 0.181 1.000×
CNN/DM Self-Spec. 0.266 0.108 0.183 1.429×
XSum Autoreg. 0.327 0.124 0.260 1.000×
XSum Self-Spec. 0.328 0.125 0.261 1.377×

Table 17: Evaluation on text generation tasks with vari-
ous metrics and greedy decoding.

ROUGE-1 and ROUGE-L. However, we want to
emphasize that we have not disregarded the im-
portance of other metrics such as ROUGE-1 and
ROUGE-L. Indeed, we have maintained records
of these results as part of our comprehensive anal-
ysis, and we will attach them in the appendix in
the revision. The results are presented below. And
we can see that our conclusions remain consistent
– we have been successful in achieving a signifi-
cant acceleration in task performance without com-
promising the quality of the outputs. We believe
this reaffirms the robustness and efficacy of our
approach.

J.2 Qualitative Analysis

We present more qualitative evidence to supple-
ment the quantitative ROUGE-2 score. Please note,
however, that our approach is inherently lossless
and the performance evaluation is conducted on
the original model without any fine-tuning. The
task performance of our self-speculative decod-
ing is therefore reliant on the inherent capabilities
of the base model utilizing autoregressive decod-
ing. Specifically, using the same base model, in
the greedy setting, generation results from self-
speculative decoding are identical to those of au-
toregressive decoding; In the sampling setting, the
results generated are from the same distribution as
those for autoregressive decoding. These properties
of speculative decoding have been mathematically
proven in previous work (Leviathan et al., 2023).
Finally, to address concerns, we present a case
study on LLaMA-2-13B, detailed in the Table 18.

K Discussion of Pre-defined Anchor

Here, we discuss why we do not use a predefined
speedup ratio, but a predefined acceptance rate (tar-
get acceptance rate) in the adaptive draft exit mech-
anism. The pre-defined acceptance rate is related
to the quality while the pre-defined speedup ratio
is related to the efficiency. It seems that these two
anchors do not conflict and correspond to differ-
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ent application scenarios. The predefined speedup
ratio is an interesting idea, but using a predefined
speedup as an anchor seems difficult to apply to
real-world testing. In the self-speculative decoding
process, adapting the exit threshold based on the
current acceleration ratio and predefined speedup
ratio involves significant computational overhead.

To elaborate, for each instance, we would need
first to employ autoregressive decoding to obtain its
generation time and then execute self-speculative
decoding to calculate the current acceleration ratio.
This sequential process would substantially reduce
the generation speed. In contrast, the adaptive exit
mechanism based on the acceptance rate doesn’t
entail such dependencies. The current acceptance
rate can be directly obtained after completing a
draft and verification process.

Moreover, compared to the predefined speedup
ratio, which can be any number greater than 1,
the target acceptance rate is a value ranging from
0 to 1 (usually greater than 0.7). This range is
straightforward to determine for different tasks and
models.

L Algorithm with Sampling

We first demonstrate self-speculative sampling with
greedy sampling by integrating the adaptive draft-
exiting mechanism in Algorithm 3.

In addition to the greedy version of self-
speculative decoding that we have presented in the
main paper, we also explore a variant that incor-
porates random sampling, that also incorporated
a complete adaptive draft-exiting mechanism, as
shown in Algorithm 4. This approach introduces an
element of randomness into the selection of tokens
for speculative decoding, as opposed to the deter-
ministic nature of the greedy version. In our setup,
random sampling is affected by two parameters:
temperature and topp. Higher values of tempera-
ture or topp lead to greater token diversity, while
lower values make token selection more determin-
istic. This variant could potentially lead to diverse
decoding paths and outcomes, which may be bene-
ficial in certain scenarios, such as code generation.

Algorithm 3 Self-Speculative Decoding (Greedy)
1: LLM p(x|z∗, x1, ..., xt) where x1, ..., xt is the prompt,

z∗ is a vector that represents the specific layers to bypass;
target sequence length T ; max draft tokens to generate
K. We denote the original LLM as p(x|⃗0, x1, ..., xt),
where 0⃗ is a zero vector, indicating all layers are used in
inference. We denote the acceptance rate (AR) at e-th
drafting stage as ARe.

2: i← t
3: while i < T do
4: for j ← i, ..., i+K do ▷ Drafting Stage
5: xj+1 ← argmax p(x|z∗, x1, ..., xj)
6: if max p(x|z∗, x1, ..., xj) < γ then ▷ Draft Exit
7: Break
8: for i← i, ..., j do ▷ Verification Stage
9: if xi+1 ̸= argmax p(x|⃗0, x1, ..., xi) then

10: xi+1 ← argmax p(x|⃗0, x1, ..., xi)
11: Break
12: i← i+ 1
13: If all draft tokens are accepted, generate next token

xi+1 ← argmax p(x|⃗0, x1, ..., xi) and i← i+ 1
14: AR← β1AR+ (1− β1)ARe ▷ γ Update
15: if AR ≤ α then
16: γ + ϵ
17: else
18: γ − ϵ

γ ← β2γ + (1− β2)γ̃

19: return x1, ..., xT
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Data Temp. Article/Document Summary/Highlight

Reference Autoregressive Self-Speculative

CNN/DM 0.0 An Arkansas woman be-
came a little richer this
week after finding a
large diamond at Crater
of Diamonds State Park.
Susie Clark, of Evening
Shade, found the 3.69-
carat white diamond in a
37.5-acre search field on
Thursday, her last day of
a trip to the park with
her husband. Clark,

Susie Clark, of Evening
Shade, Arkansas, found
the diamond on Thurs-
day at Crater of Di-
amonds State Park .
The 3.69-carat gem is
teardrop-shaped about
the size of a pinto bean .
Park interpreter said it’s
the largest of the 122 di-
amonds found this year
.

woman who found a
3.69-carat white dia-
mond at Crater of Di-
amonds State Park in
Arkansas has named the
gem a ’hallelujah dia-
mond’ because she spot-
ted the gem shortly after
praying that she would
find something .

woman who found a
3.69-carat white dia-
mond at Crater of Di-
amonds State Park in
Arkansas has named the
gem a ’hallelujah dia-
mond’ because she spot-
ted the gem shortly after
praying that she would
find something .

CNN/DM 0.2 who first visited the
park 33 years ago with
her mother and grand-
mother, prayed to God,
asking, ’Are you doing
to bless me and let me
find a diamond today?’
as she searched the field.
Susie Clark, of Evening
Shade, Arkansas, found
a 3.69-carat white ...

Susie Clark, of Evening
Shade, Arkansas, found
the diamond on Thurs-
day at Crater of Di-
amonds State Park .
The 3.69-carat gem is
teardrop-shaped about
the size of a pinto bean .
Park interpreter said it’s
the largest of the 122 di-
amonds found this year
.

woman who found a
3.69-carat diamond at
Crater of Diamonds
State Park in Arkansas
has named the gem a
’hallelujah diamond’
because she spotted
the gem shortly after
praying that she would
find something .

woman who found a
3.69-carat white dia-
mond at Crater of Di-
amonds State Park in
Arkansas has named the
gem a ’hallelujah dia-
mond’ because she spot-
ted the gem shortly after
praying that she would
find something .

XSum 0.0 The flight provider op-
erates a "bug bounty"
scheme that rewards
hackers for privately dis-
closing security flaws
rather than sharing them

US airline United has
rewarded two hackers
who spotted security
holes in its website with
a million free flight
miles each.

Airlines has given out
its first rewards to hack-
ers who reported secu-
rity flaws in its website.

Airlines has given out
its first rewards to hack-
ers who reported secu-
rity flaws in its website.

XSum 0.2 online. It has given
the maximum reward of
a million flight miles,
worth dozens of trips, to
two people. One secu-
rity expert said the ...

US airline United has
rewarded two hackers
who spotted security
holes in its website with
a million free flight
miles each.

airline has given out two
million flight miles to
hackers who found secu-
rity flaws in its website.

airline has given the
maximum reward of
a million flight miles,
worth dozens of trips, to
two people.

Table 18: Case study of CNN/DM and XSum on LLaMA-2-13B.

Algorithm 4 Self-Speculative Decoding
1: LLM p(x|z∗, x1, ..., xt) where x1, ..., xt is the prompt, z∗ is a vector that represents the specific layers to bypass; target

sequence length T ; max draft tokens to generate K. We denote the original LLM as p(x|⃗0, x1, ..., xt), where 0⃗ is a zero
vector, indicating all layers are used in inference. We denote the acceptance rate (AR) at e-th drafting stage as ARe.

2: i← t
3: while i < T do
4: for j ← i, ..., i+K do ▷ Drafting Stage
5: xj+1 ← sample p(x|z∗, x1, ..., xj)
6: if max p(x|z∗, x1, ..., xj) < γ then ▷ Draft Exiting
7: Break
8: for i← i, ..., j do ▷ Verification Stage
9: r ← sample from a uniform distribution U [0, 1]

10: if r ≥ min(1, p(x|⃗0,x1,...,xi)
p(x|z∗,x1,...,xi)

) then

11: xi+1 ← sample from max(0,p(x|⃗0,x1,...,xi)−p(x|z∗,x1,...,xi))∑
x max(0,p(x|⃗0,x1,...,xi)−p(x|z∗,x1,...,xi))

12: Break
13: i← i+ 1
14: If all draft tokens are accepted, generate next token xi+1 ← sample p(x|⃗0, x1, ..., xi) and i← i+ 1
15: AR← β1AR+ (1− β1)ARe ▷ γ Updating
16: if AR ≤ α then
17: γ + ϵ
18: else
19: γ − ϵ

γ ← β2γ + (1− β2)γ̃

20: return x1, ..., xT
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MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) First: Skip the first 24 layers of attention and 10 layers of MLP.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) Middle: Skip the middle 24 layers of attention and 10 layers of MLP.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) Last: Skip the last 24 layers of attention and 10 layers of MLP.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) Random: Skip the 24 layers of attention and 10 layers of MLP randomly.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(e) BO: Skip the 24 layers of attention and 10 layers of MLP by Bayesian Optimization.

Figure 7: Visualization of layer skip distributions in LLaMA-2-13B using different strategies.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) 200 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) 400 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) 600 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) 800 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(e) 1000 Iterations

Figure 8: Visualization of LLaMA-2-13B layer skip distribution for different BO iteration numbers.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Figure 9: Visualize aggressive skip of 75% attention layers and 32.5% MLP layers of LLaMA-2-13B.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Figure 10: Visualization of layer skip distribution in LLaMA-2-13B for quantization and sparsification.
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