
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11175–11188
August 11-16, 2024 ©2024 Association for Computational Linguistics

Layer-Condensed KV Cache for Efficient Inference of
Large Language Models

Haoyi Wu and Kewei Tu*

School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

{wuhy1, tukw}@shanghaitech.edu.cn

Abstract

Huge memory consumption has been a major
bottleneck for deploying high-throughput large
language models in real-world applications. In
addition to the large number of parameters, the
key-value (KV) cache for the attention mecha-
nism in the transformer architecture consumes
a significant amount of memory, especially
when the number of layers is large for deep
language models. In this paper, we propose a
novel method that only computes and caches
the KVs of a small number of layers, thus sig-
nificantly saving memory consumption and im-
proving inference throughput. Our experiments
on large language models show that our method
achieves up to 26× higher throughput than stan-
dard transformers and competitive performance
in language modeling and downstream tasks.
In addition, our method is orthogonal to ex-
isting transformer memory-saving techniques,
so it is straightforward to integrate them with
our model, achieving further improvement in
inference efficiency. Our code is available at
https://github.com/whyNLP/LCKV.

1 Introduction

High throughput and low latency are essential for
deploying large language models (LLMs) in real-
world applications (Tillet et al., 2019; Kwon et al.,
2023). However, the huge memory consumption
of LLMs has been a major bottleneck, preventing
a large batch size and high throughput generation.
Among the memory-consuming components, the
key-value (KV) cache is one of the most significant
parts (Pope et al., 2023; Zhang et al., 2023) that
takes over 30% of the GPU memory during deploy-
ment (Kwon et al., 2023). The KV cache is used
to store the keys and values in each transformer
layer during generation to avoid re-computation.
Its memory consumption is proportional to both
the sequence length and the number of layers.

* Corresponding author.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

… … …

(a) Standard transformer

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

… … …

(b) Our model

Figure 1: Illustration of a standard transformer decoder
and our model. Each node represents one layer of trans-
former computation of one token. Each horizontal edge
a → b denotes that the queries at b are paired with the
KVs at a.

There have been substantial works on reducing
the memory consumption of the KV cache in LLMs.
Most of them focus on compressing the KV cache
by reducing the length of the cached KV sequence.
For example, Jiang et al. (2023a); Li et al. (2023);
Mu et al. (2023) compress the prompts to save
the memory consumption. Ren et al. (2023) incre-
mentally compress a specified span of tokens into
compact ones to reduce the KV cache length. Xiao
et al. (2024); Han et al. (2023) propose to store
only the KVs of initial and recent tokens in the KV
cache. Zhang et al. (2023) propose a dynamic KV
cache eviction policy to only keep a small portion
of the KV cache in memory.

In this paper, we propose to reduce the mem-
ory consumption of the KV cache from a novel
perspective that is orthogonal to previous efforts:
reducing the number of layers. Specifically, we
present a new variant of transformer decoders in
which queries of all layers are paired with keys and
values of just the top layer, as illustrated in Figure 1.
In this way, we only need to cache the keys and
values of one layer (vs. tens of layers in a typical
LLM), significantly saving memory consumption
while introducing no computation overheads dur-

11175

https://github.com/whyNLP/LCKV

ing inference. In fact, since we only need the keys
and values of the top layer, we can omit the key-
value computation and discard the key-value param-
eters for all the other layers, further improving the
throughput and reducing the memory consumption
as well as the mode size.

We draw our inspiration from the interpretation
of the stacking layer structure of a transformer as
an iterative process of improving token represen-
tation (Wu and Tu, 2023). In this interpretation,
the representation at the top layer is the most in-
formative, so it makes sense to attend only to the
top layer. We also note the similarity of our idea to
the cross-attention mechanism in a standard trans-
former encoder-decoder, in which all the decoder
layers attend to the top encoder layer. However,
applying this idea to a decoder has never been at-
tempted before as far as we know.

Although our model presented above achieves
very efficient inference, its performance in lan-
guage modeling and downstream tasks degrades
in comparison with standard transformers. There-
fore, we further propose to retain standard attention
for a small number of layers in our model, which
slightly diminishes our saving of the KV cache
memory consumption but leads to almost no per-
formance degradation.

Another challenge faced by our model is train-
ing. When training a standard transformer decoder,
the computation of all the tokens can be fully par-
allelized. In our model, however, the computation
at each token depends on the top layer of the pre-
vious token, creating sequential dependencies that
spoil parallel training. We address the challenge
by deriving an approximate training method that
supports parallel training.

Our experiments on Llama (Touvron et al., 2023)
show that our model achieves up to 32× larger
batch sizes and up to 26× higher throughput than
standard transformers for LLMs of 1B–30B param-
eters; at the same time, our model has competi-
tive performance to standard transformers in lan-
guage modeling and downstream tasks. We further
empirically demonstrate that it is straightforward
to integrate our model with other memory-saving
techniques like StreamingLLM (Xiao et al., 2024),
achieving further improvements in inference effi-
ciency.

We summarize our contributions as follows: 1)
we propose a new variant of transformer decoders
that reduces the memory consumption of the KV
cache by dramatically reducing the number of

cached layers; 2) we make parallel training of our
model feasible by designing a novel approximate
training method; 3) we conduct extensive experi-
ments to verify and analyze the effectiveness and
efficiency of our method.

2 Layer-Condensed KV Cache

2.1 Model

As shown in Figure 1(b), we pair the queries of
all layers with KVs of only the top layer, so that
we do not have to cache or even compute KVs for
layers other than the top layer, saving both memory
consumption and computation. Furthermore, since
we no longer need to compute KVs for these layers,
nor do we need to keep the weights WK ,WV that
map hidden representations to KVs for these layers,
thus also saving model parameters.

One problem with this method is that, since each
token also attends to itself, we need its top-layer
KVs for its attention computation at lower lay-
ers, but the top-layer cannot be computed until
we finish the computation of all the lower layers. A
straightforward solution to this cyclic dependency
problem is to drop the attention of each token to
itself, which is equivalent to masking the diagonal
of the attention matrix. Now the first token of the
sequence has nothing to attend to, so we just use
zero vectors as dummy KVs in its attention compu-
tation. Note that even without self-attention of each
token, its information can still be incorporated in
its bottom-up computation thanks to residual con-
nections. Empirically, we find that the diagonal
mask of the attention matrix does not affect the
performance of the model.

It has been previously observed that transform-
ers tend to attend to syntactic information in lower
layers and semantic information in higher layers
(Clark et al., 2019b). Intuitively, applying KVs
of the same layer to queries of all layers might
break this pattern. Empirically, we do find that
our method as described above underperforms stan-
dard transformers in language modeling and down-
stream tasks. A simple yet effective solution to this
problem is to retain standard attention for a small
number of layers, which we call warmup layers,
and only apply our method to the rest of the lay-
ers. Inspired by the sandwich module of Reid et al.
(2021), we propose to keep the top w/2 layers and
the bottom w/2 layers as warmup layers. We em-
pirically find that such a sandwich configuration
outperforms alternative configurations and leads to

11176

almost no performance degradation compared with
standard transformers.

2.2 Training
Though the inference process of our model is
straightforward and almost identical to that of a
standard transformer, i.e., decoding one token at a
time from left to right, the training process of our
model is more complicated. Since each token relies
on the KVs of the top layer of previous tokens, it
is impossible to train on a sequence of tokens in
parallel as in a standard transformer. Below we
derive a parallel training process of our model in
three steps. For simplicity, we assume no warmup
layers (i.e., w = 0). It is straightforward to add
warmup layers in the derived training process.

2.2.1 From Sequential to Parallel Training
During training, we minimize the cross entropy
loss for each token. In our model, the computation
of each token depends on the top-layer KVs of its
previous tokens. Therefore, for a token sequence
of length n, training is done sequentially on a com-
putation graph consisting of n passes of bottom-up
transformer computation, as shown in Figure 2(a).

In the following, we present a different training
computation graph and show its equivalence to the
original computation graph. Specifically, we per-
form n iterations of bottom-up transformer compu-
tation on all tokens in parallel, and in each iteration,
we pair the queries of all layers with KVs of the top
layer from the previous iteration, thus breaking the
sequential dependencies within the iteration. We
compute the cross entropy loss only after the last
iteration. Note that the first iteration has no previ-
ous iteration, and we pair its queries with dummy
KVs which are zero vectors. Figure 2(b) shows the
new computation graph.
Theorem 1. The two computation graphs are
equivalent in terms of model training.

We leave the proof of the theorem to Appendix A.
Here, we provide an intuitive explanation. We say
the computation of a token (w.r.t. its hidden rep-
resentations and top-layer KVs) is correct in an
iteration of the second computation graph if and
only if it is identical to that in the first computa-
tion graph. Since we have masked the diagonal of
the attention matrix, the computation of the first
token does not rely on any key or value (except for
dummy zero vectors) and thus is correct in every
iteration. For the second token, its computation re-
lies on the KVs of the first token and thus is correct

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3

(a)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3

(b)

Figure 2: Two equivalent computation graphs for train-
ing our model with two layers. (a) Sequential over n
tokens. (b) Parallel over n tokens with n iterations.
Sub-graphs with the same color (except grey) represent
identical data flow. Sub-graphs in grey are unused in
loss computation.

starting from the second iteration. In general, the
computation of the i-th token relies on the KVs of
the first i− 1 tokens and by induction, it is correct
starting from the i-th iteration. Therefore, after n it-
erations, all the tokens are correctly computed. As
a result, the computation sub-graphs of the cross-
entropy losses of all the tokens are identical in the
two graphs, and hence training processes following
the two graphs are equivalent.

Essentially, the second computation graph re-
places horizontal dependencies in the first graph
with vertical dependencies, and it does not change
the length of the longest dependency chain. Con-
sequently, although the second computation graph
supports parallel training over all the tokens, it still
requires the same n iterations as the first graph.
Next, we will trim the iterations first in terms of
backpropagation and then in terms of forward prop-
agation.

2.2.2 Backpropagation: Gradient Stopping

We compute the cross entropy loss after the last
iteration, which backpropagates through n itera-
tions, resulting in a large computation graph that
is impossible to fit into GPU memory for large n.
To solve the issue, we follow the practice of gradi-
ent stopping in Transformer-XL (Dai et al., 2019)
and backpropagate the loss only through the last b
iterations (b ≪ n).

Notice that the KVs used in the last iteration
come from the second-to-last iteration, so if we set
b = 1, then backpropagation would not reach the

11177

0 5 10 15 20 25 30
of iterations

0.0
0.5
1.0
1.5
2.0
2.5
3.0

M
ea

n
Sq

ua
re

d
Er

ro
r 0 warmup layer

2 warmup layers
4 warmup layers

Figure 3: MSE of the KV before and after the ith itera-
tion. The model is randomly initialized and tested with
2048 tokens.

KVs and hence the model parameters used to cal-
culate the KVs are not trained at all, which would
result in a large performance degradation. We em-
pirically find that with b ≥ 2, the performance of
our model is comparable with that of a standard
transformer. To reduce memory consumption, we
set b = 2 by default, which means we only back-
propagate through two iterations.

2.2.3 Forward Propagation: Fast
Convergence of KV

With gradient stopping, the first n − b iterations
are solely used in forward propagation to compute
KVs that are fed into the last b iterations. When n
is large, it is still too costly to run n−b iterations of
forward propagation. Fortunately, we observe that
the values of KVs converge very fast over iterations
and hence we do not have to run n − b iterations
to obtain the final KVs. Figure 3 shows the conver-
gence of KVs of a randomly initialized model with
the same configuration as TinyLlama (Zhang et al.,
2024). The input is a randomly picked segment
of text from the MiniPile (Kaddour, 2023) dataset
with 2048 tokens (i.e., n = 2048). We measure
the change of KVs over consecutive iterations us-
ing the mean squared error. As can be seen, KVs
converge after only a few tens of iterations, with
more warmup layers leading to faster convergence.
Therefore, we use m iterations (m ≪ n) to approx-
imate the KVs of n− b iterations. We empirically
find that m = 7 is sufficient for model training
and larger values of m do not further improve the
performance.

2.3 Inference with Prompts

It is straightforward to employ our model for au-
toregressive generation. However, our model can-
not do parallel encoding of prompts like standard

transformers for the same reason as it cannot do
parallel training. Fortunately, since iterative com-
putation of KVs is fast to converge, we can just
perform iterative computation for the prompts for
m+ b iterations. Typically, m+ b is far less than
the number of tokens to generate, and thus the extra
time spent in encoding the prompts is negligible.

3 Experiments

We empirically verify the effectiveness of our
method on the Llama model (Touvron et al., 2023).
We show that our method achieves significant mem-
ory reduction and throughput improvement as well
as competitive performance in language model-
ing and downstream tasks compared with standard
transformers. We also show that our method could
effectively integrate with other memory-saving
techniques.

3.1 Generation Throughput

We test our method with 1.1B, 7B, and 30B param-
eters on an NVIDIA GeForce RTX 3090 (24GB)
GPU and an NVIDIA A100 (80GB) GPU respec-
tively. The 1.1B model configuration follows that
of TinyLlama (Zhang et al., 2024) and the 7B
and 30B model configuration follows that of the
original Llama (Touvron et al., 2023). We set
m = 7, b = 2 and w = {2, 10}. Our implementa-
tion is based on HuggingFace Transformers (Wolf
et al., 2020) with kernel replacement with FlashAt-
tention 2 (Dao, 2023), fused RMS norm, fused
cross-entropy and fused SwiGLU.

Following FlexGen (Sheng et al., 2023), the eval-
uation is conducted in an end-to-end fashion. For
a prompt of length s, we let the model generate
output sequences of length n with batch size b. The
latency t is defined as the total time in seconds
spent in processing the prompts and generating all
the bn tokens. The generation throughput is defined
as bn/t tokens per second.

Table 1 compares the maximum batch sizes and
throughput of standard Llama models and our mod-
els on the two types of GPUs. Note that some of
the sequence lengths exceed the maximum input
lengths that the models are trained on, but that does
not affect batch size and throughput measurement.
We still benchmark the batch sizes and throughput
to show the potential of our method on other mod-
els allowing larger sequence lengths. It can be seen
that our method achieves significantly larger batch
sizes and higher throughput on all of the settings.

11178

GPU Model Size Seq. Length Batch Size Throughput (tokens/s)

Llama Ours
w = 2

Ours
w = 10

Llama Ours
w = 2

Ours
w = 10

RTX
3090

1.1B 5+8187 48 384 (8×) 119 (2.5×) 1424.96 4113.37 (2.9×) 2374.05 (1.7×)
5+2043 239 1150 (4.8×) 289 (1.2×) 5142.86 10033.40 (2.0×) 7239.92 (1.4×)

7B

5+8187 1 12 (12×) 4 (4×) 32.02 151.91 (4.7×) 83.80 (2.6×)
2048+2048 2 23 (11.5×) 8 (4×) 56.98 171.65 (3.0×) 119.68 (2.1×)

5+2043 5 64 (12.8×) 16 (3.2×) 140.88 534.02 (3.8×) 315.38 (2.2×)
512+512 9 95 (10.6×) 32 (3.6×) 225.31 378.89 (1.7×) 380.60 (1.7×)

512+1024 7 72 (10.3×) 16 (2.3×) 174.11 401.92 (2.3×) 310.05 (1.8×)

30B
(CPU-offload) 512+1024 4 83 (20.8×) 23 (5.8×) 0.23 5.99 (26.0×) 1.63 (7.1×)

A100 7B 2048+2048 15 128 (8.5×) 42 (2.8×) 141.10 421.02 (3.0×) 315.09 (2.2×)

30B 2048+2048 1 32 (32×) 8 (8×) 14.10 108.29 (7.7×) 77.65 (5.5×)

Table 1: Maximum generation batch size and throughput on an RTX 3090 (24GB) and an A100 (80GB) GPU
respectively with different sequence lengths. Following Zhang et al. (2023), we use “x+ y” to denote a prompt
length of x and a generation length of y.

2 4 8 16 32 64 128
Batch Size

100
150
200
250
300
350
400

Th
ou

gh
pu

t (
to

ke
ns

/s
) Llama

ours

Figure 4: Throughput of 7B Llama and our model w.r.t.
the batch size.

Notice that the maximum throughput is not nec-
essarily achieved using the maximum batch size.
Figure 4 shows the throughput of 7B Llama and our
model on an A100 GPU w.r.t. the batch size. The
prompt length and generation length are both 2048.
We find that when the batch size grows larger than
32, the throughput no longer increases and even
decreases with a batch size of 128. This may in-
dicate that the model operations are turning from
memory-bound into compute-bound (Dao et al.,
2022) and the throughput is limited by the compu-
tation power. Further improvement in throughput
may require more efficient computation kernels
instead of larger batch sizes.

We also would like to mention that the increased
throughput is not necessarily due to the increased
batch size. As shown in Figure 4, our model has
much higher throughput than Llama even with the
same batch sizes. We leave the detailed analysis to
Appendix C.6.

3.2 Model Performance

To evaluate the performance of our model in lan-
guage modeling and downstream tasks, we pre-
train from scratch two 1.1B models with m = 7,
b = 2 and w = {2, 10}. We use TinyLlama as
our baseline, whose size is also 1.1B. We pre-train
the models on a 100B subset of the SlimPajama
dataset (Soboleva et al., 2023). The training de-
tails are consistent with those of TinyLlama (Zhang
et al., 2024). All models are trained with AdamW
(Loshchilov and Hutter, 2019) with β1 = 0.9 and
β2 = 0.95. The batch size is 2M tokens. We use
a cosine learning rate schedule with a maximum
learning rate of 4.0× 10−4 and a warmup of 200
steps. The final learning rate is 4.0 × 10−5. We
use a weight decay of 0.1 and gradient clipping of
1.0. The models are trained on 128 NVIDIA A800
(80GB) GPUs.

During evaluation, we perform inference in the
standard left-to-right fashion instead of using the
method of Section 2.3. We report the perplex-
ity on a 10M subset of the development set of
SlimPajama. We also test the zero-shot perfor-
mance on commonsense reasoning tasks following
Zhang et al. (2024), including Hellaswag (Zellers
et al., 2019), OpenBookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2021), ARC-Easy
and ARC-Challenge (Clark et al., 2018), BoolQ
(Clark et al., 2019a), and PIQA (Bisk et al., 2020).
The tests are conducted using the lm-eval-harness
framework (Gao et al., 2023). For these tasks, we
encode the prompts with the same number of itera-
tions (m+ b = 9) as in training.

11179

Model HellaSwag Obqa WinoGrande ARC-c ARC-e BoolQ PIQA Avg

TinyLlama 44.58 30.2 50.99 25.00 46.38 60.46 68.93 46.65
Ours (w = 2) 42.22 30.6 49.64 24.74 43.10 61.38 66.49 45.45
Ours (w = 10) 44.74 31.0 51.70 24.83 46.38 61.38 67.90 46.84

Table 2: Zero-shot accuracy on commonsense reasoning tasks.

256 512 1024 2048 40960

5

10

15

20

La
te

nc
y

(m
s) 21

.9
5

22
.0

4

22
.3

6

22
.3

1

22
.2

4

18
.9

3

19
.1

1

19
.1

1

19
.1

19
.3

9

256 512 1024 2048 40960.0

0.5

1.0

1.5

2.0

2.5

M
em

or
y

(G
iB

)

2.
51

2.
52 2.
58 2.
63 2.

85

2.
48

2.
49 2.
51 2.
53 2.
6

256 512 1024 2048 40960

10

20

30

40

50

60

La
te

nc
y

(m
s)

29
.8

3

30
.5

31
.8

3 40
.1

5

57
.9

6

25
.2

6

25
.7

2

26
.3 31

.6
1

43
.7

5

256 512 1024 2048 40960

5

10

15

20

M
em

or
y

(G
iB

)

13
.5

13
.9

7

14
.9

9 18
.1

6 21
.4

2

11
.8

2

11
.9

9

12
.3

5

13
.4

8

22
.9

2

TinyLlama (1.1B) Llama-7B

StreamingLLM ours + StreamingLLM

Figure 5: Comparison of latency per token and memory consumption of StreamingLLM and our model (w = 10)
integrated with StreamingLLM w.r.t. different cache sizes.

Model Dev ppl.

TinyLlama 9.219
Ours (w = 2) 9.746
Ours (w = 10) 9.265

Table 3: Perplexity on a 10M subset of the development
set of SlimPajama.

Table 2 and 3 show the results. The performance
of our models is comparable to that of TinyLlama.
In particular, our model with w = 10 has almost no
performance degradation, while achieving signif-
icantly higher generation throughput as evaluated
in Section 3.1. Our model with w = 2 has a small
but noticeable decrease in performance for most of
the tasks, but it achieves even higher increase in
throughput.

Despite the competitive performance and higher
inference efficiency of our models, we note that
pre-training our model costs about 3 times the time
of pre-training TinyLlama with the same amount of
data due to the iterative training process. Neverthe-
less, we believe that in most scenarios, a speedup
in inference is worth a slowdown in training which
is a one-time process.

3.3 Integration with StreamingLLM

We have previously mentioned that our method is
orthogonal to other memory-saving techniques and
can be easily integrated with them. Here we inte-

256 512 1024 2048
Cache Size

10.4

10.6

10.8

11.0

11.2

Pe
rp

le
xi

ty

StreamingLLM
ours + StreamingLLM

Figure 6: Comparison of StreamingLLM and our model
integrated with StreamingLLM w.r.t. the cache size.
We use 4 initial tokens for all settings. The results are
collected on the first text sample of PG19 (Rae et al.,
2020).

grate our method with StreamingLLM (Xiao et al.,
2024). StreamingLLM employs an attention sink
that only preserves the KV cache of the first few
tokens (four by default) and recent tokens, which
empowers LLMs to process infinite-length inputs.

As shown in Figure 5, the integration of
StreamingLLM and our model (w = 10) achieves
lower latency and memory consumption compared
to the original StreamingLLM on different cache
sizes (numbers of cached tokens).

We further showcase that integration with
our method does not hinder the ability of
StreamingLLM to process infinite-length tokens.
Specifically, we integrate StreamingLLM into
our model (w = 10) trained in Section 3.2

11180

0 1M 2M 3M 4M
Input Length (tokens)

1

2

3

4
lo

g
PP

L

Figure 7: Language modeling perplexity of our model
integrated with StreamingLLM on texts with 4M tokens.
Following Xiao et al. (2024), we use the concatenated
test set of the PG19 dataset (Rae et al., 2020) as the
input.

Model Size
Dev ppl.

all-bottom all-top sandwich

50M 14.556 221.850 14.069
1.1B 7.668 9.098 7.381

Table 4: Model performance with different warmup
layer placements (w = 2).

with different cache sizes and find that the inte-
grated model achieves even lower perplexities than
StreamingLLM as shown in Figure 6. We also let
the model handle inputs with a sequence length
of four million tokens. As shown in Figure 7, the
integrated model can effectively process the input
with the perplexity remaining stable.

4 Analyses

In this section, we empirically analyze design
choices in our method. For experiment details,
please refer to Appendix B.

4.1 The Sandwich Configuration

In Section 2.1, we propose to add some warmup
layers to improve model performance. Note that
inference efficiency is determined by the number of
warmup layers w and not by their placement. Here
we ask the following question: with the number of
warmup layers fixed, where should we place the
warmup layers to achieve the best performance?

Table 4 shows the model performance in lan-
guage modeling with two warmup layers (i.e.,
w = 2) that are placed at the bottom, at the top,
and with the default sandwich configuration. It can
be seen that the sandwich style performs the best.
A possible explanation is that top and bottom lay-
ers serve different functionalities (e.g., semantic

0 5 10 15 20
of warmup Layers

2.70

2.75

2.80

2.85

2.90

lo
g

D
ev

 P
PL

baseline
ours (loss)
ours (throughput)

6000

8000

10000

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

TinyLlama (1.1B)

Figure 8: Effect of the number of warmup layers on
model performance and throughput. The right-most
point (w = 22) denotes that all the layers are warmup
layers and hence our model becomes exactly the stan-
dard transformer (the baseline). The throughput is tested
on an RTX 3090 GPU with prompt length 5 and genera-
tion length 2043.

vs. syntactic) and it makes more sense to warm up
both than just one of them.

4.2 Number of Warmup Layers

Warmup layers serve as a bridge between the stan-
dard transformer and our model. The more warmup
layers we keep, the more similar it is to the standard
transformer, and the less memory we save. In this
section, we ask the following question: how does
the number of warmup layers w affect the model
performance and throughput?

We test the model with 1.1B (22 layers) parame-
ters and different numbers of warmup layers (Fig-
ure 8). Surprisingly, we find that the log dev per-
plexity does not monotonically decrease with the
number of warmup layers. Without warmup layers
(the red region), the model performance is signifi-
cantly worse than that of the standard transformer.
With only a few warmup layers (the yellow region),
the model performance is greatly improved and
close to that of the standard transformer, but its
throughput is decreased at the same time. With
more warmup layers (the green region), the model
even outperforms the standard transformer, while
suffering from further decrease in throughput.

The results point to a trade-off between model
performance and throughput that is controllable by
the number of warmup layers. If pursuing a high
throughput, one could keep only a few warmup
layers (the yellow region). If good performance is
crucial, one could keep more warmup layers (the
left part of the green region).

11181

2 4 6 8
m

3.0

3.5

4.0
lo

g
De

v
PP

L
Llama (50M)

0 warmup layer
2 warmup layers

5 10 15 20
of iterations

0.0

0.5

1.0

M
SE

random
trained

Figure 9: (Top) Experiment on a Llama (50M) with
different values of m during training. (Bottom) MSE of
the KV before and after the ith iteration. The models
are tested with 1024 tokens.

4.3 Convergence of KV

In Section 2.2.3, we have shown that KVs converge
very fast for a random model and hence we use
m ≪ n iterations to compute KVs. Here, we ask
the following questions: how fast do KVs converge
for a trained model and what value shall we pick
for m?

We measure the convergence of KVs of a 50M
Llama (Figure 9, bottom) and the 1.1B model
(w = 2) pre-trained in Section 3.2 (Figure 10).
It can be seen that while a random model requires
15–20 iterations to converge, a trained model re-
quires far fewer iterations. This hints at a small
value of m especially during late stages of training.
We then evaluate model performance when trained
with different values of m (Figure 9, top). It can
be seen that the model performance converges with
m ≥ 6, with more warmup layers leading to faster
convergence. This justifies our default choice of
m = 7.

5 Related Work

Extensive research has been done on reducing KV
cache for efficient inference of LLMs. With the
exception of vLLM (Kwon et al., 2023), which pro-
poses paged attention to reduce memory fragmen-
tation of the KV cache from a system perspective,
most recent works focus on compressing the KV
cache by reducing the length of the cached KV
sequence. Jiang et al. (2023a,b) accelerate model

0 5 10 15 20 25 30
of iterations

0.0

0.5

1.0

1.5

2.0

2.5

M
SE

TinyLlama (1.1B)
random
trained

Figure 10: MSE of the KV before and after the ith
iteration. The models are tested with 2048 tokens.

inference by compressing document-level prompts
into short prompts. Li et al. (2023) remove the
redundancy in the input context. Mu et al. (2023)
train gist tokens to replace the reusable system
prompts. Ren et al. (2023) incrementally compress
a specified span of tokens into compact ones to
reduce the KV cache length. Liu et al. (2023) find
that only pivotal tokens have a significant influence
at a future step, so pruning unimportant tokens
does not affect the performance. Ge et al. (2023)
argue that the attention heads could be classified
into different types and propose to apply different
KV pruning strategies to different types of attention
heads. Xiao et al. (2024); Han et al. (2023) find that
only initial tokens and recent tokens are crucial and
propose to store only the KVs of these tokens to en-
able infinite-length context for LLMs. Zhang et al.
(2023) propose a KV cache eviction policy based
on the summation of attention scores to only keep
a small portion of the KV cache in memory. Un-
like these previous methods, our method reduces
the memory consumption of the KV cache by re-
ducing the number of layers, which is orthogonal
to these methods and can potentially be combined
with these methods to further reduce the KV cache
and improve inference efficiency.

Feedback Transformers (Fan et al., 2020) aggre-
gate hidden representations from all layers and use
them as token memory. This is followed by KV pro-
jections to obtain the key-value pairs for all layers.
Their experimental results show improved perfor-
mance with this strategy, even when using only the
hidden representation from the top layer. However,
their sequential training process is time-costly and
not practical for large models. Our method sup-
ports parallel training, which is more efficient and
scalable.

11182

6 Conclusion

In this paper, we propose a novel method to re-
duce the memory consumption and improve the
throughput of LLMs by reducing the number of
layers whose keys and values need to be com-
puted and cached. We empirically show that
our method achieves significant memory reduc-
tion and throughput improvement with negligi-
ble performance degradation. We also show that
our method could effectively integrate with other
memory-saving techniques like StreamingLLM.
Future work includes designing more efficient train-
ing approaches, developing large-batch-friendly
kernels, and verifying our method on larger and
more complex LLMs. We hope that our work could
provide a new perspective for improving inference
efficiency of LLMs and inspire more research in
this direction.

Limitations

Though our method achieves impressive memory
reduction and throughput improvement, we would
like to point out its limitations from the following
aspects:

• Due to the iterative training, our model re-
quires about 3× the time to pre-train a model
with the same amount of data. In other words,
our method improves the inference efficiency
at the cost of the training efficiency. A po-
tential remedy is that if one has a pre-trained
model, one could use it to initialize our model,
which is empirically found to speed up the
process of training.

• Since our method requires iteratively pro-
cessing the prompts, the throughput degrades
when the prompts are much longer than the
generation length, e.g., in document summa-
rization. Generally, our method is more suit-
able for tasks with a large generation length,
such as translation, dialogue, question answer-
ing, CoT problem solving, etc.

References
Muhammad Adnan, Akhil Arunkumar, Gaurav Jain,

Prashant J Nair, Ilya Soloveychik, and Purushotham
Kamath. 2024. Keyformer: Kv cache reduction
through key tokens selection for efficient generative
inference. arXiv preprint arXiv:2403.09054.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019b. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand
Joulin, and Sainbayar Sukhbaatar. 2020. Address-
ing some limitations of transformers with feedback
memory. arXiv preprint arXiv:2002.09402.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive KV cache compression for

11183

https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=e9D2STGwLJ
https://openreview.net/forum?id=e9D2STGwLJ

LLMs. In Workshop on Advancing Neural Network
Training: Computational Efficiency, Scalability, and
Resource Optimization (WANT@NeurIPS 2023).

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. arXiv preprint arXiv:2308.16137.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023a. LLMLingua: Compress-
ing prompts for accelerated inference of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13358–13376, Singapore. Association
for Computational Linguistics.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023b.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839.

Jean Kaddour. 2023. The minipile challenge for
data-efficient language models. arXiv preprint
arXiv:2304.08442.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.
2023. Compressing context to enhance inference ef-
ficiency of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6342–6353, Singa-
pore. Association for Computational Linguistics.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test
time. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4081–4090, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Siyu Ren, Qi Jia, and Kenny Zhu. 2023. Context com-
pression for auto-regressive transformers with sen-
tinel tokens. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12860–12867, Singapore. Association for
Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Re, Ion Stoica, and Ce Zhang. 2023. FlexGen:
High-throughput generative inference of large lan-
guage models with a single GPU. In Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning
Research, pages 31094–31116. PMLR.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox.
2019. Triton: an intermediate language and com-
piler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, pages 10–19.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

11184

https://openreview.net/forum?id=e9D2STGwLJ
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://openreview.net/forum?id=2DtxPCL3T5
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Haoyi Wu and Kewei Tu. 2023. Probabilistic trans-
former: A probabilistic dependency model for con-
textual word representation. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 7613–7636, Toronto, Canada. Association for
Computational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Re, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H2o: Heavy-hitter ora-
cle for efficient generative inference of large language
models. In Thirty-seventh Conference on Neural In-
formation Processing Systems.

A Proof of The Training Theorem

Here we formally prove Theorem 1 in Section 2.2.
Remember that we need to compute the loss for
each token sequentially, but we propose to train all
the tokens in parallel with n iterations.

Theorem 1. The two computation graphs are
equivalent in terms of model training.

To prove the theorem, we first introduce the fol-
lowing lemma.

Lemma 1. In the first computation graph, denote
the final hidden representation of the i-th token
as hi = f1,i(x1, x2, . . . , xi). In the second com-
putation graph, denote the final hidden represen-
tation of the i-th token in iteration t as h

(t)
i =

f
(t)
2,i (x1, x2, . . . , xi). We have f1,i = f

(t)
2,i , ∀t ≥ i,

no matter what the initial KVs are.

Proof. In the first computation graph, denote the
KVs of the i-th token as KV i and that under paral-
lel training with iteration t as KV

(t)
i .

Since the basic networks are the same
for the two computation graphs, we further
denote gi as hi = f1,i(x1, x2, . . . , xi) =
gi(x1, x2, . . . , xi,KV 1,KV 2, . . . ,KV i−1),
as well as h

(t)
i = f

(t)
2,i (x1, x2, . . . , xi) =

gi(x1, x2, . . . , xi,KV
(t−1)
1 , . . . ,KV

(t−1)
i−1). The

only difference in the computation of the final
hidden representations lies in the KVs.

We prove the lemma by induction. For the base
case, since we have removed the diagonal of the at-
tention matrix, h1 and h

(t)
1 does not rely on any key

or value. So we have h1 = f1,1(x1) = gi(x1) =

f
(t)
2,1(x1) = h

(t)
1 , ∀t. That is f1,1 = f

(t)
2,1,∀t. Since

the computation graphs of the first token are the
same, KV 1 and KV

(t)
1 are the same for all t.

For the inductive step, we assume that ∀i ≤
T, f1,i = f

(T)
2,i = gi,KV i = KV

(T)
i . Then for

iteration T + 1:
∀i ≤ T + 1, the computation of the i-th

token relies on the KVs of the first i − 1 to-
kens. That is, h(T+1)

i = f
(T+1)
2,i (x1, x2, . . . , xi) =

gi(x1, x2, . . . , xi,KV
(T)
1 , . . . ,KV

(T)
i−1).

Since i ≤ T + 1, we have i − 1 ≤ T . By
induction we have KV

(T)
i−1 = KV i−1. Thus, we

have gi(x1, x2, . . . , xi,KV
(T)
1 , . . . ,KV

(T)
i−1) =

gi(x1, x2, . . . , xi,KV 1, . . . ,KV i−1) =
f1,i(x1, x2, . . . , xi) = hi. The computation
graphs are the same for the first T + 1 tokens, then
we have KV i = KV

(T+1)
i .

Thus, we have f1,i = f
(t)
2,i , ∀i ≤ t. The proof

does not rely on initial KVs, so the conclusion
holds for any initial KVs.

Let t = n, we have the entire computation
graphs are equivalent. Therefore, we have proved
Theorem 1.

From the lemma, we could learn one more thing:
The parallel training has the same computation
graph as the sequential training when the iteration
t ≥ n. This indicates that the parallel training is
theoretically guaranteed to converge to the same
solution as the sequential training. Once it is con-
verged, it will not diverge. Our work finds that the
KVs converge much faster than the theoretical n

11185

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

Model Size 50M 1.1B 7B 30B

Hidden Size 512 2048 4096 6656
Intermediate Size 1024 5632 11008 17920
Max Trained Length 1024 2048 – –
Layers 8 22 32 60
Attention Heads 8 32 32 52
KV Heads 4 4 32 52
RMS Norm eps 1e-5 1e-5 1e-6 1e-6
Vocab Size 32000

Table 5: Model configurations.

Section 4.1 4.2 4.3

Model Size 50M 1.1B 1.1B 50M

m 7 7 7 –
b 2 2 2 2
w 2 2 – 2
lr scheduler cosine
max. lr 3e-4 3e-4 4e-4 3e-4
min. lr 0 0 4e-5 0
optimizer AdamW
β1 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.95 0.999
batch size (tokens) 16K 256K 256K 16K
warmup ratio 0.015 0.015 0.024 0.015
weight decay 6.6e-6 6.6e-6 1e-1 6.6e-6
gradient clipping 1.0 1.0 1.0 1.0
initialize from pre-trained yes yes no no
epochs 3 1 2B tokens 3
Data WikiText-103 MiniPile SlimPajama WikiText-103
GPU RTX 3090x1 A100x8 A800x16 RTX 3090x1

Table 6: Training details for Section 4.

iterations, which significantly reduces the training
time.

B Model and Training Details

We provide the model configurations and train-
ing details in Table 5 and 6. The 7B and 30B
model configurations are consistent with those of
the original Llama (Touvron et al., 2023). The
1.1B model configuration follows that of TinyL-
lama (Zhang et al., 2024). We use the WikiText-
103 (Merity et al., 2017) (licensed under CC-BY-
SA 3.0), MiniPile (Kaddour, 2023) (licensed under
MIT) and SlimPajama (Soboleva et al., 2023) (var-
ious licenses depending on the data source) as our
datasets. Our use of the datasets is consistent with

their intended use.
The training of TinyLlama in Section 3 takes

14:42:59, while our models take 1 day, 16:44:16
(2.77x, w = 2) and 1 day, 15:52:38 (2.71x, w =
10), respectively. The training took place before
we optimize our codes, so the training time could
be further reduced, especially for the model with
w = 10.

C More Analyses

In this section, we provide more analyses beyond
those in Section 4.

C.1 Initialize with Pre-trained Models
Since our model structure resembles that of the
standard transformer, we could initialize our model

11186

Model Dev ppl. Avg.

TinyLlama 9.219 46.65
Ours (w = 2) 9.746 45.45

TinyLlama-2.5T 7.822 53.97
TinyLlama-500B 9.046 48.28
Ours (w = 2, init w/ 2.5T) 8.514 49.55

Table 7: Dev ppl: Perplexity on a 10M subset of the
validation set of SlimPajama. Avg: Average zero-shot
accuracy on commonsense reasoning tasks. Models are
trained on a 100B subset of SlimPajama. The models
with italic fonts are from TinyLlama checkpoints.

with pre-trained models. For WK ,WV of the mid-
dle layers, we just ignore the parameters. Ex-
periments show that initialization with pre-trained
models could effectively speed up the training pro-
cess (Table 7). Though our model has a different
computation graph from the standard transformer,
it could still benefit from the pre-trained models.
Our model initialized with a TinyLlama checkpoint
trained on 2.5T tokens achieves a perplexity of
8.514, which is much better than the randomly ini-
tialized model. It is even better than the TinyLlama
checkpoint trained on 500B tokens. Thus, if the
pre-trained models are available, initializing our
model with them could save a lot of training time.

C.2 Iterations with Gradients

In Section 2.2.2 we set b = 2 by default. What if
we use larger b? To make sure that the inference
process is equivalent (specifically, encoding the
prompts), we fix m+ b = 9 and experiment with
different values of b.

Figure 11 shows the perplexity of a 50M Llama
with different values of b. Though from b = 2
to b = 3 the perplexity decreases, for b = 4 the
perplexity increases. We further confirm that for
b = 4 the KVs do not converge as fast as for b = 2.

Experiments on a 1.1B model (Table 8) show
that the perplexity increases with b and the training
time also increases. From the training curve, we
find that larger b leads to more unstable training,
thus the model is harder to converge. Therefore,
we set b = 2 by default.

C.3 KV Loss for Less Iterations

In Section 4.3 we have shown that the KVs con-
verge very fast for a trained model, yet we still
want to make it converge even faster, saving both
training and inference time costs. An intuitive idea

0 2 4 6
of warmup Layers

2.70

2.72

2.74

2.76

lo
g

De
v

PP
L

b=2
b=3
b=4

Figure 11: Effect of b on a 50M model with different
number of warmup layers.

Model Dev ppl. Train Time

Ours (b = 2) 10.390 8h
Ours (b = 3) 10.476 10h
Ours (b = 4) 10.885 13h

Table 8: Effect of b on a 1.1B model.

is to add an MSE loss to the KVs before and after
the last iteration to force the KVs to converge. We
call this term the “KV Loss”. Our experiments (Ta-
ble 9) show that for small data with small w, the
KV loss could lead to better performance. While
for large data or large w, the KV loss hurts the per-
formance. This is probably because the KVs are
not converged at the beginning of training and the
KV loss helps the KVs converge. However, when
the KVs are already converged, the KV loss could
slow down the training process. In our method, we
do not use the KV loss.

C.4 Encode Prompts with Different Number
of Iterations

Though we set m = 7, b = 2 during training, it
does not necessarily mean that we have to encode

Model Size w KV Loss Dev ppl.

50M

0 no 15.965
0 yes 15.610
2 no 15.004
2 yes 15.065

1.1B
2 no 9.746
2 yes 10.073

Table 9: Effect of the KV loss on a 50M and a 1.1B
model. The 50M model is trained on WikiText-103 with
3 epochs and the 1.1B model is trained on a 100B subset
of SlimPajama.

11187

Model Size Model Batch Size Latency (s) Throughput (token/s)

7B
Llama 15 217.71 141.10

Ours (w = 2) 16 89.15 367.56
Ours (w = 10) 16 131.43 249.32

30B
Llama 1 145.23 14.10

Ours (w = 2) 1 101.12 20.25
Ours (w = 10) 1 106.99 19.14

Table 10: Inference latency and throughput of the models with different model sizes. The models are tested on an
A100 (80GB) GPU with prompt length 2048 and generation length 2048. The batch size is (approximately) the
largest batch size for standard Llama model.

2 4 6 8 10 12
of iterations

3

4

5

lo
g

De
v

PP
L

w=2
w=10

Figure 12: Performance of the models with different
numbers of iterations for prompt encoding.

the prompts with 9 iterations. Is it possible to en-
code the prompts with less iterations? What if we
encode the prompts with more iterations?

We treat the token segments as prompts and test
the model trained in Section 3.2 with different num-
bers of iterations during encoding. As shown in
Figure 12, the perplexity increases when the num-
ber of iterations is reduced, but still in a reasonable
scale if we only reduce one or two iterations. The
more warmup layers there are, the more stable the
performance is. Increasing the number of iterations
does not noticeably affect the performance. Thus,
one could make a trade-off to set the proper number
of iterations during inference to balance the time
encoding prompts and the quality of generation
texts.

C.5 Model Performance With Respect to
Token Position

The long-context performance of LLMs highly re-
lies on KV cache (Xiao et al., 2024; Han et al.,
2023; Adnan et al., 2024). To verify that the perfor-
mance of our model does not degrade under long
context, we test the perplexity of our model with
different token positions on PG19 (Rae et al., 2020).
Despite the fact that we only compute the KVs of a

0 500 1000 1500 2000
Token Position

3.0

3.5

4.0

lo
g

PP
L

TinyLlama
ours (w=2)
ours (w=10)

Figure 13: Perplexity of the models with different token
positions on PG19. We use the concatenated test set of
the PG19 dataset as the input.

few layers, the performance of our model does not
degrade with the token position (Figure 13) and is
comparable to that of TinyLlama. Due to the lim-
itation of computational resources, we only train
models with context length 2048.

C.6 Improvement of Throughput Not
Necessarily Due to Larger Batch Size

In Section 3.1, we show that our model achieves
higher generation throughput than standard trans-
formers. While one might assume that this im-
provement is solely due to a larger batch size, Fig-
ure 4 demonstrates that our model outperforms
the standard transformer even with the same batch
size. Additionally, Table 10 reports reduced latency
for our model when compared with the standard
transformer with the same batch size. This sug-
gests that our method can also benefit scenarios
that require fast response. The exact reason for
this phenomenon is not yet clear and we speculate
that it could be attributed to factors such as the re-
duced calculation of KVs, the decreased memory
consumption enabling faster memory transfer and
access, and various implementation details.

11188

