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Abstract

In this paper, we demonstrate that an inher-
ent waveform pattern in the attention alloca-
tion of large language models (LLMs) signif-
icantly affects their performance in tasks de-
manding a high degree of context awareness,
such as utilizing LLMs for tool-use. Specifi-
cally, the crucial information in the context will
be potentially overlooked by model when it is
positioned in the trough zone of the attention
waveform, leading to decreased performance.
To address this issue, we propose a novel in-
ference method named Attention Buckets. It
allows LLMs to process their input through
multiple parallel processes. Each process uti-
lizes a distinct base angle for the rotary position
embedding, thereby creating a unique atten-
tion waveform. By compensating an attention
trough of a particular process with an atten-
tion peak of another process, our approach en-
hances LLM’s awareness to various contextual
positions, thus mitigating their risk of overlook-
ing crucial information. In the largest tool-use
benchmark, our method elevates a 7B model to
achieve state-of-the-art performance compara-
ble to that of GPT-4. On other benchmarks and
some RAG tasks, which also demand a thor-
ough understanding of contextual content, At-
tention Buckets also exhibited notable enhance-
ments in performance.1

1 Introduction

Recent works that augmenting large language mod-
els (LLMs, e.g., GPT series (Brown et al., 2020;
OpenAI, 2022, 2023)) with tools have achieved
advancements in various fields, such as human-
computer interactions (Qin et al., 2023b; Schick

∗Equal contribution.
† Corresponding authors: Yongbin Li and Rui Yan

(shuide.lyb@alibaba-inc.com, ruiyan@ruc.edu.cn).
1We release our code at https://github.com/

Fiorina1212/Attention-buckets.

et al., 2023), automating multi-modal tasks (Surís
et al., 2023; Patil et al., 2023), and enhancing
the overall efficiency of language-related applica-
tions (Shen et al., 2023). In this paradigm, upon
receiving a user’s intent, a large language model ac-
cesses multiple tools, typically in the form of APIs.
It then selects the most suitable one by referring
to the relevant tool documentation and provides an
accurate and suitable response. Considering the
integration of extensive information into the con-
text, tool-use tasks demand a high level of context
understanding and awareness from LLMs.

Despite the achievements made by current LLM-
based tool-use frameworks, in our practical experi-
ence, we observed that LLMs exhibit varying levels
of awareness concerning different positions within
the context. For instance, LLMs may overlook cer-
tain tools within the context, resulting in a failed
call; however, by altering the position of these tools,
the task can be successfully executed. Such varia-
tions significantly affect the performance of LLMs
in tool-use. This observation is consistent with the
findings from a previous study (Liu et al., 2023a)
that investigated a simple in-context retrieval task.
When LLMs are presented with multiple key-value
pairs and instructed to retrieve the value associ-
ated with a specific key, the index of the queried
target key results in significant fluctuations in accu-
racy. Figure 1(a) provides a visual representation
of the instructions for this task. Figure 1(b) shows
this fluctuation we replicated using the Llama-2-
7B (Touvron et al., 2023b). In our study, we go
beyond the superficial fluctuations previously ob-
served and identify that these position-related per-
formance differences are closely associated with
the model’s fluctuating attention allocation. Specif-
ically, we observed a waveform pattern in the atten-
tion “intensity” (referred to as the attention wave-
form in this paper) when LLMs retrieve the same
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Input Context
Extract the value corresponding to the specified key in the JSON 

object below.

JSON data:

{"1e0029ce- … -f1ed9642d893": "3d678cff- … -2950de83f31c",

"da448545- … -bcb1d03a2254": "89e4a63e- … -c7c96e4c8b9d",

"a5d4c9ee- … -54ea28f8bf21": "dc9708f9- … -c6aeb3606222",

 …

"0194ec2b- … -728bab87b4f7": "5daf5bed- … -9c134fb7745a",

"2ac4aebd- … -76a333d48489": "3945b582- … -3dbb44d3162b"}

Key: "a5d4c9ee-14e6-4f48-9ad0-54ea28f8bf21"

Corresponding value:

(a)

(b)

(c)

Figure 1: (a) Task illustration: Presented with multiple key-value pairs and a target key (highlighted in bold), the
model is required to accurately retrieve and generate the value associated with this key from an extensive context.
(b) We illustrate the position-related fluctuation in the accuracy of Llama-2-7B on this in-context retrieval task.
(c) The attention score exhibits fluctuations when retrieving the same token from the context at specific relative
positions, a phenomenon we refer to as the “attention waveform.” Our study reveals a connection between the
position-related fluctuations in LLMs’ performance and this attention waveform.

token from the context, as illustrated in Figure 1(c).
We demonstrate that if the position of the crucial
information coincides with a trough in the attention
waveform, the model may overlook it, leading to
decreased accuracy.

Based on the insight above, we argue that by
shifting essential information away from the at-
tention waveform’s trough zone, we can reduce
the risk of LLMs2 missing crucial details, thus en-
hancing the efficacy of tool-use. Because crucial
information within the context is inaccessible in
practice, we propose the following approach to cir-
cumvent this challenge: We process the context
through multiple parallel executions, where each
execution is assigned a unique rotary angle base
of the rotary position embedding, resulting a dis-
tinct waveform pattern (See §2.1 for details). By
ensuring these attention waveforms are “comple-
mentary,” — for any position where one waveform
reaches its trough, another waveform reaches its
peak — we enhance the LLM’s context awareness
across various positions. We then aggregate the
output distributions from these parallel executions
and compute their weighted sum. This sum is sub-

2In this paper, we focus on LLMs based on Transformer
models (Vaswani et al., 2017) and rotary position embed-
dings (RoPE (Su et al., 2022)). This family of LLMs include
many popular models like Llama (Touvron et al., 2023a,b),
Qwen (Bai et al., 2023), Baichuan (Yang et al., 2023), etc.

sequently decoded to generate the final prediction
token. Note that our method is applied to LLMs
during the inference stage and does not require any
training.

An analogy can aid in understanding our ap-
proach: Imagine a wooden bucket with some
shorter staves, which allow water to leak out. Simi-
larly, the attention mechanism, at each angle base,
has limited awareness of specific positions in the
context. We utilize models to process the con-
text with different angle bases. This results in the
troughs of one attention wave being fortified by
the peaks of another, analogous to how the longer
staves in one bucket compensate for the shorter
staves in another. Consequently, we name our pro-
posed method Attention Buckets.

We achieve the state-of-the-art on the largest
tool-use benchmark ToolBench (Qin et al., 2023b)
and another benchmark ToolAlpaca (Tang et al.,
2023). In ToolBench, we augment the perfor-
mance of a 7B LLM to levels competitive with
those of GPT-4 (OpenAI, 2023). In addition to our
achievements in tool-use, we also demonstrate our
method’s potential in general retrieval-augmented
generation (RAG) tasks, which also demand a high
degree of contextual awareness. In summary, we
make three major contributions:

(1) For LLMs with RoPE, we propose and verify
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an explanation for the variation in their awareness
of different positions within the context. We estab-
lish a relationship between this variation and the
attention waveform.

(2) By leveraging the insights from our proposed
explanation, we develop a novel approach Atten-
tion Buckets to enhance LLMs’ context awareness
during the inference stage.

(3) Through extensive experiments, we empiri-
cally validate the efficacy of our proposed method.

2 Attention Waves Impact on Context
Awareness

In this section, we demonstrate that position-related
performance fluctuations of LLMs are influenced
by the underlying attention waveform.

2.1 Preliminaries

Rotary position embedding (RoPE) (Su et al., 2022)
stands as a prevalent technique for position encod-
ing in large language models with Transformer
backbone (Vaswani et al., 2017). During the at-
tention calculation, given a query or key vector at
position m in the sequence, RoPE serves to en-
code the position information into the vector via
a d-dimensional rotation matrix denoted as Rθ,m.
This matrix Rθ,m is structured as a block diago-
nal matrix consisting of blocks with dimensions of
2 × 2, totaling d/2 such blocks. Specifically, the
i-th block is defined as:

Rθi,m =

[
cosmθi − sinmθi
sinmθi cosmθi

]
, (1)

where θi = B− 2i
d , with B is termed as the base of

the rotary angle.
In each Transformer layer, after multiplying the

query vector qm at position m and the key vector kn
at position n with the rotation matrix, the relative
position is incorporated in their inner product (the
attention score before softmax):

(Rθ,mqm)⊤(Rθ,nkn) = q⊤mRθ,n−mkn. (2)

When the relative distance n−m increases, the
waveform of the attention score before softmax
demonstrates a long-term decay, i.e., the value gen-
erally decreases as the relative distance grows. This
trend is accompanied by a waveform, as depicted
in Figure 1(c). The derivation of this waveform is
presented in the Appendix A.

As a widely-used position embedding technique
in LLMs, many researchers found RoPE has a sub-
stantial impact on LLM’s context utilization and
awareness. RoPE has favorable properties that en-
hance the model in various aspects, such extrap-
olation (Chen et al., 2023a; Gao et al., 2023; Liu
et al., 2023b), efficient long-context model (Zhu
et al., 2023; Xiong et al., 2023; Li et al., 2024),
and better understanding of training data (Lv et al.,
2023). In this paper, however, our focus lies in con-
ducting an in-depth analysis of the functionality of
the LLM (Wang et al., 2023a; Lv et al., 2024), we
leverage the attention waveform introduced by posi-
tion embeddings to enhance the context awareness
of LLMs. We hypothesize that these waveform pat-
terns might affect the model’s context awareness.
Intuitively, tokens located at troughs of the atten-
tion waveform would receive less focus. If such
tokens are important for the current prediction, this
could hamper the performance. We designed an
experiment to test this hypothesis.

2.2 Hypothesis Verification

Task and Data We conducted an in-context re-
trieval test (Liu et al., 2023a; Li et al., 2023). We
feed the Llama-2-chat-7B (Touvron et al., 2023b)
with K synthetic key-value pairs in JSON format.
Each key and value is a distinct UUID string (Leach
et al., 2005). We then prompt the model to retrieve
the value corresponding to the key we specify. We
evaluated the model’s context awareness based on
the accuracy of the value it generates. Figure 1(a)
shows a test example.

Experiment Design We varied the RoPE base
within the model from 10, 000 to 30, 000 in incre-
ments of 5, 000. For each base value, we calculate
the corresponding waveform of attention score and
identify the positions of the peaks and troughs (see
Appendix B for details). Each test sample under-
goes two evaluation rounds: In the first round, we
position the target key-value pair at the attention
peak nearest to the exact middle of the context.
In the second round, we move the target pair to
the nearest attention trough. By comparing accu-
racy differences between the two rounds, we aimed
to answer how much attention waveform patterns
impact the model’s context awareness. The experi-
ment was conducted with varying context lengths
by setting different K (40 and 50, respectively). We
provide more experimental details in Appendix C.
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Figure 2: (a) The overview of how a typical Transformer-based Large Language Model (LLM) generates the next
token based on context C. This LLM comprises M layers, though for simplicity, only the inner workings of a single
layer are shown. (b) The overview of our proposed Attention Buckets augmenting the context awareness of LLMs:
Upon receiving context C, it creates N (specifically 3 in this example) parallel copies for processing. Each parallel
stream employs a distinct RoPE base. The resulting output distributions pj are weighted and summed based on the
prediction confidence αj , culminating in the final predicted distribution p̂ used for decoding the next token.

Base
K=40 K=50

Peak Acc Trough Acc Peak Acc Trough Acc
10,000 79.8 76.8 47.6 44.0
15,000 96.6 96.2 75.8 75.2
20,000 85.2 85.0 82.6 80.4
25,000 70.8 70.0 59.2 55.6
30,000 62.2 57.6 51.8 24.4

Table 1: The results of the in-context key-value re-
trieval. The generation accuracy provides insight into
the model’s awareness of information at both the peaks
and troughs of the attention waveform.

2.3 Results and Analysis

Our experimental findings, as detailed in Table 1,
reveal a performance trend associated with vary-
ing RoPE base values: we observe an initial rise
followed by a subsequent fall. Notably, placing a
key-value pair at the peak of the attention waveform
consistently yields better outcomes than position-
ing it at the trough. This holds true across different
context lengths (as defined by K) and base values.
Also, the results suggest that the optimal base val-
ues differ depending on the context length. For
example, with K set at 40, the best performance
is achieved with a base of 15,000, while a base of
20,000 is most effective when K is 50.

Based on these results, we can draw the follow-
ing insight and its associated challenge:

Insight: Enhancing the attention to information
positioned at the troughs of the attention wave-
form could make the context awareness of large
language models more robust, potentially leading
to improved overall performance.

Challenge: In practical applications, pinpointing
the location of critical information is difficult. This
makes it challenging to select a RoPE base that
ensures attention to the crucial information.

3 Enhancing Context Awareness via
Interleaving Attention Waveform

Based on the insights presented above, we intro-
duce a novel approach to sidestepping the above
challenge, with the goal of improving the LLM
performance in tool-use by enhancing its context
awareness. Our method focuses on the inference
stage of LLMs and does not require training. We
first provide preliminary definitions, followed by a
detailed introduction to our approach.

3.1 Preliminaries
In tool-use, fulfilling a user’s intent typically in-
volves multiple turns, such as selecting tools, call-
ing for APIs, and engaging with the user across
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multiple interactions. In this section, our introduc-
tion focuses on one single turn since the multi-turn
scenario is a simple amalgamation of this single-
turn scenario. We consider all information from
previous turns, including API responses, tool exe-
cution outcomes, and user feedback, as the model’s
context for the current turn, which we represent
as C. Subsequently, the LLM proceeds to gener-
ate a response, denoted asR, in an autoregressive
manner based on C. To denote the specific tokens
within C or R, we employ the notation Ck or Rk,
respectively, where k represents the token’s index.

3.2 Method

Given an input context C, our approach involves
duplicating this context into N copies, forming
a batch that allows for parallel processing by the
LLM. In each parallel, each of these N copies is
individually processed with a distinct RoPE base
Bj from a base set Bc, resulting in N correspond-
ing predicted distribution p over the vocabulary V .
Our selection of Bc guarantees that an attention
trough in one parallel is compensated by a peak in
another, effectively reducing the possibility of the
LLM missing essential information residing within
an attention trough. We will delve into the details
of determining Bc in § 3.3.

We posit that in the parallel run indexed by j, if
the model focuses its attention on crucial informa-
tion it currently requires, it has more confidence to
make accurate predictions for the next token in the
response R. We quantify the model’s confidence
on prediction αj as:

α
′
j = max

v∈V
p(Rk = v|C, Bj ,R1:k−1),

αj =
eα

′
j

∑N
i=1 e

α
′
i

.
(3)

Next, we compute a weighted sum of each run’s
output distribution pj to derive the final predicted
distribution p̂. The weighting of each pj depends
on its corresponding confidence score αj :

p̂ =
n∑

j

αj ∗ pj . (4)

We decode a predicted token from p̂. This token
is incorporated into the preceding context, and this
auto-regressive process persists until the current
turn ends.

3.3 The Searching of Bc
This section details our methodology for searching
Bc, an appropriate set of RoPE bases. Our goal
is to develop strategies ensuring that the attention
waveform troughs of any given base overlap with
peaks from different bases, and vice versa. Firstly,
we define a discrete base search space, denoted as:

Bs =
{
Bi

∣∣∣Bi = Bmin + i× S, i ∈
(
0, Bmax−Bmin

S

]}
,

(5)
where Bmin and Bmax represent the minimum and
maximum base values, and S is the search stride. In
our experimental setup, we set Bmin equal to Btrain,
the base used during model pre-training. This de-
cision is grounded in the consideration (Liu et al.,
2023b) that opting for a smaller base compared to
the one used during pre-training could potentially
introduce out-of-distribution (OOD) positional in-
formation, as discussed in detail in the Appendix D.

At the beginning of the search, we initialize Bc
to {Btrain}. For the following N − 1 iterations, we
search for a candidate base value in each round to
be included in Bs. In every round, we first identify
the peaks and troughs within the waveform associ-
ated with each base in Bs and Bc. The selection of a
candidate is determined by measuring the distance
between the position of the i-th peak (and trough)
for a candidate base and that of the i-th trough (and
peak) for bases within set Bc. The maximum posi-
tion of peaks or troughs that we take into account is
constrained by the maximum context length. The
candidate with the shortest average distance is sub-
sequently included in Bc. Our searching algorithm
is detailed in Algorithm 1.

Figure 3(a) is an algorithm illustration showcas-
ing the initial round of the search where Bc con-
sists of just one item, and there are only two can-
didates. It is clear that d1 =

∑3
i=1 |P1,i − Tc,i| +∑3

i=1 |T1,i − Pc,i| < d2 =
∑3

i=1 |P2,i − Tc,i| +∑3
i=1 |T2,i − Pc,i|. Consequently, candidate 1 is

chosen.
In Figure 3(b), we demonstrate the searched
Bc with the hyper-parameters Bmin = Btrain =
10, 000, Bmax = 30, 000, S = 500, and N = 6.
The values in our searched Bc consist of {1.00,
1.75, 1.80, 1.90, 2.00, 2.50} × 104. In this fig-
ure, we can sketch a parallelogram to help us ob-
serve the patterns of the waveforms. Each wave-
form features a peak point that can be positioned
along the left edge of this parallelogram. These
peak points effectively divide this edge into several
equal segments. This suggests that our searched Bc
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Figure 3: (a) RoPE Base Searching: we measure the distance from the candidate bases’ attention peaks (or troughs)
to the attention troughs (or peaks) corresponding to items in Bc. For demonstration clarity, we illustrate only a
partial context that corresponds to one waveform period. (b) Attention waveform corresponding to Bc searched by
hyperparameters detailed in §3.3.

Algorithm 1 The searching algorithm of Bc.
1: Input:

• Pc and Tc: Sets containing the peak and
trough positions in attention waveforms
corresponding to items in Bc. These po-
sitions are calculated by functions fp and
ft (see Appendix B), respectively.

• Searched set Bc, initialized as {Btrain}.
• Search space Bs, initialized using Eq. 5.

2: Pc ← fp(Btrain), Tc ← ft(Btrain)
3: while |Bc| < N do
4: for Bj in Bs do
5: Pj ← fp(Bj), Tj ← ft(Bj)
6: dj ← ∑

pj,i∈Pj
tc,i∈Tc

|pj,i− tc,i|+
∑

tj,i∈Tj
pc,i∈Pc

|tj,i−pc,i|

7: end for
8: Bc ← Bc ∪ {B′

j with the minimum dj}.
9: Pc ← Pc ∪ fp(B

′
j), Tc ← Tc ∪ ft(B

′
j)

10: end while
11: Output: Bc.

possesses waveforms that are evenly and densely
distributed, minimizing the likelihood of a position
being overlooked.

4 Experiments

4.1 Experiment Setups

Benchmark Up to the time of this paper, Tool-
bench (Qin et al., 2023b) stands as the largest
benchmark for evaluating the tool-use proficiency

of large language models. It has extensive
resources, including 3,451 tools, 16,464 APIs,
126,486 instances, and 469,585 API calls. All API
calls in Toolbench are real and sampled from Rapid
API.

The Toolbench evaluation consists of three dis-
tinct levels and three specific scenarios, each offer-
ing its own set of challenges. The three evaluation
levels include Inst.: testing the model’s response
to new instructions for tools already covered in the
training data; Tool.: measuring performance with
unfamiliar tools within the same tool categories as
those in the training dataset; and Cat.: examining
the model’s ability to handle tools from completely
new categories not represented in the training data.
The scenarios are I1: single-tool instructions, I2:
multi-tool instructions within the same category,
and I3: multi-tool instructions spanning across dif-
ferent collections. Due to specific details, there are
only six combinations of levels and scenarios: I1-
Inst., I1-Tool., I1-Cat., I2-Inst., I2-Cat., and I3-Inst.
Each combination comprises 200 test queries, with
the exception of I3-Institution, which includes 100
queries. For a more detailed introduction, readers
are recommended to (Qin et al., 2023b, §3.2).

Models and Evaluation Based on the training
dataset in ToolBench, Qin et al. (2023b) fine-tuned
a model named ToolLlama, building upon Llama-2-
7B (Touvron et al., 2023b). The authors compare it
with advanced close-source LLMs, including Chat-
GPT (OpenAI, 2022), Claude-2, Text-Davinci-003,
and GPT-4 (OpenAI, 2023). We implement Atten-
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Model Method I1-Inst. I1-Tool. I1-Cat. I2-Inst. I2-Cat. I3-Inst. Avg
pass win pass win pass win pass win pass win pass win pass win

ChatGPT
ReACT 41.5 - 44.0 - 44.5 - 42.5 - 46.5 - 22.0 - 40.2 -
DFSDT 54.5 60.5 65.0 62.0 60.5 57.3 75.0 72.0 71.5 64.8 62.0 69.0 64.8 64.3

Claude-2
ReACT 5.5 31.0 3.5 27.8 5.5 33.8 6.0 35.0 6.0 31.5 14.0 47.5 6.8 34.4
DFSDT 20.5 38.0 31.0 44.3 18.5 43.3 17.0 36.8 20.5 33.5 28.0 65.0 22.6 43.5

Text-Davinci-003
ReACT 12.0 28.5 20.0 35.3 20.0 31.0 8.5 29.8 14.5 29.8 24.0 45.0 16.5 33.2
DFSDT 43.5 40.3 44.0 43.8 46.0 46.8 37.0 40.5 42.0 43.3 46.0 63.0 43.1 46.3

GPT4
ReACT 53.5 60.0 50.0 58.8 53.5 63.5 67.0 65.8 72.0 60.3 47.0 78.0 57.2 64.4
DFSDT 60.0 67.5 71.5 67.8 67.0 66.5 79.5 73.3 77.5 63.3 71.0 84.0 71.1 70.4

ToolLlama
ReACT 25.0 45.0 29.0 42.0 33.0 47.5 30.5 50.8 31.5 41.8 25.0 55.0 29.0 47.0
DFSDT 57.0 55.0 61.0 55.3 62.0 54.5 77.0 68.5 77.0 58.0 66.0 69.0 66.7 60.0

DFSDT-Retriever 64.0 62.3 64.0 59.0 60.5 55.5 81.5 68.5 68.5 60.8 65.0 73.0 67.3 63.1
ReACT 31.5 45.0 32.0 42.5 33.5 49.0 31.5 65.0 32.0 42.0 28.0 58.0 31.3 50.3

ToolLlama DFSDT 66.5 67.5 61.5 62.0 62.0 65.5 78.0 71.5 73.0 66.5 67.0 82.0 68.0 69.2
+ Attention Buckets DFSDT-Retriever 68.5 65.0 70.0 65.5 65.0 67.0 84.0 78.0 71.0 64.5 69.0 89.0 71.3 71.5

Table 2: The tool-use performance on ToolBench (Qin et al., 2023b). We highlight the leading results for each
task with bold fonts, and denote the second-best performance with underlines. Attention Buckets augment the
ToolLlama with only 7B parameters to outperform GPT-4 in both overall pass rate and win rate.

tion Buckets to enhance the performance of ToolL-
lama. The Bc employed for this benchmark is the
same as detailed in §3.3 and depicted in Figure 3(b).
Following (Qin et al., 2023b), we adopt multiple
reasoning methods for each involved model, in-
cluding ReACT (Yao et al., 2023), DFSDT (Qin
et al., 2023b; Shinn et al., 2023), and an API re-
triever (Qin et al., 2023b) augmentation for reduc-
ing noise in tool selection (DFSDT-Retriever). We
adopt the greedy decoding strategy.

Evaluation of these models is conducted using
two metrics: pass rate and win rate. The pass rate
accesses how many user queries are fulfilled. The
win rate, determined by ChatGPT, evaluates the
superiority of the model’s solutions compared to
those provided by ChatGPT-ReACT.

4.2 Results and Analysis

We present our experimental findings in Table 2.
Our Attention Buckets enhances the scores of Tool-
Llama in almost every task level and scenario. No-
tably, when paired with the DFSDT-Retriever setup
(in the table’s final row), our approach not only
matches but often surpasses GPT-4’s performance
levels. On average, Attention Buckets stands out,
boasting the highest pass rate of 71.3% and win
rate of 71.5%. To our knowledge, Attention Buck-
ets set a new state-of-the-art (SOTA) result in this
benchmark. With other reasoning methods (Re-
ACT and DFSDT), Attention Buckets also showed
marked improvements over the respective base-
lines, illustrating the versatility and compatibility
of our approach. These results collectively indicate
that Attention Buckets boosts ToolLlama’s tool-use

proficiency, a success we attribute to its enhanced
context awareness.

These accomplishments lead us to argue that
language models harbor many untapped potentials.
By effectively leveraging these capabilities, LLMs
could be far more powerful than we thought. We
hope our findings inspire further research into un-
locking more fundamental abilities of LLMs.

We have also conducted additional experiments
on other tool-use benchmarks, which are provided
in Appendix E due to page limitations.

4.3 Discussion on Efficacy

Readers may have concerns about Attention Buck-
ets’s efficiency, as parallel processing of context
with varying base values could introduce additional
memory overhead. However, it’s important to note
that Attention Buckets does not compromise infer-
ence speed with sufficient memory. All experi-
ments described in this paper were successfully
conducted using a single NVIDIA A100-80G GPU.

To further address concerns regarding Attention
Buckets’s effectiveness, we compare it with three
methods:
• Attention Bucketsonce. Unlike the approach

that utilizes N inference processes with N RoPE
bases, Attention Bucketsonce computes the average
of N attention waveforms from individual bases
and then encodes the positional information using
this averaged waveform. This technique utilizes
only a single inference process, thereby avoiding
any additional memory cost.
• Attention Sorting. In ASort (Peysakhovich

and Lerer, 2023), tokens in distant contexts that re-
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Original +ABonce +ASort +USC +AB
pass win pass win pass win pass win pass win

I1-Inst. 64.0 62.3 52.0 37.0 66.0 63.0 66.0 63.0 68.5 65.0
I1-Cat. 64.0 59.0 40.5 31.0 67.0 62.0 65.5 61.5 70.0 65.5
I1-Tool. 60.5 55.5 47.0 34.5 59.5 58.5 61.0 58.5 65.0 67.0
I2-Inst. 81.5 68.5 70.5 65.0 80.0 68.5 80.0 73.0 84.0 78.0
I2-Cat. 68.5 60.8 65.0 58.0 68.5 60.3 70.0 61.5 71.0 64.5
I3-Inst. 65.0 73.0 61.0 52.0 66.0 75.0 66.0 78.0 69.0 89.0
Avg 67.3 63.1 56.0 45.3 67.8 64.6 68.1 65.9 71.3 71.5

Table 3: Comparison among Attention Buckets(AB), Attention Bucketsonce (ABonce), Universal Self-Consistency
(USC) and Attention Sorting (ASort), based on the ToolLlama-DFSDT-Retriever configuration.

ceive high attention are considered important. The
authors first segmented the context and calculated
the average attention of each segment. By rearrang-
ing segments in context based on sorted attention
scores(with the highest attention segment placed
last), they generate the answer using the newly
sorted context. This approach does not require
extra memory; however, it necessitates multiple
iterations to gain the attention scores and lacks par-
allelizability.
•Universal Self-Consistency. USC (Chen et al.,

2023b) is a universal self-consistency (Wang et al.,
2023c) algorithm that supports free-format out-
puts. The LLM first generates N responses. Sub-
sequently, the LLM is tasked with selecting the
response that exhibits the highest degree of consis-
tency, employing a specific prompt. The memory
cost of this method is roughly equivalent to that of
our Attention Buckets.

All methods are evaluated using the ToolLlama-
DFSDT-Retriever configuration. The results are
presented in Table 3. Results reveal that prepro-
cessing the aggregation of attention waveforms
significantly reduces memory costs, but at the
expense of the model’s performance. Specifi-
cally, compared to the original Attention Buckets,
Attention Bucketsonce shows a reduction of 11.3%
points in pass rate and 17.8% points in win rate
on average. This decline is attributed to the fact
that the pre-averaged waveform can produce out-of-
distribution position information. This issue does
not arise in Attention Buckets, where each base
value is independently utilized during the forward
computation.

ASort tries to strengthen the model’s focus on
key information through re-sorting, but its weak im-
provement in task performance, with a 0.5% point
increase in pass rate and 1.5% point in win rate on

average, reveals that the attention scores may not
capture crucial information well.

USC incurs a similar inference cost to our
method. However, it only demonstrates a mere
0.8% point increase in pass rate and a 2.8% point
increase in win rate on average, compared to the
original ToolLlama. This limited enhancement can
be attributed to the USC method’s failure to ef-
fectively address the problem of trough position
oversight inherent in inference with a single RoPE
base. Despite multiple attempts, this oversight per-
sists. This comparison clearly illustrates the effec-
tiveness of the Attention Buckets as it outperforms
the method with a similar level of overhead and
without additional training.

5 Exploring Applications for
Retrieval-Augmented Generation

Considering our proposed Attention Buckets en-
hances the model’s context awareness, it should be
effective in other tasks demanding high contextual
information utilization. This section explores the
effectiveness and generality of Attention Buckets
through a representative RAG task: open-domain
question answering (ODQA).

Many current open-domain QA methods em-
ploy a Retrieval-Augmented Generation (RAG)
paradigm (Chen et al., 2017; Khattab et al., 2021;
Lewis et al., 2020), where a retriever (Qu et al.,
2020; Khattab and Zaharia, 2020) gathers relevant
documents, followed by a generative reader (Izac-
ard and Grave, 2021; Yu et al., 2022) to find an-
swers, demanding high context awareness.

We conduct experiments on two popular bench-
marks NaturalQuestion (NQ, Kwiatkowski et al.,
2019) and WebQA (Berant et al., 2013), with 3,610
and 2,032 test samples, respectively. We assess
the models based on their accuracy in providing
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Method NQ WebQA
FiD-XL (3B) 50.1 50.8
Llama-2 (7B) 48.5 51.7
+ ASort 48.9 52.1
+ USC 47.6 51.7
+ Attention Buckets 50.3 (1.8↑) 53.1(1.4↑)

Table 4: Accuracy on NQ and WebQ (10 documents).

answers. An answer is considered correct if it con-
tains one of the acceptable answers. In our experi-
ments, we employed 10 documents as context and
utilized the DPR (Karpukhin et al., 2020) as the re-
triever, which is a supervised dense retrieval model
trained on the above datasets.

We use Llama-2-7B (Touvron et al., 2023b) as
our backbone model and compare it with FiD-
XL (Izacard and Grave, 2021), the exclusive
ODQA model trained on multiple ODQA bench-
marks, including NQ and WebQ. The results are
shown in Table 4. Compared with the other two
methods, ASort (Peysakhovich and Lerer, 2023)
and USC (Chen et al., 2023b), Attention Buckets
exhibits a more stable improvement. Additionally,
when augmented with Attention Buckets, Llama-
2-7B demonstrated superior performance over the
dedicated QA model FiD-XL.

Moreover, as the evaluation process for ODQA
is both objective and convenient, it enables us to
investigate whether our identified Bc approaches
optimality through the examination of numerous
permutations of base values. Conducting this study
on Toolbench is too costly for us, as it needs the pro-
hibitive use of GPT-4 and ChatGPT for API calls.
We leave this ablation study to the Appendix F.

6 Related Work: LLM-Based Tool-Use

Taking advantage of large language models to use
external tools is an emerging research topic (Mi-
alon et al., 2023; Qin et al., 2023a). Researchers
have explored a variety of tools, including calcula-
tors for mathematical computations (Schick et al.,
2023; Hao et al., 2023), specialized expert mod-
els (Shen et al., 2023), society simulation (Liu
et al., 2024) and web API calls (Qin et al., 2023b;
Patil et al., 2023). In these studies, LLMs interact
with users by analyzing their intents and needs. A
tool-retriever is utilized to source relevant tools,
typically in the format of documents containing de-
tails like tool names, examples of use, descriptions
of functions, and arguments for those functions.

The LLM processes these documents to choose the
suitable tool, inputs the necessary arguments, and
relays the tool’s output back to the users. Many
studies (Zhou et al., 2023; Patil et al., 2023; Qin
et al., 2023b) have found that large language mod-
els, including GPT-4 (OpenAI, 2023), often exhibit
hallucinations, such as inventing non-existent func-
tions and arguments, or failing to adapt to changes
in interactive environments. These highlight the
critical need for enhancing these models’ context
awareness. Current research heavily focuses on
integrating multiple reasoning pathways to address
errors caused by insufficient contextual comprehen-
sion. These techniques include ReAct (Yao et al.,
2023), DFS tree search (Qin et al., 2023b), self-
consistency (Wang et al., 2023c), etc. In contrast,
our approach focuses on a fundamental solution:
enhancing contextual awareness. It is both orthogo-
nal to and stackable with those reasoning methods.

7 Conclusion

In this paper, we delved into the waveform patterns
observed in attention scores and found that wave-
form of the attention score could potentially affect
the model’s context awareness, particularly in re-
lation to the position of crucial information within
the context. We propose Attention Buckets, an infer-
ence augmentation method designed to enhance the
model’s context awareness. This method combines
various attention patterns, which are controlled by
different RoPE bases. Our approach has achieved
state-of-the-art (SOTA) performance on the cur-
rent largest tool-use benchmark while showing the
applicability to a wider range of RAG tasks.
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Limitations

Our research introduces an effective approach for
enhancing the context awareness of LLMs, but
it still encounters two primary limitations: First,
while we have demonstrated its efficacy across
various LLMs, the context-awareness method to
other positional embeddings requires further inves-
tigation. Second, although our method does not
comprise the inference speed, as discussed in Sec-
tion 4.3, we have not yet identified an efficient way
to balance memory cost and inference speed.

The potential risks of our research are akin
to those of other endeavors involving large lan-
guage models. LLMs might produce toxic re-
sponses (Rafailov et al., 2024; Hong et al., 2023),
and there is also concern regarding the potential
misuse of tools for malicious purposes.
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A Attention Waveform

Formally, the inner-product between query vectors
at position m and key vectors at position n within
Transformer models utilizing RoPE can be formu-
lated as:

qm = Rθ,mWqxm, kn = Rθ,nWkxn,

qm · kn = (Rθ,mq)T (Rθ,nk) =

Re



d/2−1∑

j=0

q[2j : 2j + 1]k∗[2j : 2j + 1]ei(m−n)θj




=

d/2−1∑

j=0

(q2j · k2j + q2j+1 · k2j+1) cos ((m− n)θj)

+ (q2j · k2j+1 − q2j+1 · k2j) sin ((m− n)θj) ,
(6)

where x is the d-dimensional input of the current
Transformer layer, and θj = B− 2j

d .
When qm and kn are identical, the inner-product

reaches its maximum value. For computational sim-
plicity, we assume them as all-one vectors to derive
the waveform (W) of the inner-product (attention
score before softmax):

W =

d/2−1∑

j=0

2 cos ((m− n)θj) ≥ qm · kn. (7)

Figure 1(c) illustrates the visualization of W
with base = 10,000. Figure 3(b) results from vary-
ing base with values from our searched set Bc.
These figures demonstrate the horizontal axis as
the relative position between kn and qm.

B Locating Peaks and Troughs in an
Attention Waveform

d = 128 # dimension of Q or K vectors in Llama.
MAX_CONTEXT_LENGTH = 4096 # the maximum

pre-trained context length.

# Calculate the waveform of attention score
before softmax.

def qmkn(base, pos_mn):
# base: RoPE base.
# pos_mn: relative token position for qm and

kn.
# return: the waveform of attention score

between qm and kn.
score = 0.0
for i in range(0, d/2):

score += 2 * np.cos((pos_mn) *
np.power(base, (-2*i/d))

return score

# Find n peak positions
# within MAX_CONTEXT_LENGTH.
def fp(base, n, period):

# base: RoPE base.
# n: expected number of searched peaks.
# period: init approximate period.
# return: P, a list contains peak positions.
scores = [qmkn(pos_mn, base) for pos_mn in \

range(MAX_CONTEXT_LENGTH)]
P = []
start = 0
while len(P) < n:

p_max = np.argmax(scores[start: start \
+ period]).index + start

P.append(p_max)
start = p_max

# The attention waveform exhibits
# irregualr period throughout the
# context, with each successive
# period being approximately 1.5
# times longer than the previous one.
period *= 1.5

return P

# Find n trough positions
# within MAX_CONTEXT_LENGTH.
def ft(base, n, period):

# base: RoPE base.
# n: expected number of searched troughs.
# period: init approximate period.
# return: T, a list contains trough

positions.
scores = [qmkn(pos_mn, base) for pos_mn in \

range(MAX_CONTEXT_LENGTH)]
T = []
start = 0
while len(T) < n:

t_min = np.argmin(scores[start: start +\
period]).index + start

T.append(t_min)
start = t_min
period = 1.5 * period

return T
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C Supplement to The In-Context
Retrieval Experiment

There are several critical settings to make our ex-
periments fair and convincing:
• Position Anchoring Based on Last Token:

We anchor the position of each target key-value
pair at its last token. This approach is based on the
findings of (Wang et al., 2023b; Lv et al., 2024)
that the sentence semantic is gathered to the last
token.
• Precise Positioning of Key-Value Pairs: To

accurately place key-value pairs at specific posi-
tions within the context, we insert padding tokens
after the key-value JSON data and prior to the
query.
• Consistent Prompt Lengths Across Rounds:

Since our experiments involve comparing the accu-
racy between two rounds, it is essential to mitigate
any potential biases arising from varying context
lengths. To achieve this, we maintain consistency
in the context length across two rounds by inserting
padding tokens at the beginning of the input.

Figure 4 illustrates details of the above opera-
tions.

Extract the value corresponding to the specified key in the JSON 

object below.

JSON data:

{"1e0029ce- … -f1ed9642d893": "3d678cff- … -2950de83f31c",

"da448545- … -bcb1d03a2254": "89e4a63e- … -c7c96e4c8b9d",

"a5d4c9ee- … -54ea28f8bf21": "dc9708f9- … -c6aeb3606222",

 …

"0194ec2b- … -728bab87b4f7": "5daf5bed- … -9c134fb7745a",

"2ac4aebd- … -76a333d48489": "3945b582- … -3dbb44d3162b"}

Key: "a5d4c9ee-14e6-4f48-9ad0-54ea28f8bf21"

Corresponding value:

Input Context
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t 

[BOS] … … … … … 

PAD TOKENS
(a)

(b)
Position Anchor

… 

[BOS] … … … … … 

[BOS] … … … … … 

PAD TOKENS

Trough

Peak

Figure 4: Fair and convincing experimental operations.
(a) We apply padding prior to the "Query" to accurately
locate the final token of the target key-value pair at a
desired position, which corresponds to an attention peak
or trough. (b) We use paddings to maintain consistency
in prompt length across various rounds.

D The Impact of Base Value Smaller
Than That Used In Training

Considering Eq.6, where the position information
is integrated using d/2 sinusoidal functions with
the frequency θj = B− 2j

d , for j ∈ [0, d2 ]. If a
smaller value of B′ is employed, compared to the
pre-trained B, the frequency of these sinusoidal
functions will be higher, resulting in a reduced pe-
riod. In this case, given the maximum pre-trained
context length, the final few tokens could corre-
spond to positions within a period of the sinu-
soidal functions that are not encountered during
training. These positions would be considered
out-of-distribution for the model. We recommend
that readers interested in a more in-depth analysis
of this context “scaling law” refer to (Liu et al.,
2023b).

E Results on ToolAlpaca

ToolAlpaca (Tang et al., 2023) is a frame-
work that coordinates a collection of various tools
through a multi-agent simulation. It constructs a
dataset that includes 426 unique tools across 50
categories, totaling 3,938 instances. The corpus is
then used to fine-tune Llama, resulting in the devel-
opment of two LLMs for tool-use: ToolAlpaca-7B
and 13B.

Experiment Sets and Result To assess the tool-
use capabilities of language models, ToolAlpaca
has developed an evaluation dataset comprised of
two subsets: one encompassing 10 simulated tool
APIs and the other encompassing 11 real-world
tool APIs. Each API involves various user queries
which require specific functional calls and func-
tion parameters. The evaluation relies on GPT-4
for scoring, with a primary focus on three crucial
metrics:
• Procedure: GPT-4 assesses the model’s skill in

choosing the right actions, using the correct param-
eters, and avoiding redundant steps.
• Response: GPT-4 verifies whether the model’s

output aligns with user queries.
• Overall: GPT-4 assesses the precision of the

entire action-response cycle.
Due to the incomplete reproducibility of the

open-source code of ToolAlpaca, our evaluations
were limited to the simulator set. We report the
experiment results in Table 5. The data in the ta-
ble clearly illustrate substantial enhancements our
method has brought to the performance of both
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Model Procedure Response Overall
GPT-3.5 77.0 85.0 75.0
Vicuna-7B 19.0 21.0 17.0
ToolAlpaca-7B 63.0 69.0 60.0
+ Attention Buckets 69.0 73.0 65.0
Vicuna-13B 17.0 31.0 16.0
ToolAlpaca-13B 70.0 73.0 70.0
+ Attention Buckets 75.0 78.0 74.0

Table 5: Experimental results were obtained within the
simulated tools environment using the ToolAlpaca eval-
uation dataset.

(N,S) Searched Results (×104)
Bc1 (7, 100) {1.00, 1.77, 1.78, 1.90, 2.02, 2.47, 2.48}
Bc2 (7, 1,000) {1.00, 1.70, 1.80, 1.90, 2.00, 2.30, 2.50}
Bc3 (6, 500) {1.00, 1.75, 1.80, 1.90, 2.00, 2.50}
Bc4 (7, 500) {1.00, 1.75, 1.80, 1.90, 2.00, 2.25, 2.50}
BA.S.1 (7, -) {1.00, 1.30, 1.60, 1.90, 2.20, 2.50, 2.80}
BA.S.2 (6, -) {1.00, 1.40, 1.80, 2.20, 2.60, 3.00}

Table 6: Searched bases by variant search algorithms.

ToolAlpaca-7B and 13B. When implemented with
our method, the 13B model has reached perfor-
mance on par with GPT-3.5 in terms of the Overall
metric. The experiments conducted on this bench-
mark demonstrate the generalizability and effec-
tiveness of our method.

F The ablation of components in Bc
We conducted an analysis of our search algorithm 1
using the NQ dataset. We investigate the impact of
varying N , which represents the size of Bc, as well
as S, which corresponds to the search stride (i.e.,
granularity). We generated four distinct variations
of Bc. The values of N and S, along with their
respective corresponding Bc datasets, are provided
in the upper section of Table 6. Additionally, we
compare these Bc with the following variants:

1. Each individual element within Bc.
2. BA.S.: This set is constructed with base values

forming arithmetic sequences, having common dif-
ferences of 3,000 and 4,000, respectively. Details
of two BA.S. sets can be found in the lower section
of Table 6.

These comparisons enabled us to comprehen-
sively evaluate the performance of our search algo-
rithm concerning various search hyperparameters.
We present the results in Table 7, which reveal the
following key conclusions:

Firstly, with various combinations of N and S,
Bc searched by our algorithm 1 consistently con-
tribute to increased accuracy to a similar extent.

B (×104) Acc.
{1.00} 48.56
{1.75} 50.10
{1.80} 50.01
{1.90} 50.00
{2.00} 50.28
{2.25} 49.58
{2.50} 49.53
BA.S.1 50.19
BA.S.2 49.89
Bc1 50.25
Bc2 50.25
Bc3 50.22
Bc4 50.31

Table 7: Accuracy of the B variations on NQ (10 docu-
ments).

An arbitrary Bc also outperforms any BA.S.. Their
results highlight the robustness and effectiveness
of our method.

Most importantly, the enhancement of our
method brought to LLMs aligns with our expec-
tations, showing that various bases contribute to
context awareness at different positions, rather than
being reliant on specific “optimal” base values.
Note that Bc4 has only one additional element com-
pared to Bc3, with B = 2.25× 104. Independently,
B = 2.25 × 104 yields an accuracy of 49.58%,
which is lower than that of Bc3, standing at 50.22%.
However, when incorporated into the set, instead
of causing a decrease, it brings a further enhance-
ment of 0.06%, enabling Bc4 to attain the highest
accuracy.

Indeed, certain base values in this task come
quite close to the “optimal” accuracy. For instance,
when we set B to be 2.00× 104, it independently
yields an accuracy of 50.28%. Recap what we dis-
cussed in the challenges outlined in §2.3; when we
alter the task or even vary the input length, the op-
timal base value changes accordingly. In practice,
enumerating bases, as we did in this experiment,
becomes unfeasible. Based on this reason and the
fact that setting B = 2.00× 104 only outperforms
the general Bc2 and Bc3 by a marginal 0.03%, the
effectiveness of our approach is not undermined.
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