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Abstract

Word sense disambiguation (WSD) can be
viewed as two subtasks: textual word sense dis-
ambiguation (Textual-WSD) and visual word
sense disambiguation (Visual-WSD). They aim
to identify the most semantically relevant
senses or images to a given context contain-
ing ambiguous target words. However, existing
WSD models seldom address these two sub-
tasks jointly due to lack of images in Textual-
WSD datasets or lack of senses in Visual-
WSD datasets. To bridge this gap, we propose
PolCLIP, a unified image-text WSD model.
By employing an image-text complementarity
strategy, it not only simulates stable diffusion
models to generate implicit visual representa-
tions for word senses but also simulates im-
age captioning models to provide implicit tex-
tual representations for images. Additionally, a
disambiguation-oriented image-sense dataset is
constructed for the training objective of learn-
ing multimodal polysemy representations. To
the best of our knowledge, PolCLIP is the first
model that can cope with both Textual-WSD
and Visual-WSD. Extensive experimental re-
sults on benchmarks demonstrate the effective-
ness of our method, achieving a 2.53% F1-
score increase over the state-of-the-art models
on Textual-WSD and a 2.22% HR@1 improve-
ment on Visual-WSD.

1 Introduction

Understanding and identifying the intended mean-
ing of words with multiple senses (i.e., polysemy)
is a significant challenge in natural language pro-
cessing (Navigli, 2009). This promotes in-depth
research on word sense disambiguation (WSD),
which has recently been extended to multimodal
downstream tasks (Bevilacqua et al., 2021). Tech-
niques for WSD are critical for enhancing the ac-
curacy and effectiveness of text understanding and
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Figure 1: Illustration of the Multimodal-WSD task.

information retrieval tasks such as machine trans-
lation (Raganato et al., 2019), image-text retrieval
(Chen et al., 2020), and large language model in-
ference (Kritharoula et al., 2023).

Theoretically, WSD can be divided into two sub-
tasks: textual word sense disambiguation (Textual-
WSD) (Bevilacqua et al., 2021) and visual word
sense disambiguation (Visual-WSD) (Raganato
et al., 2023). Given a context containing an am-
biguous target word, the goal of Textual-WSD is to
select the most semantically appropriate one from
a set of candidate senses, while the goal of Visual-
WSD is to choose the most semantically suitable
one from a set of candidate images. Due to the
distinct modalities, these two subtasks typically
require specialized training datasets and methods
(Bevilacqua and Navigli, 2020; Blevins and Zettle-
moyer, 2020; Kwon et al., 2023). Nevertheless,
they can be unified as a Multimodal-WSD task if
the senses and images in existing WSD datasets
are aligned, as shown in Figure 1. The task ob-
jectives of Multimodal-WSD cover: 1) in cases
where candidates include both senses and images,
a Multimodal-WSD model is required to identify
the most semantically relevant senses and images
simultaneously for ambiguous target words within
a given context; 2) in cases where candidates in-
clude either senses or images, the model is still
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required to identify the most semantically relevant
senses or images for ambiguous target words within
a given context. Such task objectives are also in line
with the practical scenarios of current large vision-
language models (Liu et al., 2024). Technically,
developing a generic Multimodal-WSD model can
realize the unification of WSD tasks and activate
the potential of multimodal applications in under-
standing polysemy knowledge.

In the Textual-WSD datasets (Raganato et al.,
2017), merely textual senses serve as candidates
(i.e., image-missing), while in the Visual-WSD
datasets (Raganato et al., 2023), only images serve
as candidates (i.e., sense-missing). This results
in the challenge of modality missing at the data
level, limiting the unification of these two WSD
subtasks. Furthermore, multimodal representations
have been demonstrated to carry richer semantic in-
formation compared to unimodal representations in
recent WSD works (Gella et al., 2016, 2019). How-
ever, constrained by model architecture, existing
Textual-WSD models (Conia and Navigli, 2021;
Maru et al., 2019; Huang et al., 2019) cannot sup-
plement candidate senses with image information,
and Visual-WSD models (Yang et al., 2023; Zhang
et al., 2023; Dadas, 2023) cannot supplement candi-
date images with descriptions. This poses technical
difficulties in developing a unified framework for
Multimodal-WSD.

To address these issues, we propose PolCLIP,
a unified image-text WSD model which is profi-
cient in multimodal polysemy processing and is
built upon CLIP (Radford et al., 2021) architec-
ture. By employing an image-text complementarity
strategy, it simulates stable diffusion models (Ho
et al., 2020) (generating images based on texts)
and image captioning models (Ramos et al., 2023)
(generating descriptions based on images). The
core idea of this strategy is to make PolCLIP ini-
tially focus on the key information of original uni-
modal senses or images, and then re-utilize the
text or image encoder to generate implicit image-
text complementary representations. Two widely
used WSD datasets (SemCor (Miller et al., 1993)
and VWSD-KB (Yang et al., 2023)) are integrated
into a disambiguation-oriented image-sense dataset
for the training objective of learning aligned mul-
timodal representations. Moreover, a fine-tuned
GPT-3.5 model is utilized to generate lexical defi-
nitions for semantic enhancement in testing phase.
The main contributions of this work are summa-
rized as follows:

• A unified image-text WSD model is pro-
posed, which is the first model to jointly cope
with Textual-WSD lacking images and Visual-
WSD lacking senses.

• An image-text complementarity strategy is in-
troduced to simulate stable diffusion models
and image captioning models for addressing
the modality missing issues in unimodal WSD
datasets.

• A disambiguation-oriented image-sense
dataset is constructed to provide a benchmark
for the Multimodal-WSD task.

2 Related Work

Textual-WSD was mainly tackled by knowledge-
based methods and supervised methods (Bevilac-
qua et al., 2021). Knowledge-based methods (Maru
et al., 2019; Scozzafava et al., 2020) typically used
external dictionary resources to provide sense lists
for ambiguous words to resolve polysemy. Su-
pervised methods (Huang et al., 2019; Wang and
Wang, 2020) generally used pre-training language
models to maximize the similarity probabilities
between contexts and candidate senses in a fea-
ture space. BEM (Blevins and Zettlemoyer, 2020)
and SACE (Wang and Wang, 2021) adopted bi-
encoders and only retained the representations cor-
responding to ambiguous words. They achieved
state-of-the-art results on English all-words bench-
marks at that time. Moreover, the full utilization
of visual features for verb sense disambiguation
has attracted increasing interest (Gella et al., 2016,
2019). EViLBERT (Calabrese et al., 2020b) ob-
tained better results by learning task-agnostic multi-
modal sense representations, compared to methods
built solely on language models. Although these
methods primarily leveraged visual information to
bolster performance on Textual-WSD, they could
not be applied to Visual-WSD straightforwardly.

Visual-WSD was introduced in SemEval-2023
Task 1 (Raganato et al., 2023). The Visual-
WSD mainstream approaches employed Vision-
Language Pre-training models (VLPs) for image-
text retrieval. FCLL (Yang et al., 2023) proposed a
fine-grained image-text contrastive learning mech-
anism and won first place in SemEval-2023 Task
1. Moreover, large language models (LLMs) were
widely used to enrich the semantic information
of contexts (Ghahroodi et al., 2023; Yang et al.,
2024). Calling APIs was a commonly adopted
strategy, where simple prompts were designed to
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Figure 2: Overview framework of the proposed PolCLIP model.

guide LLMs to return the interpretations of am-
biguous target words in contexts (Kritharoula et al.,
2023). However, Visual-WSD models depended
on the prior knowledge of VLPs, which were pre-
trained with objectives biased towards image-text
understanding rather than WSD. This resulted in
Visual-WSD models struggling to effectively re-
solve Textual-WSD.

Data was a key factor to unify these two WSD
subtasks and develop a generic Multimodal-WSD
model. WordNet (Miller et al., 1990) was a large
lexicographic database and a standard inventory for
English WSD. It contained approximately 120,000
synsets. BabelNet (Navigli and Ponzetto, 2010;
Navigli et al., 2021) was the most popular multi-
lingual dictionary, which was semi-automatically
mapped to other resources to acquire encyclopedic
terms. It covered over 500 languages and was up-
graded to version 5.3 recently. Researchers could
access various possible resources about ambiguous
words by BabelNet, including example sentences,
parts of speech, textual senses, and images. By
linking WordNet with Wikipedia through Babel-
Net, BabelPic (Calabrese et al., 2020a) expanded
non-concrete image-sense pairs, paving the way
for our work to construct larger disambiguation-
oriented multimodal datasets.

Inspired by FCLL, we used a dual-stream ar-
chitecture with contrastive learning to align the
knowledge of word-sense pairs and word-image
pairs from the proposed disambiguation-oriented
dataset. Previous research viewed LLMs as com-
mon tools for text semantic enhancement. Thus,
LLMs were also adopted in our testing phase.

3 Method

3.1 Task formulation

Textual-WSD and Visual-WSD can be unified as
a Multimodal-WSD task which is a token classifi-
cation problem. A given context c generally con-
tains at least one ambiguous target word wtarget.
For Textual-WSD, there is a set of word senses
S = {s1, s2, . . . , ŝ, . . . , sn} as candidates, where
ŝ denotes the most semantically relevant sense to
wtarget. Following Eq. 1, a Textual-WSD model is
required to learn a similarity function F to retrieve
ŝ from candidate senses. For Visual-WSD, there
is a group of images I =

{
i1, i2, . . . , î, . . . , in

}
as

candidates, where î represents the most semanti-
cally relevant image to wtarget. Following Eq. 2, a
Visual-WSD model is required to learn a similarity
function F to retrieve î from candidate images.

ŝ = argmaxF
(
c, wtarget, S

)
(1)

î = argmaxF
(
c, wtarget, I

)
(2)

3.2 The PolCLIP model

The framework of the PolCLIP model is shown
in Figure 2. It utilizes an image-text comple-
mentarity strategy and is built upon CLIP archi-
tecture. It employs 12-layer transformers as the
text encoder and 24-layer visual transformers as
the image encoder. A context with an ambigu-
ous target word wtarget is input into the text en-
coder to generate a complete context representation
ec = {[CLS], ew1 , . . . , ewtarget , . . . , ewn , [SEP ]},
where ewtarget is the representation corresponding
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to wtarget. The candidate senses of wtarget are in-
put into the text encoder to output a sense vector
vsense. The candidate images of wtarget are fed into
the image encoder to output an image vector vimage.

A Sense-to-Image Generation (SIG) module and
an Image-to-Sense Generation (ISG) module are
designed to generate implicit image-text comple-
mentary information, which is expressed in vec-
tors. Specifically, the SIG module consists of a
shared 2-layer self-attention module, a sense-to-
image projector, and the last four layers of the im-
age encoder. The sense vector vsense is input to
SIG. Its key information is condensed through the
self-attention module and the linear-layer projector.
After that, the highly compressed sense informa-
tion is transformed into a sense-generated image
vector vsense-gen

image with visual knowledge through the
last four layers of the image encoder. Similarly,
the ISG module is composed of the same shared
2-layer self-attention module, an image-to-sense
projector, and the last four layers of the text en-
coder. The image vector vimage is input to ISG
and then converted into an image-generated sense
vector vimage-gen

sense with textual knowledge.

In order to make the generated implicit image-
text complementary information actually benefi-
cial to semantic augment, following ALBEF (Li
et al., 2021), a text momentum encoder and an
image momentum encoder are employed to gener-
ate pseudo-target vectors. Specifically, the can-
didate senses and images from the same batch
are input separately into the text and image mo-
mentum encoders to output a pseudo-target sense
vector v

pseudo
sense and a pseudo-target image vector

v
pseudo
image . These two pseudo-target vectors supervise

v
image-gen
sense and v

sense-gen
image to be close to ground truth.

The text and image momentum encoders retain the
prior knowledge of the backbone model to coun-
teract the issue of catastrophic forgetting (Li et al.,
2023). Therefore, the pseudo-target vectors gain
improvement continuously with these two momen-
tum encoders being optimized at a small pace. The
similarity between v

image-gen
sense and v

pseudo
sense is calcu-

lated by Eq. 3-4. Also, the similarity between
v

sense-gen
image and v

pseudo
image is calculated by Eq. 5-6. s

is a similarity function. PISG and PSIG are the
softmax-normalized similarities used to supervise
the ISG module and the SIG module.

s (Sgen , Spse ) = vimage-gen
sense ·

(
vpseudo

sense
)T

(3)

PISG =
exp (s (Sgen , Spse ))

∑N
n=1 exp (s (S

gen , Spse ))
(4)

s (Igen , Ipse ) = v
sense-gen
image ·

(
v

pseudo
image

)T
(5)

PSIG =
exp (s (Igen , Ipse ))

∑N
n=1 exp (s (I

gen , Ipse ))
(6)

A shared 4-layer cross-attention module serves
as a fusion module. It integrates the original uni-
modal sense/image representations and the gen-
erated implicit image/sense representations into
semantically enriched multimodal representations.
vsense serves as Q and v

sense-gen
image serves as K and

V . They are fed into the fusion module and then a
sense-guided multimodal vector vsense-gui

multi is calcu-

lated by softmax
(
QKT
√
dk

V
)

, where dk denotes the

dimension of 768. This vsense-gui
multi achieves an effec-

tive interaction of the original sense representation
with the implicit sense-generated image represen-
tation. Similarly, vimage serves as Q and v

image-gen
sense

serves as K and V . They are fed into the fusion
module and then an image-guided multimodal vec-
tor vimage-gui

multi is output by the same cross-attention
calculation process. This v

image-gui
multi achieves an

effective interaction of the original image repre-
sentation with the implicit image-generated sense
representation.

To avoid the key information of the ambiguous
target word wtarget being smoothed out, we directly
select the representation of wtarget as the anchor
vector for retrieval, instead of simply averaging
the complete context representation ec or taking
[CLS]. Following Eq. 7-8, this anchor ewtarget

is used to calculate the similarity with the sense-
guided multimodal vector vsense-gui

multi . The similarity
between the anchor ewtarget and the image-guided
multimodal vector vimage-gui

multi is calculated by Eq. 9-
10. PW2S and PW2I are the softmax-normalized
anchor-to-sense similarity and the anchor-to-image
similarity. The PolCLIP model can identify the
most semantically appropriate senses and images
based on these two similarities.

s(W,S) = ewtarget ·
(
v

sense-gui
multi

)T
(7)

PW2S =
exp(s(W,S))

∑N
n=1 exp(s(W,S))

(8)

s(W, I) = ewtarget ·
(
v

image-gui
multi

)T
(9)

PW2I =
exp(s(W, I))

∑N
n=1 exp(s(W, I))

(10)
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Algorithm 1: Pseudocode of Training PolCLIP
data : a context c with an ambiguous target word wtarget;

the candidate senses S and the candidate images I;

1 while c, wtarget , S, I do
2 ec ← Text_Encoder(c); # the complete context representations
3 ewtarget ← ec; # the anchor vector based on wtarget

4 # the original unimodal sense/image representations
5 vsense ← Text_Encoder(S);
6 vimage ← Image_Encoder(I);
7 # the generated implicit image/sense representations
8 v

sense-gen
image ← SIG(vsense);

9 v
image-gen
sense ← ISG(vimage);

10 # the semantically enriched multimodal representations

11 v
sense-gui
multi ← Fusion(vsense , vsense-gen

image );

12 v
image-gui
multi ← Fusion(vimage , vimage-gen

sense );
13 # the anchor-to-sense and anchor-to-image similarities

14 sim(W2S)← ewtarget · (vsense-gui
multi )T ;

15 sim(W2I)← ewtarget · (viamge-gui
multi )T ;

16
17 # the pseudo sense/image representations

18 v
pseudo
sense ← Text_Momentum_Encoder(S);

19 v
pseudo
image ← Image_Momentum_Encoder(I);

20 # the SIG and IGS similarities

21 sim(SIG)← v
sense-gen
image · (vpseudo

image )T ;

22 sim(ISG)← v
image-gen
sense · (vpseudo

sense )T ;
23 # the two generation-based loss
24 LSIG ← CrossEntropyLoss(sim(SIG), labels(SIG));
25 LISG ← CrossEntropyLoss(sim(ISG), labels(ISG));
26 # the two understanding-based loss
27 LW2S ← CrossEntropyLoss(sim(W2S), labels(W2S));
28 LW2I ← CrossEntropyLoss(sim(W2I), labels(W2I));

29 end

Four contrastive losses (Hadsell et al., 2006) are
defined to optimize four training objectives jointly,
comprising two generation-based objectives (SIG
loss and ISG loss) and two understanding-based
objectives (W2S loss and W2I loss).

The two generation-based objectives make the
generated implicit image-text complementary in-
formation close to ground truth, to ensure that the
enriched multimodal representations are semanti-
cally correct. The contrastive loss LSIG is defined
as a cross-entropy H between the sense-generated
image vector vsense-gen

image and the pseudo-target image

vector vpseudo
image :

LSIG = E(Igen
,Ipse)∼DH

(
YSIG,PSIG

)
(11)

Y indicates the ground-truth multi-label one-hot
similarity, where negative pairs have a probabil-
ity of 0 and the positive pairs have a probability
of 1. Similarly, the image-generated sense vector
v

image-gen
sense and the pseudo-target sense vector vpseudo

sense
are used to calculate LISG:

LISG = E(Sgen
,Spse)∼DH

(
YISG,PISG

)
(12)

The two understanding-based objectives ensure
that the PolCLIP model accurately identifies the

semantically optimal senses and images. The an-
chor ewtarget and the sense-guided multimodal vector
v

sense-gui
multi are used to calculate LW2S :

LW2S = E(W,S)∼DH
(
YW2S ,PW2S

)
(13)

Also, the anchor ewtarget and the image-guided multi-
modal vector vimage-gui

multi are used to calculate LW2I :

LW2I = E(W,I)∼DH
(
YW2I ,PW2I

)
(14)

Finally, the full training objective of PolCLIP is:

L = LSIG + LISG + LW2S + LW2I (15)

In summary, the entire training process is per-
formed under the first objective of the Multimodal-
WSD task. The pesudocode of training the Pol-
CLIP model is abstracted in Algorithm 1.

3.3 Inference of the PolCLIP model
The existing WSD test suites suffer from the modal-
ity missing issues, resulting in Multimodal-WSD
models being evaluated separately under Textual-
WSD and Visual-WSD settings. Therefore, the
inference process of the PolCLIP model is tested
only under the second objective of the Multimodal-
WSD task.

To further stimulate the potential of the Pol-
CLIP model in understanding polysemous text,
a semantic enhancement is implemented for con-
texts during the inference procedure. Different
to those methods that call APIs, we develop a
disambiguation-oriented GPT-3.5 (D-GPT) to gen-
erate intended lexical definitions of a word in con-
texts. Fine-tuning on a random selection of 50,000
data from SemCor, D-GPT is developed based on
the gpt-3.5-turbo-1106 model which is one of the
latest fine-tunable GPT models released by Ope-
nAI. Each piece of fine-tuning data consists of a
query and an output. The query includes a context
with a specified ambiguous word. The output is
the ground-truth sense of the ambiguous word in
the context. The fine-tuning experiment took ap-
proximately 175 minutes. More fine-tuning details
are provided in Appendix A. After fine-tuning, D-
GPT generates lexical definitions based on queries.
For example, a query “What does the word ‘bank’
mean in the context ‘They pulled the canoe up on
the bank’?” is fed into D-GPT. Then, D-GPT pos-
sibly generates an interpretation “The word ‘bank’
refers to the side or edge of a river, lake, or other
body of water”.
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Algorithm 2: Pseudocode of PolCLIP Inference
input : an augmented context c with an ambiguous target word wtarget;

the candidates Cand with senses or images;
output : the ranked candidates Candranked ;

the semantically optimal sense or image Obest;

1 ec ← Text_Encoder(c); # the complete context representations
2 ewtarget ← ec; # the anchor vector based on wtarget

3 if only senses in Cand then
4 # for Textual-WSD
5 vsense ← Text_Encoder(Cand);
6 # the sense-generated image representations
7 v

sense-gen
image ← SIG(vsense);

8 # the sense-guided multimodal representations
9 vmulti ← Fusion(vsense , vsense-gen

image );

10 else
11 # for Visual-WSD
12 vimage ← Image_Encoder(Cand);
13 # the image-generated sense representations

14 v
image-gen
sense ← ISG(vimage);

15 # the image-guided multimodal representations

16 vmulti ← Fusion(vimage , vimage-gen
sense );

17 end
18 similarity ← ewtarget · (vmulti)

T ;
19 Candranked ← topk(similarity); # k is the number of candidates
20 Obest ← arg max(Candranked); # the semantically optimal sense or image

During the testing phase, all the original con-
texts in WSD test sets are concatenated with the
lexical definitions generated by D-GPT, to create
semantically augmented contexts. For instance, an
augmented context is “They pulled the canoe up
on the bank. The word ‘bank’ refers to the side or
edge of a river, lake, or other body of water”. These
augmented contexts are subsequently fed into the
PolCLIP model. The trained SIG and ISG modules
support the PolCLIP model to address Multimodal-
WSD even when any modality is missing. The
inference procedure of the PolCLIP model is ab-
stracted in Algorithm 2.

3.4 Training data

The PolCLIP model relies on large-scale aligned
image-sense pairs to learn multimodal polysemy
knowledge. Thus, we construct a disambiguation-
oriented image-sense dataset by integrating Sem-
Cor (Miller et al., 1993) and VWSD-KB (Yang
et al., 2023), to achieve the training objective of uni-
fied image-text WSD. SemCor is the most prevalent
dataset for training Textual-WSD models. VWSD-
KB contains multimodal data such as words, senses,
and images. The offline BabelNet v5.2 and Ba-
belPic are used to collect relevant images to the
senses in SemCor and VWSD-KB. The detailed
construction process is provided in Appendix B.

After construction, all word senses in SemCor
and VWSD-KB are aligned with at least one image
and at most five images. We filter out the collected
images that are pornographic, violent, or invalid

Item types Image-Enhanced SemCor VWSD-KB
# of instances 226,036 48,469
# of ambiguous
target words

33,657 24,989

# of senses 39,201 31,306
# of images 181,123 111,575

Table 1: The statistical details of Image-Enhanced Sem-
Cor and VWSD-KB.

and conduct a manual validation to ensure there
is no data leakage. The SemCor associated with
images is called Image-Enhanced SemCor. Table 1
displays the statistical details of Image-Enhanced
SemCor and VWSD-KB, comprising a total of
274,505 English instances (each instance includes
a context with at least one ambiguous target word).
An example of the disambiguation-oriented image-
sense dataset is shown in Figure 1. Given a context
“He had seen the Andromeda tree in Japan”, there
are four candidate senses for the ambiguous target
word “Andromeda”, and each sense corresponds to
five images. The most semantically relevant sense
and images to this context are Sense 4 and its five
associated images.

4 Experiments and Results

4.1 Datasets

Due to the training objective of unified image-
text WSD, we opt not to use the validation sets
from Textual-WSD or Visual-WSD. We allocate
80% of the combined Image-Enhanced SemCor
and VWSD-KB datasets as the training set and
reserve the remaining 20% as the validation set.
XL-WSD (Pasini et al., 2021), an extra-large
evaluation framework for Textual-WSD, is em-
ployed to evaluate the model performance on
Textual-WSD. XL-WSD is widely used since it
encompasses six English all-words Textual-WSD
benchmark datasets, including SensEval-2 (SE2,
(Palmer et al., 2001)), SensEval-3 (SE3, (Snyder
and Palmer, 2004)), SemEval-2007 (SE7, (Nav-
igli et al., 2007)), SemEval-2010 (SE10, (Agirre
et al., 2010)), SemEval-2013 (SE13, (Navigli et al.,
2013)), and SemEval-2015 (SE15, (Moro and Nav-
igli, 2015)). These six benchmark datasets com-
prise a total of 8,517 English instances for testing.
SemEval-2023 (SE23, (Raganato et al., 2023)) is
used to assess the model performance on Visual-
WSD, as it is currently the most widely used Visual-
WSD benchmark containing 463 English instances.

10681



Training Data Models
Textual-WSD Visual-WSD

SE2 SE3 SE7 SE10 SE13 SE15 ALL SE23
F1-score(%) HR@1(%) MRR@10(%)

Zero-shot

Openai/CLIP-ViT-L/14 53.07 47.19 35.60 37.50 57.18 53.52 49.40 57.45 72.60
Laion/CLIP-ViT-L/14 49.27 43.88 31.80 33.70 53.38 49.96 45.73 56.87 70.28
Laion/CLIP-ViT-H/14 51.47 46.45 36.52 39.10 58.78 51.92 49.21 60.70 75.68

UVWSD - - - - - - - 80.50 87.60

Image-Enhanced
SemCor

Openai/CLIP-ViT-L/14 70.01 66.48 61.35 71.96 72.35 69.11 69.41 76.67 84.20
Laion/CLIP-ViT-L/14 71.01 65.96 62.34 72.92 71.44 68.37 69.50 75.38 84.02
Laion/CLIP-ViT-H/14 71.00 69.63 65.24 74.53 75.36 71.61 71.83 77.04 84.37

BEM 78.29 75.96 66.64 80.71 81.38 81.72 78.53 - -
SACE 80.29 78.67 70.57 82.71 80.86 83.73 80.30 - -

Z-Reweighting 79.98 77.04 67.72 82.01 79.94 82.81 79.32 - -
FCLL - - - - - - - 80.13 87.41

PolCLIPbase 82.22 79.89 70.56 85.22 82.79 85.66 82.06 79.48 85.00
PolCLIPbase with D-GPT 83.74 81.41 72.09 86.16 84.31 87.18 83.49 82.94 88.55

Image-Enhanced
SemCor

+
VWSD-KB

Openai/CLIP-ViT-L/14 71.90 68.23 63.21 73.76 74.12 67.80 70.85 75.98 83.93
Laion/CLIP-ViT-L/14 69.86 67.37 60.46 72.85 73.24 70.00 69.93 77.88 84.68
Laion/CLIP-ViT-H/14 73.90 70.37 65.24 75.85 76.24 70.80 73.04 77.46 84.60

BEM 78.09 75.03 67.65 80.01 78.45 80.09 77.46 - -
SACE 81.93 79.71 71.71 84.35 79.22 84.87 81.09 - -

Z-Reweighting 79.53 77.03 68.92 81.07 82.50 82.09 79.53 - -
FCLL - - - - - - - 81.37 87.69

PolCLIPlarge 82.76 82.39 71.11 85.18 85.29 86.20 82.60 82.28 87.98
PolCLIPlarge with D-GPT 84.66 82.43 72.97 83.39 84.91 86.40 83.62 83.59 90.07

Table 2: Comparison with state-of-the-art methods on WSD benchmark test sets. Bold numbers indicate results of
the SOTA model, and underlined numbers denote results of the second best model.

4.2 Implementation details

Settings. Our model is implemented on Pytorch
2.0.1 and 4 RTX 4090 GPUs. Both the text en-
coder and image encoder are initialized by CLIP-
ViT-L/14 (Radford et al., 2021). All parameters
of the text encoder are optimized to preserve the
maximum capability of the model to process am-
biguous knowledge at the text level, while the im-
age encoder is completely frozen to reduce the
computational cost. The sense batch size is set to
50, the image batch size is set to 250. Following
ALBEF (Li et al., 2021), the momentum is set to
0.005. AdamW is applied to optimize model pa-
rameters with a learning rate of 1e-04 and weight
decay of 0.05. The image resolution is specified
as 224×224, and the maximum text length is set
to 77. The training process of the PolCLIP model
requires approximately 2.5 GPU hours per epoch,
with a total of 20 epochs. F1-score is used to evalu-
ate the model performance on Textual-WSD. Hit
Rate at 1 (HR@1, i.e., accuracy) and Mean Recip-
rocal Rank at 10 (MRR@10) are used to assess the
model performance on Visual-WSD.

Baselines. We train PolCLIPbase using Image-
Enhanced SemCor and PolCLIPlarge using the
combination of Image-Enhanced SemCor and
VWSD-KB. In the testing phase, both PolCLIPbase

and PolCLIPlarge are integrated with D-GPT for
semantic enhancement. Our model is compared

with recent state-of-the-art (SOTA) methods in-
cluding (1) SOTA models in Textual-WSD: BEM
(Blevins and Zettlemoyer, 2020), SACE (Wang
and Wang, 2021) and Z-Reweighting (Su et al.,
2022), (2) SOTA models in Visual-WSD: FCLL
(Yang et al., 2023) and UVWSD (Kwon et al.,
2023), (3) SOTA models in image-text learning
tasks: Openai/CLIP-VIT-L/14 (Radford et al.,
2021), Laion/CLIP-VIT-L/14 and Openai/CLIP-
VIT-H/14 (Schuhmann et al., 2022). More details
about baseline models are provided in Appendix
C. For a fair comparison, these baseline models
are retrained using Image-Enhanced SemCor and
VWSD-KB.

4.3 WSD results

The comparison results between PolCLIP and the
baseline models on WSD benchmark test sets are
shown in Table 2. The PolCLIP model achieves
the state-of-the-art performance. SACE and FCLL
are the second best models for Textual-WSD
and Visual-WSD, respectively. Without D-GPT,
PolCLIPlarge reaches an F1-score of 82.60% on all
the Textual-WSD test data, which is 1.51% higher
than SACE. It attains an HR@1 of 82.28% and a
MRR@10 of 87.98% on Visual-WSD, which are
0.91% and 0.29% higher than FCLL respectively.
With D-GPT, the performance of both PolCLIPbase

and PolCLIPlarge is enhanced thanks to the seman-
tically augmented contexts with lexical definitions.
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In this situation, PolCLIPlarge gains an F1-score of
83.62% on Textual-WSD, which is 2.53% higher
than SACE. It attains an HR@1 of 83.59% and a
MRR@10 of 90.07% on Visual-WSD, which are
2.22% and 2.38% higher than FCLL respectively.

Specifically, without training, Openai/CLIP-VIT-
L/14, Laion/CLIP-VIT-L/14, and Openai/CLIP-
VIT-H/14 (collectively called CLIPs) obtain zero-
shot F1-scores below 50% on all the Textual-WSD
test data, due to the pre-training data and goal of
CLIPs do not target WSD. Conversely, UVWSD
obtains over 80% zero-shot HR@1 on Visual-WSD.
While only using the Image-Enhanced SemCor as
the training set, PolCLIPbase outperforms CLIPs,
BEM, SACE, and Z-Reweighting on Textual-WSD,
even though its performance on Visual-WSD is
slightly inferior to FCLL. When the combination
of Image-Enhanced SemCor and VWSD-KB is
used as the training set, PolCLIPlarge shows fur-
ther improvement over PolCLIPbase and surpasses
all baseline models. Additionally, the effectiveness
of the disambiguation-oriented image-sense dataset
is proven, with the performance of all the baseline
models on WSD benchmarks being bolstered.

4.4 Ablation study
An ablation study is conducted to reveal the contri-
bution of each module and the results are reported
in Table 3. For the two generation-based training
objectives, the Sense-to-Image Generation mod-
ule is removed first, which corresponds to LSIG.
In this scenario, the F1-score of PolCLIPlarge

on Textual-WSD decreases by 8.08% and the
HR@1 on Visual-WSD drops by 1.07%. This in-
dicates that the implicit image information gener-
ated by the SIG module aids PolCLIPlarge in ac-
quiring enriched multimodal representations. Sec-
ondly, the Image-to-Sense Generation module is re-
moved, which corresponds to LISG. The HR@1 of
PolCLIPlarge on Visual-WSD decreases by 5.82%
and the F1-score on Textual-WSD drops by 1.43%.
This demonstrates that the implicit sense informa-
tion generated by the ISG module also facilitates
PolCLIPlarge obtaining deep polysemy knowledge.

Regarding the two understanding-based train-
ing objectives, the alignment process between the
anchor focused on ambiguous target words and
candidate images is eliminated first, which corre-
sponds to LW2I . This means that PolCLIPlarge

exclusively trains for Textual-WSD. At this point,
the HR@1 of PolCLIPlarge on Visual-WSD is only
9.29%. PolCLIPlarge is regarded as a model that

Models
Textual-WSD

ALL F1-score (%)
Visual-WSD
HR@1 (%)

w/o-SIG 74.52 (-8.08) 81.21 (-1.07)
w/o-ISG 81.17 (-1.43) 76.46 (-5.82)
w/o-W2I 82.95 (+0.35) 9.29 (-72.99)
w/o-W2S 19.73 (-62.87) 82.72 (+0.44)

Table 3: Ablation study of PolCLIPlarge on the WSD
benchmark test sets.

Figure 3: The experimental results of PolCLIPlarge

with different layer numbers for optimizing the image
encoder.

makes random selections for Visual-WSD, since
it is required to choose one from ten candidate
images for each instance. However, the trade-off
problem caused by multi-task training objectives
allows its F1-score on Textual-WSD has a 0.35%
improvement. Secondly, the alignment process
between the anchor and candidate senses is elim-
inated, corresponding to LW2S . This means that
PolCLIPlarge exclusively trains for Visual-WSD.
In this situation, the F1-score of PolCLIPlarge on
Textual-WSD is only 19.73% but the HR@1 on
Visual-WSD increases by 0.44%. The explanations
are similar. An additional experiment, which in-
vestegates the generality of D-GPT for WSD, is
provided in Appendix D.

Overall, the two generation-based modules actu-
ally facilitate PolCLIP acquiring multimodal pol-
ysemy knowledge. The two understanding-based
alignment processes are the most critical compo-
nents, since they maximize the similarities between
contexts and senses/images in a feature space.

4.5 Optimal layer number for optimizing
image encoder

To reduce the computational cost, we opt not to op-
timize all parameters of the image encoder. With all
parameters of the text encoder being optimized, the
last 0/4/8/12 layers of the image encoder are sepa-
rately optimized to investigate their impact on the
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Models NOUN VERB ADJ ADV

SACE 82.84 74.23 84.77 81.90

PolCLIPlarge
84.23

(+1.39)
74.38

(+0.15)
88.13

(+3.36)
87.62

(+5.72)

Table 4: The F1-scores of SACE and PolCLIPlarge for
ambiguous target words with different parts of speech.

model performance. The results of PolCLIPlarge

with different layer numbers for optimizing the im-
age encoder are displayed in Figure 3. When zero
layers are optimized (meaning the image encoder
is completely frozen), PolCLIPlarge has the small-
est parameter size and the SOTA results on WSD
benchmarks. Therefore, this model configuration
is selected as our best model (as reported in Ta-
ble 2). It is interesting that when more layers are
optimized, the model performance gradually im-
proves in a small way for Textual-WSD, but drops
significantly for Visual-WSD. This is contrary to
our expectations. Theoretically, optimizing more
layers of the image encoder should enhance the
model ability to capture image knowledge. We
speculate that redundant knowledge, introduced by
some noisy image-sense pairs in the training set, in-
creases the model’s training burden. Thus, refining
this disambiguation-oriented image-sense dataset
would be valuable.

4.6 Analysis on model performance for
different PoS

Since some words may present different parts of
speech (PoS) in contexts, exploring the model per-
formance for ambiguous target words with differ-
ent PoS is beneficial to reveal the unique advan-
tages of the PolCLIP model. The F1-score results
of SACE and PolCLIPlarge, trained on the combi-
nation of Image-Enhanced SemCor and VWSD-
KB, are shown in Table 4. Compared with SACE,
PolCLIPlarge has improvements of 1.39%, 0.15%,
3.36% and 5.72% in NOUN, VERB, ADJ and ADV
respectively. One of the challenges in WSD tasks is
the difficulty of understanding non-concrete words
accurately, which are often adjectives or adverbs.
PolCLIPlarge happens to have a more obvious im-
provement in adjectives and adverbs. Therefore,
we believe that PolCLIPlarge has favorable adapt-
ability and flexibility for ambiguous target words
with different PoS, due to its generation-based ad-
vantages. On the one hand, it can supplement tan-
gible senses or images with semantically concrete
images or descriptions. On the other hand, it can

also supplement non-concrete senses or images
with semantically abstract images or descriptions.
The case study and visualizations of the implicit
image-text complementary information generated
by the SIG and ISG modules for concrete and non-
concrete examples are provided in Appendix E.

5 Conclusion

This paper proposes a unified image-text WSD
model PolCLIP, which achieves state-of-the-art
performance on Textual-WSD and Visual-WSD
benchmark datasets. Extensive experimental
results prove the effectiveness of our image-
text complementarity strategy. A series of in-
depth explorations of the model architecture
demonstrate the Sense-to-Image Generation mod-
ule and the Image-to-Sense Generation mod-
ule can generate effective multimodal comple-
mentary representations. The disambiguation-
oriented image-sense dataset empirically facili-
tates WSD models understanding of multimodal
polysemy knowledge. This may provide a
benchmark for the future Multimodal-WSD task.
Source codes and datasets are publicly released at:
https://github.com/CharlesYang030/PolCLIP.

Limitation

In this work, we did not explore the Multimodal-
WSD models on multilingual data. The pro-
posed image-text complementarity strategy was
employed to address the modality missing issues
in unimodal WSD datasets. However, the PolCLIP
model still lacked the ability to generate realis-
tic senses and images that can be intuitively val-
idated in terms of their semantics. Moreover, D-
GPT was built upon GPT-3.5 which was a closed-
source model and may be changed, updated, or
even discontinued. In future work, we plan to
further expand the disambiguation-oriented image-
sense dataset to cover more languages. We will
also develop a large generic model suitable for
Multimodal-WSD.
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A Fine-tuning D-GPT

A fine-tuned disambiguation-oriented GPT-3.5 (D-
GPT) is developed to generate lexical definitions
for ambiguous target words during the testing
phase. The gpt-3.5-turbo-1106 model is chosen
as the backbone model, since it is one of the lat-
est fine-tunable GPT models released by OpenAI
and outperforms several open-source LLMs with
smaller parameter sizes in terms of inference capa-
bilities. Constrained by fine-tuning costs, we ran-
domly collect 50,000 data from SemCor to serve as
the fine-tuning dataset. Each piece of fine-tuning
data consists of a query and an output. The OpenAI
fine-tuning platform requires users to simply pack-
age their fine-tuning corpus into message-style data
and upload it for end-to-end fine-tuning. Following
OpenAI’s guidelines1, the format of message-style
data for fine-tuning D-GPT is shown in Figure 4.
After fine-tuning, D-GPT generates lexical defi-
nitions based on queries. For example, a query
“What does the word ‘bank’ mean in the context
‘They pulled the canoe up on the bank’?” is fed
into D-GPT. Then, D-GPT possibly generates an
interpretation “The word ‘bank’ refers to the side
or edge of a river, lake, or other body of water”.
Even though the output of D-GPT seems to be the
answer to generative WSD tasks, we aim to use the
output to build a semantically augmented context
because WSD is defined as a classification task in
this work.

Figure 4: The format of message-style data for fine-
tuning D-GPT. The red GT denotes the ground-truth
sense.

B Construction of the
disambiguation-oriented image-sense
datasets

The disambiguation-oriented image-sense dataset
was constructed based on SemCor (Miller et al.,
1993) and VWSD-KB (Yang et al., 2023) datasets.

1The fine-tuning guidelines of OpenAI: https://
platform.openai.com/docs/guides/fine-tuning

Figure 5: The evaluation results of SACE, FCLL, and
PolCLIPlarge on the benchmark test sets after integrat-
ing D-GPT.

Specifically, the offline version of BabelNet2 v5.2
was employed to collect a list of relevant images
based on each sense in these two datasets. If there
were more than five available images in the list,
the top five were selected; otherwise, all images
were retained. However, a minority of the senses
failed to associate with any image through Babel-
Net, as they were typically non-concrete, like ex-
pressing sadness. Thus, BabelPic (Calabrese et al.,
2020a), an image-text dataset for non-concrete con-
cepts, was utilized to find images for a part of non-
concrete senses based on babel-ids. Furthermore,
those senses that we had collected relevant images
were set as an internal knowledge base. For each
sense si that was not included in either BabelNet
or BabelPic, RoBERTa3 was used to identify the
three senses most semantically similar to si within
this internal knowledge base, based on text sim-
ilarity. The first image from each of these three
most similar senses was aggregated as the set of
images corresponding to si. The entire construc-
tion process enabled all word senses in SemCor and
VWSD-KB to be aligned with at least one image
and at most five images.

After construction, we had conducted a compara-
tive analysis between the proposed training dataset
and the existing benchmarks. For Textual-WSD,
we examined all contexts in our training dataset
and the test set, ensuring there were no duplicates.
For Visual-WSD, all images were uniformly trans-
formed into 3×224×224 tensors, and then paired
with their respective contexts to form <context, ten-
sor> pairs (Mo et al., 2023; Chen et al., 2024).
There were no duplicate <context, tensor> pairs.
Through this manual verification, we ensured there
was no data leakage.

2BabelNet (updated to version 5.3): https://babelnet.
org/

3The hugging face link of RoBERTa: https://
huggingface.co/FacebookAI/roberta-large
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Figure 6: Visualizations of the implicit image-text complementary information generated by the SIG and ISG
modules for concrete and non-concrete examples.

C Baselines

The details of baselines are as follows:
SOTA models in Textual-WSD: BEM (Blevins

and Zettlemoyer, 2020) adopted two text encoders
and focuses on the representations of ambiguous
target words rather than the complete context rep-
resentations. SACE (Wang and Wang, 2021) em-
ployed an interactive context exploitation method
and selects similar sentences from the same doc-
ument to enhance context representations. Z-
Reweighting (Su et al., 2022) utilized a strategy
for adjusting training on imbalanced datasets at the
word level. These three models obtain outstanding
performance on Textual-WSD benchmarks when

training exclusively on SemCor.

SOTA models in Visual-WSD: FCLL (Yang
et al., 2023) employed a fine-grained image-text
contrastive learning mechanism and benefited from
VWSD-KB. It won first place in SemEval-2023
Task 1. UVWSD (Kwon et al., 2023) did not ne-
cessitate training but achieved remarkable perfor-
mance by employing Bayesian inference to incor-
porate sense definitions.

SOTA models in image-text learning tasks:
Openai/CLIP-VIT-L/14 (Radford et al., 2021),
Laion/CLIP-VIT-L/14 and Openai/CLIP-VIT-H/14
(Schuhmann et al., 2022) all employ a dual-stream
architecture to learn image-text knowledge, simi-
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lar to our PolCLIP model. The first model is pre-
trained on over 400 million image-text pairs, and
the latter two are pre-trained on the English subset
of LAION-5B (Schuhmann et al., 2022), a large
publicly available image-text dataset.

D Generality of D-GPT

An additional experiment is conducted to explore
the generality of D-GPT for WSD tasks. Specifi-
cally, D-GPT is integrated with SACE and FCLL,
and its impact on the performance of these two
models and PolCLIPlarge is illustrated in Figure
5. D-GPT indeed enhances the performance of
these three WSD models. This indicates that us-
ing lexical definitions generated by D-GPT to cre-
ate semantically augmented contexts is a general-
purpose and convenient pipeline for WSD tasks. It
can be applied to various WSD models. Further-
more, compared to the evaluation results without
D-GPT, PolCLIPlarge shows an improvement of
1.02% F1-score and 1.31% HR@1. These are re-
spectively higher than the 0.44% F1-score increase
of SACE on Textual-WSD and the 0.64% HR@1
increase of FCLL on Visual-WSD. This also leads
us to believe that PolCLIP could gain more when
dealing with contexts that are semantically more
accurate, thanks to the image-text complementarity
strategy.

E Effectiveness of the SIG and ISG
modules

In order to further intuitively reveal the effective-
ness and importance of the two generation-based
modules (i.e., SIG and ISG), the generated implicit
image-text complementary information is visual-
ized. Two groups of concrete and non-concrete
examples are collected from the test set. Each
group of examples contains a sense and an im-
age. They are fed into the trained SIG and ISG
modules respectively, and then a sense-generated
image vector and an image-generated sense vector
are output. All senses and images in the training
set are transformed into vectors by text and image
encoders, serving as two separate candidate pools.
By calculating vector similarity, the top-5 most
similar images can be identified from the image
candidate pool based on the sense-generated image
vector. Also, the top-5 most similar senses can be
identified from the sense candidate pool based on
the image-generated sense vector. Visualizations
of these two groups of concrete and non-concrete

examples are shown in Figure 6. For the concrete
example, the top-3 images are semantically con-
sistent with Sense 1. Even if the last two images
do not depict the shape of a bell, they are related
to music or sound, which is one of the functions
of bells. Based on Image 1 related to milk, the
retrieved five senses are all semantically correct.
For the non-concrete example, the top-3 images are
semantically relevant to Sense 2 related to beauty.
Even based on Image 2, which primarily shows a
man’s face expressing pleasure, the top-3 senses
accurately capture concepts of relaxation, laughter,
and beard.

In summary, the SIG and ISG modules are re-
liable in generating effective multimodal comple-
mentary information.
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