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Abstract

Human annotation is a time-consuming task
that requires a significant amount of effort. To
address this issue, interactive data annotation
utilizes an annotation model to provide sugges-
tions for humans to approve or correct. How-
ever, annotation models trained with limited
labeled data are prone to generating incorrect
suggestions, leading to extra human correction
effort. To tackle this challenge, we propose
ARAIDA, an analogical reasoning-based ap-
proach that enhances automatic annotation ac-
curacy in the interactive data annotation setting
and reduces the need for human corrections.
ARAIDA involves an error-aware integration
strategy that dynamically coordinates an anno-
tation model and a k-nearest neighbors (KNN)
model, giving more importance to KNN’s pre-
dictions when predictions from the annotation
model are deemed inaccurate. Empirical stud-
ies demonstrate that ARAIDA is adaptable to
different annotation tasks and models. On av-
erage, it reduces human correction labor by
11.02% compared to vanilla interactive data
annotation methods.

1 Introduction

Data annotation is a challenging task that involves
a tradeoff between annotation quality and budget.
While some platforms offer a cost-effective solu-
tion by relying on ML models to annotate data
automatically 1, the quality of such annotations
is often compromised (Wang et al., 2022a). It is
particularly true in the limited data annotation
scenario where the annotation budget is limited
or when unlabeled data are scarce (Ringger et al.,
2007; Chaudhary et al., 2021; Huang et al., 2024).

Human-machine interactive annotation meth-
ods were introduced to reduce annotation effort
while maintaining annotation quality (Klie et al.,

*Correspondence to Wenqiang Lei.
1For example, https://aws.amazon.com/sagemaker/

groundtruth/.
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Figure 1: Comparison between manual annotation and
interactive annotation.

2018, 2020; Le et al., 2021). As illustrated in Fig. 1,
these methods introduce an annotation model to
suggest labels (model annotations) to human an-
notators. The annotators accept a suggested label
if it is correct. Otherwise, they have to correct the
label manually. Compared to manual annotation,
interactive annotation requires less human effort
because human annotators only have to verify the
model annotations instead of coming up with an
answer from scratch, leading to potential speedup
of the annotation process (Klie et al., 2020).

Evidently, the annotation model’s accuracy is
crucial because incorrect suggestions require addi-
tional human effort to rectify. Existing methods up-
date the annotation model based on previously ac-
cepted or corrected data (ground-truth annotation),
aiming to reduce human corrections by improving
prediction accuracy at each iteration (Klie et al.,
2020; Wu et al., 2022). However, in the context of
limited data annotation, the annotation model lacks
sufficient labeled training data to reach a reason-
able accuracy and is prone to providing incorrect
suggestions (Rietz and Maedche, 2021). For exam-
ple, in the span relation annotation example shown
in Fig. 2 (blue), the annotation model continues
to make mistakes on similar examples ([car, tyre])
even after the human annotator corrects the label
‘[tree, leaf ]=>component’. As a result, this leads
to more human corrections. Such a problem is
crucial for interactive annotation and has been iden-
tified by recent work (Rietz and Maedche, 2021),
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Figure 2: Example on span relation annotation. An under-trained annotation model results in more suggestion errors
and increases human correction effort. ARAIDA improves the model annotation accuracy via the KNN model and
the error-aware integration strategy for dynamical coordination of annotations.

but it has yet to be addressed.
Inspired by cognitive studies on efficient learn-

ing (Lake et al., 2017, 2015; Mitchell, 2021),
finding that the human brain can learn from a
few examples because our brain is continuously
building analogies during the learning process of
concepts to facilitate comprehension, we propose
Analogical Reasoning-Augmented Interactive Data
Annotation (ARAIDA), which is designed to im-
prove interactive annotation under the limited data
annotation setting. ARAIDA provides an annota-
tion reference to the annotation model by retrieving
previously human-labeled examples in the prox-
imity of the example in consideration using the
k-nearest neighbors (KNN) method. As illustrated
in Fig. 2(red), the final suggestion combines the
model annotation and the annotation reference pro-
vided by KNN via an error-aware integration strat-
egy. This strategy dynamically coordinates the an-
notation model and KNN, giving more importance
to KNN’s prediction if the predicted label from the
annotation model is estimated to be inaccurate.

We conduct simulated experiments for the lim-
ited data annotation task and estimate the hu-
man annotation effort based on the number of
human corrections (or the number of suggestion
errors) following Hwa (2000) and Kristjansson
et al. (2004). We test ARAIDA on different word-
level and sentence-level annotation tasks, combin-
ing with different annotation models (i.e., classic
and LLM-based models). The result shows that
ARAIDA consistently improves different annota-
tion models’ accuracy across various tasks. On
average, it reduces human corrections by 11.02%.
Further analysis attributes this improvement to the
few-shot capability of the KNN module and the
error-aware integration strategy that effectively syn-
ergizes complementary annotations. In summary,

our contributions are as follows:

• Calling attention to the limited data annotation
scenario. We highlight the under-trained prob-
lem of the annotation model, which is crucial in
practice but overlooked in interactive annotation.

• Introducing ARAIDA that involves a KNN mod-
ule and an error-aware integration strategy to al-
leviate the under-trained problem by facilitating
coordination between the two model annotators
(i.e., the vanilla annotation model and KNN).

• Demonstrating the efficacy of ARAIDA in enhanc-
ing suggestion accuracy, reducing human correc-
tions, and showcasing its flexibility to combine
with various annotation models through exten-
sive experiments.

2 Related Work

Our research is tied to interactive data annotation,
human analogical reasoning (KNN), and retrieval-
based language models. We provide a literature
review and highlight our differences.

Interactive Data Annotation. Interactive data
annotation aims to reduce human annotation effort
by incorporating an annotation model that suggests
labels to human annotators during an interactive
process (Klie et al., 2018, 2020; Le et al., 2021).
The annotation model must be sample-efficient be-
cause, when we start a new annotation task, there
are few labeled examples to learn from. Current
studies focus on employing active learning (Klie
et al., 2018; Laws et al., 2011; Casanova et al.,
2020; Li et al., 2021; Huang et al., 2023) to prior-
itize annotating examples more likely to improve
model accuracy. While active learning can reduce
the required training data to some extent, it may
not be effective in limited data annotation scenarios
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or when complex hypotheses or semantics are to
be learned (Dasgupta, 2005; Rietz and Maedche,
2021). Another approach is to employ LLMs for au-
tomatic data annotation, which have demonstrated
strong performance under zero-shot and few-shot
settings (He et al., 2023; Gilardi et al., 2023). How-
ever, such performance might not be consistent for
difficult tasks, as they may even perform worse
than fine-tuned small language models (Xiao et al.,
2023). Regardless of whether we use active learn-
ing and whether we use a classic or LLM-based
annotation model, our empirical evidence demon-
strates that ARAIDA can effectively decrease the
amount of human corrections required.

KNN and Analogical Reasoning. While KNN
has been extensively utilized in NLP commu-
nity (Wang et al., 2019; Liu et al., 2023; Wang
et al., 2022b), its underlying mechanism is of-
ten overlooked. To shed light on this, cognitive
studies (Lake et al., 2017, 2015; Mitchell, 2021)
revealed that the KNN inference process aligns
with human analogical reasoning, enabling efficient
learning (Lake et al., 2017, 2015). In particular,
analogical reasoning establishes connections be-
tween relevant aspects of the current task and past
experiences, forming abstractions that enhance hu-
man reasoning capabilities (Mitchell, 2021). In
this context, KNN facilitates sample-efficient learn-
ing by leveraging similarities between the example
to be labeled and previously annotated examples,
resulting in exemplary solutions (Bautista et al.,
2016), which reduce the training data requirement.

Retrieval-Based Language Models. There is
growing interest in enhancing the output of lan-
guage models by incorporating a retrieval mod-
ule (usually KNN or alike) that interpolates with a
datastore built from the training data (Khandelwal
et al., 2019; Kassner and Schütze, 2020). Com-
pared to vanilla language models, retrieval-based
models ground the predictions in labeled training
examples, potentially yielding better explainability
and sample efficiency (Asai et al., 2023). This ap-
proach has shown promising results in tasks such
as machine translation (Khandelwal et al., 2021;
Liu et al., 2023), named entity recognition (Wang
et al., 2022b), and question answering (Kassner
and Schütze, 2020). While some studies have ex-
plored the use of dynamically adjusted combina-
tion weights between the language model and the
retrieval module (Wang et al., 2021; Zheng et al.,
2021; Jiang et al., 2021), our method differs signifi-

cantly for two main reasons: 1) Different tasks. We
are the pioneers in introducing KNN to the interac-
tive data annotation task, whereas these methods
are primarily designed for machine translation. 2)
Different techniques. We adjust the weight by esti-
mating the error of model predictions for each data
point (e.g., sentence), whereas these methods learn
the weight for each token without error estimation.

3 ARAIDA: The Proposed Method

We present ARAIDA, an analogical reasoning-
based method for interactive data annotation that
provides an annotation reference to the annotation
model by retrieving previously human-labeled ex-
amples in the proximity of the example in consid-
eration. We detail the KNN inference module in
Section 3.1 and the error-aware integration strategy
in Section 3.2. Finally, the optimization details are
provided in Section 3.3.

Task Formalization and Overview. Let X de-
note the dataset that needs to be annotated, with C
being the number of classes. Given a data batch
xt at time t, the annotation model ft predicts label
vectors ft(xt) ∈ R|xt|×C , and the KNN module
gt infers label vectors gt(xt) ∈ R|xt|×C using pre-
viously annotated data stored in a datastore At.
Then, we estimate the probability λt ∈ R|xt|×1

of the annotation model’s predictions ft(xt) be-
ing reliable, i.e., argmax(ft(xt)) = yt, where
argmax(·) returns indices of the classes with the
highest predicted probability and yt ∈ R|xt|×1 are
the ground truth labels. Finally, we use λt to weigh
the two predictions ft(xt) and gt(xt) through a
linear weighted combination:

Ft(xt) = λt · ft(xt) + (1− λt) · gt(xt). (1)

Notably, closed-source language models such as
ChatGPT produce discrete labels rather than pre-
dicted distributions. Therefore, we cannot combine
its predictions with KNN’s using linear combina-
tion. In such case, we use binary values (0 or 1)
for λt, which acts as a function allocation to de-
termine whether ft or gt should apply to each ex-
ample. Once the human approves or corrects the
final suggestions, the datastore At is updated with
the newly arrived data batch and its corresponding
labels. In addition, the annotation model ft (if ap-
plicable), KNN module gt, and weighting strategy
λt are updated via back-propagation.
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3.1 KNN Inference
We utilize a weighted KNN to perform inference,

defined as gt(x
i
t) =

∑
a∈ρi

waya∑
a∈ρi

wa
, where ρi ∈ At

is the k nearest neighbors of each example xit,
ya corresponds to the human annotation of each
neighbor a ∈ ρi. The similarity between xit and
a is measured by wa = 1

d(xi
t,a)

, where d(xit, a) =

∥wknn(x
i
t − a)∥2 is a distance metric parameter-

ized by wknn. We use the similarity measure to
retrieve ρi. To avoid overconfidence in KNN in-
ference, we apply label smoothing to the labels
of the retrieved neighbors. Specifically, we set
ya = ya(1− α) + α/C, where α = 1− 1

C .

Datastore Maintenance Strategy. The datastore
At consisting of historically annotated data grows
in size as the interactive annotation continues, caus-
ing the KNN’s retrieval to be less time-efficient.
To address this issue, we impose a constraint on
the maximum datastore size using a pre-defined
hyperparameter. We propose a class-aware mainte-
nance strategy. Precisely, if At exceeds its budget,
data that is from the majority class 2 and most sim-
ilar to its class prototype3 is discarded first. This
strategy ensures that the datastore contains as many
labeled data from different classes as possible while
minimizing the impact on the class prototype. Ap-
pendix A.1 and A.3 present experiments using dif-
ferent datastore sizes and maintenance strategies.

3.2 Error-aware Integration Strategy
Motivation. A popular method to combine an-
notations from two models (i.e., annotation model
and KNN) is to use a weighted linear combina-
tion with a constant weight 4 (Liu et al., 2023;
Wang et al., 2022b). However, assuming that one
model consistently outperforms the other on all
unlabeled data is unrealistic. Furthermore, both
models are updated with each new batch of data in
interactive data annotation, and their relative per-
formance will alter, making it infeasible to find
the optimal weight through a one-off hyperparam-
eter tuning. To address this issue, we propose an
error-aware integration strategy that automatically
assigns weights to different models, relying more
on KNN inference when the annotation model’s
prediction is estimated to be inaccurate.

2The majority class refers to the class with the highest
frequency in At.

3The class prototypes are the average of the feature vectors
in At that belong to each class.

4Equivalent to when λt(xt) in Eq.1 is a constant.

Error Estimation of Model Annotation. We
base on the intuition that if the model ft consis-
tently makes mistakes on previous examples simi-
lar to the current data point xit, then its prediction
ft(x

i
t) will likely be incorrect. To achieve this, we

parameterize the integration strategy λt as a neural
network to learn from the customized input.

• Customized Inputs. For each data point xit, we
derive the input xit to the integration strategy λt,
which considers the local error estimation Ei

t

and local density Di
t. Specifically, Ei

t is a vector
with elements eit,j = 1[argmax(ft(aj)) = yaj ]
indicates if the annotation model ft predicted
correctly on each annotated example aj ∈ ρi in
the k nearest neighbors of xit. The local density
Di

t is a distance vector, with each element being
d(xit, aj). These two vectors are combined using
the element-wise multiplication operator ⊙ to
create the input: xit = Di

t ⊙Ei
t −Di

t ⊙ (1−Ei
t).

Notably, xit measures the error regularity of xit
among its neighborhood, as the more positive
values in the vector xit, the less likely ft would
make an error on xit.

• Learning Objectives. We collect the ground truth
labels yt through human feedback. To optimize
the error-aware integration strategy λt, we use
a mean squared error (MSE) loss, denoted as
ℓtd(yt, ft(xt), λt) = MSE(1[argmax(ft(xt)) =
yt], λt(xt)), where 1[·] indicates whether the
ground truth labels yt are the same as the pre-
dictions ft(xt). The purpose of this loss function
is to guide λt by encouraging it to predict errors
made by ft.

3.3 Optimization of ARAIDA

To simplify the optimization process, we indepen-
dently optimize the annotation model ft, KNN
model gt, and error-aware integration strategy λt.
We treat human feedback yt as the ground truth
following previous studies on interactive annota-
tion (Klie et al., 2018, 2020; Le et al., 2021). It
is worth noting that ARAIDA supports any task-
specific annotation model and uses its correspond-
ing loss function ℓf to update the parameters. Com-
bining the ℓd loss and the negative log-likelihood
loss ℓg to optimize KNN, we formulate the final
loss function as follows:

L(f, g, λ) =
Bt∑

i=1

ℓf (yi, ft(xi)) + ℓg(yi, gt(xi))

+ ℓd(yi, ft(xi), λt),

(2)
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where Bt represents the total data accumulated
until round t. There are two challenges to op-
timizing this objective function. Firstly, the op-
erator used in KNN to retrieve the k nearest
neighbors is not differentiable. To address this
problem, we utilize the Gumbel-softmax-based re-
parameterization trick (Jang et al., 2016) to facil-
itate the optimization process. Secondly, the loss
function L presents a bi-level optimization prob-
lem, where the optimization of λt is nested within
the optimization problems of ft and gt. As a re-
sult, we update ft, gt, and λt iteratively using a
coordinate-descent approach. Formally, at each op-
timization iteration k, we have network parameters
θkf , θkg , and θkλ corresponding to fk, gk, and λk.
The update procedures are as follows:

θk+1
f = θkf −▽fL(f, gk, λk),

θk+1
g = θkg −▽gL(fk, g, λk),

θk+1
λ = θkλ −▽λL(fk+1, gk+1, λ).

(3)

4 Experiments

We conduct extensive experiments to assess
ARAIDA’s effectiveness in the limited data anno-
tation scenario. Our primary focus is to assess
whether ARAIDA can decrease the human effort
required for corrections by providing more precise
annotations at various stages of the annotation pro-
cess (see Section 4.2). Furthermore, we perform a
comprehensive examination to investigate the be-
havior and impact of KNN and the error-aware
integration strategy (see Section 4.3). Additional
analysis of our error-aware integration strategy is
presented in Section 4.4. Lastly, we analyze the
sensitivity of the parameters in Appendices A.

4.1 Experimental Setup
Tasks & Datasets. We experiment with word-
and sentence-level annotation tasks. These tasks
have been highlighted as crucial in various web
applications (Yao et al., 2021; Marcos-Pablos and
García-Peñalvo, 2020; Lee et al., 2022). To sim-
ulate the scenario of limited data annotation, we
follow Dou et al. (2019) by imposing dataset size
restrictions, ranging from 1K to 5K. Table 1
overviews the dataset statistics.

• Word-level annotation. We focus on the knowl-
edge graph completion task, which annotates
the semantic classes of input word pairs (e.g.,
‘[tree, leaf ]=>component’). We use two bench-
mark knowledge graph datasets in our experi-

Dataset # Val. Classes
WN18RR 3,034 Hypernym; Derivation; Member;

Component; Synset; Synonym;
Verb group; Instance of hypernym;

FreeBase 5,116 Contains; Country; Track_role;
Profession; Group_role; Adjoins;
Film_release; Nutrient

IMDB 5,000 Positive; Negative
SST-5 1,101 Strong positive; Positive; Neutral;

Negative; Strong negative

Table 1: Statistics of datasets. For each dataset, we
randomly sample 5K examples from the original train-
ing dataset to form the unlabeled data, and the valida-
tion dataset is taken from the original dataset. Table 4
presents the mapping from the original categories to the
categories we use.

ments, namely the WN18RR (Dettmers et al.,
2018)5 and Freebase (Bollacker et al., 2008)6

dataset. We experiment with the eight most fre-
quent classes for each dataset.

• Sentence-level annotation. We consider the sen-
timent classification task and experiment on two
benchmark datasets, including SST-5 (Socher
et al., 2013)7, and IMDB (Maas et al., 2011)8.
SST-5 dataset contains categories on a scale of
1-5 while IMDB contains two categories (posi-
tive/negative).

Evaluation Metric. We aim to minimize the total
human corrections (i.e., the total model suggestion
errors) annotating a given amount of data using
the interactive annotation process. Therefore, we
report the Machine Cumulative Accuracy (MCA),
defined as the total correct suggestions divided by
the total suggestions for different dataset sizes. To
assess the performance of each method in the lim-
ited data annotation scenario, we present the mean
and the corresponding standard deviation by vary-
ing the dataset size ({1K, 2K, 3K, 4K, 5K}).

Annotation Models. To verify the generalizabil-
ity of ARAIDA, we apply it in conjunction with
different annotation models:

• Classic annotation models. We utilize
lightweight annotation models following

5https://paperswithcode.com/dataset/wn18rr
6https://www.microsoft.com/en-us/download/

details.aspx?id=52312
7https://nlp.stanford.edu/sentiment/code.html
8https://www.kaggle.com/

datasets/lakshmi25npathi/
imdb-dataset-of-50k-movie-reviews
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Annotation
Model

Without Active Learning (AL) With Active Learning (AL)
Word-level Annotation Sentence-level Annotation Word-level Annotation Sentence-level Annotation
WN18RR FreeBase IMDB SST-5 WN18RR FreeBase IMDB SST-5

Dist./FT 50.44±1.02 32.47±12.37 70.18±8.43 36.02±3.14 47.77±0.91 26.92±10.85 66.98±6.31 35.20±3.76
Dist./FT + ARAIDA 52.16±1.37 43.02±6.43 79.33±2.81 37.21±3.03 49.54±0.84 39.06±4.57 75.84±1.14 37.02±2.50
LLaMa2 31.35±1.89 24.41±1.77 80.21±2.64 37.83±1.64 31.35±1.89 24.41±1.77 80.21±2.64 37.83±1.64
LLaMa2 + ARAIDA 45.15±1.96 38.20±1.91 88.47±2.03 42.03±1.88 46.33±2.01 38.79±1.96 89.68±2.25 42.61±1.91
LLaMa2sft 58.24±2.79 53.11±1.38 94.06±9.02 46.84±6.30 59.28±2.57 55.39±2.01 95.13±10.15 47.45±6.17
LLaMa2sft + ARAIDA 60.74±2.33 55.23±1.46 95.15±9.32 49.62±5.98 61.02±2.18 56.71±2.09 95.88±12.27 49.51±6.03

Table 2: Machine cumulative accuracy (MCA) scores using various methods. We report the averaged results across
varying amounts of data. LLaMa2 with AL has identical performance as LLaMa2 because the vanilla LLaMa2
model is not updated during the interactive annotation process. Thus, the data order does not impact the performance.
When combined with ARAIDA, the performances w/ and w/o AL are different because the KNN and integration
strategy models are updated.

previous works (Desmond et al., 2021; Chen
et al., 2020; Hedderich et al., 2021). Specifically,
for word-level tasks, we use a distributional
model (Roller et al., 2014; Kober et al., 2021)
with pretrained GloVe word embeddings
embedding (Pennington et al., 2014)9. For
sentence-level tasks, we use FastText (Joulin
et al., 2017) to derive the sentence embeddings.
We denote this baseline as Dist./FT.

• LLM-based annotators. We also use large lan-
guage models (LLMs) as annotation models,
whose few-shot and in-context learning capa-
bilities might help with the limited data anno-
tation process. We experiment with LLaMa2-
7B (Touvron et al., 2023) and ChatGPT (Ouyang
et al., 2022) 10. We use zero-shot and few-shot
prompts for ChatGPT (denoted as ChatGPTzero

and ChatGPTfew). Detailed prompts can be
found in Table 7. For LLaMa2, we consider both
the vanilla LLaMa2 that uses the same zero-shot
prompts as ChatGPTzero and LLaMa2sft, which
is fine-tuned using an open-source toolkit11 dur-
ing the interactive annotation process. Fine-
tuning data examples can be found in Table 8.

Impact of Active Learning. Regardless of the
annotation model, the sequence of the data to anno-
tate also affects the amount of human corrections.
Intuitively, if we show unambiguous examples first,
few corrections are needed. However, the anno-
tation model and KNN may not learn to handle
more challenging examples and may subsequently

9We did not use contextualized embeddings because the
word-level task in our experiment has no context.

10The gpt-3.5-turbo checkpoint in OpenAI’s
API (https://platform.openai.com/docs/models/
gpt-3-5).

11https://github.com/Alpha-VLLM/
LLaMA2-Accessory

make more mistakes. Previous studies focused
on applying active learning in interactive annota-
tion to enhance the annotation models’ sample effi-
ciency (Laws et al., 2011; Klie et al., 2018; Li et al.,
2021). To study the impact of active learning in the
limited data annotation scenario, we compare an
uncertainty-based active learning method with ran-
dom data ordering for different annotation models
with and without ARAIDA. Note that we omit the
ChatGPT with AL results because we are unable to
estimate its prediction uncertainty accurately.

Implementation Details. All experiments are
carried out on a machine with Intel(R) Xeon(R)
Gold 5317 CPU @ 3.00GHz and a GeForce RTX
3090 GPU. For simplicity, we implement our inte-
gration strategy using a three-layer, fully-connected
network with ReLu activation and dropout. For
KNN, we set k = 20 for ρt. KNN runs in the
embedding space of text-embedding-ada-002 (Nee-
lakantan et al., 2022) when combining with Chat-
GPT. For Dist./FT and LLaMa2 models, KNN runs
in the corresponding model’s embedding space.
Moreover, we leave the details of LLM prompts
and mode fine-tuning examples in Appendix D.

4.2 Main Result
We evaluate the effectiveness of ARAIDA in en-
hancing the model annotation quality, hence re-
ducing human correction effort. Table 2 and
Figure 3 show the machine cumulative accuracy
scores averaged across varying amounts of data
({1K, 2K, 3K, 4K, 5K}) for different experimen-
tal settings. We make the following observations:

ARAIDA reduces human corrections consis-
tently. As illustrated in Table 2 and Figure 3,
ARAIDA consistently improves the model sugges-
tion accuracy across different annotation models
and annotation tasks. Specifically, it achieves a
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Figure 3: MCA scores using ChatGPT-based methods.
We omit the ChatGPT with AL results because we are
unable to estimate its prediction uncertainty. ARAIDA
can further improve ChatGPT’s performance

13.06% performance gain in MCA on Dist./FT,
3.85% on LLaMa2sft, 16.80% on Dist./FT with
AL, 2.61% on LLaMa2sft with AL, 30.48% on
LLaMa2, 8.81% on ChatGPTzero, and 1.55% on
ChatGPTfew. On average, it achieves an 11.02%
performance gain in model annotation accuracy,
translating into a reduction in human correction
effort in practice.

Active learning does not always help. When
comparing the annotation models with and with-
out active learning, we observe that active learning
does not always improve model performance and
can even harm the performance in some instances
(e.g., Dist./FT). We hypothesize that the more chal-
lenging cases selected by active learning might
require more training data for the models to cor-
rect their predictions (Dasgupta, 2005; Rietz and
Maedche, 2021), which are unavailable in limited
data annotation scenarios. Instead of relying on an
annotation model alone, ARAIDA acts as a posthoc
“plug-in” that fixes the annotation model’s mistakes
using retrieved annotation references and yields
a robust improvement under various settings with
and without active learning.

LLMs are strong annotation models. ARAIDA
can improve them further. LLMs perform better
than classic distributional models, especially for
sentence-level tasks. Furthermore, LLaMa2 with
fine-tuning consistently outperforms the vanilla
LLaMa2 model, and few-shot ChatGPT consis-
tently beats its zero-shot counterpart. Interest-
ingly, comparing these two pairs of annotation
models, we observe that ARAIDA brings a more
substantial improvement to weaker models. When
the annotation models are already strong (in the
case of LLaMa2sft and ChatGPTfew), ARAIDA is

more conservative in making corrections, yielding
a smaller but consistent improvement. It demon-
strates ARAIDA’s robustness to combine with an-
notations models with different performances.

Annotation
Model

Word-level Annotation Sentence-level Annotation
WN18RR FreeBase IMDB SST-5

Dist./FT
ARAIDA 52.16±1.37 43.02±6.43 79.33±2.81 37.21±3.03
- w/o KNN 50.44±1.02 32.47±12.37 70.18±8.43 36.02±3.14
- w/o f(·) 50.28±3.01 41.52±5.87 78.48±0.68 35.02±1.37
- w/ const. 51.85±4.77 41.78±6.78 78.58±3.94 37.07±2.68

LLaMa2sft
ARAIDA 60.74±2.33 55.23±1.46 95.15±9.32 49.62±5.98
- w/o KNN 58.24±2.79 53.11±1.38 94.06±9.02 46.84±6.30
- w/o f(·) 45.23±2.58 39.82±3.41 89.13±0.55 42.93±1.71
- w/ const. 58.24±2.79 53.11±1.38 94.06±9.02 46.84±6.30

ChatGPTzero

ARAIDA 50.42±1.37 43.11±1.83 93.52±1.24 48.41±1.06
- w/o KNN 47.62±2.89 38.85±2.23 92.44±0.95 41.30±1.72
- w/o f(·) 48.73±2.64 41.30±5.04 90.61±0.26 45.84±1.12
- w/ const. 48.73±2.64 41.30±5.04 92.44±0.95 45.84±1.12

ChatGPTfew

ARAIDA 52.53±1.67 52.26±3.44 94.92±1.02 55.12±1.36
- w/o KNN 51.30±1.72 51.60±3.15 94.78±0.99 53.85±2.03
- w/o f(·) 48.73±2.64 41.30±5.04 90.61±0.26 45.84±1.12
- w/ const. 51.30±1.72 51.60±3.15 94.78±0.99 53.85±2.03

Table 3: Ablation study on the KNN and the error-aware
integration strategy modules. We report the MCA scores
using various methods, averaging results with different
amounts of data. Error-aware integration strategy effec-
tively coordinates the two annotators.

4.3 Ablation Study
This section aims to perform a comprehensive ex-
amination to investigate the behavior and impact
of the KNN and out integration strategy. We con-
duct an ablation study to analyze the effectiveness
of each component. In particular, we consider the
following baselines:

• ARAIDA w/o KNN: Using the annotation model
alone to suggest labels. Equivalent to λt(·) = 1.

• ARAIDA w/o f(·): Using KNN alone to suggest
labels. Equivalent to λt(·) = 0.

• ARAIDA w/ const.: Using a constant λ∗
t value

for all examples, in contrast to ARAIDA, which
varies λt for different examples. In our experi-
ments, we report the result with the best λ∗

t tuned
on the validation set.

The ablation test results are presented in Table 3.
Due to limited space, we omit the result for vanilla
LLaMa2, which is much weaker than other LLM-
based baselines. The detailed observations are pro-
vided below.

KNN is a strong stand-alone annotator. Table
3 reveals that although KNN (ARAIDA w/o f(·))
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Figure 4: Analyzing our integration strategy with the Dist./FT model. The solid lines show the MAC scores of the
annotation model f(·), separated by examples with λ > 0.5 (higher weights assigned to the annotation model f(·))
and λ ≤ 0.5 (higher weights assigned to KNN). The dotted line shows KNN’s performance on the latter set.

does not match the performance of ARAIDA, it ob-
tains comparable accuracy as using the annotation
model alone (ARAIDA w/o KNN). This result is
surprising, given KNN’s simplicity compared to
the annotation models (including LLMs). Such the
results also highlight that significance and effec-
tiveness of analogical reasoning, allowing humans
to reason more effectively (Mitchell, 2021).

Error-aware integration strategy effectively
coordinates the two annotators. Table 3 shows
that ARAIDA’s error-aware integration strategy
achieves consistent performance gain compared
to using a constant weight λ∗

t . This in turn also
confirms the original intention behind our construc-
tion of the error-aware integration strategy: it is
infeasible to find the optimal weight through a
one-off hyperparameter tuning. Here, it is worth
noting that ChatGPT outputs discrete labels rather
than probabilistic vectors. In this case, the con-
stant strategy reduces into an indicator function:
if λ∗

t > 0.5, Ft(x) = ft(x), ∀xt; otherwise,
Ft(x) = gt(x),∀xt. In this case, ARAIDA w/ const.
prefers ChatGPT or KNN based on their perfor-
mance. However, it cannot improve the annotation
quality beyond the individual components (i.e., the
KNN and the annotation model) due to the discrete
output of ChatGPT.

4.4 Qualitative Analysis

To shed light on how the error-aware integration
strategy works, we measure the cumulative accu-
racy of the annotator model and KNN throughout
the annotation process for each dataset and present
the result with the Dist./FT annotation model in Fig-
ure 4. We also separate the cases where λ > 0.5
(higher weights assigned to the annotation model
f(·)) and λ ≤ 0.5 (higher weights assigned to
KNN). Our observations are as follows.

Firstly, we observe that there is a substantial gap
between the two solid lines (MCAf on λ > 0.5

and MCAf on λ ≤ 0.5), showing that our er-
ror estimation model effectively identifies cases
where f(·) is likely to error and assigns it a lower
weight. Secondly, KNN reaches a reasonable ac-
curacy much faster than the annotation model at
the initial stage of the interactive annotation pro-
cess. Even as the number of annotated examples
increases, its accuracy is still higher than the an-
notation model f(·) when λ ≤ 0.5. This result
reveals that KNN compensates for the performance
deficiencies of f(·) on data where it is more likely
to make a mistake. Therefore, combining KNN us-
ing the error-aware integration strategy in ARAIDA

leads to an overall improvement in annotation qual-
ity, hence reducing human correction effort.

5 Conclusion

In interactive data annotation, an annotation model
suggests labels to human annotators to verify. How-
ever, the annotation model is prone to errors when
trained on limited labeled data. To tackle this chal-
lenge, we proposed ARAIDA, an approach inspired
by analogical reasoning, to compensate for the per-
formance deficiencies of the annotation model and
correct its mistakes using an error-aware integra-
tion strategy. Extensive experiments demonstrated
that ARAIDA is flexible to combine with different
annotation models across various tasks and yields
consistent improvement in label suggestion accu-
racy, which leads to a reduction of human correc-
tion effort. In this study, our method explores a new
solution to bring more flexibility by allowing the
human to design any preferred annotation model
according to different annotation tasks. We are
devoted to optimizing human-machine utilities by
emphasizing the learning of task-specified concepts
efficiently from a few human demonstrations. In
future work, we plan to extend ARAIDA to other
annotation tasks and develop it as a general toolkit
that can benefit the NLP community.
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6 Limitations

Human Studies. This work aims to reduce hu-
man correction effort in interactive data annotation.
We follow previous work (Hwa, 2000; Kristjansson
et al., 2004) to use the number of model suggestion
errors to approximate the human correction effort
needed. However, the actual effort needed depends
on the particular example and the type of errors
(e.g., whether it is obvious). Ideally, we would in-
volve human annotators and measure the saving of
annotation time. However, due to the large number
of experimental settings, conducting human studies
with each annotation model and ablation baseline
was infeasible.

Error-Prone Human Annotation. This paper
treats human annotations as ground truth following
previous studies in interactive data annotation (Klie
et al., 2018; Le et al., 2021). However, uncertainty
and inconsistency of human annotations do occur.
We refer readers to the literature on handling error-
prone human annotation, such as crowd-sourced
data annotation (Larson et al., 2020).

Although human annotation errors are not the
focus of this work, we explore ARAIDA’s perfor-
mance under synthesized label noise conditions.
We consider the crowd-sourced data annotation
scenario and assume that each human annotator hi
makes mistakes with the latent probability pie ∼
(0, 0.3). We set the total number of annotators
O = 10 and sample their corresponding error prob-
abilities Pe = {p1e, p2e, ..., pOe }. Then, we sample
ui from a uniform distribution U(0, 1) for each
annotation. If ui ≤ pie, hi assigns a randomly
sampled incorrect label; otherwise, it assigns the
correct one. We use majority voting of the 10 an-
notators to obtain the final annotations following
Shirani et al. (2019).

We slightly modified ARAIDA’s datastore main-
tenance strategy. When the datastore exceeds its
budge, we discard the data from the majority class
and most dis-similar to its class prototype instead
of removing the most similar one (as in the original
ARAIDA strategy). This strategy may help remove
incorrectly labeled data. The experimental result
in Figure 5 shows that ARAIDA still outperforms
the baseline. The modified datastore maintenance
strategy (ARAIDA-dis) further improves the perfor-
mance by a slight margin. Further research and
more rigorous experiments are required to address
the human annotation noise problem in interactive
annotation.
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Figure 5: MAC scores of various methods with synthe-
sized label noise on the SST-5 dataset. Dist./FT is used
as the annotation model. ARAIDA-dis refers to ARAIDA
with a modified datastore maintenance strategy.

Latency. The KNN component requires retriev-
ing similar examples as the input data, which may
limit our method’s time efficiency when the datas-
tore size is large. To address this problem, besides
the proposed datastore management strategy, we
can also employ an efficient similarity search li-
brary such as FAISS 12 to speed up the retrieval.
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A Hyperparameter Analysis

In this section, we provide a detailed hyperparam-
eter analysis of ARAIDA, including the datastore
size At, the number of neighbors k for ρt, and the
datastore maintenance strategy. We show results
only for the Dist./FT annotation model for brevity.

A.1 Datastore Size

We tune the size of the datastore At in
{100, 500, 1000, 2000} and evaluate the machine
cumulative accuracy of ARAIDA with or without
active learning. We illustrate the results in Fig.6. A
larger datastore size generally brings higher anno-
tation performance since it allows us to maintain
more data from past human-machine interactions.
However, it also requires larger memory usage and
causes longer latency. We found that a datastore
size of 1000 is a reasonable tradeoff, which we
utilize in our main experiments.

A.2 Top k for ρt

We tune the number of neighbors At in
{5, 10, 20, 50} and evaluate the machine cumula-
tive accuracy of ARAIDA with or without active
learning. As shown in Fig.7, k = 20 seems to
perform well for all tasks.

A.3 Datastore Maintenance Strategy

We propose a class-aware datastore maintenance
strategy for ARAIDA, which removes labeled exam-
ples from the majority class most similar to their
class prototype. Compared to the conventional
First-In-First-Out (FIFO) strategy (Dekel et al.,
2005), our method ensures that 1) the datastore
contains as much data from different classes as pos-
sible, and 2) the class prototype is least affected
after the removal. We compare with two variants of
ARAIDA, including ARAIDA w/ FIFO and ARAIDA

w/ class FIFO. The former discards the oldest ex-
ample regardless of the class; the latter discards the
oldest example belonging to the majority class in
the datastore.

As shown in Fig.8, ARAIDA w/ FIFO can suf-
fer from a sudden decrease in performance, as it
may remove important examples arbitrarily. After
integrating the class information, ARAIDA w/ class
FIFO removes the oldest analogy from the major-
ity class, achieving a comparative performance to
ARAIDA. However, ARAIDA still performs better
when the number of classes increases (e.g., Free-
Base).

B Results on Comparing to Fully
Fine-tuned Model

We utilized up to 5K of data to simulate the limited
data annotation task, and we updated the param-
eters of the annotation model as the interactive
annotation process progressed. To validate the ef-
fectiveness of the fully fine-tuned model, we use
the remaining data from the original dataset, ex-
cluding the 5K data and the validation data, as the
training data to fully fine-tune the model. Next, we
employ this model for interactive annotation. Since
it is already fully fine-tuned, we do not update
the model parameters during the annotation pro-
cess. Due to time constraints, we are currently only
considering scenarios where active learning has
not been adopted. Additionally, we only fine-tune
small annotation models (i.e., BERT and Dist./FT).

Based on the results in the Table 5, it is evident
that the annotation performance of the fully fine-
tuned model surpasses that of our method. This
suggests that while our method currently offers a
lightweight approach to aid data annotation, which
can to some extent enhance the sample efficiency
of the annotation model, there is still potential for
improvement in future research.Nevertheless, it’s
important to emphasize that in real-world data an-
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Figure 6: Machine Cumulative Accuracy of ARAIDA with different datastore sizes.

WN18RR FreeBase
Raw Class Mapped Class Raw Class Mapped Class

_hypernym hypernym /location/location/contains contains
_derivationally_related_form derivation /olympics/olympic_sport/athletes./olympics/olympic_athlete_affiliation/country country
_member_meronym member /music/performance_role/track_performances./music/track_contribution/role track_role
_has_part component /people/person/profession profession
_synset_domain_topic_of synset /music/performance_role/regular_performances./music/group_membership/role group_role
_instance_hypernym instance of hypernym /location/location/adjoin_s./location/adjoining_relationship/adjoins adjoins
_also_see synonym /film/film/release_date_s./film/film_regional_release_date/film_release_region film_release
_verb_group verb group /food/food/nutrients./food/nutrition_fact/nutrient nutrient

Table 4: Class mapping details for WN18RR and FreeBase
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Figure 7: Machine Cumulative Accuracy of ARAIDA with different k for ρt.

notation scenarios, we typically don’t have access
to fully fine-tuned models initially, as we lack la-
beled datasets. While one might turn to LLMs like
ChatGPT, our findings in Figure 3 indicate that our

method could potentially improve upon ChatGPT
even further.
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Figure 8: Machine Cumulative Accuracy of ARAIDA with different datastore maintenance strategies.

Table 5: Results on comparing to fully fine-tuned mod-
els

Model WN18RR FreeBase IMDB SST-5

BERT(fully finetuned) 75.13±1.12 60.47±1.24 90.04±0.42 46.59±1.20
BERT+ARAIDA 54.41±1.51 50.30±2.25 88.79±3.54 43.81±3.12
Dist./FT(fully finetuned) 72.64±1.05 58.50±1.36 84.87±0.81 42.12±1.44
Dist./FT+ARAIDA 52.16±1.37 43.02±6.43 79.33±2.81 37.21±3.03

C Results on Smaller-sized
Transformer-based Model

With a wide array of language models to choose
from, we faced the challenge of not being able to
test all available models. To address this, we se-
lected three prominent models (GloVe, LLaMa2,
and ChatGPT) based on our hardware resource ca-
pabilities in our main experiments. While open to
conducting further experiments, our focus was lim-
ited by time constraints, leading us to concentrate
solely on fine-tuning BERT (w/o AL), with the
outcomes detailed in Table 6. After implementing
ARAIDA, we observed a significant enhancement
in the quality of annotations by using our ARAIDA.

Table 6: Results on smaller-sized Transformer-based
model

Model WN18RR FreeBase IMDB SST-5

BERT 53.32±1.02 46.12±3.23 85.38±7.16 41.08±3.41
BERT+ARAIDA 54.41±1.51 50.30±2.25 88.79±3.54 43.81±3.12
BERT+ARAIDA w/o f 51.03±2.11 44.63±4.04 80.29±1.09 38.51±1.45

D Prompts and Fine-Tuning Examples
for LLM-Based Annotation Models

Table 7 presents prompts used for zero-shot and
few-shot annotation. Table 8 shows fine-tuning
examples for LLaMa2sft.
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Dataset Prompts

IMDB

==================
input: If you like original gut wrenching laughter...it. Great Camp!!!.
output: positive
input: I saw this movie when I was about 12 when it ... There are no rules.
output: negative
==================
You need to identify the sentiments of the following sentences, output positive or negative.
{INPUTS}

SST-5

=====================
input: The gorgeously elaborate continuation ...Tolkien ’s Middle-earth.
output: Strong Positive
input: Singer/composer Bryan Adams contributes a slew of..., spirit of the piece.
output: Positive
input: You’d think by now ...with hearts of gold.
output: Neutral
input: This isn’t a new idea .
output: Negative
input: A sour little movie at ... What was it all for ?
output: Strong Negative
====================
Identify the sentiment of each paragraph,
you have five options: ’Strong Positive’, ’Positive’, ’Neutral’, ’Negative’ or ’Strong Negative’
{INPUTS}

WN18RR

=============
input: ability unfitness
output: antonym
input: dissent debating
output: entailment
...
input: abandonment apostasy
output: hypernym
input: abandonment discard
output: hyponym
input: Afghanistan Afghan
output: member
input: abandonment abandonment
output: synonym
=============
Identify the semantic relation of the each word pair,
you have eight options: ’component’, ’synset’,..., ’hypernym’, ’derivation’, ’member’, ’synonym’
You MUST only output the semantic relation word for each input!
{INPUTS}

FreeBase

==========
input: Libya Egypt
output: adjoins
input: Honolulu Punahou
output: contains
input: Bobsleigh Netherlands
output: country
input: Blackbriar Lithuania
output: film_release
input: Autoharp Guitar
output: group_role
input: IceCream Water
output: nutrient
input: Shriya Actor
output: profession
input: Cello Pennywhistle
output: track_role
=========
Identify the semantic relation of the each word pair,
you have eight options: ’contains’, ’country’, ’track_role’, ’profession’, ’group_role’, ’adjoins’, ’film_release’, ’nutrient’.
only output the semantic relation.
{INPUTS}

Table 7: Prompts for different datasets to obtain the annotation. We remove the few-shot demonstrations in the
prompts in the zero-shot scenarios.
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Dataset Finetuning data example for LLaMa2sft

IMDB

{"instruction": "Identify the sentiment of the following paragraph, output ’positive’ or ’negative’.",

"input": "The cast played Shakespeare.Shakespeare lost.I appreciate that this is trying to bring Shakespeare to the masses,
but why ruin something so good. Is it because ’The Scottish Play’ is my favorite Shakespeare? I do not know.
What I do know is that a certain Rev Bowdler (hence bowdlerization) tried to do something similar in the
Victorian era.In other words, you cannot improve perfection.I have no more to write but as I have to
write at least ten lines of text (and English composition was never my forte I will just have to keep
going and say that this movie, as the saying goes, just does not cut it.",

"output": "negative"},

SST-5

{"instruction": "Identify the sentiment of the following paragraph,
you have five options: ’Strong Positive’, ’Positive’, ’Neutral’, ’Negative’ or ’Strong Negative’.",

"input": "The gorgeously elaborate continuation of The Lord of the Rings trilogy is so huge that a
column of words can not adequately describe co-writer/director Peter Jackson ’s expanded vision of J.R.R.
Tolkien ’s Middle-earth .",

"output": "Strong Positive"},

WN18RR

{"instruction": "Identify the semantic relation of the following word pair,
you have eight options: ’antonym’,..., ’synonym’.",

"input": "a.m. A.M.",

"output": "synonym"},

FreeBase

{"instruction": "Identify the semantic relation of the following word pair,
you have eight options: ’contains’, ..., ’nutrient’.",

"input": "Autoharp Guitar",

"output": "group_role"},

Table 8: Finetuning data examples for LLaMa2sft
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