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Abstract

Large language models (LLMs) with billions of
parameters and pretrained on massive amounts
of data are now capable of near or better than
state-of-the-art performance in a variety of
downstream natural language processing tasks.
Neural machine translation (NMT) is one such
task that LLMs have been applied to with great
success. However, little research has focused
on applying LLMs to the more difficult sub-
set of NMT called simultaneous translation
(SimulMT), where translation begins before
the entire source context is available to the
model. In this paper, we address key chal-
lenges facing LLMs fine-tuned for SimulMT,
validate classical SimulMT concepts and prac-
tices in the context of LLMs, explore adapting
LLMs that are fine-tuned for NMT to the task of
SimulMT, and introduce Simul-LLM1, the first
open-source fine-tuning and evaluation pipeline
development framework for LLMs focused on
SimulMT.

1 Introduction

Modern large language models (LLMs) contain at
least several billion and up to trillions of parameters
and are remarkably capable across a wide range of
tasks. Pretrained on humongous amounts of un-
labeled data, they have demonstrated incredible
emergent capabilities. With minor prompt adjust-
ments, such as including instructions and examples,
LLMs are often capable of near state-of-the-art per-
formance set by highly customized solutions. The
performance of these models is further enhanced
when fine-tuned for specialized downstream tasks,
sometimes exceeding the performance of previ-
ously cutting-edge solutions. Given their rapidly
evolving capabilities, LLMs and their application
have become a focused topic of research within
NLP academia (Zhao et al., 2023).

1https://github.com/OSU-STARLAB/Simul-LLM

One popular downstream task for LLMs is text-
to-text neural machine translation (NMT), which
focuses on taking an input sequence in a given
language and outputting a translation in another
language. Typically, the entire source context is
available at the start of translation for NMT. A
particularly challenging subset of NMT is known
as simultaneous translation (SimulMT), where the
model begins translation without having access to
the entire source sequence, and the translation pro-
gresses as the remaining source sequence is incre-
mentally provided. For languages that are syntac-
tically and structurally similar, near-NMT perfor-
mance is fairly achievable, but for language pairs
that differ significantly in structure, traditional mod-
els struggle to balance high-quality translations
with delay for additional source context. This bal-
ance is typically achieved via a fixed or adaptive
read-write schedule, with one of the most popular
and longstanding fixed schedules being the wait-k
policy (Ma et al., 2019), where the target translation
hypothesis lags behind the incrementally available
source sequence by k words or subwords.

While LLMs have been applied to and studied
actively in NMT, their application to simultaneous
translation has been lagging. This is in part due
to a few challenges LLMs face when applied to
SimulMT that are non-trivial to address. First and
foremost, it is unclear how well LLMs, which are
pretrained and usually fine-tuned under the assump-
tion that the prompt is completely provided and
static before generation, will adapt to an applica-
tion space where the prompt dynamically changes
as the simultaneous scheduler elects to read from
the source sequence. Second, multiple approaches
exist to enable LLMs for SimulMT and it is chal-
lenging to intuit which approach will perform best.
For example, one could adapt LLMs fine-tuned
for NMT (hereafter referred to as NMT LLMs) to
SimulMT during inference, although how well such
models will deal with the source context availabil-
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ity mismatch between fine-tuning (full sentence)
and inference (partial sentence) is nebulous. Al-
ternatively, one could fine-tune LLMs directly for
SimulMT (hereafter referred to as SimulMT LLMs),
but new prompt structuring is likely needed to
match inference SimulMT behavior during fine-
tuning exactly. Finally, it is also unclear how
well previously understood concepts in existing
SimulMT work, such as higher fine-tuning wait-
k values increasing generalizability, will apply to
SimulMT LLMs.

This paper seeks to address the above problems
and contributes to the process of applying LLMs to
SimulMT in the following major ways:

• We develop Simul-LLM, the first open-source
fine-tuning and evaluation pipeline develop-
ment framework for SimulMT LLMs, which
seamlessly wraps around and interfaces with
popular libraries for LLMs and SimulMT.
This framework serves as a foundation for
research on SimulMT LLMs that the commu-
nity can employ and extend for a wide range
of future work on LLM-based simultaneous
translation.

• With the aforementioned framework, we ex-
plore the feasibility of adapting LLMs fine-
tuned for NMT to SimulMT under a few
decoding strategies and the classical wait-k
fixed translation scheduler. Generally, we find
that NMT LLMs demonstrate good perfor-
mance during SimulMT inference which can
be somewhat boosted by more complex de-
coding strategies.

• We propose an alternative prompt structur-
ing approach to commonly employed NMT
prompts that bridges the gap between the fine-
tuning and inference environment, assuming
a wait-k schedule, and we validate this via
the Simul-LLM framework. We elaborate on
counter-intuitive results that we observe and
provide a base of exploration for future re-
search to employ. Along these lines, we also
validate that higher wait-k values employed
during SimulMT fine-tuning do increase wait-
k generalizability and boost translation quality
across the board during SimulMT inference.

2 Background and Motivation

While a range of work is relevant to this paper, we
will only provide a focused and high level review

of large language models applied towards machine
translation and simultaneous translation as an ap-
plication space. Readers interested in additional
details should engage further with cited works in
these areas.

2.1 Large Language Models for Neural
Machine Translation

LLMs are capable of effectively zero-shot sentence-
to-sentence neural machine translation (NMT) (Vi-
lar et al., 2023), but their performance can still be
improved via simple techniques. Prompt construc-
tion has been demonstrated to be critical to LLM
performance, both before and after fine-tuning
(Zhang et al., 2023). One-shot or few-shot perfor-
mance via In-Context Learning (ICL) can produce
near competitive results with fine-tuned LLMs for
translation and can even be employed to enhance
fine-tuned model performance (Vilar et al., 2023;
Xu et al., 2023).

One particularly interesting area of study related
to LLMs applied towards NMT remains whether
or not to fully fine-tune a given model or engage
in Parameter-Efficient Fine-Tuning (PEFT) (Man-
grulkar et al., 2022). Early work in this area demon-
strated some potential for smaller models (Üstün
and Cooper Stickland, 2022), and the accessibil-
ity that PEFT provides designers in terms of fine-
tuning on low-to-mid performance hardware se-
tups renders it desirable. One of the most popular
forms of PEFT freezes a LLM’s weights and adds
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
adapters between layers2. While fully fine-tuned
NMT LLMs tend to suffer from some level of
catastrophic-forgetting (Kirkpatrick et al., 2017),
intuitively, PEFT-based NMT LLMs should not
suffer from any loss of off-task performance, as
adapters can be loaded or detached depending on
whether or not a given user is prompting for a trans-
lation. Given these factors, PEFT is an attractive
option for NMT LLMs.

2.2 Simultaneous Translation

As a subset of typical NMT, simultaneous transla-
tion (SimulMT) focuses on engaging in translation
(write decisions) while balancing the amount of
available source context (read decisions) to reduce
translation lagging behavior/latency. This neces-
sarily increases the difficulty of translating a se-

2Other forms of PEFT exist, but adapter-based PEFT is
extremely common so we refer to adapter-based PEFT simply
as PEFT hereafter.
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quence in one language to a sequence in another
language, especially when structural and/or syntac-
tical differences exist in the language pair. As a
brief example, we can consider translating from a
subject-verb-object (SVO) language, such as En-
glish, to a subject-object-verb (SOV) language like
German. Based on the available source context in
English, we may have to guess at the translation
in German without access to the necessary con-
text to effectively make that prediction because of
the aforementioned syntactical differences in the
language pair.

There are two classical, high level approaches
to scheduling the write and read decisions of
SimulMT, those being static schedules like wait-
k (Ma et al., 2019) or adaptive schedules which
are flexible and learned, such as variants of mono-
tonic multi-head attention, adaptive wait-k compo-
sitions, wait-if-worse, decision state assisted SMT,
and others (Grissom II et al., 2014; Gu et al., 2017;
Arivazhagan et al., 2019; Zheng et al., 2020). Wait-
k remains a particularly popular baseline strategy
given its ease of application during training and dur-
ing inference. It functions by retaining a k-lagging
factor between the source context (either in tokens
or in words) x and the translation hypothesis y. We
can model a typical wait-k schedule’s probability
of generating a given output sequence, provided
some source sequence, with Equation 1:

p(y, x) =
|y|∏

i=1

p(yi|y<i, x<min(i+k,|x|)) (1)

Under circumstances or in environments where
additional computational latency is acceptable, vari-
ations of beam search have been applied in simul-
taneous scenarios. Speculative Beam Search (SBS)
(Zheng et al., 2019) is one such example where,
at a high level, each translation step attempts to
speculatively translate future steps for some num-
ber of beams, eventually selecting a single token or
word (the first one) from the most likely beam for
some beam length. When applied to wait-k, single
token or word SBS can be modeled via Equation
2, where w is the length of the beam and ŷi+1:w

represents the speculative beam of maximum joint
probability:

p(y, x) =
|y|∏

i=1

p(yi|ŷi+1:w, y<i, x<min(i+k,|x|))

(2)

Chunk-wise variations are also possible, where
for multiple consecutive translation steps, or write
decisions, words or subwords from the last deter-
mined most-likely beam are employed to cut down
on computational latency.

2.3 Motivation for Applying LLMs to
SimulMT

LLMs are clearly capable of state-of-the-art NMT
via a variety of techniques. Extending them to-
wards SimulMT is a natural step, mirroring the pro-
gression of classical SimulMT research (i.e. seek-
ing SimulMT improvements from NMT novelties).
In this case, smaller language models (LM) have
been employed to augment SimulMT efforts before,
although usually this augmentation is limited to ren-
dering the translation scheduler more discerning
(Indurthi et al., 2022). Instead of just augmenting
translation schedulers with smaller, bi-directional
LMs, we explore using generative LLMs as direct
SimulMT models in this work.

Intuitively, this results in the LLM providing
a deeper understanding of source and target lan-
guages (via their pretraining on massive, some-
what multilingual corpora) than is typical for most
SimulMT translation models. This can matter when
encountering context alignment obstacles, where
necessary source context is missing for a given
translation time-step. In such situations, SimulMT
models must infer based on what context does exist
and past experiences to determine what the most
likely next translated word will be, a task LLMs
are naturally suited for.

3 Simul-LLM: an Open-Source SimulMT
LLM Fine-tuning Framework

SimulMT is an underexplored application space
for LLMs, at the moment, and there is plenty of
room to improve performance. To facilitate the
rapid development of solutions for SimulMT LLMs
(fine-tuned for SimulMT) or NMT LLMs (fine-
tuned for NMT) adapted for SimulMT, we choose
to develop and provide an open-source framework
written in PyTorch for researchers to actively em-
ploy for future experiments. We call this frame-
work Simul-LLM, and it bridges the gap between
the development of fine-tuning agents via popular
libraries and proper SimulMT evaluation. Simul-
LLM is poised to support both selective classical
SimulMT systems as well as fine-tuning and evalu-
ation for a variety of LLM systems such as Falcon
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(Almazrouei et al., 2023), LLaMa (Touvron et al.,
2023) and Mistral-based (Jiang et al., 2023) models.
The high-level components of Simul-LLM include
a fine-tuning wrapper and a SimulMT evaluation
agent for every supported LLM; in the case of clas-
sical models, only the evaluation agent is supported
in-framework.

3.1 Fine-tuning Wrapper and Features

The fine-tuning wrapper of Simul-LLM is con-
structed with a focus on simplicity and extensibility.
It is depicted in Figure 1 and supports the following
set of user-friendly features.

LLM Support and Extensibility: The proposed
Simul-LLM currently supports Falcon, Mistral, and
Llama-2 fine-tuning (some Llama-2 validation still
remains). The fine-tuning wrapper is constructed
with a focus on extensibility, allowing for rapid
expansion to other LLMs assuming users hold a
minimal level of LLM-specific knowledge.

Multiple Prompt Structures: Translation quality,
as demonstrated by numerous prior works, varies
significantly with prompt structure. As such, the
fine-tuning wrapper of Simul-LLM supports multi-
ple kinds of prompt structures, all of which we will
validate later in this paper. In the interest of support-
ing adapting NMT LLMs to SimulMT, Simul-LLM
supports NMT fine-tuning in addition to support-
ing prompts that allow for strict wait-k fine-tuning
structures.

Flexible Quantization and PEFT: Effectively
fine-tuning LLMs is reliant on careful mem-
ory management for low-to-mid hardware setups.
Given that, Simul-LLM quantizes LLMs via the
BitsAndBytes library (seen in the Quant Config in
Figure 1), which enables flexible fixed-point quan-
tization. For most low-to-mid hardware setups, we
recommend quantizing in 4-bit floating point via
4-bit NormalFloat (nf4). Additionally, Simul-LLM
by default engages in PEFT (Mangrulkar et al.,
2022) via a passed configuration, although it does
also support full model fine-tuning.

Prompt Loss Filtering: Extremely basic super-
vised fine-tuning may inappropriately include por-
tions of the prompt in loss calculations that are
then backpropagated. The fine-tuning wrapper of
Simul-LLM ensures that the model only learns
from data it is intended to generate post-prompt via
a DataCollator object and a response template.

Figure 1: Depiction of the Simul-LLM fine-tuning wrap-
per framework. High level specifications and hyper-
parameters are passed to the wrapper on instantiation,
which employs a specified prompt constructor, instan-
tiates a specified LLM foundational model, optionally
constructs a PEFT config, and optionally constructs a
quantization config via BitsAndBytes.

3.2 Evaluation Agent and Features

Evaluation agents for Simul-LLM are similarly
built for ease of use and extensibility in addition to
customizability towards complex translation sched-
ules and decoding strategies while seamlessly in-
terfacing with the preeminent SimulMT evaluation
framework, SimulEval (Ma et al., 2020). This is
depicted in Figure 2 and includes the following
features.

Classical SimulMT Translation Scheduler: In
the interest of baseline accessibility, Simul-LLM
evaluation agents support wait-k translation sched-
ules for SimulMT, given their ease of application.
Further adaptive or otherwise more involved trans-
lation schedulers can be quickly constructed and
applied, assuming no reliance on fine-tuning.

Support for Multiple Decoding Strategies: Vari-
able latency constraints for possible inference envi-
ronments demand flexibility in decoding strategies.
As such, evaluation agents for Simul-LLM sup-
port several decoding strategies, including greedy
and naive decoding, subword-based beam search
for single-word decoding, and variations on Spec-
ulative Beam Search (SBS) (Zheng et al., 2019),
including single word-based and chunk-wise SBS.

Scoring and Latency via SimulEval: SimulEval
(Ma et al., 2020) is the premier SimulMT evalu-
ation framework. Simul-LLM evaluation agents
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Figure 2: Depiction of the Simul-LLM evaluation agent framework. The SimulMT agent receives the incremental
source from SimulEval (left of the figure) and sends the finalized translation step hypothesis to SimulEval (right of
the figure), which manages lagging/latency calculation and translation quality scoring.

interface seamlessly with SimulEval, which han-
dles the incremental source context and manages
translation scoring and latency tracking regarding
the translation hypothesis. In addition to the core
functionality of SimulEval in terms of translation
quality and latency scoring, Simul-LLM also fea-
tures some extensions to SimulEval. This includes
the capability to measure computationally aware
text-based latency via the specification of an or-
acle, zero-latency transcription agent (effectively
required for latency modeling, elaborated on in
our Appendix) and support for COMET (Rei et al.,
2020) translation quality evaluations (default model
employed is COMET-DA (Rei et al., 2021)).

4 Adapting NMT LLMs to SimulMT

Existing LLMs that have been fine-tuned for clas-
sical NMT may have the potential to be employed
directly for SimulMT inference. This can be desir-
able under circumstances where a single deployed
model is preferable to multiple, specialized models
(e.g. avoiding fine-tuning costs for multiple mod-
els). However, exactly how to adapt such models is
unclear in practice given the differences between
prompts during NMT fine-tuning (full-sentence
availability) and SimulMT inference (incremental
source availability). This is especially problematic
when engaging with short wait-k schemes and sim-
ilar low-lagging schedules, where minimal source
context is available during early translation steps.

To intuit why this is an issue, suppose that an
NMT LLM is accustomed to receiving the entire
source sequence x before outputting a word or to-
ken y1. If engaging in a low-lagging wait-k where
|x| >> k, then the output y1 can now only be based
on source context up to xk. Assuming the NMT
LLM would typically rely on some source context

xi where i > k, then critical information is missing
from its translation decision. We have conducted
preliminary quantitative studies on this front by
employing the proposed Simul-LLM framework,
and these results are presented in Section 7.

5 Prompt Structure for SimulMT LLMs

Alternative to adapting NMT LLMs to SimulMT
tasks, the SimulMT LLM approach aims to fine-
tune LLMs directly for SimulMT, which requires
new prompt structuring. Unlike classical encoder-
decoder models for translation, source context
for an LLM must be packaged within a prompt
and structured appropriately. Some existing work
has studied prompt structures for typical NMT
(Zhang et al., 2023; Xu et al., 2023), but it is un-
clear whether such prompts are still optimal for
SimulMT. This is because significant differences
exist in source context availability between fine-
tuning and inference, as discussed in Section 4.

To address this need, we propose a new prompt-
ing approach to construct the dataset for fine-tuning
and evaluation of SimulMT LLMs. Instead of struc-
turing each source-target sentence pair as a single
example as typically done for NMT, we propose
decomposing and expanding every sentence pair
into a number of examples, where each example
incrementally provides additional source and target
tokens. When employed, the expanded examples
directly mimic the behavior of simultaneous trans-
lation. We investigate two specific structures of
materializing this prompt structuring approach, as
analyzed and compared below.

5.1 Split Source-Target Prompt Structure
The first prompt structure follows the classical
NMT prompts where the source sentence is in-
cluded in the prompt and the target sentence is
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Figure 3: Example of English to Spanish translation prompt construction with an incremental source x and an
incremental output y applied via our proposed expanded dataset. Without more complex loss filtering than is typical,
the entire output sequence for the split source-target prompt structure would be scored and the model would learn
for wait-k schedules ranging from wait-i to wait-k as opposed to just wait-k.

the output of the LLM. As illustrated in the first
prompt structure in Figure 3, with the expanded
examples, each example contains partial source
along with some instruction in the prompt (starting
with "<h>") and partial target that is k words be-
hind the source in the model output (starting with
"<a>"), where k is the intended inference wait-k
value. While this split source-target prompt struc-
ture seems to be a natural and plausible way for
model fine-tuning, it has exhibited difficulties when
learning for simultaneous translation. The root of
this stems from how fine-tuning with LLMs often
works: when filtering the prompt from loss cal-
culations during fine-tuning, a response template
of some kind (e.g. "<a>:" or "»ANSWER«") is
employed to ensure only the target word that is
generated at the current step (i.e., yi) is scored. Un-
fortunately, with the split source-target prompt, the
template allows for all the target words that have
been generated from previous translation steps (i.e.,
y1 to yi) to be scored. Without employing a more
complex loss filtering, this leads to an inappropriate
level of context.

This lack of loss filtering can be especially prob-
lematic near the end of a given sequence’s trans-
lation. As a simple example, suppose that a given
source sequence is of length |x| and |x| >> k.
In the first prompt structure where up to i source
words have been supplied and where |x| > i >> k,
the LLM is effectively being fine-tuned for varying
wait-k values ranging from wait-i to wait-k in a
single example (as yi is predicted from x1 to xi+k

which is wait-k, yi−1 is predicted from x1 to xi+k

which is wait-(k + 1), and so on). If i >> k to
the point where it is close to normal NMT levels of
context, where i =̃ |x|, then the LLM is no longer
being effectively fine-tuned with an appropriate
amount of source context for a given translation
(write) decision schedule.

5.2 Single Output Word Prompt Structure

The above problem can be entirely side-stepped
by our proposed second approach, single output to-
ken prompt structure, that embeds only the current
target translation hypothesis within the model out-
put. As illustrated in the second prompt structure
in Figure 3, instead of allowing target translation
hypotheses from previous time-steps to be incorpo-
rated into the loss, the proposed prompt structure
shifts those previous translation hypotheses into the
prompt. Combined with the expanded examples
that form a rigorous wait-k curriculum in terms of
the fine-tuning dataset (rigorous meaning a com-
plete curriculum as opposed to a random subset),
inference behavior can be copied exactly for every
fine-tuning example, completely closing the con-
text mismatch between fine-tuning and inference.

Between the two prompt structures, it is clear
that the single output word prompt structure more
closely replicates the relationship observed in Equa-
tion 1 between the source and target sequence dur-
ing fine-tuning. For both structures, a source-target
sentence pair is expanded up to max(|x| − (k −
1), |y|) examples.

6 Evaluation Methodology

To validate our proposed solutions to the afore-
mentioned challenges and to test the capabilities
of Simul-LLM as the first SimulMT LLM open-
source framework, we engaged in several exper-
iments allowing for comparisons among classi-
cal non-LLM-based NMT (Vaswani et al., 2017)
/ SimulMT architectures (Ma et al., 2019), NMT
LLMs adapted for SimulMT, and SimulMT LLMs.
All mentioned LLMs are fine-tuned Falcon-7B
models, but Simul-LLM features an easy to ex-
tend framework and we support both Llama and
Mistral-based models as well (results in Appendix).

NMT LLMs were fine-tuned for one epoch, as
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overfitting was observed beyond that point, which
we intuit to be possibly due to the well-documented
ability of LLMs to quickly memorize training sets
(Biderman et al., 2023). In contrast, SimulMT
LLMs were fine-tuned for either 2M random exam-
ples out of 5M examples (for wait-3 fine-tuning) or
up to 5M examples (for wait-7 fine-tuning) on the
expanded dataset due to computational constraints.

6.1 Dataset Selection and Preprocessing

No standardized dataset exists for SimulMT with
LLMs. Due to its popularity in speech-to-text
simultaneous translation (SimulST), we employ
MuST-C for our experiments3. For the purposes
of adapting MuST-C for text-to-text usage, we pre-
process the dataset and filter out certain acoustic
indicators (e.g., floating "-" characters representing
pauses). In some cases, this resulted in significant
changes to some samples of the test set, such as the
removal of (Applause) acoustic indicators.

We employ MuST-C across two language
pairs, those being English-to-German (en-de) and
English-to-Spanish (en-es). Some additional exper-
iments are provided for the en-es language pair that
validate fundamental SimulMT concepts and dis-
play BLEU scores, gathered via sacreBLEU (Post,
2018), with respect to samples observed during
fine-tuning. The original dataset contains roughly
270K training set samples and approximately 2.5-
3K test set samples (tst-COMMON split) per lan-
guage pair. The expanded version of this dataset
for single output word fine-tuning contains approx-
imately 5M training set samples per language pair.

6.2 Word or Token-Based Wait-k for LLMs

While classical encoder-decoder SimulMT systems
usually engage in either word or token-based wait-
k, they most typically engage with whichever is
more suitable for their vocabulary (i.e. word versus
sub-word vocabularies). In spite of the fact that
LLMs function via sub-word vocabularies, we rec-
ommend, and employ for this work, word-based
wait-k for SimulMT LLMs, as it more closely re-
sembles the flow of engaging with a natural lan-
guage interface. Moreover, supposing that the LLM
is receiving a given sequence actively from a tran-
scription system or something similar, it makes
intuitive sense to wait for a word to be emitted

3This allows for future work that explores multi-modal
simultaneous LLMs, engaging in SimulST via a cascaded
model structure with a transcription model for the source
speech or a joint speech/text-to-text framework.

from the system as opposed to a fragment.

7 Results and Analysis

7.1 Exploration of Adapting NMT LLMs to
SimulMT

In Table 1, we provide a breakdown of the perfor-
mance of several different models, decoding strate-
gies, and wait-k schedules. Regarding our explo-
ration related to adapting NMT LLMs to SimulMT,
we also include results related to our implemen-
tation of Speculative Beam Search (SBS) (Zheng
et al., 2019). As demonstrated by these results,
compared with classical models, LLMs fine-tuned
for NMT are very capable of SimulMT upon being
adapted during inference (even exceeding the score
of the classical NMT transformer on en-de that per-
forms non-simultaneous translation). It is worth
reiterating that classical architectures often engage
in subword-based wait-k whereas we employ word-
based wait-k for LLMs, but the comparisons still
serve as a useful reference.

SBS-based decoding strategies helped NMT
LLMs in the en-de language pair, but lacked im-
provement for the en-es language pair. We noted
that our implementation (and seemingly also the
original implementation) was sensitive to both the
window size and the number of committed chunks,
with large values for either resulting in the specula-
tive target translation getting too close to the size
of the source context. In our tests, when reaching
the same length as the source context (akin to con-
text levels of wait-1), degenerate output began to
appear that resulted in the output trailing off (e.g.,
final output of "que..." instead of correct output of
"que"). Notably, too many committed chunks only
explains performance gaps for chunk-wise SBS,
not single SBS, which is normally a flat improve-
ment upon greedy decoding (single SBS is still
sensitive to window size). Future experiments can
be conducted to utilize the proposed Simul-LLM
framework to quantify these factors.

7.2 Exploration of SimulMT LLMs with
Proposed Prompt Structure

In Table 1, we also provide a breakdown of the
performance of our exploration of SimulMT LLMs
with our proposed prompt structure in Section 5.2
that carefully manages source context availability
for target translation generation. Two models are
employed for this exploration, one fine-tuned for
wait-3 inference, and another fine-tuned for wait-7
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Grouped
Explorations

Model and Decoding Scheme en-de en-es

Classical
Baselines

NMT Transformer (non-simultaneous) 26.96 (22.6) 32.64 (23.1)
Monotonic Transformer Wait-5 (SimulMT) 22.01 (3.32) 24.90 (2.58)

NMT LLMs
Adapted for
SimulMT

NMT LLM 25.83 (3.65) 30.06 (3.95)
NMT LLM Single SBS (k=3, b=5, c=1, w=6) 25.98 (4.12) 29.48 (4.64)
NMT LLM Single SBS (k=3, b=5, c=1, w=10) 25.95 (4.25) 27.67 (4.82)
NMT LLM Chunk SBS (k=3, b=5, c=2, w=10) 23.61 (4.63) 26.33 (5.26)
NMT LLM Chunk SBS (k=5, b=5, c=3, w=15) 25.80 (5.61) 27.00 (5.90)
NMT LLM Chunk SBS (k=7, b=5, c=4, w=20) 27.32 (6.97) 28.66 (7.09)

SimulMT LLMs
with Proposed
Prompt

Wait-3 Fine-tuning LLM (2M samples) 19.99 (3.41) 23.68 (3.64)
Wait-7 Fine-tuning LLM (2M samples) 20.82 (3.44) 25.18 (3.61)
Wait-7 Fine-tuning LLM (5M samples) 21.86 (3.38) 30.31 (3.34)
Wait-7 Fine-tuning LLM (2M samples, k=7) 23.09 (6.71) 28.92 (6.87)
Wait-7 Fine-tuning LLM (5M samples, k=7) 24.93 (6.70) 35.14 (6.73)

Table 1: Comparisons of performance for various models and decoding schemes during primarily wait-3 evaluation
(non-wait-3 is specified via k) via detokenized BLEU. Non-LLM baselines are subword-based wait-k (standard)
while LLMs are word-based wait-k. Best SimulMT quality results are bolded, second best results are underlined,
and lagging values are provided in parentheses as LAAL (Papi et al., 2022). Speculative Beam Search (SBS) during
inference is experimented with for NMT LLMs, which lend themselves towards SBS (k=wait-k value, b=beams,
c=chunks/words, w=window size).

inference that produces noticeably better quality
translations than the first. In addition, we provide
results for the fine-tuned wait-7 models after fine-
tuning on 2M samples and 5M samples of the fine-
tuning dataset, with the fine-tuned wait-3 model
having fine-tuned for 2M samples. This separation
is due to computational constraints on our side,
as we wanted to provide further comparisons in
Section 7.3 and Table 2 at various evaluation wait-k
values but lacked the compute to finish fine-tuning
the wait-3 model.

While SimulMT LLMs are a more promising
approach in achieving higher translation quality
than NMT LLMs due to more direct task-specific
fine-tuning and better context alignment, our ex-
perimental results suggest that, for the time-being,
the performance of SimulMT LLMs is not guaran-
teed to be advantageous compared to NMT LLMs
adapted to SimulMT. As seen in Table 1, fully fine-
tuned SimulMT LLMs outperformed their NMT
LLM counterparts on en-es but failed to do so on
en-de. This is not completely unexpected as NMT
LLMs have been optimized heavily in recent years
whereas the exploration of SimulMT LLMs has
just started. We provide some analysis below that
points out a few possible reasons for this observed
performance gap and we call for additional com-
munity efforts to investigate further.

First, it is possible that the fine-tuning hyperpa-

Fine-tuning
Wait-k

Inference
Wait-k

BLEU

SimulMT LLMs
Fine-tuned in
Wait-3

Wait-3 23.68
Wait-5 25.59
Wait-7 26.31

SimulMT LLMs
Fine-tuned in
Wait-7

Wait-3 25.18
Wait-5 28.19
Wait-7 28.92

Table 2: BLEU scores for various SimulMT LLMs
fine-tuned with different wait-k values on en-es. All
models fine-tuned for 2M samples due to computational
constraints.

rameters are ill-suited for this particular prompt.
We consider this likely to be the most influential is-
sue on our observed results, given the drastic differ-
ences between the original and expanded datasets
(the fine-tuning hyperparameters were united for
both fine-tuning tasks). Second, at least one other
work related to NMT LLMs (Chen et al., 2023)
has demonstrated that relative positional embed-
dings can cause issues via attention dilution that
ends up being unhelpful, suggesting that distancing
the source context, running target hypothesis, and
the current translation step hypothesis can be unex-
pectedly problematic. We posit that our proposed
Simul-LLM can be leveraged to verify the above
reasons.
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7.3 Higher Wait-k Generalizability
Comparisons

It is well documented that in typical SimulMT
systems, training or fine-tuning with a slightly
higher wait-k than intended during inference can
boost translation quality and generalizability across
slightly lower wait-k (Ma et al., 2019). While this
likely applies to SimulMT LLMs, no existing work
has validated that this behavior persists. We pro-
vide a brief comparison of two SimulMT LLMs
fine-tuned via wait-3 and wait-7 context levels in
Table 2. The results demonstrate that, generally, the
expected behavior does hold, with all LLMs fine-
tuned in wait-7 outperforming their corresponding
wait-3 models for the same inference wait-k with
up to a 2.6 BLEU improvement. We leave vali-
dating additional, previously understood SimulMT
principles in SimulMT LLMs to future work.

7.4 Discussion on Other Works

We are aware of two other concurrent efforts at ap-
plying LLMs to simultaneous translation (Koshkin
et al., 2024; Wang et al., 2023). The former focuses
on high-resource settings (i.e. order-of-magnitude
larger language models than we aim for in this
work) and additionally touches on comparisons
with GPT-4 and speech-to-text simultaneous trans-
lation efforts. Contrastingly, the latter work aligns
with ours, approaching the problem of LLM simul-
taneous translation in a low-resource setting. Their
work, however, is limited to a focused contribution:
a variation of longest-common prefix (LCP) that
they call relaxed agreement LCP (RALCP). Nei-
ther host open-source software to test their changes
and both only test Llama-based models in addition
to arguably shallower explorations of this subject
matter. Nonetheless, we intend to add support for
end-to-end speech-to-text translation soon and have
already added support for RALCP, which we pro-
vide brief results for in our Appendix. Both works
validate our choice to engage with MuST-C as a
dataset, as both works also employ it.

8 Conclusion

In this work, we introduce Simul-LLM, the first
open-source framework that enables rapid de-
velopment of LLM fine-tuning and evaluation
pipelines for simultaneous machine translation
(SimulMT). Simul-LLM seamlessly integrates with
the fine-tuning and generation tools of the popular
transformers library as well as with SimulEval,

the preeminent SimulMT evaluation framework. In
addition to introducing Simul-LLM, we employ
this framework to explore a wide range of topics
in the LLM SimulMT space. Our proposed Simul-
LLM framework enables multiple lines of future
work that can be carried out to understand and opti-
mize LLMs for simultaneous translation, and it will
likely be a useful tool for the research community.

9 Limitations

This work is focused on providing an open-source
framework for an interesting application of LLMs.
While we propose a few novel techniques for en-
gaging with LLMs in this application space that
we support in Simul-LLM, the work is largely ex-
ploratory and we cannot assert that our proposed
practices are guaranteed to work best. Addition-
ally, the framework itself does not currently support
speech-to-text exploration (although augmentation
to this end should not be difficult), a popular simul-
taneous translation track. All of these points serve
to slightly limit the impact of our contribution.
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A Appendix

A.1 Licensing Information

Fairseq (Ott et al., 2019) is MIT-licensed. SimulE-
val is licensed via CC BY-SA 4.0. MuST-C, one of
the premiere speech-to-text datasets across many
language pairs, is licensed under CC BY-NC-ND
4.0. Simul-LLM itself is MIT-licensed.

A.2 Training, Fine-Tuning, and Evaluation
Hyperparameters and Hardware Details

All classical models were trained on two NVIDIA
32GB V100s and validated on a single V100. All
LLMs were fine-tuned via PEFT (Mangrulkar et al.,
2022) on a single NVIDIA 40GB A40 in bfloat16
and evaluated on a single V100 in float32. Simul-
LLM seamlessly integrates with SimulEval (Ma
et al., 2020) for the purpose of these evaluations.
Classical transformer baselines were trained via

Model CA LAAL (ms)
Monotonic Transformer Wait-5 1325
Wait-7 Fine-tuning LLM 3237

Table 3: Brief results for modified computationally
aware Length-Adaptive Average Lagging (in millisec-
onds). Inherent, estimated acoustic latency is set to
roughly 360 milliseconds.

Fairseq (Ott et al., 2019), an easily extensible se-
quence to sequence modeling toolkit written in
PyTorch.

Classical models were trained with typical hy-
perparameters provided in Fairseq examples. All
LLMs were fine-tuned with identical hyperparame-
ters, employing a constant learning rate of 3e-4 and
were optimized via Adam with around 4K warmup
updates and batch sizes of 40 samples. LoRA
adapter parameters were an α of 16 and a r value of
64, resulting in a total of around 40M added param-
eters during fine-tuning, with a dropout value of
0.1. For fair comparison, classical models were of
a similar, although not quite identical, size in terms
of parameter count (around 46M parameters).

Additionally, all LLMs were fine-tuned while
quantized with NormalFloat4 (nf4) quantization.
A small performance boost was observed when
removing this quantization during inference, so all
models did not engage with nf4 quantization during
inference.

A.3 Estimated Computational Costs

We estimate that, normalizing for 1 GPU, build-
ing Simul-LLM cost roughly 26 GPU days of ex-
perimentation and approximately 24 GPU days to
generate the results in this paper.

A.4 Computational Latency of LLMs for
SimulMT

While we only cover results for lagging behavior
(via LAAL) in the main body of this paper, it is
worth acknowledging that employing an LLM for
SimulMT incurs additional computational latency
costs compared to a more classical solution. These
costs can be characterized in a number of ways,
but we choose to employ a latency-based version
of LAAL inspired by simultaneous speech trans-
lation (SimulST), where we replace word-based
lagging measurements with estimated acoustic la-
tency in milliseconds. This allows us to simply
add the computational cost of each generation step
to the inherent, estimated acoustic latency (we
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Decoding Scheme en-de en-es
Chunk SBS 25.8 (5.6) 27.0 (5.9)
Chunk SBS w/ RALCP 26.1 (5.3) 28.1 (5.5)

Table 4: Demonstration of RALCP support and effec-
tiveness via BLEU and LAAL (provided in parentheses)
with k=5, b=5, c=3, and w=15 as per Table 1. Agree-
ment factor is set to 0.6. All models here employ the
NMT LLM prompt structure mentioned in this paper.

employ 360 ms of inherent latency, equivalent to
around 166 words/min). Adding this inherent la-
tency is akin to treating the SimulMT system as
though an oracle, zero-latency transcription agent
has been prepended to it and is critical to ensuring
that LAAL operates correctly, as a metric. Brief
latency results can be observed in Table 3. For fur-
ther details, we refer readers to the original LAAL
publication (Papi et al., 2022).

A.5 RALCP and Policy Differences

While Simul-LLM supports RALCP (Wang et al.,
2023), our application differs slightly from the
specification of the original implementation. Un-
like the authors of Wang et al. 2023, we do not
engage in consecutive read decisions unless it is to
maintain a k-lagging factor as specified by an infer-
ence wait-k value. This ensures, after a given set of
outputted chunks via RALCP implemented on top
of SBS (Zheng et al., 2020), that expected context
limitations are kept. This contrasts with the orig-
inal implementation of RALCP on top of a more
relaxed read-write schedule that does not always
attempt to maintain a k-lagging factor after that
lagging factor is initially established. Additionally,
we assume that the authors applied a word-based
simultaneous approach, as this is not specified in
their original work.

Nonetheless, RALCP, which is fundamentally
a form of beam rescoring, does improve transla-
tion quality based on our empirical results. We
include a brief comparison in Table 4, where we
observe that the addition of RALCP seems to result
in small to moderate improvements in BLEU score
with roughly equivalent lagging behavior (slight
reductions in our tests).

A.6 Supporting Various LLMs

Simul-LLM’s easy to extend fine-tuning and eval-
uation framework supports Falcon, Llama, and
Mistral-based models. While our explorations in
this paper are rooted in Falcon-based models, we
provide a brief set of results for other LLMs in

Foundational Model BLEU (LAAL)
Falcon 7B LLM 30.06 (3.95)
Mistral 7B LLM 30.25 (3.66)
Llama-2 7B LLM 20.18 (3.84)4

Table 5: Brief comparison of Falcon, Mistral, and
Llama-based models fine-tuned and evaluated in Simul-
LLM on en-es. All models were fine-tuned with the
NMT LLM prompt structure specified in this paper and
are evaluated via a wait-3 schedule with greedy decod-
ing on en-es.

Table 5. Generally, translation quality appeared
similar across models, although the Llama-based
model struggled. BLEU degradation for Llama
models seemed mostly linked to degenerate output
where the model would get stuck in low-quality
generation (e.g. continuously outputting the same
token).

4Some issues were observed during fine-tuning the Llama-
based translation agent that seems to have resulted in poorer
than expected translation quality. We are actively working to
improve these results within the Simul-LLM framework.
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