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Abstract

The rapid propagation of misinformation poses
substantial risks to public interest. To combat
misinformation, large language models (LLMs)
are adapted to automatically verify claim cred-
ibility. Nevertheless, existing methods heav-
ily rely on the embedded knowledge within
LLMs and / or black-box APIs for evidence
collection, leading to subpar performance with
smaller LLMs or upon unreliable context. In
this paper, we propose retrieval augmented fact
verification through the synthesis of contrast-
ing arguments (RAFTS). Upon input claims,
RAFTS starts with evidence retrieval, where we
design a retrieval pipeline to collect and re-rank
relevant documents from verifiable sources.
Then, RAFTS forms contrastive arguments
(i.e., supporting or refuting) conditioned on
the retrieved evidence. In addition, RAFTS
leverages an embedding model to identify infor-
mative demonstrations, followed by in-context
prompting to generate the prediction and expla-
nation. Our method effectively retrieves rele-
vant documents as evidence and evaluates argu-
ments from varying perspectives, incorporating
nuanced information for fine-grained decision-
making. Combined with informative in-context
examples as prior, RAFTS achieves significant
improvements to supervised and LLM base-
lines without complex prompts. We demon-
strate the effectiveness of our method through
extensive experiments, where RAFTS can out-
perform GPT-based methods with a signifi-
cantly smaller 7B LLM1.

1 Introduction

As the scope of social media and digital forums
continue to expand, increasing amount of misin-
formation has been observed across multiple plat-
forms (e.g., Twitter), posing risks to public inter-
est (Chen et al., 2022). Therefore, fact-checking
methods are proposed to prevent the spreading of

1Our implementation is publicly available at
https://github.com/yueeeeeeee/RAFTS.

false information before it leads to severe conse-
quences (Litou et al., 2017; Hassan et al., 2017; Shu
et al., 2017). For example, online fact-checking
services (e.g., Snopes2) employ professional fact-
checkers to identify instances of misinformation.
Nevertheless, human fact-checking involves a sig-
nificant amount of manual work, proving to be less
efficient confronted with the vast volume of mis-
information, particularly as it evolves and spreads
online (Micallef et al., 2020; Nakov et al., 2021).

To perform fact-checking at scale, automated
methods have emerged by leveraging large lan-
guage models (LLMs) (Shu et al., 2022; Yang et al.,
2022; Yue et al., 2023; Choi and Ferrara, 2024).
For example, RARG proposes to train and align
LLMs for generating faithful explanations upon
detected misinformation (Yue et al., 2024). De-
spite their effectiveness, these methods typically re-
quire extensive training data and may demonstrate
performance deterioration upon domain / concept
shifts (Zhu et al., 2022; Nan et al., 2022; Gu et al.,
2023; Shang et al., 2024a). Moreover, many mod-
els are unaware of external evidence / knowledge
and must be frequently re-trained to incorporate
up-to-date domain knowledge for accurate fact-
verification (Izacard and Grave, 2021; Borgeaud
et al., 2022; Yue et al., 2023).

As a solution, evidence-based fact-checking
methods are proposed to collect evidence (e.g., doc-
uments, graphs etc.), followed by extracting rele-
vant information and assessing the credibility of
input claims through LLMs (Koloski et al., 2022;
Kou et al., 2022b; Shang et al., 2022a; Wu et al.,
2022b; Zhang and Gao, 2023; Wang and Shu, 2023;
Liu et al., 2024). An example is FOLK, which
leverages first-order-logic to construct sub-claims
and perform question answering-based verification
to generate predictions and explanations (Wang
and Shu, 2023). Yet current approaches rely on the
assumption that input claims can be decomposed

2https://www.snopes.com/
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Input Claim

(e.g., Facebook has a 
policy against users' 

posting the text of the 
Lord's Prayer.)

Document 
Retrieval

Fact 
Chechking

Reliable Source
of Documents

Retrieved
Documents

Output

Prediction: False

Explanation: Facebook's 
community standards make 
no mention of prohibiting 
the posting of the Lord's 
Prayer or other forms of 
religious expression. Only 
hate speech directed at a 
person's religious affiliation 
is disallowed under 
Facebook's standards.

Figure 1: Our retrieval augmented generation framework for fact verification.

into a series of predicates (i.e., sub-claims) through
complex prompts. Moreover, they depend on the
embedded knowledge within LLMs and / or black-
box APIs (e.g., SerpAPI3) to collect external infor-
mation, leading to subpar performance with smaller
LLMs or provided with unreliable evidence (Zhang
and Gao, 2023; Wang and Shu, 2023).

Consequently, we consider a retrieval augmented
generation (RAG) framework designed to extract
relevant information from reliable documents (i.e.,
Wikipedia, scholarly articles etc.), where the ex-
tracted information can be used as supporting facts
to assess the claim credibility through LLMs. That
is, given the input statement, our first objective is
to retrieve (and optionally re-rank) relevant docu-
ments among an extensive collection of documents
from verifiable sources. Subsequently, we utilize
the retrieved documents to fact-check the input
claim, aiming to either confirm the input or un-
cover opposing information that identifies misin-
formation. Our framework is visually illustrated
in Figure 1, where the RAG-based fact verification
framework retrieves relevant documents, and then
generates both prediction and explanation regard-
ing the validity of the input statement.

To this end, we propose retrieval augmented fact
verification through the synthesis of contrastive
arguments (RAFTS), which effectively retrieves
relevant documents and performs few-shot fact
verification using pretrained LLMs. RAFTS is
structured into three components: (1) demonstra-
tion retrieval, where informative in-context exam-
ples are collected to improve fact-checking perfor-
mance; (2) document retrieval, in which we de-
sign a retrieve and re-rank pipeline to accurately
identify relevant documents for input claims; and
(3) few-shot fact verification through the synthe-
sis of contrasting arguments. Unlike current ap-
proaches, RAFTS formulates supporting and op-
posing arguments derived from the facts within the

3https://www.serpapi.com/

collected documents. Combined the informative in-
context examples, RAFTS demonstrates enhanced
fact-checking performance and consistently gen-
erates high-quality explanations. To validate the
effectiveness of RAFTS, we adopt multiple bench-
mark datasets and perform extensive experiments
on both document retrieval and fact verification.
Experiment results highlight the effectiveness of
the proposed approach, where RAFTS can outper-
form state-of-the-art methods even with a signifi-
cantly smaller LLM (e.g., Mistral 7B).

We summarize our contributions:

1. We propose a RAG-based framework, where
relevant documents are retrieved from reliable
sources to fact-check input claims.

2. We design RAFTS in three key components:
demonstration retrieval, document retrieval
and in-context prompting. RAFTS identi-
fies informative examples and relevant doc-
uments, followed by synthesizing contrastive
arguments for fine-grained fact-checking.

3. We show the effectiveness of RAFTS by ex-
perimenting on document retrieval and fact
verification tasks. Both quantitative and qual-
itative results demonstrate that RAFTS can
outperform state-of-the-art methods in fact
verification and explanation generation.

2 Related Work

2.1 Large Language Models and Retrieval
Augmented Generation

Recent advancements in large language models
(LLMs) have shown significantly enhanced capa-
bilities in language comprehension and genera-
tion (Raffel et al., 2020; Brown et al., 2020; Wei
et al., 2021; Ouyang et al., 2022; Chowdhery et al.,
2022; Touvron et al., 2023; OpenAI, 2023; Jiang
et al., 2024). Due to the vast number of parame-
ters and extensive quantity of pretraining corpora,
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LLMs can embed global knowledge within their pa-
rameters, and thus achieve significant performance
improvements across diverse applications (Ope-
nAI, 2023; Penedo et al., 2023; Sun et al., 2023).
However, LLMs often fail to capture fine-grained
knowledge and frequently generate inaccurate or
fabricated information (also known as hallucina-
tion) (Peng et al., 2023; Rawte et al., 2023). To
access up-to-date knowledge without costly re-
training, retrieval augmented generation (RAG) has
been proposed to generate text based on collected
documents from verifiable sources (Guu et al.,
2020; Lewis et al., 2020; Izacard and Grave, 2021;
Borgeaud et al., 2022; Izacard et al., 2022; Shi et al.,
2023; Ram et al., 2023; Wang et al., 2023a). For
example, Self-RAG can dynamically fetch external
documents to generate contents through the usage
of special tokens for retrieval and reflection (Asai
et al., 2023). Nevertheless, current RAG methods
remain under-explored for fact verification, par-
ticularly regarding accurate evidence retrieval and
fine-grained classification (Wang and Shu, 2023;
Zhang and Gao, 2023). As such, our work studies
retrieval augmented fact verification, which gath-
ers evidence from reliable sources and integrates
contrasting opinions to achieve fine-grained fact
verification.

2.2 Fact Verification and Misinformation
Detection

Fact verification methods can generally be divided
into two main categories: (1) content-based ap-
proaches, where machine learning models predict
and reason over input contents (e.g., text) to iden-
tify misinformation (Yue et al., 2022; Jiang et al.,
2022; Yue et al., 2023; Chen and Shu, 2023a; Liu
et al., 2023; Mendes et al., 2023; Huang et al.,
2024). Incorporating additional attributes / modali-
ties such as image and propagation paths can fur-
ther enhance fact verification performance (Shang
et al., 2021; Santhosh et al., 2022; Shang et al.,
2022b; Wu et al., 2022c; Zhou et al., 2023; Yao
et al., 2023; Qu et al., 2024); (2) evidence-based ap-
proaches, which involve gathering external knowl-
edge (e.g., knowledge graphs or document pieces)
as evidence to validate input claims and identify
false information (Kou et al., 2021, 2022a; Wu
et al., 2022a; Yang et al., 2022; Shang et al., 2022c;
Xu et al., 2022; Zhao et al., 2023; Chen et al., 2023;
Wang and Shu, 2023; Yue et al., 2024; Shang et al.,
2024b). For example, HiSS adopts hierarchical

step-by-step prompting with off-the-shelf LLMs
and black-box question answering (QA) pipelines
to perform few-shot fact verification (Zhang and
Gao, 2023). However, state-of-the-art fact verifica-
tion methods primarily concentrate on improving
accuracy via sophisticated prompts and / or intrin-
sic knowledge of LLMs, causing performance de-
grade upon smaller LLMs or domain shifts (Wang
and Shu, 2023; Pelrine et al., 2023; Chen and Shu,
2023b). Therefore, we concentrate on retrieval
augmented fact verification by collecting relevant
documents from reliable sources, enabling LLMs
to augment their knowledge base for claim verifica-
tion. Furthermore, we exploit in-context prompting
by learning from demonstrations and synthesizing
contrastive arguments, and thus significantly im-
proves fact-checking performance.

3 Preliminary

We consider the following problem setup: given
input claim x (with label y) and k-shot demonstra-
tions {(xi, yi)}ki=1, we aim to: (1) retrieve a set
of m documents {di}mi=1 that provide relevant in-
formation to be used as supporting evidence; and
(2) generate label ŷ and explanation e based on
the input x, k-shot examples {(xi, yi)}ki=1 and re-
trieved evidence {di}mi=1. For each input x, we
leverage a pretrained embedding model fembed to
adaptively retrieve demonstrations {(xi, yi)}ki=1,
whereas a retrieval model is learnt to predict
{di}mi=1 and provide relevant information from veri-
fiable sources. Based on the retrieved examples and
documents, the predicted ŷ should ideally match
the ground truth label y. In addition, the generated
explanation e should demonstrate desirable proper-
ties (e.g., factuality), see example in Figure 1. We
elaborate our settings in the following.
Input & Output: Given a dataset with train and
test splits X train and X test, we denote the docu-
ment retrieval pipeline as fretrieve and the LLM-
based fact-checking model as fcheck. Formally, our
framework consists of two sub-problems in infor-
mation retrieval (i.e., evidence collection) and fact
verification (i.e., prediction and explanation), with
each of the problem defined below:

• Document Retrieval: Given input claim x,
human annotated document d and a collec-
tion of n documents {di}ni=1 (with d ∈
{di}ni=1), our objective is to learn a retrieval
model fretrieve that ranks the claim-document
pair with the highest score (fretrieve(x, d) =
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max{fretrieve(x, di)}ni=1). During training, in-
put x and d can be used to learn fretrieve. In
inference, we collect a subset of m documents
{di}mi=1 for fact verification, where m ≪ n.

• Fact Verification: Subsequently, we leverage
both input x and collected documents {di}mi=1

from the previous step and utilize fcheck to gen-
erate: (1) prediction ŷ on the input credibility;
and (2) explanation e on the reasoning of the
prediction. To perform in-context prompting,
we incorporate k-shot examples {(xi, yi)}ki=1

from X train as input (xi ̸= x). In other words,
ŷ, e = fcheck({(xi, yi)}ki=1, {di}mi=1, x)).

Learning: Our retrieval pipeline fretrieve is param-
eterized by θ. To learn fretrieve, we maximize the
score of the sampled input-document pair (x, d).
That is, we minimize the expected loss L over
X train: minθ E(x,d)∼X train [L(θ, (x, d))]. Mean-
while, the fact-checking model fcheck (i.e., pre-
trained LLM) remains unchanged to minimize
training expenses. To optimize fact-checking per-
formance of fcheck, we employ a lightweight em-
bedding model fembed to select informative in-
context demonstrations {(xi, yi)}ki=1, we elaborate
the details in Section 4.1.

4 Methodology

4.1 In-Context Demonstrations

Current LLM-based approaches for fact verifica-
tion utilize sophisticated prompts to identify mis-
information, but depend on carefully designed
prompts and static in-context demonstrations (Wei
et al., 2022; Zhang and Gao, 2023). Nevertheless,
the classification criteria often vary from domain
to domain, causing performance drops when iden-
tical prompts are applied across different contexts
(as we show in Section 5). In addition, diverse
and informative examples are found to be help-
ful for performance, in particular for smaller yet
more efficient LLMs (Liu et al., 2021; Zhang et al.,
2022; Levy et al., 2023; Li and Qiu, 2023). As
such, we design a retrieval pipeline to select in-
context demonstrations, thereby enhancing the fact-
checking performance and mitigating performance
deterioration issues across domains.

We formulate the in-context learning (ICL) prob-
lem as follows. Provided with k-shot exam-
ples {(xi, yi)}ki=1, we prompt a pretrained LLM
with them as demonstrations to generate the fact-

checking prediction ŷ given input x:

ŷ = argmax
y

fcheck(y|{(xi, yi)}ki=1, x), (1)

with fcheck returning the output probabilities of
the LLM. The prediction can be obtained by se-
lecting the output with the highest probability con-
ditioned on the provided in-context examples and
input claim. In contrast to existing prompting meth-
ods, in RAFTS, LLM receives the task description
via in-context examples. As a result, the perfor-
mance of fact verification is highly sensitive to the
selection of {(xi, yi)}ki=1. To this end, we design
a simple and efficient example retrieval pipeline,
which is designed to choose semantically similar
examples from the training set to maximize the
relevance and informativeness of demonstrations
{(xi, yi)}ki=1 during in-context learning.

Specifically, we adopt a pretrained embedding
model, denoted with fembed (kept frozen in our
RAFTS framework). The objective of our re-
trieval pipeline is to identify a set of k examples
{(xi, yi)}ki=1 for each claim x, with:

{(xi, yi)}ki=1 = topk({sim(fembed(x),

fembed(xi))}|X
train|

i=1 ),
(2)

where topk returns k largest elements from the
given set (i.e., claims with highest similarity to
x), while sim represents the cosine similarity func-
tion (i.e., sim(a, b) = a·b

∥a∥∥b∥ ). In essence, Equa-
tion (2) encodes the examples from the training set
X train (only needs to be performed once), and then
identifies the top-k nearest elements by comput-
ing the highest cosine similarity scores. Overall,
our in-context example retrieval pipeline performs
similarity-based filtering to select semantically rel-
evant examples, and thus optimizes the prior dis-
tribution for in-context learning. We additionally
apply similarity thresholding by establishing a min-
imum cosine similarity of 0.5, and set k = 10 as
the maximum number of demonstrations. In our
implementation, SimCSE-RoBERTa is employed
as the embedding function fembed to encode input
claims (Liu et al., 2019; Gao et al., 2021).

4.2 Document Retrieval
The majority of RAG and fact-checking methods
utilize sparse retrieval algorithms, dense retrieval
models or third-party APIs to collect relevant doc-
uments (Izacard and Grave, 2021; Izacard et al.,
2022; Ram et al., 2023; Wang and Shu, 2023;

10334



In-Context
1Synthesis

 Argument
Generation

Retrieval

Collected Documents
Document 1: Contrary to the online rumors, Facebook 
founder and CEO Mark Zuckerberg has not said…
Document 2: In a March 2012 Financial Times article, 
referring to efforts to address the ongoing violence…

Document 
Retrieval

   Synthesis: Merge Arguments and Predict via In-Context Prompting

 Input: Claim: Claim Example 1; Supporting argument: Supporting Argument Example 1; Refuting argument: Supporting Argument Example 1
 Based on the claim, supporting and refuting arguments, it is clear that among “True”, “Half-True” and “False”  the claim can be classified as Label 1

 ……………… Further in-context examples ………………
 Claim: Facebook has a policy…; Supporting argument: It's challenging to construct a…; Refuting argument: It appears there is no direct evidence…
 Based on the claim, supporting and refuting arguments, it is clear that among “True”, “Half-True” and “False” the claim can be classified as _______
 Prediction: False 
 Explanation: Given the analysis of both arguments, the validity of the claim leans towards false. The reasoning behind this conclusion is twofold…

Input Claim

Claim: Facebook has 
a policy against users' 
posting the text of the 
Lord's Prayer.

Branch 1: Supporting Argument
Supporting Argument: It's challenging to construct a direct 
supporting argument for the claim that "Facebook has a policy 
against users' posting the text of the Lord's Prayer" since neither 
document explicitly mentions such a policy. The first document…

Branch 2: Refuting Argument
Refuting Argument: It appears there is no direct evidence to 
support the claim that Facebook has a policy against users posting 
the text of the Lord's Prayer. The first document explicitly 
addresses and refutes online rumors associated with Mark…

Example 
Retrieval

Figure 2: The proposed RAFTS, which performs few-shot fact verification by incorporating informative in-context
demonstrations and contrastive arguments with nuanced information derived from the retrieved documents.

Zhang and Gao, 2023). While sparse retrieval
methods are widely used, they often fall short in
delivering optimal retrieval results for knowledge-
intensive tasks like fact verification. On the other
hand, dense retrieval methods suffer from effi-
ciency issues in processing massive document col-
lections and require extensive annotated data for
optimal performance. These constraints render
current retrieval approaches less effective for fact
verification, where no / limited annotated claim-
document pairs are available for training.

Therefore, we propose a two-stage pipeline
fretrieve in RAFTS that performs coarse-to-fine
retrieval, which improves both computation effi-
ciency and retrieval performance. Specifically, our
pipeline includes: (1) sparse retrieval via BM25,
which collects a subset {di}m̂i=1 from a large col-
lection of documents; and (2) an dense retrieval
model (denoted with θ) that re-ranks and refines
the selection of retrieved documents. Based on x,
the first step narrows down to a subset from a much
larger collection {di}ni=1, while the learnable dense
retriever further selects the m most relevant doc-
uments {di}mi=1 to verify input validity. Although
BM25 may retrieve less relevant or even irrelevant
elements, we note that with proper selection of m̂,
the desired documents tend to be found within the
retrieved set for most cases. In our implementa-
tion, we use m̂ = 20 and m = 5 to balance the
document retrieval performance and efficiency.

Following the sparse BM25 retrieval, we elab-
orate the learning of our dense retrieval model.

To enhance re-ranking performance with limited
annotated data, we exploit the BM25 scores as
a coarse estimation of claim-document relevance.
That is, we utilize the BM25 scores from the previ-
ous retrieval stage, combined with a limited collec-
tion of annotated examples, to train the dense re-
triever model. Specifically for claim-document pair
(x, d), we sample l positive documents {dpi }li=1

and l negative documents {dni }li=1 based on the
BM25 and inverse BM25 scores, which avoids in-
troducing extensive noise in training. Using the
sampled documents, we construct a ranking loss
to expand the margin between document d and
the highest ranked document from {dpi }li=1 (i.e.,
fden(x, d) − max({fden(x, dpi )}li=1)). In addition, we
enhance the relevance between input-document
pairs by imposing a penalty when the margin is
below threshold τ . Furthermore, our training objec-
tive incorporates a contrastive term derived from In-
foNCE (Chen et al., 2020; Yue et al., 2024), which
improves the relevance estimation between input-
document pairs by ‘pushing away’ negative docu-
ments. Overall, the optimization objective is:

E(x,d)∼X [ max(0,max({f(x, dpi )}li=1)− f(x, d) + τ)

− λ
exp(f(x, d))

exp(f(x, d)) +
∑

2l exp(f(x, di))
],

(3)
where

∑
2l exp(f(x, di)) represents the exponen-

tial sum of both positive examples {dpi }li=1 and neg-
ative examples {dni }li=1. τ is the ranking margin
threshold and λ is a scaling factor. For each pair of
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x and d, the first term in Equation (3) becomes rel-
evant when fden(x, d) does not exceed the highest
ranked document (i.e., also known as hard negative)
score by τ . Moreover, the contrastive term max-
imizes exponential score of the input-document
pair in contrast to the sum of scores from the sam-
pled documents. Hence, the dense retriever model
learns to prioritize highly relevant documents while
effectively filtering out those of less relevance to
improve fact verification performance.

4.3 Fact Verification by Synthesizing
Contrastive Arguments

To facilitate fact verification with LLMs, exist-
ing methods leverage intricate templates and tech-
niques such as chain-of-thought (CoT), which de-
composes input claims into sub-claims to ver-
ify (Wei et al., 2022; Wang and Shu, 2023).
Yet when assessing the (sub)-claims, current ap-
proaches prompt LLMs to perform binary classi-
fication (i.e., true or false), and thus often fail to
incorporate nuanced information for fine-grained
fact-checking (Zhang and Gao, 2023; Pelrine et al.,
2023). Moreover, the extended context created
by retrieved demonstrations and documents can
impair performance in LLMs with limited con-
text windows or in smaller LLMs. Therefore, we
propose a branching approach by generating and
synthesizing contrastive arguments, in which we:
(1) decompose the fact-checking task into generat-
ing supporting and refuting arguments upon input
claim and retrieved documents; and (2) learn from
informative in-context examples to synthesize the
contrasting arguments, which incorporates adaptive
prior knowledge and varying viewpoints.

Provided with claim and retrieved documents,
our first sub-task involves creating two branches
in parallel that generate independent yet varying
arguments from two opposing perspectives. In par-
ticular, we leverage the text comprehension and
summarization capabilities of LLMs and perform
instruction prompting to extract relevant facts and
generate supporting / refuting arguments. We adopt
a simple task description and optimize it to ob-
tain concise, yet accurate arguments within a few
sentences. For input x and retrieved documents
{di}mi=1, the generated supporting / refuting argu-
ments are denoted with s and r. Therefore, for a
specific example (x, y) ∼ X , we enrich the input
to (s, r, x, y) by integrating both supporting and re-
futing arguments. Notably, if no pertinent evidence

is found to form the argument, LLMs are instructed
to recognize the absence of evidence, as illustrated
in branch 1 of Figure 2. Consequently, this allows
us to guide LLMs to take both arguments into con-
sideration, facilitating a comprehensive analysis on
the claim and its credibility.

Moving to the argument synthesis and infer-
ence phase (i.e., in-context synthesis) of our fact-
checking framework, we aim to generate accurate
prediction on the claim validity by leveraging in-
context examples along with the contrasting argu-
ments. Recall our in-context learning framework
condition on the k-shot examples {(xi, yi)}ki=1, we
also incorporate the generated arguments and refor-
mulate our inference with:

ŷ = argmax
y

fcheck(y|{si, ri, xi, yi}ki=1, s, r, x),

(4)
where si, ri are the supporting and refuting argu-
ments for the i-th demonstration. Note that the
documents {di}mi=1 are implicitly included in the
arguments and thus no longer used in the prompt.
At this point, we adopt the following template for
each example in the final prompt:

Claim: Claim
Supporting argument: Supporting Arg
Refuting argument: Refuting Arg
Based on the claim, its supporting and
refuting arguments, it is clear that among
Classes, the claim should be classified
as Label.

Here, Claim, Supporting Arg, Refuting Arg,
Classes are populated with the input claim, sup-
porting and refuting arguments and the set of all
classes. For in-context examples, Label is filled
with the respective example’s label, whereas for
the target example, Label is left blank for predic-
tion. Following the prediction, the explanation is
generated in a similar fashion by integrating both
arguments and prompting with instruction.

4.4 Summary of RAFTS
Overall, the proposed RAFTS has three compo-
nents: (1) example retrieval; (2) document retrieval;
and (3) in-context fact verification. The first two
components are designed to collect relevant demon-
strations and supporting documents that provide
insightful context information. In the third compo-
nent, we propose to generate contrasting arguments
upon the retrieved documents, followed by incor-
porating these perspectives in inference to achieve
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Model MS MARCO Check-COVID

N@1 ↑ N@3 ↑ R@3 ↑ N@5 ↑ R@5 ↑ N@1 ↑ N@3 ↑ R@3 ↑ N@5 ↑ R@5 ↑
TFIDF 0.419 0.531 0.613 0.562 0.687 0.266 0.363 0.427 0.385 0.480
BM25 0.665 0.746 0.801 0.760 0.836 0.292 0.395 0.467 0.426 0.545
DPR 0.738 0.793 0.850 0.797 0.903 0.324 0.411 0.477 0.457 0.588
E5 0.796 0.855 0.895 0.865 0.920 0.445 0.584 0.679 0.609 0.741

RAFTS 0.802 0.858 0.896 0.868 0.920 0.513 0.631 0.712 0.646 0.750

Table 1: Evaluation results on document retrieval, with best results in bold and second best results underlined.

fine-grained fact verification. With informative in-
context examples featuring contrastive arguments,
RAFTS can perform well regardless of the LLM
size. To demonstrate the efficacy of RAFTS, we
perform extensive experiments on multiple fact ver-
ification datasets, revealing that RAFTS can sur-
pass state-of-the-art fact-checking methods even
with a significantly smaller LLM.

5 Experiments

5.1 Experiment Design

Document Retrieval. Our example retrieval model
fembed uses the pretrained SimCSE-RoBERTa (Liu
et al., 2019; Gao et al., 2021). The document re-
trieval model fretriever consists of BM25 and a
dense retriever initialized with E5 (base) (Wang
et al., 2022). We adopt MS MARCO and Check-
COVID dataset for document retrieval (Nguyen
et al., 2016; Wang et al., 2023b). The adopted met-
rics are NDCG and Recall (i.e., N@k and R@k)
with k ∈ [1, 3, 5]. For baselines, we adopt the
sparse TFIDF and BM25 and dense models DPR
and E5 (Karpukhin et al., 2020; Wang et al., 2022).
Fact Verification. We adopt Mistral 7B and
GPT-3.5 as our base LLM (Jiang et al., 2023;
Ouyang et al., 2022). We adopt three datasets
with varying granularity: LIAR (True / Mostly-
true / Half-true / Barely-true / False / Pants-fire)),
RAWFC (True / Half-true / False), and ANTiVax
(True / False) (Wang, 2017; Yang et al., 2022;
Hayawi et al., 2022). For LIAR and RAWFC, we
adopt Wikipedia as document sources and use the
MS MARCO trained retriever. The document col-
lection for ANTiVax is collected from CORD and
LitCOVID, thus we use the Check-COVID trained
retriever (Karpukhin et al., 2020; Wang et al., 2020;
Chen et al., 2021). Our supervised baselines are dE-
FEND, SentHAN, SBERT-FC and CofCED (Shu
et al., 2019; Ma et al., 2019; Kotonya and Toni,
2020; Yang et al., 2022). GPT-3.5-based methods
include GPT-3.5, CoT, ReAct and HiSS (Brown

et al., 2020; Wei et al., 2022; Yao et al., 2022;
Zhang and Gao, 2023). We adopt macro recall,
precision and F1 scores to evaluate fact-checking
performance. Automated evaluation is used for ex-
planation quality, including politeness, factuality
and claim-relevance following (He et al., 2023).

5.2 Document Retrieval
Our document retrieval results are reported in Ta-
ble 1. In this table, rows represent retrieval methods
and the columns represent different datasets / met-
rics. For top-1 scores, we use N@1 since top-1
NDCG and Recall scores are equivalent in this case.
From the results we observe: (1) RAFTS retriever
consistently outperforms baseline methods across
all metrics, with an average performance improve-
ment of 3.56% across metrics and datasets. (2) In
contrast to sparse retrieval along, the additional
dense retriever significantly improves the rank-
ing performance. For example, RAFTS achieves
37.61% performance improvement in Recall@5
compared to BM25 on Check-COVID. (3) The per-
formance gains through our retrieval pipeline are
more significant on the Check-COVID dataset. For
instance, the relative improvement of NDCG@5
shifts from 0.35% to 8.05% when moving from
MS MARCO to Check-COVID. Overall, we find
the proposed retrieval pipeline in RAFTS performs
well in collecting relevant documents. In addition,
the retrieval pipeline proves to be essential for spe-
cialized domains like healthcare (e.g., COVID),
leading to notable performance improvements.

5.3 Fact Verification
We proceed to discuss our fact verification per-
formance of RAFTS, with the results reported in
Table 2. Similarly, methods are depicted in rows
and datasets / metrics are represented in columns.
The first group of baseline methods comprise super-
vised approaches (i.e. from dEFEND to CofCED),
followed by methods built upon GPT-3.5 (i.e. from
GPT-3.5 to HiSS), and the bottom row incorporate
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Model LIAR RAWFC ANTiVax

P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑
dEFEND 0.230 0.185 0.205 0.449 0.432 0.440 0.729 0.839 0.781
SentHAN 0.226 0.200 0.212 0.457 0.455 0.456 0.691 0.984 0.812
SBERT-FC 0.241 0.221 0.231 0.511 0.460 0.484 0.736 0.951 0.830
CofCED 0.295 0.296 0.295 0.530 0.510 0.520 0.731 0.956 0.828

GPT-3.5 0.291 0.251 0.270 0.485 0.485 0.485 0.771 0.850 0.808
CoT 0.226 0.242 0.237 0.424 0.466 0.444 0.816 0.877 0.845
ReAct 0.332 0.290 0.310 0.512 0.485 0.498 0.820 0.864 0.841
HiSS 0.468 0.313 0.375 0.534 0.544 0.539 0.823 0.887 0.853

RAFTS (w/ Mistral 7B) 0.616 0.305 0.408 0.626 0.516 0.566 0.839 0.873 0.854
RAFTS (w/ GPT-3.5) 0.471 0.379 0.420 0.628 0.526 0.573 0.886 0.908 0.897

Table 2: Evaluation results on fact verification, with best results in bold and second best results underlined.

RAFTS with Mistral 7B and GPT-3.5. We use P,
R and F1 to abbreviate precision, recall and F1
scores4, and we observe: (1) Both RAFTS vari-
ants demonstrates superior fact-checking perfor-
mance across all datasets. For example, RAFTS
with Mistral 7B outperforms the best baseline
method in F1 by 8.8%, while RAFTS with GPT-
3.5 achieves a significant 12.0% performance gain
on F1. (2) RAFTS with GPT-3.5 delivers the best
classification results overall. In particular, it leads
in precision / recall on two of the three datasets and
achieves the highest F1 for all datasets, averaging
a 7.8% increase in F1 performance. (3) Notably,
RAFTS w/ Mistral 7B backbone is superior than
all baseline methods on F1 scores despite its sig-
nificantly smaller size (7B) than GPT-3.5. This
suggests that the proposed in-context synthesis can
extract concise yet informative arguments and help
LLMs generate accurate predictions on claim cred-
ibility. In summary, the RAFTS can outperform
state-of-the-art fact verification methods by a sub-
stantial margin. Even when utilizing a notably
smaller model (Mistral 7B), RAFTS consistently
exhibits superior performance, highlighting its effi-
cacy in fact verification.

5.4 Explanation Generation
Based on the fact verification results, the expla-
nations for the prediction can be generated in a
similar fashion. To evaluate explanation quality,
we benchmark against GPT-3.5 and HiSS, as super-
vised and the rest LLM methods are not designed
to generate fact-checking explanations. We report
the explanation quality results in Table 3, with Po.,
Fa. and Rel. representing politeness, factuality and

4In our experiments, F1 score is favored as it balances the
trade-off between precision and recall, thereby offering a more
comprehensive performance measure for fact verification.

Dataset Method Po. ↑ Fa. ↑ Rel. ↑

LIAR

GPT-3.5 0.947 0.943 0.846
HiSS 0.967 0.964 0.848
RAFTS (M) 0.973 0.969 0.883
RAFTS (G) 0.969 0.969 0.852

RAWFC

GPT-3.5 0.965 0.949 0.856
HiSS 0.971 0.955 0.861
RAFTS (M) 0.974 0.971 0.757
RAFTS (G) 0.970 0.960 0.862

ANTiVax

GPT-3.5 0.958 0.963 0.774
HiSS 0.986 0.974 0.768
RAFTS (M) 0.987 0.976 0.800
RAFTS (G) 0.986 0.973 0.785

Table 3: Evaluation results on explanation quality, with
best results in bold and second best results underlined.

claim relevance. For RAFTS, we use (M) and (G)
to denote the Mistral 7B and GPT-3.5 backbones.
Our findings are: (1) both baselines and RAFTS
perform well in generating explanations based on
the fact-checking predictions, achieving average
scores above 0.9 for both politeness and factuality.
(2) GPT-3.5-based methods show similar perfor-
mance regardless of prompting strategies. For in-
stance, the average scores on ANTiVax across met-
rics are 0.898, 0.909 and 0.915 for GPT-3.5, HiSS
and RAFTS (G). (3) Surprisingly, RAFTS with
Mistral excels in explanation generation, achieving
the highest politeness and factuality scores on all
datasets, which may be attributed to the instruction-
following capabilities of Mistral 7B. In sum, the
explanation evaluation shows that RAFTS can con-
sistently generate high-quality explanations regard-
less of the choice of the LLM.

6 Conclusion

In this paper, we propose RAFTS, a novel retrieval
augmented fact verification framework. RAFTS
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consists of three key components: (1) example
retrieval, which provides informative in-context
demonstrations; (2) document retrieval that col-
lects relevant documents from verifiable sources;
and (3) in-context prompting, where few-shot
fact-checking is performed by considering both
informative examples and nuanced information
from contrastive arguments. As a result, RAFTS
achieves fine-grained fact verification without the
need for complex prompting techniques and large-
size LLMs. Our experiment results on benchmark
datasets highlight the superiority of RAFTS, which
consistently outperforms state-of-the-art methods
methods in both fact-checking performance and the
quality of generated explanations.

7 Limitations

Despite introducing RAFTS for retrieval aug-
mented fact verification, we have not discussed
the setting in which the document retrieval do-
main significantly differs from the fact-checking
domain (e.g., using Wikipedia documents to fact-
check COVID misinformation), which can cause
performance deterioration for domain-generalized
applications. Furthermore, we have not examined
the robustness and reliability of our example re-
trieval and document retrieval, which could un-
lock additional improvements for fact verification.
Consequently, we plan to explore a more gener-
alized and domain-adaptive solution for retrieval
augmented fact verification as future work.

Acknowledgement

This research is supported in part by the National
Science Foundation under Grant No. IIS-2202481,
CHE-2105032, IIS-2130263, CNS-2131622, CNS-
2140999. The views and conclusions contained in
this document are those of the authors and should
not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation
here on.

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Canyu Chen and Kai Shu. 2023a. Can llm-generated
misinformation be detected? arXiv preprint
arXiv:2309.13788.

Canyu Chen and Kai Shu. 2023b. Combating misinfor-
mation in the age of llms: Opportunities and chal-
lenges. arXiv preprint arXiv:2311.05656.

Canyu Chen, Haoran Wang, Matthew Shapiro, Yunyu
Xiao, Fei Wang, and Kai Shu. 2022. Combating
health misinformation in social media: Characteriza-
tion, detection, intervention, and open issues. arXiv
preprint arXiv:2211.05289.

Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett,
and Eunsol Choi. 2023. Complex claim verification
with evidence retrieved in the wild. arXiv preprint
arXiv:2305.11859.

Qingyu Chen, Alexis Allot, and Zhiyong Lu. 2021. Lit-
covid: an open database of covid-19 literature. Nu-
cleic acids research, 49(D1):D1534–D1540.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Eun Cheol Choi and Emilio Ferrara. 2024. Fact-gpt:
Fact-checking augmentation via claim matching with
llms. In Companion Proceedings of the ACM on Web
Conference 2024, pages 883–886.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

10339

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552


Jiawei Gu, Xuan Qian, Qian Zhang, Hongliang Zhang,
and Fang Wu. 2023. Unsupervised domain adapta-
tion for covid-19 classification based on balanced
slice wasserstein distance. Computers in Biology and
Medicine, page 107207.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Naeemul Hassan, Fatma Arslan, Chengkai Li, and Mark
Tremayne. 2017. Toward automated fact-checking:
Detecting check-worthy factual claims by claim-
buster. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 1803–1812.

Kadhim Hayawi, Sakib Shahriar, Mohamed Adel Ser-
hani, Ikbal Taleb, and Sujith Samuel Mathew. 2022.
Anti-vax: a novel twitter dataset for covid-19 vaccine
misinformation detection. Public health, 203:23–30.

Bing He, Mustaque Ahamad, and Srijan Kumar.
2023. Reinforcement learning-based counter-
misinformation response generation: A case study of
covid-19 vaccine misinformation. In Proceedings of
the ACM Web Conference 2023, pages 2698–2709.

Yue Huang, Kai Shu, Philip S Yu, and Lichao Sun.
2024. From creation to clarification: Chatgpt’s jour-
ney through the fake news quagmire. In Companion
Proceedings of the ACM on Web Conference 2024,
pages 513–516.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Few-shot learning with re-
trieval augmented language models. arXiv preprint
arXiv:2208.03299.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Gongyao Jiang, Shuang Liu, Yu Zhao, Yueheng Sun,
and Meishan Zhang. 2022. Fake news detection via
knowledgeable prompt learning. Information Pro-
cessing & Management, 59(5):103029.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Boshko Koloski, Timen Stepišnik Perdih, Marko
Robnik-Šikonja, Senja Pollak, and Blaž Škrlj. 2022.
Knowledge graph informed fake news classification
via heterogeneous representation ensembles. Neuro-
computing.

Neema Kotonya and Francesca Toni. 2020. Explainable
automated fact-checking for public health claims. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7740–7754, Online. Association for Computa-
tional Linguistics.

Ziyi Kou, Lanyu Shang, Yang Zhang, and Dong Wang.
2022a. Hc-covid: A hierarchical crowdsource knowl-
edge graph approach to explainable covid-19 mis-
information detection. Proceedings of the ACM on
Human-Computer Interaction, 6(GROUP):1–25.

Ziyi Kou, Lanyu Shang, Yang Zhang, Christina Youn,
and Dong Wang. 2021. Fakesens: A social sensing
approach to covid-19 misinformation detection on so-
cial media. In 2021 17th International Conference on
Distributed Computing in Sensor Systems (DCOSS),
pages 140–147. IEEE.

Ziyi Kou, Lanyu Shang, Yang Zhang, Zhenrui Yue,
Huimin Zeng, and Dong Wang. 2022b. Crowd, ex-
pert & ai: A human-ai interactive approach towards
natural language explanation based covid-19 misin-
formation detection. In Proc. Int. Joint Conf. Artif.
Intell.(IJCAI), pages 5087–5093.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1401–
1422, Toronto, Canada. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Xiaonan Li and Xipeng Qiu. 2023. Finding support
examples for in-context learning. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 6219–6235, Singapore. Association for
Computational Linguistics.

Iouliana Litou, Vana Kalogeraki, Ioannis Katakis, and
Dimitrios Gunopulos. 2017. Efficient and timely mis-
information blocking under varying cost constraints.
Online Social Networks and Media, 2:19–31.

10340

https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.findings-emnlp.411
https://doi.org/10.18653/v1/2023.findings-emnlp.411


Hui Liu, Wenya Wang, and Haoliang Li. 2023. Inter-
pretable multimodal misinformation detection with
logic reasoning. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 9781–
9796, Toronto, Canada. Association for Computa-
tional Linguistics.

Hui Liu, Wenya Wang, Haoru Li, and Haoliang Li. 2024.
Teller: A trustworthy framework for explainable,
generalizable and controllable fake news detection.
arXiv preprint arXiv:2402.07776.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Jing Ma, Wei Gao, Shafiq Joty, and Kam-Fai Wong.
2019. Sentence-level evidence embedding for claim
verification with hierarchical attention networks. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2561–
2571, Florence, Italy. Association for Computational
Linguistics.

Ethan Mendes, Yang Chen, Wei Xu, and Alan Ritter.
2023. Human-in-the-loop evaluation for early misin-
formation detection: A case study of COVID-19 treat-
ments. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15817–15835, Toronto,
Canada. Association for Computational Linguistics.

Nicholas Micallef, Bing He, Srijan Kumar, Mustaque
Ahamad, and Nasir Memon. 2020. The role of the
crowd in countering misinformation: A case study of
the covid-19 infodemic. In 2020 IEEE international
Conference on big data (big data), pages 748–757.
IEEE.

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrón-Cedeño, Paolo
Papotti, Shaden Shaar, and Giovanni Da San Martino.
2021. Automated fact-checking for assisting human
fact-checkers. arXiv preprint arXiv:2103.07769.

Qiong Nan, Danding Wang, Yongchun Zhu, Qiang
Sheng, Yuhui Shi, Juan Cao, and Jintao Li. 2022.
Improving fake news detection of influential domain
via domain- and instance-level transfer. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 2834–2848, Gyeongju,
Republic of Korea. International Committee on Com-
putational Linguistics.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. choice, 2640:660.

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Kellin Pelrine, Anne Imouza, Camille Thibault, Meilina
Reksoprodjo, Caleb Gupta, Joel Christoph, Jean-
François Godbout, and Reihaneh Rabbany. 2023. To-
wards reliable misinformation mitigation: General-
ization, uncertainty, and GPT-4. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6399–6429, Singa-
pore. Association for Computational Linguistics.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon llm: outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. 2023. Check your facts and
try again: Improving large language models with
external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813.

Zhiguo Qu, Yunyi Meng, Ghulam Muhammad, and
Prayag Tiwari. 2024. Qmfnd: A quantum multi-
modal fusion-based fake news detection model for
social media. Information Fusion, 104:102172.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Vipula Rawte, Swagata Chakraborty, Agnibh Pathak,
Anubhav Sarkar, SM Tonmoy, Aman Chadha, Amit P
Sheth, and Amitava Das. 2023. The troubling emer-
gence of hallucination in large language models–an
extensive definition, quantification, and prescriptive
remediations. arXiv preprint arXiv:2310.04988.

Nikita Mariam Santhosh, Jo Cheriyan, and Lekshmi S
Nair. 2022. A multi-model intelligent approach for
rumor detection in social networks. In 2022 Inter-
national Conference on Computing, Communication,
Security and Intelligent Systems (IC3SIS), pages 1–5.
IEEE.

10341

https://doi.org/10.18653/v1/2023.findings-acl.620
https://doi.org/10.18653/v1/2023.findings-acl.620
https://doi.org/10.18653/v1/2023.findings-acl.620
https://doi.org/10.18653/v1/P19-1244
https://doi.org/10.18653/v1/P19-1244
https://doi.org/10.18653/v1/2023.acl-long.881
https://doi.org/10.18653/v1/2023.acl-long.881
https://doi.org/10.18653/v1/2023.acl-long.881
https://aclanthology.org/2022.coling-1.250
https://aclanthology.org/2022.coling-1.250
https://doi.org/10.18653/v1/2023.emnlp-main.395
https://doi.org/10.18653/v1/2023.emnlp-main.395
https://doi.org/10.18653/v1/2023.emnlp-main.395


Lanyu Shang, Ziyi Kou, Yang Zhang, Jin Chen, and
Dong Wang. 2022a. A privacy-aware distributed
knowledge graph approach to qois-driven covid-
19 misinformation detection. In 2022 IEEE/ACM
30th International Symposium on Quality of Service
(IWQoS), pages 1–10. IEEE.

Lanyu Shang, Ziyi Kou, Yang Zhang, and Dong Wang.
2021. A multimodal misinformation detector for
covid-19 short videos on tiktok. In 2021 IEEE Inter-
national Conference on Big Data (Big Data), pages
899–908. IEEE.

Lanyu Shang, Ziyi Kou, Yang Zhang, and Dong Wang.
2022b. A duo-generative approach to explainable
multimodal covid-19 misinformation detection. In
Proceedings of the ACM Web Conference 2022, pages
3623–3631.

Lanyu Shang, Yang Zhang, Bozhang Chen, Ruohan
Zong, Zhenrui Yue, Huimin Zeng, Na Wei, and Dong
Wang. 2024a. Mmadapt: A knowledge-guided multi-
source multi-class domain adaptive framework for
early health misinformation detection. In Proceed-
ings of the ACM on Web Conference 2024, pages
4653–4663.

Lanyu Shang, Yang Zhang, Zhenrui Yue, YeonJung
Choi, Huimin Zeng, and Dong Wang. 2022c. A
knowledge-driven domain adaptive approach to early
misinformation detection in an emergent health do-
main on social media. In 2022 IEEE/ACM Interna-
tional Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 34–41. IEEE.

Lanyu Shang, Yang Zhang, Zhenrui Yue, YeonJung
Choi, Huimin Zeng, and Dong Wang. 2024b. A do-
main adaptive graph learning framework to early de-
tection of emergent healthcare misinformation on so-
cial media. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 18,
pages 1408–1421.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019. defend: Explainable fake news
detection. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 395–405.

Kai Shu, Ahmadreza Mosallanezhad, and Huan Liu.
2022. Cross-domain fake news detection on social
media: A context-aware adversarial approach. In
Frontiers in Fake Media Generation and Detection,
pages 215–232. Springer.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. ACM SIGKDD ex-
plorations newsletter, 19(1):22–36.

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and
Xin Luna Dong. 2023. Head-to-tail: How knowl-
edgeable are large language models (llm)? aka will
llms replace knowledge graphs? arXiv preprint
arXiv:2308.10168.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee,
Zihan Liu, Mohammad Shoeybi, Yi Dong, Oleksii
Kuchaiev, Bo Li, Chaowei Xiao, et al. 2023a. Shall
we pretrain autoregressive language models with
retrieval? a comprehensive study. arXiv preprint
arXiv:2304.06762.

Gengyu Wang, Kate Harwood, Lawrence Chillrud,
Amith Ananthram, Melanie Subbiah, and Kathleen
McKeown. 2023b. Check-COVID: Fact-checking
COVID-19 news claims with scientific evidence. In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 14114–14127, Toronto,
Canada. Association for Computational Linguistics.

Haoran Wang and Kai Shu. 2023. Explainable claim
verification via knowledge-grounded reasoning with
large language models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 6288–6304, Singapore. Association for Com-
putational Linguistics.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv e-prints,
pages arXiv–2212.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Rus-
sell Reas, Jiangjiang Yang, Douglas Burdick, Darrin
Eide, Kathryn Funk, Yannis Katsis, Rodney Kinney,
et al. 2020. Cord-19: The covid-19 open research
dataset. ArXiv.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 422–426, Vancouver, Canada.
Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

10342

https://doi.org/10.18653/v1/2023.findings-acl.888
https://doi.org/10.18653/v1/2023.findings-acl.888
https://doi.org/10.18653/v1/2023.findings-emnlp.416
https://doi.org/10.18653/v1/2023.findings-emnlp.416
https://doi.org/10.18653/v1/2023.findings-emnlp.416
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067


Junfei Wu, Qiang Liu, Weizhi Xu, and Shu Wu. 2022a.
Bias mitigation for evidence-aware fake news detec-
tion by causal intervention. In Proceedings of the
45th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 2308–2313.

Junfei Wu, Weizhi Xu, Qiang Liu, Shu Wu, and Liang
Wang. 2022b. Adversarial contrastive learning for
evidence-aware fake news detection with graph neu-
ral networks. arXiv preprint arXiv:2210.05498.

Xueqing Wu, Kung-Hsiang Huang, Yi Fung, and Heng
Ji. 2022c. Cross-document misinformation detection
based on event graph reasoning. In Proceedings of
the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 543–558, Seattle,
United States. Association for Computational Lin-
guistics.

Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, and Liang
Wang. 2022. Evidence-aware fake news detection
with graph neural networks. In Proceedings of the
ACM Web Conference 2022, pages 2501–2510.

Zhiwei Yang, Jing Ma, Hechang Chen, Hongzhan Lin,
Ziyang Luo, and Yi Chang. 2022. A coarse-to-fine
cascaded evidence-distillation neural network for ex-
plainable fake news detection. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 2608–2621, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Barry Menglong Yao, Aditya Shah, Lichao Sun, Jin-Hee
Cho, and Lifu Huang. 2023. End-to-end multimodal
fact-checking and explanation generation: A chal-
lenging dataset and models. In Proceedings of the
46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 2733–2743.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Zhenrui Yue, Huimin Zeng, Ziyi Kou, Lanyu Shang,
and Dong Wang. 2022. Contrastive domain adapta-
tion for early misinformation detection: A case study
on covid-19. In Proceedings of the 31st ACM Inter-
national Conference on Information & Knowledge
Management, pages 2423–2433.

Zhenrui Yue, Huimin Zeng, Yimeng Lu, Lanyu Shang,
Yang Zhang, and Dong Wang. 2024. Evidence-driven
retrieval augmented response generation for online
misinformation. arXiv preprint arXiv:2403.14952.

Zhenrui Yue, Huimin Zeng, Yang Zhang, Lanyu Shang,
and Dong Wang. 2023. MetaAdapt: Domain adap-
tive few-shot misinformation detection via meta
learning. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 5223–5239, Toronto,
Canada. Association for Computational Linguistics.

Xuan Zhang and Wei Gao. 2023. Towards LLM-based
fact verification on news claims with a hierarchical
step-by-step prompting method. In Proceedings of
the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
996–1011, Nusa Dua, Bali. Association for Compu-
tational Linguistics.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac-
tive example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9134–
9148, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Runcong Zhao, Miguel Arana-catania, Lixing Zhu,
Elena Kochkina, Lin Gui, Arkaitz Zubiaga, Rob Proc-
ter, Maria Liakata, and Yulan He. 2023. PANACEA:
An automated misinformation detection system on
COVID-19. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: System Demonstrations, pages
67–74, Dubrovnik, Croatia. Association for Compu-
tational Linguistics.

Yangming Zhou, Yuzhou Yang, Qichao Ying, Zhenxing
Qian, and Xinpeng Zhang. 2023. Multimodal fake
news detection via clip-guided learning. In 2023
IEEE International Conference on Multimedia and
Expo (ICME), pages 2825–2830. IEEE.

Yongchun Zhu, Qiang Sheng, Juan Cao, Qiong Nan,
Kai Shu, Minghui Wu, Jindong Wang, and Fuzhen
Zhuang. 2022. Memory-guided multi-view multi-
domain fake news detection. IEEE Transactions on
Knowledge and Data Engineering.

10343

https://doi.org/10.18653/v1/2022.naacl-main.40
https://doi.org/10.18653/v1/2022.naacl-main.40
https://aclanthology.org/2022.coling-1.230
https://aclanthology.org/2022.coling-1.230
https://aclanthology.org/2022.coling-1.230
https://doi.org/10.18653/v1/2023.acl-long.286
https://doi.org/10.18653/v1/2023.acl-long.286
https://doi.org/10.18653/v1/2023.acl-long.286
https://aclanthology.org/2023.ijcnlp-main.64
https://aclanthology.org/2023.ijcnlp-main.64
https://aclanthology.org/2023.ijcnlp-main.64
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2023.eacl-demo.9
https://doi.org/10.18653/v1/2023.eacl-demo.9
https://doi.org/10.18653/v1/2023.eacl-demo.9

