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Abstract

Real world deployments of word alignment
are almost certain to cover both high and low
resource languages. However, the state-of-
the-art for this task recommends a different
model class depending on the availability of
gold alignment training data for a particular
language pair. We propose BinaryAlign, a
novel word alignment technique based on bi-
nary sequence labeling that outperforms exist-
ing approaches in both scenarios, offering a
unifying approach to the task. Additionally, we
vary the specific choice of multilingual foun-
dation model, perform stratified error analysis
over alignment error type, and explore the per-
formance of BinaryAlign on non-English lan-
guage pairs. We make our source code publicly
available.1

1 Introduction

Word alignment refers to the task of uncovering
word correspondences between translated text pairs.
The automatic prediction of word alignments dates
back to the earliest work in machine translation
with the IBM models (Brown et al., 1993) where
they were used as hidden variables that permit the
use of direct token to token translation probabil-
ities. While state of the art machine translation
techniques have largely abandoned the use of word
alignment as an explicit task (Li, 2022) other use
cases for alignments have emerged including lex-
ical constraint incorporation (Chen et al., 2021b),
analysing and evaluating translation models (Bau
et al., 2018; Neubig et al., 2019), and cross-lingual
language pre-training (Chi et al., 2021b).

In many real-world applications word alignment
must be performed across several languages, of-
ten including languages with manually annotated
word alignment data and others lacking such an-
notations. We refer to those languages as high

1https://github.com/ubisoft/ubisoft-laforge-
BinaryAlignWordAlignementasBinarySequenceLabeling

Figure 1: Example of alignment of an approximate
translation, as often encountered in real-world applica-
tions. Links in red indicate situations where one word
is aligned with several contiguous or non-contiguous
words. The green line represent a situation where a
word is untranslated which happens in many language
pairs.

and low-resource languages respectively. While
word alignment for high-resource languages can
be learned in a few-shot or fully supervised setting
depending on the amount of data, for low-resource
languages zero-shot learning strategies must be em-
ployed due to data scarcity.

State-of-the-art supervised techniques formal-
ize the task of word alignment as a collection of
SQuAD-style span prediction problems (Nagata
et al., 2020; Wu et al., 2023) while in zero-shot
settings the best performing methods induce word
alignment from the contextualized word embed-
dings of mulitingual pre-trained language models
(mPLMs) (Jalili Sabet et al., 2020; Dou and Neubig,
2021; Wang et al., 2022). From a practical perspec-
tive, this discrepancy in the preferred method adds
complexity to the deployment of word alignment
models in real-world applications where both high
and low-resource languages must be supported.

We observe a deeper issue that both span pre-
diction and contextualized word embeddings are
sub-optimal as each induces a bias in word align-
ment models that limits their accuracy. Span pre-
diction methods cannot robustly deal with discon-
tinuous word alignments without relying on com-
plex post-processing and hyper-parameter tuning.
Contextualized word embeddings method cannot
deal effectively with untranslated words and one-to-
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Figure 2: Illustration of our formalization of word alignment. In this example, the word "sofa" in the source sentence
and the word "canapé" in the target sentence are aligned.

multiple alignments because they rely on a softmax
function that normalizes predictions at a sentence-
level while in word alignment; one token being
aligned to token T does not mean that another to-
ken is less likely to be aligned to T . This poses
word alignment as a single-label classification prob-
lem, while in reality it is better viewed as a series
of binary classifications applied to each possible
pair of words. Figure 1 shows some cases of one-
to-multiple alignments, non-contiguous spans and
untranslated words.

In this paper, we present BinaryAlign, a novel
word alignment solution that outperforms the
state-of-the-art in zero-shot, few-shot and fully-
supervised settings. In particular, we reformulate
word alignment as a set of binary classification
tasks in which an individual alignment prediction
is made for each possible pair of words. This re-
formulation of the task outperforms all previous
approaches over five different language pairs with
varying levels of supervision.

2 Related Work

Recently, mPLM based approaches have signifi-
cantly outperformed bilingual statistical methods
(Och and Ney, 2003; Dyer et al., 2013; Östling
and Tiedemann, 2016) and bilingual neural meth-
ods (Garg et al., 2019; Zenkel et al., 2020; Chen
et al., 2020, 2021a; Zhang and van Genabith, 2021).
Among those approaches, we distinguish meth-
ods that achieve good performance without relying

on manually annotated word alignment datasets
(Jalili Sabet et al., 2020; Dou and Neubig, 2021;
Wang et al., 2022) from supervised methods that
leverage existing word alignment datasets to train
high performing word aligners (Nagata et al., 2020;
Wu et al., 2023).

The first type of method relies on the approach of
SimAlign (Jalili Sabet et al., 2020) which proposes
to induce word alignment from the contextualized
word embeddings of mPLMs pre-trained on non-
parallel data. AwesomeAlign (Dou and Neubig,
2021) builds on top of this approach and proposes
to fine-tune mPLMs on parallel text with different
objectives to improve the quality of the contextual-
ized word embeddings. More recently, AccAlign
(Wang et al., 2022) showed that models trained to
learn language-agnostic sentence-level embeddings
also learn strong language-agnostic word-level em-
beddings and set the state of the art in the zero-
shot setting. Also, Wang et al. (2022) show that
fine-tuning on existing word alignment datasets
improves performance of AccAlign on language
pairs unseen during word alignment fine-tuning.
Our method is different from this body of work
because our training and inference objective differ.
We formalize word alignment as a binary sequence
labeling task while we can see those methods as
framing word alignment as a token retrieval task.

In terms of approaches trained and evaluated
in a supervised setting SpanAlign (Nagata et al.,
2020) formalizes word alignment as a collection of
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SQuAD-style span prediction problems which dif-
fers from our binary classification objective. How-
ever, this method falls short in zero-shot and few-
shot when word alignment training data is scarce.
To remedy this problem, WSPAlign (Wu et al.,
2023) introduces a pre-training method based on
weak supervision that significantly improves per-
formance for all amounts of training data.

3 Method

Given a sentence X with n words and a transla-
tion into another language Y with m words, the
task of word alignment is to produce an n by m
adjacency matrix for the bipartite graph with the
words of X on one side and the words of Y on
the other (refer to Figure 1 for an illustration). As
our model will employ commonly used subword
tokenization preprocessing we assume access to an
invertible tokenizer, often implemented in practice
with a list of subword units, a greedy algorithm for
subword chunking, and leading symbols to denote
word continuation in the vocab file (Sennrich et al.,
2016; Wu et al., 2016).

We present BinaryAlign, a novel word align-
ment approach using a binary sequence labeling
model, shown in Figure 2. The inputs to this
model are a subword tokenized source sentence
X = x1, x2, ..., x|X|, a subword tokenized target
sentence Y = y1, y2, ..., y|Y |, and a reference word
wX = x[i : j] which is a subspan of X. We model
the distribution of a binary alignment vector A of
size |Y | in which each entry ak indicates if the
word in Y that contains yk is aligned to wX .

We first preprocess X by surrounding wX with
unique separator tokens and then cross-encode the
source and target sentences with an mPLM. For
each token yk in the target sentence we pass its
final encoded representation through a linear layer
to produce a single logit zk. We model ak with a
logistic function using zk as its parameter:

p(ak = 1|wX) =
1

1 + e−zk
(1)

A supervised signal for token level alignments ak
is easily divined from word alignment data and so
this form is sufficient to estimate the parameters
of the model. However, our true inference-time
goal of word to word alignment requires the use of
additional heuristics. To motivate these heuristics
we formalize W as the inverse of the surjective
mapping between the token indices in Y and its

corresponding words; for any subspan wY of Y ,
W(wY ) returns the token indices in Y that com-
pose wY .

Given an aggregation function agg, we define
the probability of the event a′ that there exists an
alignment between word wX in X and word wY in
Y as

p(a′) = agg
∀k∈W(wY )

p(ak = 1|wX) (2)

Preliminary experiments suggest that the maximum
aggregation strategy yields slightly superior perfor-
mance compared to the mean and minimum aggre-
gation strategies; hence, we adopt it for all subse-
quent experiments.

Word alignment in its general form is a sym-
metric problem in that we would expect the same
answer if the source and target were swapped. How-
ever, like most leading word alignment methods,
our method is asymmetric; the source and target
sentences are handled differently. This deficiency
is empirically detrimental to performance with the
common remedy being to perform alignment in
both directions and then to merge the two predic-
tions in some manner.

We use the following symmetrization technique:
letting pX→Y denote the use of X as the source and
Y as the target sentence, we average pX→Y (a

′) and
pY→X(a′) and apply a threshold decision rule to
make our final inference prediction. While outside
the scope of this study, we note that various other
options exist and have been explored in previous
work such as bidirectional average (Nagata et al.,
2020) or intersection, union and grow-diag-final:
the default symmetrization heuristics supported in
Moses (Koehn et al., 2007).

4 Experiments

4.1 Datasets
We use seven datasets of manually annotated
word alignment data for our main experiments:
French-English (fr-en), Chinese-English (zh-en),
Romanian-English (ro-en), Japanese-English (ja-
en), German-English (de-en), Swedish-English (sv-
en) and ALIGN6. The ja-en data comes from the
KFTT word alignment data (Neubig, 2011), while
the ro-en and fr-en data are taken from Mihalcea
and Pedersen (2003) and the de-en data is pro-
vided by Vilar et al. (2006). Also, the zh-en data is
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de-en ro-en fr-en zh-en ja-en avg

Bilingual Methods AER(%)

FAST-ALIGN (DYER ET AL., 2013) 27.0 32.1 10.5 38.1 51.1 31.8
GIZA++ (OCH AND NEY, 2003) 20.6 26.4 5.9 35.1 48.0 27.2
EFLOMAL (ÖSTLING AND TIEDEMANN, 2016) 22.6 25.1 8.2 28.7 47.5 26.4
MASK-ALIGN (CHEN ET AL., 2021A) 14.4 19.5 4.4 - - -
BTBA (ZHANG AND VAN GENABITH, 2021) 14.3 18.5 6.7 - - -

Multilingual Methods AER(%)

SIMALIGN (JALILI SABET ET AL., 2020) 18.8 27.2 7.6 21.6 46.6 24.4
WSP (WU ET AL., 2023) 16.4 20.7 9.0 21.6 43.0 22.1
AWESOMEALIGN (DOU AND NEUBIG, 2021) 15.2 25.5 4.0 13.4 40.6 19.7
SPANALIGN-ALIGN6 13.3 25.9 2.9 15.5 41.0 19.7
ACCALIGN (WANG ET AL., 2022) 13.5 20.8 2.8 11.3 37.0 17.1
BINARYALIGN 11.6 19.1 1.5 9.0 29.2 14.1(↓3.0)

Table 1: Comparison of AER(%) between our method (BinaryAlign) and previous works on five unseen word
alignment language pairs (zero-shot cross-lingual transfer). We highlight the best performance for each language
pair in bold font. The arrow shows the performance improvement when compared to previous state-of-the-art.

obtained from the TsinghuaAligner website2 and
the sv-en dataset3 from Holmqvist and Ahrenberg
(2011). Finally, ALIGN6 (Wang et al., 2022) is
the combination of six different word alignment
datasets featuring Dutch-English (Macken, 2010),
Czech-English (Mareček, 2011), Hindi-English
(Aswani and Gaizauskas, 2005), Turkish-English
(Cakmak et al., 2012), Spanish-English (Graca
et al., 2008) and Portuguese-English (Graca et al.,
2008).

In addition, we use the Finnish-Greek (fi-el) and
the Finnish-Hebrew (fi-he) word alignment test
dataset from Imani et al. (2021) to experiment on
non-English language pairs. Note that all datasets
are the same ones used in Wang et al. (2022).

4.2 Experimental setup

Unseen alignment experiments: In our unseen
alignment experiments, models are not fine-tuned
on manual word alignment data of the tested lan-
guage pair. This replicates a common real-world
situation in which alignment data set is not avail-
able for a language pair and models must leverage
knowledge gleaned from other language pairs and
pre-training. This setting is usually referred as zero-
shot cross-lingual transfer (Conneau et al., 2020;
Chi et al., 2021a). We follow Wang et al. (2022)
and fine-tune our model on ALIGN6 and use sv-en
as our validation set. We evaluate our method fol-
lowing the experimental protocol of previous work

2http://nlp.csai.tsinghua.edu.cn/~ly/
systems/TsinghuaAligner/TsinghuaAligner.
html

3https://www.ida.liu.se/divisions/hcs/
nlplab/resources/ges/

(Dou and Neubig, 2021; Wang et al., 2022) and
use de-en, ro-en, fr-en, zh-en and ja-en for testing.
Note that those language pairs are not included in
ALIGN6.
Few-shot and fully supervised experiments: We
follow the protocol of Wu et al. (2023) for our few-
shot and fully supervised experiments on de-en, ro-
en, fr-en and ja-en. For ja-en, we train on all eight
dev set files, we use four test set files for testing,
and the remaining three test files for validation. We
separate the de-en, ro-en and fr-en data into training
and test sets. We fine-tune using 300 sentences for
fr-en and de-en, while we use 150 sentences for
ro-en. All remaining sentences are used for testing.
Note that we made the same splits4 as Wu et al.
(2023). For the zh-en data, we leverage the datasets
provided in v1 of the TsinghuaAligner website. We
use their dev set and test set as our training and test
set respectively. Both contain 450 sentences.

In our non-English experiments, we evaluate on
Finnish to Greek (fi-el) and Finnish to Hebrew (fi-
he) data. For fi-el we use 400 samples for training
and test on the 391 remaining samples, and for
fi-he, we have 1780 samples for training and 450
for test. We use 32 training samples for all our
few-shot experiments.

A detailed account of the number of sentence
pairs for each dataset and settings used in our ex-
periments is available in appendix.

4.3 Baseline methods

Unseen alignment experiments: In this setting,
we compare BinaryAlign to the three main bodies

4https://huggingface.co/datasets/qiyuw/wspalign_ft_data
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de-en ro-en fr-en zh-en ja-en avg

Few-Shot Supervision AER(%)

ACCALIGN (WANG ET AL., 2022) 11.9 16.5 2.7 10.7 35.3 15.4
SPANALIGN (NAGATA ET AL., 2020) 15.4 14.8 8.0 16.0 43.3 19.5
WSPALIGN (WU ET AL., 2023) 10.2 10.9 3.8 11.1 28.2 12.8
BINARYALIGN-NOPRE 9.6 10.1 5.1 8.6 25.3 11.7
BINARYALIGN 7.6 8.8 2.5 6.7 22.8 9.7(↓3.1)

Full Supervision AER(%)

ACCALIGN (WANG ET AL., 2022) 11.7 16.8 2.6 10.1 31.2 14.5
SPANALIGN (NAGATA ET AL., 2020) 14.4 12.2 4.0 8.9 22.4 12.4
WSPALIGN (WU ET AL., 2023) 11.1 8.6 2.5 7.6 16.3 9.2
BINARYALIGN-NOPRE 8.0 7.8 1.7 5.2 14.2 7.4
BINARYALIGN 7.7 7.3 1.9 4.8 13.9 7.1(↓2.1)

Table 2: Comparison of AER(%) between the proposed method (BinaryAlign) and previous works with few-shot
and full supervision. We highlight in bold the best performance in each problem. The arrow shows the performance
improvement over previous state-of-the-art.

of research that evaluate on unseen word alignment
language pairs. The first one corresponds to the
historical bilingual statistical methods. We report
GIZA++ (Och and Ney, 2003), eflomal (Östling
and Tiedemann, 2016) and fast-align (Dyer et al.,
2013) which are the best-known statistical meth-
ods.

Bilingual neural methods represent the second
body of work. For this, we report MASK-ALIGN
(Chen et al., 2021a) and BTBA-FCBO-SST (Zhang
and van Genabith, 2021), the two best performing
bilingual neural methods.

Finally, we compare to three methods relying
on contextualized word embeddings of mPLMs:
SimAlign (Jalili Sabet et al., 2020), AwesomeAlign
(Dou and Neubig, 2021) and AccAlign (Wang et al.,
2022). Note that AccAlign leverages ALIGN6 and
is the state-of-the-art method for unseen alignment.

We reimplemented AccAlign using their adapter
method on ALIGN6 as done in there paper. For
other baselines, we quote the results from Dou
and Neubig (2021) for bilingual statistical meth-
ods, from Wang et al. (2022) for AwesomeAlign,
SimAlign, and the bilingual neural methods. We
also report the zero-shot performance of WSPAlign
(Wu et al., 2023) that we computed using the check-
points provided by the authors. Also, we train
SpanAlign on ALIGN6, the same dataset that is
used to train AccAlign and BinaryAlign in this
setup. Comparing to this baseline allows us to de-
termine if our formalization of word alignment can
better leverage existing word alignment datasets
than SQuAD-style span prediction techniques.

Few-shot and fully supervised experiments: We

compare to SpanAlign (Nagata et al., 2020) and
WSPAlign (Wu et al., 2023), the two state of the art
supervised word alignment techniques. Also, we
further fine-tune AccAlign on our language specific
training sets. Comparing to this baseline is impor-
tant as it allows us to determine if our proposed
method performs better than state of the art con-
textualized word embedding extraction techniques
when we have access to manual word alignments
of the same language pair. Also, SpanAlign and
AccAlign have not been compared in previous stud-
ies.

We reimplemented WSPAlign and SpanAlign
for all our few-shot experiments using the source
code provided by WSPAlign authors5. We quote
the results from Wu et al. (2023) for supervised
fine-tuning of SpanAlign and WSPAlign on de-en,
ro-en, ja-en, fr-en and reimplement them for zh-en
as we use a different train and test dataset than the
original papers.

4.4 Fine-tuning setups

We did not perform extensive hyper-parameter tun-
ing of our methods. We arbitrarily use a learn-
ing rate of 2e−5, a batch size of 8 for fine-tuning
and pre-training, and a threshold of 0.5 for infer-
ence. We train all our models for 5 epochs, ex-
cept for few-shot learning without pre-training on
ALIGN6 where we train for 25 epochs. Results
would improve with hyper-parameter tuning on
a large validation set. We use mdeberta-v3-base
(He et al., 2021) as our mPLM. We discuss the
choice of mPLM in section 4.6.2. In supervised set-

5https://github.com/qiyuw/WSPAlign
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fi-el fi-he

Unseen
alignment

AccAlign
WSPAlign

BinaryAlign

37.0
34.9
24.3

73.7
74.7
40.4

few-shot
AccAlign
WSPAlign

BinaryAlign

30.3
14.8
10.8

51.5
27.0
16.9

full
AccAlign
WSPAlign

BinaryAlign

25.1
8.6
6.2

40.15
10.8
7.2

Table 3: Comparison of AER(%) between our method
(BinaryAlign) and previous works in different settings
on two non-English language pairs.

tings we report both BinaryAlign and BinaryAlign-
noPre, our method with and without pre-training
on ALIGN6. Note that pre-training our model on
ALIGN6 is the default setting in BinaryAlign.

4.5 Word Alignment Evaluation Metric
Following previous works (Wang et al., 2022; Dou
and Neubig, 2021), we evaluate performance us-
ing Alignment Error Rate (AER). Given a set of
sure alignments (S), possible alignments (P) and
predicted alignments (H) we can calculate AER as
follows:

AER(S, P,H) = 1− |H ∩ S|+ |H ∩ P |
|H|+ |S| .

Following the protocol in Wu et al. (2023) we use
only sure alignments for training but we evaluate
on both sure and possible alignments when the
distinction is available.

4.6 Results and Discussion
We performed several experiments to validate Bi-
naryAlign. First we compare our method to other
state-of-the-art methods in three different levels
of supervision: full available supervision, few-
shot (32 samples), and unseen languages (zero-
shot cross-lingual transfer). We also evaluate on
non-English language pairs. Next, we evaluate the
impact of choices for mPLM foundation and sym-
metrization. Finally, we discuss how our problem
formulation compares to span prediction and con-
textualized word embedding based approaches in
different situations.

4.6.1 Comparison to State-of-the-Art
Unseen alignments: As a first experiment, we ap-
ply all methods to new language pairs without per-
forming word alignment fine-tuning on the tested

language pair as explained in 4.2. Table 1 reports
the AER of all methods. BinaryAlign is the new
state-of-the-art on all language pairs. In particular,
it outperforms AccAlign by 3.0 points of AER on
average. Since AccAlign and BinaryAlign share
the same pre-training dataset (ALIGN6), this indi-
cates that our word alignment problem formulation
performs better than inducing word alignment from
contextualized word embeddings. This is also true
when comparing with SpanAlign pre-trained on
the same data (ALIGN6). This indicates that our
formalization of word alignment promotes learning
more language-agnostic signals from word align-
ment datasets when compared to existing methods.

Full and few shot supervision: We compare Bi-
naryAlign to the other baseline methods after fine-
tuning on alignment data with few samples and the
whole training data set. Table 2 shows the results
for both supervision levels.

Our method achieves new state-of-the-art on all
tested language pairs and with both levels of super-
vision. On average it outperforms WSPAlign, the
previous state-of-the-art, by 2.1 points of AER with
full supervision and 3.1 with few-shot supervision.

Even without pre-training on ALIGN6 our
method outperforms all methods. Given that WS-
PAlign was pre-trained on 2 millions samples, it
indicates that BinaryAlign promotes sample effi-
ciency.

Finally, we highlight that by using only 32 sam-
ples for few-shot supervision BinaryAlign outper-
forms SpanAlign regardless of pre-training. This
reinforces the performance improvement of formal-
izing word alignment as a binary token classifica-
tion objective over span prediction.

Impact of pre-training on other languages: Ta-
ble 2 reports the results of our method with and
without pre-training on ALIGN6. We conclude
that pre-training improves AER with few-shot as
well as full supervision. However, we observe a
smaller improvement with full supervision which
suggests that the benefit of pre-training on other lan-
guages is inversely correlated with the amount of
in-domain word alignment data. While pre-training
encourages sample efficiency, we did not find any
indication that it could hinder performance.

Non-English language pairs: Because usually
mPLMs perform better in English it is important
to investigate how our method performs on non-
English language pairs. Table 3 reports results on
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de-en ro-en fr-en zh-en ja-en avg

Few-shot Supervision AER(%)

mBERT 9.8 12.7 3.5 9.3 26.6 12.4
mDeBERTa 7.6 8.8 2.5 6.7 22.8 9.7
LaBSE 7.9 9.3 2.4 6.4 23.4 9.9
XLM-RoBERTa-base 8.4 9.3 2.4 8.5 31.1 11.9
XLM-RoBERTa-large 7.7 8.4 3.1 6.0 21.8 9.4

Full Supervision AER(%)

mBERT 9.4 10.3 3.1 6.6 16.8 9.2
mDeBERTa 7.7 7.3 1.9 4.8 13.9 7.1
LaBSE 7.7 7.3 2.4 5.1 14.7 7.4
XLM-RoBERTa-base 8.4 7.4 2.3 5.9 16.7 8.1
XLM-RoBERTa-large 7.7 6.9 2.2 4.4 13.6 7.0

Table 4: Comparison of AER(%) of BinaryAlign under few-shot and full supervision using different mPLMs.

Test set Direction SpanAlign BinaryAlign

de-en
de-en
en-de
sym

83.6(↓2.0)
84.5(↓1.1)

85.6

91.9(↓0.4)
92.2(↓0.1)

92.3

ro-en
ro-en
en-de
sym

85.5(↓2.3)
86.7(↓1.1)

87.8

92.6(↓0.1)
92.2(↓0.5)

92.7

fr-en
fr-en
en-fr
sym

85.0(↓1.7)
85.4(↓1.3)

86.7

98.0(↓0.2)
98.0(↓0.2)

98.2

ja-en
ja-en
ja-en
sym

80.2(↑2.4)
65.2(↓12.4)

77.6

85.6(↓0.5)
85.6(↓0.5)

86.1

Table 5: Comparison of our method (BinaryAlign) and
reported results for SpanAlign (Nagata et al., 2020)
when using symmetrization. We report the F1 score for
each direction and the best symmetrized result (sym)
from all explored heuristics. See appendix for details
on our results and metric.

language pairs excluding English. We used the
checkpoint6 provided by the authors of WSPAlign
since paragraph pairs in Finnish-Greek and He-
brew are difficult to obtain for training. Our results
show that BinaryAlign outperforms WSPAlign and
AccAlign for all degree of supervision. Also, the
AER in non-English language pairs seems to be
similar to the AER of our main experiments on
English-centric language pairs which shows that
our method does not depend on English and is ro-
bust to variations in language family.

4.6.2 Design Choices
mPLM Architecture: Our proposed reformulation
of the word alignment problem does not depend on
a particular mPLM architecture. In this experiment,

6https://huggingface.co/qiyuw/WSPAlign-xlm-base

we investigate the impact of using different mPLMs.
We explore five different mPLMs: XLM-RoBERTa
(base and large)(Conneau et al., 2020), LaBSE7

(Feng et al., 2022), mDeBERTa-v3-base8 (He et al.,
2021) and mBERT9 (Devlin et al., 2019).

Table 4 reports AER of BinaryAlign using dif-
ferent mPLMs in few-shot and fully supervised
settings. All these versions of BinaryAlign reach
or surpass the previous state-of-the-art in terms
of average AER on the five tested language pairs.
This highlights that the improvement of our method
over previous state-of-the-art is not explained by
its reliance on a specific mPLM.

While most mPLMs yield similar results,
mBERT performs slightly worse than the others.
This could be due to a poor parametrization given
that we used the same hyper-parameter configura-
tion for all mPLMs. This could also be explained
by the training objective of the mPLMs or their ca-
pacity. For example we observe that scaling the size
of XLM-RoBERTa has an effect on alignment per-
formance. The base model has an approximately
similar capacity as the other mPLMs and when we
increase this capacity using the large model we ob-
tain the best result over all mPLMs. We suspect
that this effect could generalize to other mPLM
architectures.

Symmetrization: Here we investigate the impact
of different symmetrization heuristics on our re-
sults. As stated in Section 3 symmetrization con-
sists in fusing the alignment obtained going from
one language to another with the alignment ob-
tained going in the inverse direction. We com-

7https://huggingface.co/sentence-transformers/LaBSE
8https://huggingface.co/microsoft/mdeberta-v3-base
9https://huggingface.co/bert-base-multilingual-cased
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de-en ro-en fr-en zh-en ja-en avg

Untranslated words Correctly aligned words(%)

Number of occurances 2085 974 674 5882 6204 3164

AccAlign 74.1 79.5 82.2 75.9 75.0 77.3
SpanAlign 81.5 85.2 88.6 79.3 86.6 84.3
BinaryAlign 84.4 88.3 94.1 83.5 89.0 87.9

One-to-multiple alignments Correctly aligned words(%)

Number of occurances 2079 1726 6159 1738 3937 3128

AccAlign 13.8 5.3 1.2 44.9 11.8 15.4
SpanAlign 27.6 11.0 5.6 48.8 21.6 22.9
BinaryAlign 31.4 16.7 4.8 60.2 29.0 28.4

One-to-multiple non-contiguous words Correctly aligned words(%)

Number of occurances 383 410 565 179 405 388

AccAlign 5.5 5.6 3.5 15.1 4.9 6.9
SpanAlign 11.0 2.2 2.5 8.9 4.7 5.9
BinaryAlign 21.7 5.1 7.1 26.3 7.4 13.5

Table 6: Comparison of AccAlign, SpanAlign and BinaryAlign in complex word alignment situations. The three
methods are pre-trained on ALIGN6 and evaluated on unseen alignments. See A.3 for details on our metric.

pare several symmetrization techniques: intersec-
tion, union, average (avg) and bidirectional average
(bidi-avg) (Nagata et al., 2020).

In Table 5 we compare results obtained from
aligning in a single direction to the results obtained
using the best symmetrization heuristics (full de-
tails available in the appendix). We report the F1
score (see A.3) as done in Nagata et al. (2020).

Our results indicate that for BinaryAlign, unidi-
rectional alignment does not perform significantly
worse (average of 0.3 points of F1 score) than
symmetrized alignment. This is not the case for
SpanAlign which gains 2.4 points of F1 score on
average by applying symmetrization. Performing
alignment in only one direction is interesting since
it halves the inference time.

4.6.3 Post-analysis of errors

In this section we analyze how the proposed prob-
lem formulation of BinaryAlign improves accuracy
in complex word alignment situations. We inspect
results in three situations: 1) words that are un-
translated, also referred as null words (Jalili Sabet
et al., 2020) (2) words that are aligned to multiple
words (3) words that are aligned to multiple non
contiguous words. For each situation, we report
the percentage of correctly aligned words in Table
6. Details on how we computed our metric can
be found in A.3. Results indicate that our method
handles these situations better than both compet-
ing methods. This is especially true when aligning

multiple non contiguous words which was the main
motivation for our reformulation. The prevalence
of these situations in a given language pair modu-
lates the performance gain of our method over the
others.

5 Conclusion

We presented BinaryAlign, a novel word alignment
training and inference procedure. In particular,
we proposed to reformulate the word alignment
problem as a binary token classification task. We
showed that because of this reformulation Bina-
ryAlign outperforms existing methods regardless
of the degree of supervision. In addition we showed
that it overcomes the inherent limitations of previ-
ous methods relying on span prediction and soft-
max. As a result, we made the word alignment task
easier to tackle by using a single model for both
high and low-resource languages.

In the future we plan to explore the use of larger
decoder-only or encoder-decoder models such as
mT5 (Xue et al., 2021) to see how much align-
ment performance will increase. We also plan on
investigating knowledge distillation techniques to
improve the inference time of our method.

6 Limitations

The inference cost is the main limitation of our
method. When using symmetrization, it has to
perform a forward pass for each word of both sen-
tences, which can be slow with long sequences.
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However, this is a drawback that we share with pre-
vious state-of-the-art supervised approaches (Na-
gata et al., 2020; Wu et al., 2023).

In addition, we did not experiment on extremely
low-resource languages that the mPLM has not
seen during pre-training (Ebrahimi et al., 2023).
While the benefits of our new formulation would
likely apply to any language, it is unclear how our
method will rapidly adapt the mPLM to new lan-
guages (Garcia et al., 2021).

In real-world applications, translations are of-
ten partial and noisy. Unfortunately, we could not
evaluate the robustness of our method to different
translation pair quality because this type of word
alignment dataset does not exist.

7 Ethics Statement

The ethical and societal implications of word align-
ment and neural machine translation are generally
positive. They facilitate cross-cultural communica-
tion and break down language barriers. Nonethe-
less, as for any machine learning field, potential
biases embedded in training data can inadvertently
influence translations and perpetuate stereotypes,
especially when translating to and from gendered
languages. Finally the impact of neural machine
translation on employment for human translators
raises questions about job displacement and eco-
nomic inequalities. It is crucial for developers and
stakeholders to prioritize fairness, transparency,
and accountability in the design and implemen-
tation of such systems. We must balance techno-
logical advancement and ethical responsibility to
ensure societal well-being, inclusive communica-
tion and minimize unintended consequences.
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A Appendix

A.1 Experimental Environment
For all our experiments we use one NVIDIA
Quadro RTX 6000. Fine-tuning on ALIGN6 took 4
hours and 30 minutes while our fully supervised ex-
periments took on average 20 minutes per dataset.

A.2 Dataset statistics
Table 8 shows the number of samples that our train-
ing, validation and test set contains for all level of
supervision. All dataset are the same as in Wang
et al. (2022). The de-en, ro-en, fr-en and ja-en train-
test splits are the same as the one used in Wu et al.
(2023). We could not get the zh-en data used in
Wu et al. (2023) because the dataset is not publicly
available.

A.3 Metric details
A.3.1 F1 score
Given a set of sure alignments (S), possible align-
ments (P) and predicted alignments (H), we can
compute the Recall, Precision and F1 score as fol-
lows:

Recall(H,S) =
|H ∩ S|

|S|

Precision(H,P ) =
|H ∩ P |
|H|

F1(H,S, P ) =
2 ∗ Precision ∗Recall

Precision+Recall

When S == P , we have:

AER(H,S, P ) = 1− F1(H,S, P )

A.3.2 Post-analysis of errors
Untranslated words: We report the number of
untranslated words correctly aligned by the models
over the total number of untranslated words. We
consider a word to be correctly aligned if the model
has not aligned it to any words in the corresponding
translated sentence.
One-to-multiple contiguous and non contiguous
words: In this case, we report the number of con-
tiguous/non contiguous words correctly aligned by
the model over the total number of contiguous/non
contiguous words. We consider a word to be cor-
rectly aligned if the model has aligned it to the
exact same set of ground truth aligned words.

Test set Method SpanAlign BinaryAlign

de-en

De to En
En to DE

intersection
union

bidi-avg
avg

83.6(↓2.0)
84.5(↓1.1)

84.0
84.0
85.6

-

91.9(↓0.4)
92.2(↓0.1)

92.2
91.9
92.2
92.3

ro-en

Ro to En
En to Ro

intersection
union

bidi-avg
avg

85.5(↓2.3)
86.7(↓1.1)

87.3
85.0
87.8

-

92.6(↓0.1)
92.2(↓0.5)

92.2
92.7
92.7
92.7

fr-en

Fr to En
En to Fr

intersection
union

bidi-avg
avg

85.0(↓1.7)
85.4(↓1.3)

86.7
83.9
86.2

-

98.0(↓0.2)
98.0(↓0.2)

97.8
98.2
97.8
98.0

ja-en

Ja to En
En to Ja

intersection
union

bidi-avg
avg

80.2(↑2.4)
65.2(↓12.4)

74.5
71.1
77.6

-

85.6(↓0.5)
85.6(↓0.5)

85.7
85.5
85.7
86.1

Table 7: F1 score comparison of our method (Bina-
ryAlign) and SpanAlign using different symmetrization
heuristics in supervised setting. For SpanAlign, we
quote results from Nagata et al. (2020).

Dataset Train Val Test

zero-shot
cross-lingual transfer

(unseen
alignment)

Align6
de-en
ro-en
fr-en
zh-en
ja-en
sv-en

3,362
-
-
-
-
-
-

-
-
-
-
-
-

192

-
508
248
447
450
582

-

fully supervised

de-en
ro-en
fr-en
zh-en
ja-en

300
150
300
450
653

-
-
-
-

225

208
98

147
450
357

Table 8: Number of training, validation and test samples
in different settings. We omit few-shot as it shares the
same test set as the fully supervised setting but only use
32 samples for training in each language.
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