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Abstract
Recent studies have shown that integrating con-
structional information can improve the perfor-
mance of pre-trained language models (PLMs)
in natural language understanding. However,
exploration into leveraging constructional infor-
mation to enhance generative language models
for natural language generation has been lim-
ited. Additionally, probing studies indicate that
PLMs primarily grasp the syntactic structure of
constructions but struggle to capture their se-
mantics. In this work, we encode constructions
as inductive biases to explicitly embed con-
structional semantics and guide the generation
process. We begin by presenting a construction
grammar induction framework designed to au-
tomatically identify constructions from corpora.
Subsequently, we propose the Construction-
Enhanced Language Model (CoELM). It intro-
duces a construction-guided language model-
ing approach that employs a dynamic sequence
reassembly strategy during pre-training. Exten-
sive experiments have demonstrated the superi-
ority of CoELM across various benchmarks.

1 Introduction

The constructions are linguistic structures that
are viewed as a set of form-meaning pairs in Con-
struction Grammar (CxG; Goldberg, 2003; Gold-
berg et al., 2005). Specifically, a construction is
represented as a sequence of slot-constraints from
a usage-based perspective (Dunn, 2017, 2019),
where the slots encompass different levels of ab-
straction (e.g., lexical, syntactic). Based on these
slots, constructions can be classified into three main
types (Ungerer and Hartmann, 2023): (i) Schematic
constructions contain open slots solely and con-
vey a general meaning. For example, “Subject-
Verb–Object1–Object2” is a ditransitive construc-
tion (Goldberg, 1995) that denotes the abstract
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meaning of transfer. (ii) Semi-idiomatic construc-
tions are partially filled with lexical elements, for
instance, “give-Pronoun-a-break”. (iii) Idiomatic
constructions are sequences composed of succes-
sive fixed words, such as “like a bat out of hell”.

Recent studies (Tayyar Madabushi et al., 2020;
Xu et al., 2023) have leveraged constructional in-
formation on encoder-only pre-trained language
models (PLMs), such as BERT and RoBERTa (De-
vlin et al., 2019; Liu et al., 2019). These studies
demonstrate that incorporating constructional infor-
mation can enhance the performance of language
models in various Natural Language Understanding
(NLU) tasks. However, prior research has not ex-
plored the utilization of constructional information
to augment generative language models for Natu-
ral Language Generation (NLG). In particular, the
prevalent approach in generative models features a
decoder-only architecture (OpenAI, 2023; Touvron
et al., 2023), which contrasts with the encoder-only
architecture in pre-training tasks. There is a signifi-
cant gap that our work aims to address.

While PLMs can access constructional informa-
tion without explicit training (Madabushi et al.,
2023), probing studies (Weissweiler et al., 2023a,c;
Tseng et al., 2022) suggest that they primarily grasp
the syntactic structures but fail to fully capture se-
mantic aspects. In Appendix B, we investigate the
perception of language models for constructional
semantics via probing experiments. Larger models
exhibit better awareness of constructional seman-
tics for both semi-idiomatic and schematic con-
structions compared to smaller ones, which aligns
with the findings by Murty et al. (2023) on PLMs’
capacity to generalize hierarchical structures, albeit
slowly. These observations indicate that construc-
tions consist of hierarchically abstract slots, posing
intrinsic challenges for PLMs as they involve non-
compositional meanings not directly linked to indi-
vidual words. Consequently, this insight motivates
us to adapt pre-training tasks to facilitate the swift
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acquisition of constructional information.
In summary, our research focuses on develop-

ing effective pre-training strategies to efficiently
learn constructional information, thereby enhanc-
ing language modeling capabilities essential for
NLG. To this end, we propose a two-step approach.
Initially, we employ automated methods to identify
constructions from corpora, creating a comprehen-
sive inventory for pre-training. Subsequently, these
identified constructions are encoded as inductive
biases during the pre-training phase, which allows
model to explicitly capture constructional informa-
tion and direct the generation process.

In the first step, recognizing the labor-intensive
nature of manual construction inventory creation,
we prioritize automated methods for identifying
constructions. These methods are advantageous
as they can uncover a variety of patterns that lin-
guists might overlook (Madabushi et al., 2023). In
usage-based CxG, a construction is depicted as a se-
quence of slot-constraints. To quantify the relation-
ship between individual words and generate these
constraints, either frequency-based or association-
based models (Dunn, 2017) are applied. As sug-
gested by Dunn (2019), association-based models
provide better generalizations for slot-constraints
when compared to frequency-based counterparts.

However, manual inspection of the inventory of
constructions indicates that some constructions are
relatively short or tend to contain generic labels
(e.g., “Preposition + his”; Tsao and Wible, 2013;
Tayyar Madabushi et al., 2020), lacking a clear
mapping of form to a specific function or meaning.
Through empirical study, we explore the possible
reasons. Existing methods employ threshold-based
strategies, such as frequency and association met-
rics (Dunn, 2017), to assess the eligibility of adding
new slots to a construction. A construction is trun-
cated if the association strength between adjacent
slots drops below the specified threshold.

To tackle the issue, we introduce a construction
grammar induction framework called CxGLearner.
Within this framework, the association strength
among slots is assessed through a PLM-based As-
sociation Strength Estimator (ASE), which can con-
sider more extended distances when assessing slot
constraints. Additionally, inspired by nucleus sam-
pling (Holtzman et al., 2020), we establish a nu-
cleus set that utilizes the ASE’s output distribution.
This set guides the decision on whether to append
slots to the sequence of candidate constructions,
aiming to create complete constructions without

resorting to rigid threshold-based truncation.
For the second step, we propose a construction-

guided language modeling approach with dynamic
sequence reassembly strategy for pre-training. This
strategy involves initially identifying all constructs
within the input sequences that instantiate the con-
structions from the inventory. Then we insert con-
structions before their corresponding constructs,
thereby explicitly embedding constructional seman-
tics to guide the generation process. And the cur-
riculum learning (Bengio et al., 2009) is employed
to regulate the reassembly of both the types and
quantities of constructions in sequences. Mean-
while, this approach ensures compatibility with
existing generative language models, eliminating
the need for additional decoding procedures.

Subsequently, our Construction-Enhanced Lan-
guage Model (CoELM)1 is pre-trained from
scratch. Extensive experiments have validated the
effectiveness of integrating constructional informa-
tion into language modeling. Consequently, encod-
ing constructions as inductive biases not only expe-
dites the acquisition of constructional semantics for
language model but also significantly enhances its
performance across a range of benchmark tasks.

2 Induction Framework for CxG

In this section, we propose an unsupervised com-
putational framework, which automatically inducts
generic usage-based constructions from corpora.

2.1 Computational Language Framework

Previous works have attempted to automatically
extract constructions from corpora (Dunn, 2017;
Feng et al., 2022; Lyngfelt et al., 2018), with Dunn
(2019) proposing a relatively sensible pipeline.
However, as we mentioned in the Introduction,
the search strategy in these works determines slot
access constructions solely based on neighboring
slots and a hard threshold, leading to truncation. To
address this issue and ensure compatibility with lan-
guage modeling, we propose a construction gram-
mar induction framework (CxGLearner) to acquire
an inventory of constructions. Since our framework
comprises abundant implementation details, we
briefly describe the entire pipeline in this section,
leaving the detailed information to Appendix D.

As shown in Figure 1, our framework initially
encodes the corpus into abstract representations

1Our code is publicly available at https://github.com/
xlxwalex/CoELM

10062

https://github.com/xlxwalex/CoELM
https://github.com/xlxwalex/CoELM


at different levels (e.g., lexical, syntactic). We
then iterate through each position and level of slots
among the encoded corpus, recursively searching
to extract potential construction candidates. To
determine whether slots can continue to expand
potential candidate sequences, we propose the As-
sociation Strength Estimator (ASE), which is pre-
trained to simulate the association strength between
sequences and slots. Subsequently, these construc-
tions are pruned and optimized (Appendix D) to
acquire the final inventory of generic constructions.

2.2 Association Strength Estimator (ASE)

Since usage-based constructions are represented
as sequences of slot constraints (Dunn, 2017), the
key issue is how to measure the constraint rela-
tions between slots. Instead of frequency, associa-
tion strength (Dunn, 2019; Gries, 2013) is applied
to quantify the co-occurrence among multi-unit
within a language. Prior research (Dunn, 2019) as-
sesses if the association strength2 between adjacent
slots are sufficient for combination, which can only
focus on localized features. As shown in Figure 1,
a potential solution is to determine the association
strength between the formed sequence of slots and
the slot under consideration. However, this would
introduce significant computational complexity for
direct association strength assessment. Further de-
tails on complexity are discussed in Appendix A.

Recently, studies on the interpretability of lan-
guage model backbones, specifically transformer,
have shown that the attention mechanism in trans-
former exhibits a dynamic tendency to favor unique
key tokens that often co-occur with query tokens
(Tian et al., 2023a,b). This evidence aligns with the
quantitative goal of measuring association strength,
which motivates us to employ ASE, a pre-trained
GPT-based language model, for estimating the as-
sociation strength between sequences and slots.

We first split the background corpus for ASE
pre-training. Then the pre-training task of ASE
is adapted as next slot prediction, which randomly
selects different abstraction levels of the slots in the
background corpus. This facilitates the association
between slots of varying levels. Then the proba-
bility distribution of the output can be exploited to
estimate the association strength. The feasibility of
ASE is also illustrated in Appendix H.

2Given that our candidate sequences initiate backward
searches from arbitrary positions, and considering computa-
tional complexity, we opt to estimate unidirectional instead of
bidirectional association strength of Dunn (2019).
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Figure 1: Schematic example of our framework.

2.3 Candidate Extraction with Nucleus Set

To extract construction candidates from the candi-
date corpus, we initiate a potential sequence with
each slot in each sentence. We then conduct a
recursive search for the next potential slot across
different abstraction levels. A slot is incorporated
into the current sequence if it is included in the
nucleus set according to the output distribution of
ASE. The inclusion process ceases when a slot no
longer meets this criterion.

As shown in Figure 1, we regard the candidate
sequence as the input for ASE. The ASE then gen-
erates a probability distribution for the next slot, de-
noted as P (si). Drawing inspiration from nucleus
sampling (Holtzman et al., 2020) and leveraging
the unique aspects of ASE, we utilize the nucleus
set instead of a hard threshold to prevent truncation.

We first rank the output probabilities from ASE
in descending order. Subsequently, the top-k slots
with the highest probability P (si) are retained.
Then the probabilities for these slots are normalized
to acquire P (si)

′
. Finally, we select the smallest

set of top slots, known as the nucleus set N(p),
whose cumulative probability surpasses the thresh-
old p, that is,

∑
s∈N(p) P (si)

′ ≥ p. The slot is
deemed to fulfill the association condition if it is
included in the nucleus set and can be expanded to
the candidate sequence, otherwise, it is discarded.
In Figure 1, a schematic example begins with the
syntactic slot “NOUN” and forms a potential se-
quence of “NOUN-can-be-ADV”. To determine
whether the next possible slots, i.e. “ADJ” and
“suitable”, can be added to the sequence, we obtain
the output distribution by feeding sequence into
ASE. Then “ADJ” is included in the nucleus set
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with a cumulative probability of 0.8 , while “suit-
able” does not meet the condition. Thus, “ADJ”
can be expanded to the potential sequence.

This approach offers more flexibility in captur-
ing the dynamic association strength between se-
quences and slots than the previous method.

3 Construction-Enhanced LM

In this section, we explore how the acquired con-
struction inventory can be utilized to enhance the
constructional awareness of language modeling.

3.1 Constructions as Inductive Bias
To employ constructions as inductive biases for
steering the generative language model towards
a more effective understanding of constructional
semantics, we will address two main sub-issues:

(i) How to incorporate the meaning of construc-
tion to guide the generation? We propose a dy-
namic sequence reassembly strategy to tackle this
issue. The input sequences are first matched for all
the constructs and then distinguished by inserting
corresponding constructions before the constructs
into sequences. Thus, the constructional semantics
can be explicitly fused to language model.

(ii) How to be compatible with existing language
models, avoiding external decoding procedure, and
adapting to various types of constructions at dif-
ferent granularities? For this issue, we introduce
Curriculum Learning (Bengio et al., 2009) to dy-
namically regulate the selection of constructions.

3.2 Dynamic Sequence Reassembly Strategy
In order to leverage constructions, it is crucial to as-
sociate these patterns with their respective construc-
tional semantics (i.e., meaning). We first integrate
the construction inventory with the token vocabu-
lary, embedding both into vector space by looking
up the embedding matrix E ∈ R|V|+|G|, where |V|
and |G| refer to the size of vocabulary and construc-
tion inventory, respectively. Then we enhance con-
structional perception in language models through
dynamic sequence reassembly. As shown in Fig-
ure 2, we insert constructions before their corre-
sponding constructs during pre-training, thus guid-
ing the generation process. However, the complex-
ity of matching multiple constructions from the en-
coded multi-level sequences arises due to the over-
lapping nature of usage-based CxG (Xu et al., 2023;
Dunn, 2019). Thus, we refine the Aho-Corasick
algorithm (Aho and Corasick, 1975) for construc-
tion matching, denoted as AC(·). It matches all
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Figure 2: The schematic diagram of our CoELM. The
type for T denotes True, while F stands for False.

constructions and generates a dictionary M. This
dictionary maps each position index of sequence
to a set m: the lengths mL, indexes mI , types
mT (true for schematic constructions, otherwise
false) and probabilities mP of all constructions
beginning at that position. In the schematic sam-
ple of Figure 2, four constructions are matched at
positions starting at 0 and 8. Then each position
is traversed and the selection probability ps is ex-
ploited to determine the insertion of constructions,
while the abstract probability pa is employed for
dictating the likelihood of choosing schematic con-
structions. The CHOICE(·) function is designed to
randomly select indexes for overlapping construc-
tions according to a predefined probability distri-
bution. In instances where no constructions are
selected, the function yields a value of −1.

3.3 Architecture of Language Model

In this work, we pre-train a language model
(CoELM) from scratch and our model architec-
ture largely follows Llama 2 (Touvron et al., 2023),
which aligns with the latest best practices in lan-
guage modeling (Zhang et al., 2024): (1) We use
Rotary Positional Embedding (RoPE; Su et al.,
2024) as our preferred positional embedding. (2)
To attain a more stable training, we normalize the
input prior to each transformer layer with RM-
SNorm (Zhang and Sennrich, 2019). (3) Instead
of the standard ReLU non-linearity, we adopt the
approach of Llama 2 by combining Swish with
the Gated Linear Unit, a method we refer to as
SwiGLU (Shazeer, 2020). Additionally, Flash At-
tention (Dao, 2023) is employed to boost device
throughput during the pre-training phase.

3.4 Training Method

In pre-training, our objective is to learn the rela-
tionship between constructions and the tokens that
compose them. We approach the training process

10064



Algorithm 1: Dynamic reassembly process
Input: Construction list G and encoded sequence S.

Probabilities of ps and pa.
Output: Reassembled sequence S ′

.
1 The length n and levels l of S: n, l← S.SHAPE

2 The matching results m ∈M← AC(S, G, l, n)
3 Initialize S ′ ← [ ]
4 for i = 0 to n− 1 do
5 token← S[i, 0] // equivalent to lexical slot
6 if i inM.KEYS() then
7 m

′
P ← [p× pa × ps if mT else
p× (1− pa)× ps for p in mP ]

8 ind← CHOICE(mI , weight=m
′
P )

9 if ind ≥ 0 then
10 token← S[i : i+mL[ind] , 0]

11 S ′ ← [S ′
, mI [ind] ]

12 i← i+mL[ind]
13 end
14 end
15 S ′ ← [S ′

, token]
16 end
17 return S ′

from two perspectives: (1) Schematic construc-
tions have more abstract slots than semi-idiomatic
and idiomatic constructions, resulting in relatively
coarser constructional semantics. Thus, we antici-
pate the model to distinguish schematic construc-
tions during the early stage, and focus more on
semi-idiomatic and idiomatic constructions later.
(2) Since the language model can learn hierarchical
structures, albeit slowly, we only guide the gener-
ation process at an early stage. This strategy not
only expedites learning but also eliminates the need
for specialized handling of the construction units
in the generated sequence during inference.

Drawing on the approach of Bengio et al. (2009),
we adopt curriculum learning to achieve our ob-
jectives. They are both employed in the dynamic
reassembling process (ps and pa) in Algorithm 1.
Curriculum learning defines the pacing function
that regulates the sequence and timing of intro-
ducing various difficulty levels of samples during
training. As depicted in Figure 3, we establish
two distinct pacing functions for different aspects
of our goal. The model initiates with a predeter-
mined number of warm-up steps tw to establish
token relationship. This is succeeded by a stage
where the construction guidance is progressively
diminished until stop steps ts. For the selection and
abstraction probabilities, we employ linear-decay
and cosine-decay pacing functions, respectively.

Warmup Steps

Stop Steps

Warmup 
Steps

Stop Steps

Figure 3: The pacing functions of selection probability
ps and abstract probability pa over pre-training process.

4 Experiments
4.1 Experiments Setup
Pre-training corpus. The entire pre-training cor-
pus is sampled from multiple subsets of RedPa-
jama (Soboleva et al., 2023) and Pile (Gao et al.,
2020), which aligns with the settings in previous
pre-trained language models. Our corpus com-
prises a total of 188B tokens after pre-processing
(Chen et al., 2023), such as deduplication. The de-
tailed statistics and pre-processing procedure of the
pre-training corpus are provided in Appendix C.

Evaluation tasks. For evaluating the perfor-
mance of model (CoELM), we utilize the Language
Model Evaluation Harness (Gao et al., 2023) frame-
work to conduct evaluation on various language
modeling and commonsense reasoning tasks.

Implementation. In CxGLearner framework, we
set the parameters of k and p to be 20 and 0.6,
respectively. In total, we induct 13,262 generic
constructions for the inventory. As for our CoELM,
we adopt the similar hyper-parameters in Pythia-
410M (Biderman et al., 2023) for comparison. This
includes 24 layers with 16 heads, with a hidden size
of 1024 and an intermediate size set to 4096. We
employ the SentencePiece (Kudo and Richardson,
2018) as the tokenizer with the vocab size to be
50257. During pre-training, we utilize the AdamW
optimizer (Loshchilov and Hutter, 2018) with a
cosine learning rate scheduler. We exploit 2,000
warmup steps and the batch size is set to 1 million
tokens. We pre-train 250,000 steps for running
1.4 epoch on entire corpus. And the tw and ts for
curriculum learning are set to 2,000 and 80,000
steps, respectively. More detailed information for
settings is demonstrated in Appendix F.

Comparable LMs. We primarily focus on lan-
guage models which are close to the number of
parameters in our implementation. Specifically, we
compare our CoELM with GPT-2 Medium (345M;
Radford et al., 2019), OPT-350M (Zhang et al.,
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Model Arc-E Arc-C OBQA Logi. PIQA Hella. BoolQ WSC QNLI Avg.

Zero-shot Results
GPT-2 49.0 21.6 18.6 22.4 67.6 33.3 58.6 40.4 49.4 40.1
OPT 44.0 20.7 17.6 21.0 64.4 32.0 57.7 36.5 49.5 38.2
Pythia 51.3 20.5 17.6 23.8 67.2 34.5 58.2 51.0 50.1 41.6
BLOOM 47.4 22.4 17.2 22.6 64.0 31.6 55.1 40.4 50.3 39.0
CoELM 55.9 24.6 21.2 21.0 70.9 40.3 56.4 55.8 50.2 44.0

Five-shot Results
GPT-2 50.9 22.8 19.2 22.7 66.3 32.9 61.4 36.5 48.8 40.2
OPT 45.5 20.6 18.4 23.2 65.6 31.9 57.2 49.0 51.1 40.3
Pythia 53.5 22.1 18.0 23.8 67.7 34.6 59.3 47.1 50.6 41.9
BLOOM 50.3 21.6 17.4 21.4 64.2 31.5 59.4 40.4 49.5 39.5
CoELM 59.1 25.7 21.4 20.3 70.7 37.3 57.7 38.5 49.5 42.4

Table 1: Five-shot and zero-shot results on NLP Benchmarks. The metric of these tasks is accuracy and the best
result on each task is in bold. The “Logi.” task denotes LogiQA, while “Hella.” task stands for HellaSwag.

2022), Pythia-410M (Biderman et al., 2023) and
BLOOM-560M (Workshop et al., 2022).

4.2 Experiment Results

To evaluate the ability of CoELM for reasoning and
language modeling, we conduct experimental com-
parisons on several common benchmarks (Statistics
for these tasks are shown in Appendix E). Our main
results on the comprehension and reasoning tasks
are shown in Table 1. We conduct both zero-shot
and few-shot experiments for comparison, from
which several observations can be obtained.

First, Pythia outperforms other language models
under zero-shot setting, while OPT and BLOOM
exhibit similar performance, despite OPT having
fewer parameters. GPT-2 achieves higher perfor-
mance than OPT and BLOOM, but lower than
Pythia. Remarkably, our CoELM significantly out-
performs other models on most of tasks, especially
with huge gaps in the Arc-E, HellaSwag and WSC
tasks. This suggests that our CoELM, with con-
structional information incorporated, possesses su-
perior comprehension and reasoning capabilities.

Second, few-shot learning is designed to answer
the questions generalized from a small number of
examples. Thus, five exemplars are provided for
the prompts. We observe that the performance of
language models can be enhanced in the majority
of tasks through a few-sample setting, although
on a few tasks, the performance decreases instead.
For instance, in HellaSwag, a natural language rea-
soning task with complex contextual premises, a
deeper understanding of linguistic knowledge in-
herent in the language models is required. Conse-

Model Zero-shot Five-shot
PPL. Acc. PPL. Acc.

GPT-2 18.3 43.1 35.1 31.9
OPT 16.4 45.1 23.9 38.3
Pythia 10.5 52.5 15.1 44.8
BLOOM 28.7 35.3 41.6 30.2
CoELM 9.3 53.7 28.1 36.4

Table 2: Five-shot and zero-shot results on LAMBADA
task.“PPL.” and “Acc.” stands for perplexity and accu-
racy metrics, respectively.

quently, irrelevant knowledge from other exemplars
may interfere with answer generation.

Third, the OPT model has the largest improve-
ment in few-shot learning compared to the zero-
shot setting. Additionally, all models show signif-
icant gains on the OBQA task and our CoELM
also has a large improvement on the Arc-E task.
Although the average performance of our CoELM
is reduced compared to the zero-shot setting due to
the effect of the WSC task, CoELM achieves higher
average performances across all the benchmarks
than other language models.

Moreover, we evaluate the performance on gen-
erative task for word prediction. The main results
of LAMBADA task are demonstrated in Table 2. In
the zero-shot setting, it can be observed that Pythia
is significantly better than other language models.
And our CoELM outperforms Pythia, demonstrat-
ing its language modeling capabilities. However,
the performance of all the language models is sig-
nificantly lower in the few-shot setting compared
to zero-shot, which can be due to the effect of ir-
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Model Arc-E Arc-C PIQA WSC

Pythia 52.57 20.90 67.03 62.50
CoELM 53.83 24.57 69.59 59.62
w/o DSR 51.01 22.78 68.82 36.54

Table 3: Experimental results of ablation study.

relevant context on the accuracy of the language
modeling as well as the ability of the language
models to generate long texts. In few-shot setting,
Pythia is the least affected and achieves the best
performance. The results also suggest the necessity
for our CoELM to explore the pre-training process
in the long-text scenarios in the future.

These observations confirm the validity of
CoELM, with its construction-enhanced generation
process. Furthermore, constructions can enhance
language modeling across these benchmarks.

4.3 Comparative Analysis

Ablation Study. Since the language models are
pre-trained on different sizes and types of corpora
as well as varying hyper-parameter settings, we
conduct ablation study experiments to further in-
vestigate the effectiveness of our CoELM. There-
fore, we pre-train a language model from scratch
based on Llama architecture, same as our CoELM.
We ensure that all hyper-parameters are consistent
with our CoELM, except that the model will not
be applied to dynamic sequence reassembly (DSR).
This model is referred to as w/o DSR. Our model
is pre-trained on corpora with 188B tokens, which
is smaller than other pre-trained models. For exam-
ple, Pythia is pre-trained on 207B corpora. As the
Pythia suite provides the intermediate results dur-
ing pre-training, we employ the results of Pythia
with 93k steps, which is pre-trained an entire epoch
on the corpora. Similarly, we use the intermediate
results of the Llama baseline model and CoELM
pre-trained on a single epoch for comparison. The
results on four benchmarks are shown in Table 3.

It can be observed that the performance of Pythia
is slightly lower than that demonstrated in Table 1,
which suggests that more pre-training steps could
potentially enhance the performance of PLMs.
Meanwhile, Pythia and w/o DSR perform very
close to each other except for WSC task, indicating
that the differences in corpora have less impact on
language modeling. Our CoELM achieves better
performances on most tasks, further supporting the
validity of constructional incorporation for enhanc-

0k 10k 20k 30k 40k
Pre-training Steps

12

13

14

15

16

17

18

19

Va
lid

 P
er

pl
ex

ity

CoELM
w/o DSR

PIQA QNLI Hella. Arc-E Arc-C
Benchmark

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

CoELM
w/o DSR

Figure 4: Valid perplexity curve and performance com-
parison during pre-training of language modeling.

ing language modeling capabilities.

Language Modeling Acceleration. During pre-
training, the curves of loss and perplexity of lan-
guage models first plummet in a power law, and
then seemingly enter a near-linear decline. As the
constructions are employed as the inductive bias
for our CoELM, they guide the generation process.
We observe that they can also accelerate the conver-
gence of the model during the pre-training process,
as shown in Figure 4. The CoELM w/o DSR enters
a linear descent phase at around 40k steps, while
CoELM requires only 15k steps and exhibits lower
perplexity. Thus, at the end of pre-training, our
CoELM also has a lower perplexity on the valida-
tion corpus with respect to w/o DSR.

Furthermore, we compare the intermediate per-
formances on five benchmarks between CoELM
with 20k steps and w/o DSR with 40k steps and the
results are illustrated in Figure 4. In all five tasks,
CoELM outperforms w/o DSR. Particularly, there
is a big gap in the HellaSwag task. This demon-
strates that with the assistance of constructional
information, the language model can establish re-
lationships among tokens more efficiently, thus ac-
celerating the language modeling procedure. This
characteristic may be extendable to larger scale
language models, left for future exploration.

Wug Test. Prior work (Weissweiler et al., 2023b)
has applied the wug test, a probing task used to in-
vestigate whether the pre-trained language models
possess human-like linguistic knowledge. The wug
test focuses on morphology, creating non-existent
words according to systematic patterns of covari-
ation in form and meaning, such as the past tense
variation. This task contains 50 irregular verbs and
perturbs these verbs by one or two letters to pro-
duce new words. Then these verbs are annotated
for past tense of the nonce word, e.g., , wug →
wugged. Meanwhile, annotators are requested to
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N-shot Model PPL. Accuracy

Zero

Pythia-410M 4137.4 0.04
Pythia-1B 1323.3 0.04
TinyLlama 842.7 0.08

CoELM 893.4 0.14

Five

Pythia-410M 48.8 0.22
Pythia-1B 11.4 0.40
TinyLlama 11.7 0.34

CoELM 18.3 0.36

Table 4: The zero-shot and few-shot experimental re-
sults of wug test. “PPL.” stands for perplexity metric.
The lowest perplexity and highest accuracy is in bold.

provide multiple possible past tense forms based
on morphology for these verbs.

Therefore, we investigate whether constructions
can contribute to addressing unseen words based
on the linguistic knowledge for language models.
To evaluate the performance of wug test, we follow
Weissweiler et al. (2023b), considering an instance
correct only if the generated answer falls within the
set of possible past tense forms of the instance. We
report the lowest perplexity of the possible forms
within the set and the accuracy in Table 4. The
410M and 1B size models of Pythia and TinyL-
lama (Zhang et al., 2024) with 1.1B parameters are
employed for the comparison. For TinyLlama, we
utilize the intermediate model that is pre-trained
with 240k steps and fed to 500B tokens.

In zero-shot setting, our CoELM significantly
outperforms the other language models, despite
both Pythia-1B and TinyLlama having a far greater
number of parameters. This indicates that our
CoELM has a better comprehension of linguistic
knowledge by incorporating constructional infor-
mation, enabling it to generalize to unseen words.
As for the few-shot learning3, Pythia-1B and TinyL-
lama achieve better performances on wug test. This
is due to the better in-context learning capability of
the larger scale models (Dong et al., 2022). How-
ever, CoELM also improves with few-shot prompt-
ing and outperforms Pythia-410M, demonstrating
the effectiveness of our CoELM.

Dimensionality Reduction Analysis. To further
explore the impact of constructional information
for language modeling, we conduct a visual anal-
ysis of representation obtained from our CoELM,

3For few-shot setting, we do not employ the prompts from
Language Model Evaluation Harness framework in addition
to the other Baselines from CoELM since the prompts con-
structed from the wug dataset introduce more unseen words,
see Appendix J for more detailed discussion.
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Figure 5: 2-D UMAP plot for construct representation.

w/o DSR and Pythia. First, we randomly select five
semi-idiomatic constructions from the learned in-
ventory. Then we search the WikiText corpus (Mer-
ity et al., 2017) for 50 constructs of each construc-
tion. These constructs are fed into different models
and the representations are acquired from the last
token of each construct. Subsequently, we apply
dimensionality reduction using UMAP (McInnes
et al., 2018). As shown in Figure 5, the representa-
tions in CoELM form clusters with distinct bound-
aries, while the representations in w/o DSR and
Pythia are diffuse among different clusters. This
observation suggests that our CoELM effectively
incorporates constructional semantics through the
dynamic sequence reassembly strategy.

5 Related Work

Construction Grammar (CxG) has been applied to
various natural language processing tasks. Tsao
and Wible (2013) utilize constructions as contex-
tual features for word similarity detection. Raghu-
ram et al. (2017) leverage Embodied CxG to ad-
dress the reference resolution problem, and Nevens
et al. (2019) apply Fluid CxG for semantic parsing
in visual question answering. Xu et al. (2023) inte-
grate constructional information to improve the per-
formance of PLMs in NLU tasks. However, there
has been no effort to ascertain whether construc-
tions can provide benefits for generative language
models. Our work aims to bridge this gap.

Recent research investigates whether PLMs can
access constructions. Tayyar Madabushi et al.
(2020) find that BERT is capable of accessing a
considerable amount of constructional information
without explicit training. Li et al. (2022) conduct
probing studies to show that PLMs can capture ar-
gument structure constructions. Tseng et al. (2022)
investigate PLMs’ awareness of constructions and
find that predicting open slots is more challenging
than closed ones. Weissweiler et al. (2022) find
that while PLMs can recognize the construction,
they struggle with understanding its meaning. Fur-
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thermore, Weissweiler et al. (2023c) discover that
both autoregressive and non-autoregressive PLMs
can distinguish constructional patterns but fail to
apply their meanings. These findings underscore
the need to adapt pre-training tasks to enable PLMs
to rapidly acquire constructional information.

An inventory of constructions is a valuable re-
source for construction-based research. As man-
ual extraction is often time consuming, automated
approaches have been proposed to identify con-
structions from corpora. These methods are ad-
vantageous for uncovering patterns that may have
been previously unexplored or highly conventional
(Madabushi et al., 2023), potentially overlooked
in traditional analyses. Wible and Tsao (2010)
present a hybrid n-grams model to discover con-
structions that meet a frequency threshold. Dunn
(2017) proposes an induction algorithm to extract
constructions based on association strength. Lyn-
gfelt et al. (2018) develop automatic tools to detect
partially schematic constructions using frequency
metrics. Dunn (2019) suggests that association-
based models produce better generalizations for
slot-constraints compared to frequency-based mod-
els. However, manual analyses reveal that some
extracted constructions are short or lack informa-
tiveness (Lyngfelt et al., 2018; Tayyar Madabushi
et al., 2020). Li et al. (2022) argue that there is cur-
rently a lack of a high-quality and wide-coverage
construction dataset. Therefore, we investigate po-
tential reasons and develop a construction induction
framework to address the issue.

6 Conclusion

Our research is dedicated to developing effective
pre-training strategies for the rapid acquisition of
constructional information to enhance language
modeling capabilities. To achieve this goal, we
initially introduce a construction induction frame-
work that automatically identifies constructions
from corpora. We employ a PLM-based Asso-
ciation Strength Estimator (ASE) and a nucleus
set to generate complete constructions, avoiding
the rigid threshold-based truncation. Subsequently,
we propose a construction-guided language mod-
eling approach utilizing a dynamic sequence re-
assembly strategy. This method encodes con-
structions as inductive biases during pre-training,
thereby guiding the generation process. We pre-
train our Construction-Enhanced Language Model
(CoELM) from scratch, and extensive experiments

have confirmed the effectiveness of CoELM.

Limitations

In this work, the limitations can be summarized
into two main aspects for future discussion:

(1) As we mentioned in Appendix C, we pri-
marily focus on the generation of natural language
from a linguistic perspective, without utilizing code
data for pre-training procudure. However, construc-
tions also exist in code (Mosses, 2021), which can
be viewed as pairing of form and function. Never-
theless, they differ in their presentation compared
to constructions in linguistics. Therefore, we will
further discuss them in future work.

(2) In our main experiments, we observe that
smaller-scale models exhibit diminished perfor-
mance on instruction following and long text, re-
sulting in insignificant improvements over the zero-
shot setting. Therefore, we will further explore the
refinement of the pre-training data procedure and
the optimization of model architecture.

(3) In order to acquire better interpretable con-
structions, as we stated in Appendix D.1, we utilize
the language-specific hierarchy, i.e., XPOS. Con-
sequently, our pre-training procedure is conducted
exclusively with the English corpus (More details
are shown in Appendix C). This limitation restricts
our CoELM from being multilingual. In subse-
quent research endeavors, we intend to investigate
the significance of generic constructions within the
domain of language modeling.

(4) Due to limited computational resources, we
are constrained to pre-training a relatively small-
scale model. However, the probing experiments we
conduct in Appendix B reveal that incorporating
constructional information into larger-scale models
may also enhance their language modeling capabil-
ities, which we leave for future exploration.
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A Background of Construction Grammar

Construction Grammar (CxG) is an influential
paradigm within cognitive linguistics, positing that
grammar encompasses a meaningful continuum of
lexicon, morphology, and syntax. This perspec-
tive diverges from traditional views that prioritize
a stable framework of arbitrary rules for producing
well-formed sequences. In CxG, the fundamental
units of grammar are constructions, which is de-
fined as symbolic pairings of form and meaning
(Langacker, 1987; Goldberg, 1995, 2006). These
pairings underscore the central thesis of the the-
ory: grammatical structure is inherently meaning-
ful, with each construction serving as a vital compo-
nent in the conveyance of specific semantic content.
This approach emphasizes their role in linking mor-
phosyntactic patterns directly to their associated
meanings. As described in the Introduction, Con-
struction Grammar (CxG) is characterized by its
diverse syntactic structures, which span different
levels of abstraction. These structures can com-
prise both partially and fully specified components
(Goldberg, 2003), which allows for the substitution
of specific words for productivity.

The CxG paradigm has evolved to several dis-
tinct implementations, each adopting a unique
perspective on language structure and processing.
These include the formal approaches such as Fluid
Construction Grammar (FCG; Steels and de Beule,
2006), which emphasizes the dynamic nature of
linguistic constructions, while Embodied Construc-
tion Grammar (ECG; Goldberg et al., 2005) inte-
grates the role of sensory and motor experiences in
linguistic interpretation. Sign-Based Construction
Grammar (SBCG; Rambelli et al., 2019) combines
insights from formal linguistic theory with sign-
based language analysis. However, these formal
approaches all rely heavily on manual definition
with prior knowledge, such as FrameNet (Baker
et al., 1998). In usage-based CxG, patterns that
occur with sufficient frequency can also be consid-
ered as constructions (Goldberg, 2006). It enables
constructions to be acquired from the corpus.

In previous research, Dunn (2017, 2019) propose
a computationally slot-constraints pipeline for con-
struction extraction, which is composed of three
stages: (1) In representation stage, the slots are
represented to three levels, i.e., lexical, syntactic
and joint semantic-syntactic. The syntactic slots
are denoted to the universal POS tags, while the
semantic-syntactic slots are formed from static em-

bedding of words (e.g., FastText) that are clustered
in discrete semantic domains via K-Means cluster-
ing. (2) In construction identification stage, Dunn
(2017, 2019) initially measures the slot constraints
based on the association strength, which is applied
to quantify the co-occurrence among multi-units
within a language (Gries, 2013). The unidirectional
association strength ∆u can be defined as:

∆u =
C(x,y)

Cx
−

Cy − C(x,y)

Call − Cx
(1)

where x and y are the adjacent slots. Cx and Cy are
the frequency of x and y in the corpus, while C(x,y)

is the frequency of co-occurrence of x and y. And
Call is the total number of occurrences of all slots.
In order to compute the association strength, Dunn
(2017, 2019) first counts the corpus and calculates
the frequency of 1-gram and 2-gram items. How-
ever, this approach can only assess the association
strength between two adjacent slots, thus focusing
solely on localized features. Following this, candi-
date sequences are generated through a recursive
search conditioned on the association strength be-
tween slots using a hard threshold. Subsequently,
these candidate sequences are pruned to derive po-
tential constructions. (3) In candidate evaluation
stage, the tabu search is applied to determine the
optimal set of constructions with Minimum De-
scription Length (MDL; Rissanen, 1978) metric.
Then the inventory of constructions is acquired.

In order to assess slot by considering longer slot
constraints for construction candidates, one possi-
ble solution would be to determine the association
strength between the formed sequence of slots and
the slot under consideration. However, if we di-
rectly compute the association strength between
sequences and slots based on the corpus via the
approach of Dunn (2019), this would introduce an
unacceptable computational complexity. As an ex-
ample, if we have N possible slots and the currently
formed sequence is of length L, then in order to as-
sess the association strength between the sequence
and the (L+ 1)-th slot, we have two implementa-
tions: (1) we can store all the candidates of length
L. (2) The frequency of occurrences of sequences
and slots can be re-computed in the corpus each
time. For approach (1), it would require storing
NL floating point numbers for the frequency of
L-gram items in the worst case. If both N and L
are large (In practice, N is about 50k, and L is be-
tween 3 and 7), it may exceed the server’s capacity.
As for approach (2), it is computationally infeasi-
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Figure 6: The probing experiments of constructional
semantics among different scales of GPT-2 models.

ble to re-compute the frequency of sequences each
time from a corpus containing around 3B tokens.
Therefore, we propose the Association Strength
Estimator (ASE) to approximate the association
strength between sequences and slots, which can
compute the association strength fast on a limited
memory footprint.

B Probing Experiments

To investigate the ability of PLMs to capture con-
structional semantics, we conduct probing experi-
ments on different scales of GPT-2 language mod-
els (Radford et al., 2019). We focus primarily on
semi-idiomatic and schematic constructions, which
exhibit productivity and can be filled with words in
their abstraction slots. As shown in Figure 6, we
randomly select five semi-idiomatic and schematic
constructions, respectively. Then we match 50
constructs (abstract slots filled with actual words)
from WikiText corpus (Merity et al., 2017) for each
construction. After feeding these constructs into
the GPT-2 models to obtain representations (Jiang
et al., 2023), we apply dimensionality reduction
with UMAP (McInnes et al., 2018) and then cluster
the reduced representation via HDBCAN (McInnes
et al., 2017). As these constructs are the instanti-
ation of constructions, their representations also
inherit the constructional semantics of correspond-
ing constructions (Goldberg, 2003). For constructs
instantiated from the same construction, it should
be more plausible that they will be clustered to-
gether. Thus, we utilize two metrics for evaluating
clustering accuracy: Purity and the Adjusted Rand
Index (ARI; Hubert and Arabie, 1985). The higher
these metrics are, the better the model can distin-
guish the constructional semantics.

We perform five independent probing experi-
ments, which are shown in Figure 6 (a) and (b). Our
main finding is that larger models indeed exhibit

1.1B 7B 13B
(a) Semi-idiomatic constructions

Purity ARI

1.1B 7B 13B
(b) Schematic constructions

Purity ARI

Figure 7: The probing experiments of constructional
semantics among different scales of Llama models.

constructional semantic awareness capabilities for
both semi-idiomatic and schematic constructions.
This aligns with the idea that larger models, trained
with larger corpora and more training steps un-
der the Scaling Law (Hoffmann et al., 2022), are
more adept at capturing such nuances. Meanwhile,
(c)~(f) are the clustering results after dimensional-
ity reduction. It is observed that the representations
in larger models form clusters with distinct bound-
aries, while the representations in smaller models
are diffuse among different clusters

To investigate if the observed trend in construc-
tional semantic perception on larger scale mod-
els aligns with our findings, we then conduct
probing experiments on Llama models (Touvron
et al., 2023). As shown in Figure 7, we exploit
TinyLlama-1.1B, Llama-7B, and Llama-13B for
our experiment. TinyLlama (Zhang et al., 2024) is
pre-trained on SlimPajama (Soboleva et al., 2023),
which replicates the pre-training data of Llama, and
thus can be directly compared with the other two
Llama models. In terms of trends, the Llama se-
ries with a larger number of parameters exhibits
the same behavior as GPT-2 series. In both semi-
idiomatic and schematic constructions, we observe
that the purity and ARI metrics increase with the
number of parameters. This also indicates that
larger models indeed have more powerful model-
ing capabilities for constructional semantics. Our
findings suggest the potential of regarding construc-
tions as the inductive bias for language models to
boost their performance.

C The Details of Our Pre-training Data

Our training corpus comprises a variety of sources,
which cover a diverse set of domains. They are
mainly from RedPajama (Soboleva et al., 2023)
and Pile (Gao et al., 2020), which align with previ-
ous practices in pre-training language models. As
we discuss in Limitations, our work is centered on
the generation of natural language, whereas code
behaves differently in terms of constructions. Con-
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Corpus Tokens Sampling prop. Epochs

CCNews 63.7 B 30.5% 1.24
C4 66.0 B 31.3% 1.23
Wikipedia 3.3 B 3.5% 2.76
Books 21.0 B 15.0% 1.86
Law 10.2B 5.7% 1.45
ArXiv 19.3 B 11.0% 1.48
USPTO 3.5 B 2.5% 1.86
Other 1.2 B 0.5% 1.08

Table 5: Pre-training corpus. Data mixtures used for
pre-training, for each subset we list the sampling propor-
tion, number of epochs performed on the subset when
training on 260B tokens, and number of tokens.

sequently, our study does not incorporate any code-
related subsets (e.g., GitHub and Stack Exchange).

In the previous work (Lee et al., 2022; Li et al.,
2023), the importance of a high-quality pre-training
corpus for model generalization performance is il-
lustrated. Thus, we follow the instructions in Chen
et al. (2023); Biderman et al. (2023) to dedupli-
cate the corpus. As shown in Table 5, the corpus
consists of eight main subsets: (1) CCNews. We
preprocess and randomly sample a news subset of
CommonCrawl4, which contains news articles all
over the world, ranging from 2016 to 2023. (2)
C4 (Raffel et al., 2020) is a publicly available cor-
pus which contains massive web texts. We sam-
ple and retain the English documents from it. (3)
Wikipedia is a widely used corpus for pre-training
language models that contains high-quality knowl-
edge. Therefore, we employ all English documents
and increase its sampling probability during pre-
training. (4) Books is an open-source subset in
RedPajama, which we utilize the entire corpus.
And follow the advice in Touvron et al. (2023), its
sampling probability is also be raised. (5) Law is
derived from the FreeLaw project included within
the Pile. It is a publicly available resource for aca-
demic studies in the legal realm. (6) ArXiv is a
collection of research papers across multiple fields
(e.g., computer science, math). As ArXiv papers
are written in LaTeX, which is a typesetting lan-
guage, we parse these files and keep the text parts
for pre-training. (7) USPTO contains background
sections from patents granted by the United States
Patent and Trademark Office, which incorporates
a large number of technical documents. (8) Other
corpus is composed of three subsets in Pile, i.e., En-
ron Emails, PhilPapers and NIH Grant Abstracts.

4https://data.commoncrawl.org/CC-NEWS/index.html
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Figure 8: Overview of the CxGLearner framework.

D Implementation of CxGLearner

In Section 2, our induction framework5 is intro-
duced for automatically searching constructions
from the corpora. We will elaborate on the specifics
of the framework for better comprehension.

D.1 Overall of Induction Framework
As shown in Figure 8, our framework initially pre-
processes the corpus across various domains. Then
the processed corpus from each domain is seg-
mented into three distinct parts for different stages.
During the first stage, the background corpus serves
to pre-train a language model, referred to as the As-
sociation Strength Estimator (ASE). The ASE as-
sesses the association strength between sequences
and slots, and it also helps generate representations
for candidates. Subsequently, a recursive search
with the ASE is conducted on the candidate cor-
pus to extract potential candidates, which are then
pruned in the hypothesis space. Finally, we apply
heuristic algorithms to optimize potential candi-
dates, simulating psychological principles, with the
aim of deriving the optimal set of constructions
for each domain. Ultimately, the generic construc-
tion inventory is determined by synthesizing the
construction sets across all domains.

D.2 Pre-Processer and Encoder
Initially, we need to pre-process the corpus to avoid
impacting the encoder. Thus, a Unicode checker is
used to fix broken Unicode characters and the white
spaces in corpus are also normalized for uniformity.
Then we substitute the format-specific information
in the text (e.g., email, phone) with special tags,
such as <EMAIL> and <PHONE>.

We then partition the corpus into three distinct
parts, which are in the ratio 6:3:1 for background,
candidate and learner corpus, respectively. After

5Our code of induction framework will be publicly avail-
able at https://github.com/xlxwalex/CxGLearner
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that, these sub-corpora are encoded into slots at dif-
ferent levels of abstraction. In this work, we encode
the corpus with three levels, i.e., lexical, Univer-
sal Part-of-Speech tags (UPOS; Petrov et al., 2012)
and Language-Specific Part-of-Speech tags (XPOS;
Marcus et al., 1993). And the UPOS and XPOS
provide coarse-grained as well as fine-grained slots
for the syntactic level, respectively. Though the
state-of-the-art models have reached the human
ceiling on the part-of-speech tagging task and are
close to solving the problem completely (Manning,
2011), we employ the voting method of ensemble
learning (Zhou, 2012) to synthesize the results of
multiple parsers (e.g., spaCy and Stanford Parser;
Honnibal et al., 2020; Manning et al., 2014) to ob-
tain results as robust as possible for the syntactic
level slots. Since the granularity of slots at the syn-
tactic level is at the word level, whereas the slots at
the lexical level have sub-word granularity, we as-
sign the same syntactic level slots to all sub-words
of a specific word, and their intervals are tracked
with the masks to align them at different levels.

D.3 Pre-training Procedure of ASE
Prior works (Dunn, 2017, 2019) have utilized
an association-based approach to assess the con-
straints between adjacent slots, which only focus
on localized features. A potential approach for ad-
dressing a global perspective is to utilize the entire
generated potential construction sequence as con-
text in determining whether the next slot satisfies
the association condition instead of just focusing
on the adjacent slots. However, this can introduce
significant complexity due to a large solution space.

Thus, as described in Section 2.2, we propose a
PLM-based Association Strength Estimator (ASE)
to assess the slot constraints. The ASE is based on
GPT-2 architecture (Radford et al., 2019), which is
pre-trained on background corpus for each domain
via the Next Slot Prediction (NSLP) task. During
pre-training, we select slots randomly from differ-
ent levels for the encoded pre-trained corpus. In
order to accommodate to slots of different granu-
larity, we adapt the Whole Word Masking (WWM;
Cui et al., 2021) technique. If a slot at the syntactic
level is selected and its corresponding lexical slot
is a sub-word token identified by the mask, then
the entire word is selected as a whole. The ASE
is pre-trained for multiple epochs on the corpus,
and different slots are selected dynamically at each
epoch so that more combinations of slots can be
captured. Then we feed the sequence into the ASE

for inferencing, whose output can be exploited as
an estimate of the association strength between
the sequence and an arbitrary slot. Furthermore,
ASE is also employed to generate representations
of constructions for the learner component.

D.4 Candidate Extraction and Pruning
The component of extractor is employed to gener-
ate potential candidates from the candidate corpus.
As introduced in Section 2.3, all the slots in each
sentence are utilized as starting positions in the
potential sequence, and then a recursive search is
utilized to add slots to the sequence that satisfy the
association condition (the ASE and the strategy of
nucleus set are applied to determine the addition
of slots, which is elaborated in Section 2.3). In
search procedure, we use a breadth-first traversal
to determine whether the constraints hold among
the current potential sequence and all the hierar-
chical slots in the next position. Meanwhile, as
long as the condition of adding slots is satisfied,
the added sequence will be included to the result
set as a potential construction sequence.

Under this setting, it might result in some of the
candidates with non-optimal boundaries. Thus, we
implement a pruning procedure to refine the hy-
pothesis space of these candidates. The process
comprises four stages of pruning: (1) Rule prun-
ing. It filters out constructions that fail to com-
ply with the set rules, such as cross-sentence. (2)
Frequency pruning. In usage-based perspective,
constructions are the patterns that occur with suf-
ficient frequency. Thus, this pruning stage aims
at preserving as many generic candidates as pos-
sible. (3) Horizontal pruning. It tends to keep
longer potential candidates. More specifically, if a
short potential sequence is only contained within a
longer candidate sequence, then we just keep the
longer one. (4) Vertical pruning. It is employed to
eliminate candidates that include superfluous ab-
straction slots. If a slot in a construction can only
be instantiated to one possible word and the instan-
tiated construction is included in the result set, we
only retain the instantiated construction.

D.5 Optimization of Construction Inventory
After extracting potential construction candidates,
it is necessary to further refine the candidate set in
learner component, as not all usage-based construc-
tions are worth storing (Jackendoff, 2003). There
are four psychological principles considered es-
sential for the organization of constructions in a
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language. These principles can be integrated into
our efforts to optimize the potential construction
set (Goldberg, 2003; Goldberg et al., 2005). We
separate the four principles into two groups of op-
timization objectives as follows: (1) The princi-
ples of Maximized Expressive Power and Maxi-
mized Economy. From the usage-based perspec-
tive (Dunn, 2019; Goldsmith, 2006), these two
principles are interdependent, striking a balance
between construction complexity (the encoding
size of construction list) and descriptive adequacy
(the encoding size of a corpus given the grammar).
Thus, the minimum description length (MDL; Ris-
sanen, 1978) is aptly suited for modeling these
principles. The MDL metric can be defined as:

SMDL = γSCom(G)− ηSDes(T |G) (2)

where G denotes the list of constructions, while T
refers to the learner corpus. The γ and η serve to
balance the two terms. The construction complex-
ity, defined as the total information content within
the construction list, is represented by the first term:

SCom(G) = −
∑

g∈G

|g|∑

s=1

1

|g| log
1

Ns
(3)

Here, g denotes a construction comprising |g| slots.
Ns indicates the number of instantiations for each
slot: it is 1 for a lexical slot, and for the abstract
slot, it refers to the number of tokens that can fill it.
The second term is intended to assess descriptive
adequacy and is defined as follows:

SDes(T |G) =
1

n

n∑

j=1

logRcov
j − logRove

j (4)

where n denotes the number of sentences in the
corpus. The constructions within each sentence
are scanned, with Rcov

j representing the coverage
while Rove

j indicating the overlap of matched con-
structions in the j-th sentence.

(2) The principles of Maximized Motivation
and No Synonymy. These principles also symbol-
ize a pair of mutually dependent goals, indicating
that if two constructions are syntactically related,
they also bear a semantic relationship to a certain
degree, and the converse applies as well. Thus, in a
similar vein to contrastive loss (Chen et al., 2020),
we propose the concept of contrastive scoring:

SC = −
∑

g∈G
log

∑
g+ exp (σg,g+SIM(hg, hg+)/τ)∑

g− exp (SIM(hg, hg−)/τ)

(5)

Benchmark Type # Num. Answer

Arc-E QA 2,376 MC
Arc-C QA 1,176 MC
OBQA QA 2,000 MC
LogiQA QA 2,604 MC
PIQA QA 3,084 MC
HellaSwag Reasoning 10,003 MC
BoolQ RC 3,245 Boolean
WSC CR 146 MC
QNLI NLI 10,926 MC
LAMBADA Generation 5,153 LL

Table 6: Statistics for benchmark tasks. For task types,
QA denotes question answering task, NLI indicates nat-
ural language inference task, RC stands for reading
comprehension task, while CR refers to coreference
resolution task. In answer type, MC stands for multi-
choice, while LL refers to loglikelihood.

syntactic distance σ is determined by the propor-
tional overlap length between two constructions.
For abstract slots, overlap includes the inclusion
relation, but this is counted as half the length of the
overlap. If the syntactic distance exceeds 0, g+ is a
positive sample of g, otherwise negative g−. ASE
is employed to provide the representations h of the
constructions, while SIM is utilized to compute the
semantic similarity (e.g., cosine similarity). τ is a
temperature coefficient for adjusting the sensitivity
to differences between positive and negative pairs.

We employ heuristic algorithms (e.g., Simulated
Annealing; Kirkpatrick et al., 1983) to optimize
both objective min{αSMDL + βSC}, where α and
γ are weighting factors. Then the optimal construc-
tion inventory for each domain is obtained.

D.6 Generic Construction Synthesization

Following the previous three stages, we obtain a
proprietary set of constructions for each domain.
In order to acquire the generic inventory, we syn-
thesize the set of constructions across all domains.
More specifically, we retain only those construc-
tions that emerge in at least two domains. The fact
that these constructions exist across domains is evi-
dence of their general applicability. After that, the
generic inventory of constructions is available.

E Details of Benchmark Tasks

In Section 4, we conduct experiments for com-
parison on various benchmark tasks, including 10
tasks from Language Model Evaluation Harness
(Gao et al., 2023) framework. As shown in Ta-
ble 6, we present the statistics for these benchmarks.
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Configuration Key Value

num-layers 24
hidden-size 1024
intermediate-size 4096
num-attention-heads 16
num-head-size 64
num-query-group 4
attention-dropout 0.0
hidden-dropout 0.0
pos-emb rotary
rotary-percentage 1.0
rotary-condense-ratio 4
sequence-length 2048
eval-interval-steps 2000
trainig-strategy DDP
global-batch-size 512
accumulation-steps 32
gradient-clipping 1.0
init-method GPT-NeoX (Black et al., 2022)
optimizer.type AdamW
optimizer.params.lr 4e-4
optimizer.eps 1e-8
optimizer.params.betas [0.9, 0.95]
lr-decay-style cosine
min-lr 0.1 ∗ optimizer.params.lr
vocab-size 63595
warmup-steps 2000
flash-attn True
norm RMSNorm
norm-eps 1e-5

Table 7: The implementation details for pre-training.

Physical Interaction Question Answering (PIQA;
Bisk et al., 2020) task primarily focuses on eval-
uating understanding of physical common sense.
The Boolean Questions (BoolQ; Clark et al., 2019),
Question-answering NLI (QNLI) and Winograd
Schema Challenge (WSC; Levesque et al., 2012)
tasks are all included in GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019). BoolQ is a
question answering task that involves analyzing a
brief passage from Wikipedia followed by a yes/no
question pertaining to the text, while WSC presents
a coreference resolution task where each example
comprises a sentence that includes a pronoun and
a list of noun phrases extracted from that sentence.
Then the PLMs are requested to accurately identify
the noun phrase that the pronoun refers to from the
provided options. And QNLI (White et al., 2017;
Demszky et al., 2018) is converted from question-
answering datasets (e.g., SQuAD). The task is to de-
termine whether the context sentence contains the
answer to the question. HellaSwag (Zellers et al.,
2019) is designed to assess the ability of the models
to understand both grounded and temporal aspects

Model Params E-Params

GPT-2 355M 51M
OPT 331M 26M
Pythia 354M 52M
BLOOM 560M 257M
CoELM 533M 130M

Table 8: Computational complexity analysis of models.
Params, E-Params and MACs represent the number
of parameters, the number of parameters for embedding
layer and multiply–accumulate operations, respectively.

of common sense. The AI2 Reasoning Challenge
(ARC; Clark et al., 2018) contains two subsets, i.e.,
ARC-Easy (Arc-E) and ARC-Challenge (Arc-C),
which are centered on science exam questions that
necessitate complex reasoning under different lev-
els of difficulty. OpenBookQA (OBQA; Mihaylov
et al., 2018) is a question-answering dataset mod-
eled after open book exams for assessing human
understanding of a subject. LogiQA (Liu et al.,
2020) is a task for testing human logical reason-
ing, covering multiple types of deductive reason-
ing. LAMBADA (Paperno et al., 2016) serves as a
benchmark dataset for assessing the proficiency of
language models in comprehending text through a
word prediction challenge.

F Hyper-parameters and Settings

In Table 7, we provide the full configuration details
for pre-training our CoELM. We implement our
CoELM using PYTORCH and LIT-GPT framework
6. Then CoELM is pre-trained with 250,000 steps
from scratch on a 8 × NVIDIA GeForce RTX 4090
device with about 3,000 GPU hours.

As shown in Table 8, we compare the number of
parameters of our CoELM with other baseline mod-
els. Though we utilize hyper-parameters that are
harmonized with the other language models, it can
be observed from the results that our CoELM has
more parameters than GPT-2, OPT, and Pythia, but
fewer than BLOOM. This is mainly due to two as-
pects: (1) the size of our embedding layer consists
of two parts, the tokens in vocabulary and the inven-
tory of constructions. Therefore, the embedding
layer has a larger number of parameters. (2) Our
CoELM exploit the Llama architecture, in which
SwiGLU is used. Thus, each layer will have 4M
more parameters than the baseline models, bringing
about a gap in the number of parameters.

6https://github.com/Lightning-AI/lit-gpt
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Domain Corpus # Candidate # Inventory

Commercial Mail 20,829 8,036
Knowledge Wiki 80,331 13,668
Academic ArXiv 69,262 12,001
Reportorial CCNews 61,583 10,309

Professional Law 85,147 15,014
USPTO 77,819 13,161

Table 9: Statistics for constructions. # Candidate de-
notes the number of construction candidates, while #
Inventory is the number of constructions in inventory.

G Statistics of Construction Inventory

As described in Section D, the inventory of con-
structions is synthesized across various domains
for acquiring the generic constructions. In order
to be applicable to the pre-training process, we
identify five primary domains for domain-specific
construction acquisition, which are shown in Ta-
ble 9. For each domain, we sample the corpus
of 3B tokens, except for the commercial domain,
where we exploit the entire corpus since the Mail
corpus is relatively small. The candidate construc-
tions generated by the extractor component and the
inventory of pruned and optimized constructions
are then reported. After that, we synthesize con-
structions across these domains and obtain 13,262
generic constructions in the inventory.

As shown in Table 10, we present some repre-
sentative constructions for the five domains. Semi-
idiomatic and idiomatic constructions are used for
demonstration as they could be observed more in-
tuitively. For example, “mail” is widely used for
contacting in the commercial domain. And the con-
struction “quote–of–the–NOUN” is often exploited
to make references to correspondence and matters,
while “to–contact–PROPN” is utilized to indicate
who can be contacted. Meanwhile, “reservation–
of—rights” and “this–section–AUX–not–prior” are
typical constructions from the legal and profes-
sional domain. These observations illustrate the
validity of our framework.

H Detailed Configuration of ASE

In our induction framework, we utilize ASE to
simulate unidirectional association strength (Dunn,
2019) for assessing slot constraints, which is intro-
duced in Section 2.2 and Appendix D. We employ
GPT-2 architecture to implement ASE and pre-train
it with a next slot prediction task. To explore the
correlation between the output of ASE and the asso-

Domain Example

Commercial
quote–of–the–NOUN
to–contact–PROPN
please–VERB–DT–NOUN

Knowledge
AUX–serve–as
sponsored–by–the–NOUN
NN–directed–by–PROPN

Academic
estimated–from–DET–NOUN
analytic–expression–IN
uniquely–determined–by

Reportorial
commissioner–for–NOUN
after–allegedly–VBG
holdings–in–shares–of–NOUN

Professional

reservation–of–rights
claimed–IN–NOUN–AUX
discharge–of–NOUN
this–section–AUX–not–prior

Table 10: Examples of constructions across five differ-
ent domains.

0.68

1⇥

2.4⇥

1.6⇥

0.79 0.82

Figure 9: Comparison among different sizes of ASE.

ciation strength, we pre-train ASE on academic do-
main with ArXiv corpus (Table 9) and conduct com-
parative experiments for different sizes of ASE.

We compare three different sizes of the ASE and
keep the other hyper-parameters the same, which
are denoted as Tiny, Small, and Base, respectively.
For the hyper-parameters, we set hidden size to
768 with 12 heads, while the intermediate size is
set to 3072. Meanwhile, the numbers of layers
of these three sized ASEs are set to 4, 6 and 12,
respectively. Then we randomly select 10,000 pairs
of slots in the encoded candidate corpus of the
Arxiv for comparative experiment.

As shown in Figure 9, we demonstrate the corre-
lation coefficients between the outputs of ASE and
the association strengths, as well as the inference
times for different size of ASEs. The correlation
coefficients of Small and Base are relatively close
to each other, both indicating a high degree of cor-
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Coverage Ratio (logRcov
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Contrastive Score (SC) Total Score

Figure 10: The curve of objectives in learner module.

relation. The correlation coefficient for Tiny is
significantly lower than Small and Base, which
can be considered moderately correlated. However,
larger size models also require longer inference
times as well as more computational resource con-
sumption. We can observe that the inference time
of Base is 2.4 times that of Tiny. For the trade-off
between high correlation and inference speed, the
Small ASE with 6 layers is employed to assess the
slot constraints. Meanwhile, the high correlation
between the output of ASE and association strength
can also demonstrate the feasibility of our ASE.

I Optimization Process of Learner

As we described in Section D.5, the learner com-
ponent is employed to optimize the potential con-
struction candidates. Thus, we utilize MDL metric
and contrastive score that correspond to two groups
of psychological principles for optimization.

We illustrate the trend of each objective during
the optimization process for academic domain in
Figure 10. The first row of the figure presents the
components of the MDL metric, which we intro-
duced in Equation 2 ~ 4. In Figure 10, we can
observe that as the optimization proceeds, the cov-
erage ratio of the constructions over the learner
corpus keeps increasing while the overlap between
constructions decreases, which is aligned with our
optimization objectives. Meanwhile, the construc-
tion complexity and contrastive score are also de-
scending. Since the scales of the objectives are
different, we introduce balancing coefficients to
allow them to be close to each other in order of
magnitude. Ultimately, the total objective score
converges in the optimization procedure, demon-
strating that our learner component can achieve the
optimization goals for all psychological principles.

Model Perplexity Accuracy

Pythia-1B 32215.6 0.00
TinyLlama 320.9 0.00
CoELM 18.3 0.36

Table 11: The few-shot experimental results of wug test
via the prompt of Language Model Evaluation Harness
framework. The lowest perplexity and highest accuracy
is in bold.

J Few-shot Setting for Wug Test

In Wug Test (Section 4.3), for language models
other than CoELM, we do not directly utilize the
prompt from Language Model Evaluation when
conducting few-shot setting. Instead, we exploit the
prompts suggested by Weissweiler et al. (2023b).
This is due to the discovery that utilizing other un-
seen samples from the Wug Test as prompts would
lead to significantly diminished performance of the
baselines. As shown in Table 11, both Pythia-1B
and TinyLlama exhibit high perplexity and low ac-
curacy in such a few-shot setting. In contrast, our
CoELM significantly outperforms them. We be-
lieve this is due to the constructional information
introduced during the pre-training, which can guide
the model to recognize the part of speech of unseen
words and to perform tense transformation. This
illustrates that with the aid of constructional infor-
mation, the language models may achieve greater
robustness towards unseen words.
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