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Abstract
For text-to-image generation, automatically re-
fining user-provided natural language prompts
into the keyword-enriched prompts favored by
systems is essential for the user experience.
Such a prompt refinement process is analo-
gous to translating the prompt from “user lan-
guages” into “system languages”. However,
the scarcity of such parallel corpora makes it
difficult to train a prompt refinement model.
Inspired by zero-shot machine translation tech-
niques, we introduce Prompt Refinement with
Image Pivot (PRIP). PRIP innovatively uses
the latent representation of a user-preferred im-
age as an intermediary “pivot” between the
user and system languages. It decomposes
the refinement process into two data-rich tasks:
inferring representations of user-preferred im-
ages from user languages and subsequently
translating image representations into system
languages. Thus, it can leverage abundant data
for training. Extensive experiments show that
PRIP substantially outperforms a wide range
of baselines and effectively transfers to unseen
systems in a zero-shot manner1.

1 Introduction

Recent breakthroughs in text-to-image generation
have markedly expanded the boundaries of digi-
tal artistry, enabling the creation of visually com-
pelling images with unprecedented ease (Kingma
et al., 2021; Ho et al., 2020; Lu et al., 2023; Zhu
et al., 2024; Zhang et al., 2024b). However, the
complexity of crafting effective prompts presents
a significant challenge to average users. This chal-
lenge stems from the significant difference between
user-provided natural language prompts and the
keyword-enriched prompts required for system’s
high-quality rendering (Brade et al., 2023; Wit-
teveen and Andrews, 2022; Parsons, 2022; Chen
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et al., 2023). We term the two kinds of prompts
as user languages and system languages. System
languages usually include technical terms and artis-
tic references unfamiliar to non-specialists (Liu
and Chilton, 2022; Oppenlaender, 2022). Craft-
ing prompts in system languages is not intuitive,
even for the system’s developers, and only be-
comes clear after extensive user experimentation
and community-driven insight (Liu and Chilton,
2022; Parsons, 2022; Deckers et al., 2023).

Developing a model that automatically refines
user languages into system languages is essential
to enhance user experience (OpenAI, 2023; Hao
et al., 2022; Brade et al., 2023). Yet, the shortage
of high-quality refinement pairs makes it difficult
to train such models. On the one hand, refining
prompts requires expertise, which makes annota-
tion expensive. On the other hand, humans can
hardly refine prompts to the optimum due to the
intricate nature of system languages. As demon-
strated in Hao et al. (2022) and our experimental
results, human-generated refinement data is sub-
optimal for training prompt refinement models.

As prompt refinement is analogous to a machine
translation task that converts the prompts written
in user languages into system languages, the lack
of high-quality refinement pairs echoes the chal-
lenge of machine translation for low-resource lan-
guages (Mhaskar and Bhattacharyya; Ranathunga
et al., 2023), in which a source language is trans-
lated into a target language without sufficient par-
allel corpora for training. MT researchers tackle
this through a “pivoting” approach (Wu and Wang,
2007; Cohn and Lapata, 2007), which utilizes a
high-resource language as the intermediate “pivot
language”. Thus, the source-target translation is
achieved by training two separate models: a source-
pivot model and a pivot–target model. Text from
the source language is first translated to the pivot
language and then to the target language.

Inspired by pivot-based MT solutions, we pro-
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pose Prompt Refinement with Image Pivot (PRIP).
PRIP employs the latent representation of a user-
preferred image as the pivot between user and sys-
tem languages. It decomposes prompt refinement
into the following two phases. In the first phase,
PRIP takes the prompt in user languages as input
and infers what images the user prefers. It outputs
a latent representation, which focuses on high-level
semantics instead of pixel-level details, for the im-
age that is preferred by the user. In the second
phase, PRIP takes the latent representation of an
image as input and outputs a prompt in the system
language that can guide the text-to-image system in
rendering this image. By doing so, PRIP reframes
a data-limited prompt refinement problem into two
data-rich tasks. For example, user-image prefer-
ence pairs can be constructed using preference sim-
ulation models like HPSv2 (Wu et al., 2023) or user
click behaviors, and image-system decoding pairs
can be sampled from interaction logs or prompt-
sharing websites.

We evaluate PRIP by applying it to various text-
to-image models and comparing it with extensive
baselines. Results demonstrate that PRIP not only
substantially improves the text-to-image system
seen during training, but also effectively transfers
to various unseen systems in a zero-shot manner.
It significantly outperforms a wide range of base-
lines, including general large language models and
prompt refinement models trained with human-
generated or synthetic refinement pairs.

2 Related Work

Text-to-Image Prompting. The automatic refine-
ment of user language into system language is a crit-
ical enhancement for a user-friendly text-to-image
system (Xie et al., 2023). For a typical text refine-
ment model, training relies heavily on large-scale
source-target refinement pairs (Stahlberg, 2020).
However, acquiring such pairs for image prompt
refinement is challenging due to the intricate na-
ture of system language, which often exceeds the
annotation capacities of crowdsourced workers. To
avoid this, some researchers have shifted towards
interactive systems that aid users by suggesting en-
hancements to their prompts, which mitigates but
does not dispense with the need for manual refine-
ment (Feng et al., 2023; Brade et al., 2023; Liu
and Chilton, 2022). Others have attempted to train
automatic refinement systems using synthetically
generated training pairs, mainly through rephras-

ing well-crafted prompts into simpler user language
forms (Hao et al., 2022). Yet its synthetic nature
often leads to suboptimal refinement performance.
Our PRIP addresses the challenge by leveraging the
user-pivot-system pipeline, thus avoiding reliance
on direct user-system pair annotations.
Prompting Large Language Models (LLMs).
There has been research on how to prompt LLMs,
such as chain of thoughts (Wei et al., 2022) and
automated template learning (Jiang et al., 2020;
Haviv et al., 2021). Interested readers can refer
to the survey by Liu et al. (2023). These studies
primarily focus on eliciting the knowledge learned
by LLMs during pre-training. However, in cross-
modal scenarios like text-to-image generation, the
monomodal pre-training of LLMs does not truly
capture how prompts influence the image genera-
tion process. As a result, generic LLMs do not pos-
sess the capability to refine text-to-image prompts,
which is also demonstrated in our experiments.
Finetuning Generation Models. Several re-
searchers finetune text-to-image models for prompt
understanding. Xu et al. (2023) finetune the gener-
ation model on user inputs and use ImageReward
as reward. Zhong et al. (2023) finetune the text
encoder within the generation model to align sim-
ple user inputs with complex prompts. deep-floyd
(2024) utilize a large language model to process the
prompt for better understanding. Our experiments
show that PRIP can further improve these models.

3 Method

This section introduces Prompt Refinement with
Image Pivot (PRIP). We first analyze the prompt re-
finement task. Then we describe how to decompose
the user-system refinement process into user-pivot
and pivot-system sub-tasks, where the pivot is the
representation of the image preferred by the user.
Finally, we elaborate on the training approaches for
the user-pivot-system framework.

3.1 Problem Analysis

For text-to-image generation, there exists a notable
divergence between the natural language prompts
input by non-specialist users, termed user language,
and the specialized detail-rich prompts, termed sys-
tem language. User languages are often colloquial
and ambiguous. System languages include details
and artistic terminology, which can guide the sys-
tems to yield visually stunning images.

Prompt refinement systems are optimized to au-

942



Self-Attention Feed-Forward

“A hamster 
resembling a horse.”

Input Prompt 𝑢

··· Cross-Attention Feed-Forward

Text 
Representations

···

Pivot Image 
Representations 𝑣

Large 

Language
 

Model
“What is the most likely 

image prompt? Answer is:”

“A hamster 
resembling a horse., 

with the furry body of 
a hamster but 

features of a horse, by 
Lisa Frank, colorful, 

detailed, anime style”

“Look closely at 
the following image:”

Refined Prompt 𝑠

Linear Projection

Preference Encoder 𝐸 Prompt Decoder 𝐷

× N

× N

Figure 1: PRIP Model Architecture: a Preference Encoder and a Prompt Decoder. (1) Upon receiving a user
prompt, Preference Encoder first applies a transformer to derive a token-level representation. A subsequent trans-
former leverages cross-attention to deduce the image preference and yields an image representation. (2) Prompt
Decoder then employs a linear layer to align the dimensionality. This aligned representation is integrated into a
template and input into a large language model, which generates the refined system prompt.

tomatically translate user language into system lan-
guage. We useR to denote the refinement system,
which refines the user language u into the system
language s with probability R(s|u). The text-to-
image generation system is denoted as G, where
G(i|p) represents the likelihood of generating an
image i from a prompt p. The function f(i, p) quan-
tifies the user satisfaction probability correlating a
prompt p with image i.

Thus, the objective F of prompt refinement is:

F = E
u,s,i

[f(i, u) · G(i|s) · R(s|u)], (1)

where the refinement systemR should output sys-
tem language s that maximizes the user satisfaction
within the generation probabilities G(i|s). Ideally,
the training ofR would rely on a rich parallel cor-
pus of user-system pairs {u, s}. However, the rarity
of such paired data makes trainingR directly with
this objective function a considerable challenge.

Viewing R as a translation model, with u and
s as the respective source and target languages,
the above challenge is akin to the zero-shot MT
problem (Mhaskar and Bhattacharyya; Ranathunga
et al., 2023), where direct source-target translation
pairs are absent. Zero-shot MT overcomes this by
using a pivot language v, which is a high-resource
language and ensures conditional independence
between the source and target languages (Wu and
Wang, 2007; Cohn and Lapata, 2007; Bertoldi et al.,
2008). Thus, the source language u can be first
translated into the pivot language v and then to the
target language s. R(s|u) is formally reframed as:

R(s|u) = ∑
v[D(s|v) · E(v|u)], (2)

where D and E denote pivot-target and source-
pivot translation models, respectively. The pivot
language v, being high-resource, addresses the
data-scarce problem. During inference, to simplify

the translation process, the most probable pivot lan-
guage v∗ is selected v∗ = argmaxv E(v|u), and
the translated output s∗ is s∗ = argmaxsD(s|v∗).
In this paper, we adapt this technique to tackle
prompt refinement for text-to-image generation.

3.2 Model Architecture

Building upon the principles of zero-shot MT, we
introduce Prompt Refinement with Image Pivot
(PRIP). PRIP utilizes the representation of the user-
desired image as the pivot v during the prompt
refinement process. The refinement workflow, de-
picted in Figure 1, unfolds in two distinct stages:
(1) initially, PRIP uses a Preference Encoder E
to infer the user’s preferred image from the user
language prompt. The Preference Encoder adopts
a T5-like architecture (Raffel et al., 2020). It first
encodes the user language prompt into token-level
latent representations and then employs a cross-
attention mechanism to produce the pivot image
representations. (2) subsequently, PRIP uses a
Prompt Decoder D to decode the corresponding
system language prompt. The Prompt Decoder is
based on a large language model. It accepts the
pivot image representations as input, which are
then projected to the required dimensionality by a
linear layer. The generation process is guided by a
prompt template. The Prompt Decoder’s output is
the refined, system language prompt.

Both user-pivot and pivot-system stages can
leverage extensive training data. The user-pivot
stage requires user-image preference data. The
data can be easily sourced from click logs or syn-
thesized with user preference simulation models
like HPSv2 (Wu et al., 2023). This data may also be
annotated, which requires less specialized expertise
compared with annotating refinement pairs. The
pivot-system stage uses image-prompt pairs. Such
data is readily-available from the system’s genera-
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tion logs or from online websites where users share
prompts (sta; pro). It does not require annotation
and simply relies on the input and output corre-
spondences of the system.

PRIP reframes the refinement objective F as:

F = E
u,s,i

[f(i, u) G(i|s) ∑vD(s|v)E(v|u)] (3)

To effectively optimize this objective, the training
process of PRIP is in two stages. The initial stage
involves deriving an approximate objective and em-
ploying rich parallel data {u, v} and {v, s} to warm
up PRIP. The subsequent stage leverages reinforce-
ment learning to directly optimize the above objec-
tive. They are detailed in the following.

3.3 Disentangled Supervised Training
We adopt two objectives approximate to Eq. (3) to
warm up PRIP. They enable the use of rich, readily-
available data for training. They are derived as:

F ≥ E
u,s,i

[f(i, u) · G(i|s) ·D(s|i) · E(i|u)]

= E
u,i

[f(i, u) E(i|u)] · E
s,i

[G(i|s) D(s|i)] + Cov

The inequality approaches equality when the eval-
uated expression is zero for v 6= i. This is possi-
ble when G and D form perfect one-to-one corre-
spondences, zeroing G(i|s) ·D(s|v) for all v 6= i.
For text-to-image systems with strong prompt-
following abilities, this simplification of a one-to-
one mapping is close and the approximation is rea-
sonable. The term Cov is the covariance between
f(i, u) ·E(i|u) and G(i|s) ·D(s|i). When they are
uncorrelated, the covariance term reduces to zero.
We temporarily disregard the covariance and adopt
the product of expectations as an approximate sur-
rogate for the original objective. The resulting
training objectives are individually focused:

max
E

E
u,i

[f(i, u) · E(i|u)] (4)

max
D

E
s,i

[G(i|s) ·D(s|i)] (5)

These refocused optimization targets permit disen-
tangled training of each module. The subsequent
sections detail the specific training processes.

3.3.1 Training User-Pivot Preference
User-pivot transition is guided by Eq. (4), The Pref-
erence Encoder is trained to predict the image that
can maximize user satisfaction.

As shown in Figure 2, the training process is
in two steps. (1) Firstly, we sample the image i∗
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Encoder 𝑬

“A hamster 
resembling a horse.”

Image Encoder
(ViT & QFormer) ···

Prefer

Prompt 𝑢 in 
User Language

Pivot Image 
Representations  i

Predictions   

Sample Data Train Preference Encoder

ℒ!"#

DislikeDislike …

Frozen Trainable

Figure 2: Training Preference Encoder: Prompts and
preferred images are paired to create the training set.
The objective is to minimize the Mean Squared Er-
ror between the ground-truth image representations and
the predictions from the Preference Encoder.
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Text-to-Image
       System
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ℒ!"

Frozen

Trainable

Figure 3: Training Prompt Decoder: Prompts that can
generate impressive images are sampled as the system
language. The objective is to predict the system lan-
guage based on the associated image representation.

that can maximize user satisfaction f(i, u), namely
i∗ = argmaxi f(i, u). Sampling such data is eas-
ier than annotating user-system refinement pairs:
annotating preference does not require special ex-
pertise for annotators and preference can also be
extracted from click behaviors in interaction logs.
(2) Secondly, The Preference Encoder E is trained
to predict i∗ given u. The user language u is pro-
cessed by the Preference Encoder, outputting the
predicted representation û. The image i∗ is input
into an image encoder and results in its semantic
representation î∗. The discrepancy between these
representations is minimized with MSE loss:

LMSE = ||̂i∗ − û||22 (6)

With this training process, the Preference Encoder
aligns with user preferences by learning to imagine
the user-preferred images.

3.3.2 Training Pivot-System Decoding
Pivot-system transition is guided by Eq. (5). The
Prompt Decoder is trained to reconstruct the system
language from the pivot image representation.

As illustrated in Figure 3, the training process
is in two steps. (1) Firstly, we collect system lan-
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Figure 4: End-to-End RL Training: Given a user
prompt, PRIP generates a refined prompt, and Reward
Model evaluates user preference scores for generated
images. The differential in scores serves as the reward,
and PRIP is updated with PPO Gradient.

guage prompts s and their corresponding generated
images i. The system languages are high-quality
prompts suitable for the generation system. They
can be sampled from the user-submitted prompts
in the generation log or from websites where users
share well-performing prompts. (2) The Prompt
Decoder is trained to generate system language s
from the image i. A frozen image encoder pro-
cesses the image i, creating its representation î.
This representation serves as the training context
for the Prompt Decoder to predict the system lan-
guage. Autoregressive language modeling objec-
tive is used and is formulated as follows:

LLM = −∑nlog D(sn|s1:n−1, î), (7)

where sn is the n-th token of s. In this way, the
Prompt Decoder aligns with the generation systems
by learning to reverse the generation process.

3.4 End-to-End User-Pivot-System Training
While the previously described training stages ef-
fectively optimize the user-pivot and pivot-system
transitions on supervised data, they serve primarily
as approximations of the ultimate objective pre-
sented in Eq. (3). To bridge this gap, we leverage
the previous training as a warm-up stage and sub-
sequently employ Eq. (3) for end-to-end training.

We adopt reinforcement learning (RL) and de-
fine the reward as the differential in preference
scores. This is equivalent to Eq. (3):

argmax
D,E
F = argmax

D,E
E [reward D(s|v)E(v|u)],

reward =
∑

if(i, u)G(i|s)−
∑

i′f(i
′, u)G(i′|u)

The training workflow is depicted in Figure 4. For
any given prompt, we generate two image sets: one
set from the initial prompt and another from the
refined system prompt. The reward is computed as
the differential in preference scores between these
two sets. To enhance training efficiency, Prompt

Decoder remains frozen due to the significant com-
putational costs of training a large language model.
Only Preference Encoder is updated with proximal
policy optimization (PPO) (Schulman et al., 2017),
a well-regarded RL algorithm.

3.5 Inference Process

During inference, the Preference Encoder and the
Prompt Decoder are concatenated as a user-pivot-
system pipeline. Given a prompt, the Preference
Encoder predicts the representation of the user-
preferred image. Then, the Prompt Decoder de-
codes the representation and outputs the refined
prompt. The refined prompt is input to the genera-
tion system for image rendering.

Furthermore, since the Prompt Decoder cannot
directly access the initial prompt, it might result in
a hallucination problem (Ji et al., 2023) when the
refined prompt is generated. A solution is to pro-
vide the initial prompt as additional context to the
Prompt Decoder during inference. This paper uses
a straightforward approach: prepending the initial
prompt as a prefix and using the Prompt Decoder
for expansion. The refined prompt starts with the
initial prompt and consists of many details added
by the Prompt Decoder. Future studies may investi-
gate other methods. For example, constrained beam
search can also use the initial prompts as additional
context by constraining the refined prompts to be
semantically close to the initial prompts. We leave
this exploration to future work.

4 Experimental Setup

4.1 Evaluation Setup

Generation Systems. We evaluate the prompt re-
finement performance for a wide range of gen-
eration systems. When PRIP and other refine-
ment baselines are trained, they are optimized
for Stable Diffusion 1.4 (SD1.4) (Rombach et al.,
2022). Thus, the refinement performance on
SD1.4 corresponds to the in-distribution perfor-
mance. We also employ various advanced genera-
tion systems to evaluate the out-of-distribution per-
formance. They are: (1) Stable Diffusion XL base
1.0 (SDXL) (Podell et al., 2023), a state-of-the-art
generation model that is much stronger than SD1.4.
(2) Deepfloyd-IF (IF) (deep-floyd, 2024), an ad-
vanced model for high degree of prompt under-
standing. It employs a T5-XXL model for prompt
processing. (3) SUR (Zhong et al., 2023), which
is specifically proposed to understand simple user
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inputs for high-quality rendering. (4) ReFL (Xu
et al., 2023), which is initialized from SD1.4 and
further trained with the same reward model as PRIP.
The difference is that ReFL trains the generation
model while PRIP modifies the input. We also at-
tempted to evaluate on DALL-E 3 (OpenAI, 2023).
However, due to restrictions on its inputs, such as
not allowing artists’ names, our test prompts and
refined prompts often do not meet these restrictions
and make evaluation impossible.
Dataset. We conduct evaluations using the HPS
prompt dataset (Wu et al., 2023), which includes
a wide variety of prompts mined from user inter-
actions and image captions. It is a standard bench-
mark to evaluate text-to-image generation perfor-
mance (Clark et al., 2023; Wallace et al., 2023).
The prompts are categorized into Anime, Concep-
tArt, Painting, and Photo. Each category contains
800 prompts. For each prompt, we generate four
images to ensure a robust assessment.
Metrics. We employ both automated and hu-
man judgment. Automated assessments utilize Im-
ageReward (Xu et al., 2023) and HPSv2 (Wu et al.,
2023), which are trained to mimic human prefer-
ences and have been demonstrated to accurately
align with actual human judgments. Humans an-
notate relevance and win ratios. Relevance is the
prompt-image alignment on a scale of 0 (irrele-
vant) to 2 (highly relevant). Win ratio (and tie)
shows pairwise prompt-image preference between
two generation systems. We randomly sample 30
prompts per category and report the annotation re-
sults averaged on all 120 prompts. Each pair is an-
notated by three people who are familiar with text-
to-image generation and of different backgrounds.

4.2 Baselines
We compare PRIP against a comprehensive set
of prompt refinement baselines: (1) GPT3.5 &
4: They are generic language models and are
not tailored for prompt refinement. To guide
them, we use a popular prompt template from
bluelovers (2023) and slightly modify it for this
task. The template contains guidance and examples.
(2) PromptistSFT & PromptistRL (Hao et al.,
2022): PromptistSFT is trained on synthesized par-
allel data: system languages are collected from
prompt-sharing websites, while user languages
are rephrased from the system languages to sim-
ple form by ChatGPT. Initialized from Promp-
tistSFT, PromptistRL undergoes an RL process
with CLIP (Radford et al., 2021) and Aesthetic

scores (Schuhmann, 2022) as reward. (3) Rew-
Syn & Rew-Syn+RL: We enhance PromptistSFT
and PromptistRL by aligning them with user pref-
erence. Rew-Syn uses ImageReward and HPSv2
to filter out the PromptistSFT training pairs whose
refinement does not improve satisfaction scores.
Rew-Syn+RL utilizes ImageReward and HPSv2 as
reward, which is identical to PRIP’s. (4) Rew-Log
& Rew-Log+RL: Rew-Log extracts human rewrit-
ing pairs from a large-scale interaction log (Wang
et al., 2023) by pairing the first and the last prompts
in the same session. It filters out the pairs that do
not improve ImageReward or HPSv2 scores. Rew-
Log+RL is initialized from Rew-Log and under-
goes the same RL training process as PRIP’s.

4.3 Implementation Details

Architecture. The model architecture is as follows.
Preference Encoder and Prompt Decoder are ini-
tialized with FLAN-T5-Large (Chung et al., 2022)
and Llama2-7B (Touvron et al., 2023), respectively.
We use the vision component of BLIP-2 (Li et al.,
2023) as the frozen Image Encoder.
Data. Training data for PRIP can be easily ac-
quired, as discussed in Section 3.2. In this paper,
we collect data from DiffusionDB (Wang et al.,
2023), a real interaction log between 10k users and
SD1.4. Since this dataset logs the multiple gener-
ated images for each prompt, we can sample the
most-preferred image for training the user-pivot
model (the Preference Encoder). We use ImageRe-
ward to simulate user preference and select the
highest-scored image as the pivot. We also observe
that there exist high-quality prompts in the log that
can serve as the system languages. Therefore, we
sample these prompts and the associated images for
training the Prompt Decoder model. The sampling
criterion is empirically set: the CLIP and Aesthetic
scores are above 0.28 and 5.2, respectively. Future
studies can explore other data resources.

Please refer to Appendix A.4 for more details.

5 Experimental Results

This section presents the experimental results. We
first evaluate models on various generation sys-
tems, including the one used during training (in-
distribution scenario) and several unseen, advanced
systems (out-of-distribution scenario). Then, we
show how PRIP refines the prompt by presenting
several cases. Finally, a comprehensive ablation
study demonstrates the effectiveness of pivoting.
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Evaluation Metric ImageReward HPSv2 Relevance Win Win+Tie
Dataset Anime ConceptArt Painting Photo Anime ConceptArt Painting Photo All All All

SD1.4 0.038∗ 0.185∗ 0.190∗ 0.130∗ 27.42∗ 26.86∗ 26.86∗ 27.57∗ 1.38 1%∗ 100%

+ GPT3.5 -0.037∗ 0.030∗ 0.126∗ -0.005∗ 27.36∗ 26.77∗ 26.87∗ 27.41∗ – – –
+ GPT4 -0.143∗ -0.024∗ 0.030∗ -0.196∗ 27.29∗ 26.71∗ 26.76∗ 27.28∗ – – –
+ PromptistSFT -0.140∗ -0.083∗ 0.010∗ -0.287∗ 27.19∗ 26.60∗ 26.77∗ 26.88∗ – – –
+ Rew-Syn -0.015∗ 0.056∗ 0.223∗ -0.221∗ 27.35∗ 26.79∗ 26.99∗ 26.96∗ – – –
+ Rew-Log 0.066∗ 0.151∗ 0.173∗ 0.063∗ 27.44∗ 26.87∗ 26.86∗ 27.51∗ – – –
+ PromptistRL -0.009∗ 0.092∗ 0.211∗ -0.060∗ 27.29∗ 26.73∗ 26.89∗ 26.97∗ 1.20∗ 38%∗ 84%
+ Rew-Syn+RL 0.079∗ 0.135∗ 0.246∗ 0.138∗ 27.46∗ 26.85∗ 26.99∗ 27.70∗ 1.31∗ 40%∗ 89%
+ Rew-Log+RL 0.028∗ 0.177∗ 0.187∗ 0.105∗ 27.42∗ 26.85∗ 26.86∗ 27.55∗ 1.33∗ 6%∗ 96%
+ PRIP 0.346 0.443 0.576 0.252 27.97 27.45 27.65 28.03 1.45 73% 94%

Table 1: In-distribution refinement performance on the seen system (SD1.4). Win/Tie ratio shows preference
against SD1.4, and SD1.4’s “Win+Tie” is always 100%. Human annotation is only conducted on RL-based meth-
ods to save costs. ∗ indicates PRIP significantly outperforms the baseline with p-value < 0.01 measured by T-Test.
PRIP substantially outperforms baselines.

Evaluation Metric ImageReward HPSv2 Relevance Win Win+Tie
Generation Model SDXL IF SUR ReFL SDXL IF SUR ReFL SDXL SDXL SDXL

w\ o refine 0.866∗ 0.624∗ 0.596∗ 0.421∗ 27.76∗ 27.63∗ 27.82∗ 27.64∗ 1.67 1%∗ 100%

+ GPT3.5 0.753∗ 0.569∗ 0.431∗ 0.316∗ 27.67∗ 27.57∗ 27.72∗ 27.57∗ – – –
+ GPT4 0.702∗ 0.455∗ 0.360∗ 0.214∗ 27.67∗ 27.41∗ 27.67∗ 27.49∗ – – –
+ PromptistSFT 0.679∗ 0.298∗ 0.374∗ 0.229∗ 27.54∗ 26.93∗ 27.53∗ 27.44∗ – – –
+ Rew-Syn 0.817∗ 0.464∗ 0.513∗ 0.347∗ 27.72∗ 27.17∗ 27.67∗ 27.60∗ – – –
+ Rew-Log 0.850∗ 0.591∗ 0.561∗ 0.401∗ 27.75∗ 27.57∗ 27.79∗ 27.62∗ – – –
+ PromptistRL 0.833∗ 0.509∗ 0.547∗ 0.404∗ 27.67∗ 27.21∗ 27.65∗ 27.56∗ 1.52∗ 40%∗ 88%
+ Rew-Syn+RL 0.874∗ 0.579∗ 0.596∗ 0.459∗ 27.81∗ 27.46∗ 27.83∗ 27.77∗ 1.62 51%∗ 89%
+ Rew-Log+RL 0.861∗ 0.619∗ 0.573∗ 0.406∗ 27.77∗ 27.60∗ 27.79∗ 27.63∗ 1.67 4%∗ 98%
+ PRIP 0.983 0.741 0.789 0.640 28.15 27.90 28.22 28.14 1.68 82% 96%

Table 2: Out-of-distribution refinement performance on unseen systems. Results are averaged on four categories.
Human annotation is only conducted on RL-based methods for SDXL to save costs. Win/Tie ratio shows preference
against generation without refinement. Note that the first row is generation without refinement and its “Win+Tie”
is 100%. ∗ indicates PRIP significantly outperforms the baseline with p-value < 0.01 measured by T-Test. PRIP
effectively transfers to unseen systems.

5.1 In-Distribution Performance

Table 1 presents the in-distribution refinement per-
formance. We have the following observations: (1)
Results indicate that generic language models like
GPT3.5 and GPT4 do not excel at refining image
prompts. We find that GPT3.5 merely rephrases
prompts without adding details and sometimes hal-
lucinates, which results in its output being mostly
ineffective. As for GPT4, it can effectively add rich
details compared with GPT3.5. Yet its added de-
tails often misalign with the initial prompts, leading
to even worse performance. (2) Synthetically gen-
erated refinement pairs also demonstrate limited
efficacy, with neither PromptistSFT nor Rew-Syn
surpassing the SD1.4 baseline. The user languages
are synthesized by rephrasing high-quality prompts.
Yet such synthesized user inputs are different from
real inputs and compromise the model performance.
(3) In contrast, PRIP does not rely on any synthe-
sized or human-generated refinement pairs that are
usually low-quality and noisy. Results demonstrate
that PRIP significantly outperforms all baselines.

5.2 Out-of-Distribution Performance

Table 2 shows the performance on four state-of-
the-art generation systems that are unseen dur-
ing training. As introduced in Section 4.1, these
systems employ special techniques to improve
prompt-understanding abilities. For example, IF
uses a large language model to process prompts,
and ReFL is finetuned on user inputs with pref-
erence feedback. Even on these systems, PRIP
still presents significant improvements. Further-
more, according to the human annotation results in
Table 1 and 2, PRIP’s performance improvement
is more pronounced on SDXL than SD1.4. We
closely examine the output and find that SD1.4
sometimes struggles to process the rich details
added by PRIP while SDXL can. The results indi-
cate that PRIP is even more suitable for advanced
generation systems. It also implies that existing
generation systems all prefer prompts with rich de-
tails and professional terms. In Appendix A.1, we
provide an additional analysis showing how PRIP
leads to robust improvement.
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Input Prompt User PRIP

User : A monkey is pictured acting as a DJ.
PRIP: A monkey is pictured acting as a DJ., he is wearing
headphones and has a large smile on his face, he is holding
a record, he is at a rave, he is on the cover of a tourism
pamphlet for Florida, he is a resident DJ at ...

User : A Walter White funko pop figurine.
PRIP: A Walter White funko pop figurine., intricate,
highly detailed, photorealistic, 4k, HDR, smooth, sharp
focus, high resolution, award-winning photo, taken at the
2022 EPCOT International Flower and Food Festival

User : A mushroom house in a dark forest, with warm
light emitting from its windows.
PRIP: A mushroom house in a dark forest, with warm
light emitting from its windows., by Thomas Kinkade, col-
orful, vibrant, intricate, highly detailed, deviantart, ...

User : Frog emerging from yogurt.

PRIP: Frog emerging from yogurt., detailed, intri-
cate, 4k, by Pauline Baynes, whimsical, award-winning,
highly detailed, fantasy, magical, sparkle

User : A little cat is running in the woods

PRIP: A little cat is running in the woods, smiling,
friendly, colorful, happy, laughing, cute, adorable

User : A billboard posed by the side of a street in a rural
town.
PRIP: A billboard posed by the side of a street in a rural
town., Christchurch, New Zealand, Hawaiian, small town,
tropical, warm, fountain, happy, fun, touristy, cute, quaint

User : A crowd of pink elephants playing steampunk in-
struments during a grindcore show.
PRIP: A crowd of pink elephants playing steampunk in-
struments during a grindcore show., cute, adorable, pastel
colors, Thomas Kinkade, Colorful, Lisa Frank, family

User : an empty bench sitting on the side of a sidewalk
PRIP: an empty bench sitting on the side of a sidewalk,
in christchurch new zealand, small town, lots of flowers,
small city, small town atmosphere, neighborhood, neigh-
borhood atmosphere

Table 3: Refinement cases. Column one details user
inputs and PRIP outputs. The next two columns show
SDXL-generated images for different prompts. PRIP
substantially enhances the image quality.

5.3 Case Studies

Table 3 presents several refinement examples. We
can see that PRIP expands user inputs with details
and stylistic elements. The details are rich, pro-
fessional, and tailored for each user input. For
example, in the first case, PRIP adds the monkey’s
wearing, action, and environment. It also specifies
that the image is a tourism pamphlet cover. These
make the rendered image both closely relevant to
the user input and aesthetically-pleasing. Moreover,
some added terms are professional artist names
and beyond the capability of average users, such
as “Thomas Kinkade” in the third case, “Pauline
Baynes” in the fourth case, and “Lisa Frank” in
the seventh case. With PRIP automatically adding
these professional terms, the text-to-image systems
can become more user-friendly.

5.4 Ablation Study

To evaluate the contributions of PRIP’s compo-
nents, we perform a detailed ablation study, ex-

Evaluation Metric ImageReward HPSv2
Generation Model SD1.4 SDXL SD1.4 SDXL

without Reinforcement Learning
PRIP\RL 0.122 0.888 27.24 27.87
\User-Pivot Preference 0.072 0.862 27.17 27.80
\Pivot-System Decoding 0.058 0.810 27.04 27.69

with Reinforcement Learning
PRIP 0.404 0.983 27.77 28.15
\User-Pivot Preference 0.198 0.917 27.33 27.92
\Pivot-System Decoding 0.047 0.821 27.04 27.71

Table 4: Ablation Study Results. The table presents
the performance when various components of PRIP are
removed. Results demonstrate their importance.

amining the exclusion of the following elements:
(1) \User-Pivot Preference: For user-pivot training
as in Eq. (6), the ground truth is a random image
generated from this prompt instead of the image
with the highest preference score. This investigates
whether the pivot should be a user-preferred im-
age. (2) \Pivot-System Decoding: In pivot-system
training as in Eq. (7), Prompt Decoder is not pro-
vided with image as input and is trained using a
basic language modeling loss. The trained model
is familiar with prompts but not capable of decod-
ing image pivots. (3) Without RL (PRIP\RL): We
evaluate the PRIP model that does not undergo an
end-to-end RL process, as presented in Section 3.4.

Table 4 presents the ablation results. It demon-
strates that all three components are vital to PRIP.
According to the performance of \Pivot-System
Decoding, pivot-system training is critical. With-
out it, the performance substantially degenerates.
This indicates that PRIP relies on this process to
learn to decode the image pivot. “\User-Pivot Pref-
erence” replaces the user-preferred image with a
random image, which also results in a performance
drop. This demonstrates the importance of aligning
user preference by using the best image as the pivot
during training. RL can substantially improve the
effectiveness of PRIP. Yet, it still relies on the user-
pivot and pivot-system to provide a good warmup
process. This is in line with the observations by
Zheng et al. (2023) that the exploration space of
the language model is too large and convergence
of RL is formidable without a good start point.

5.5 Scaling Analysis

We investigate how the model size affects PRIP
performance. We use two smaller models, TinyL-
lama with 1.1B parameters (Zhang et al., 2024a)
and GPT2-Large with 0.78B parameters (Radford
et al., 2019). Although TinyLlama has fewer pa-
rameters than Llama2-7B (Touvron et al., 2023), it
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Evaluation Metric ImageReward HPSv2
Dataset Anime Painting Anime Painting

SD1.4 0.038 0.190 27.42 26.89

+ PRIP\RL prompt refinement
GPT2-Large 0.78B 0.047 0.197 27.49∗ 27.00∗

TinyLlama 1.1B 0.059 0.253∗ 27.51∗ 26.99∗

Llama2 7B 0.065 0.269∗ 27.53∗ 27.03∗

Table 5: PRIP performance when prompt decoder is
initialized from different language models, including
GPT2-large, TinyLlama, and Llama2. Results show
that a larger model leads to better performance. ∗ in-
dicates the refinement model significantly outperforms
the SD1.4 baseline (without refinement) with p-value
< 0.01 measured by T-Test.

was trained on 2.5T tokens, compared to 2T tokens
for the latter. Thus, TinyLlama is a strong “small”
model, while GPT2-Large is a relatively weaker
“small” model.

The setup is as follows. We use both models
to initialize the Prompt Decoder. We do not use
the RL training process as described in Section 3.4
to save cost. We only train the models with pivot-
system pairs as shown in Section 3.3.2. We pair
the Preference Encoder with these two new Prompt
Decoders to form two new PRIP models. We test
the prompt refinement performance on the Anime
and Painting datasets using the SD1.4 model for
image generation.

Based on the results in the table, we can ob-
serve: (1) As the capability of the base model in-
creases, the model’s prompt refinement ability also
improves gradually. A more capable base model
helps PRIP better infer the system prompt language
from the pivot image representation, thus achiev-
ing better image generation results. (2) TinyL-
lama demonstrates a substantial improvement over
GPT2-Large in our task, suggesting that the ex-
tensive pre-training contributes to the superior per-
formance in this downstream task. (3) We also
observed that the performance of TinyLlama is ap-
proaching that of Llama2-7B, even though their
parameter scales differ by a factor of 7. This sug-
gests that with the help of PRIP’s extensive training
data, the demand for the size of the base model has
become smaller. A well-optimized small model
can achieve performance close to that of a large
model.

6 Conclusion

In this paper, we present PRIP, a pioneering pivot-
based approach tailored for text-to-image prompt
refinement. By formulating the refinement process

as user-pivot preference encoding and pivot-system
prompt decoding, PRIP sidesteps the scarcity of
user-system refinement pairs and leverages large-
scale data for effective model training. Exten-
sive experiments demonstrate PRIP’s effectiveness
in prompt refinement. The improvement is pro-
nounced for both text-to-image systems seen and
unseen during training, highlighting its remarkable
effectiveness and robust generalizability.

7 Limitation and Future Work

There are several limitations for future studies:

(1) Dependence on Supervised Data: PRIP’s
Preference Encoder relies on image preference data
to align with user preferences. This data requires
manual annotation or user click logs. Future work
should explore how to effectively train the Prefer-
ence Encoder with minimal preference data.

(2) Dependence on System Language Corpus:
PRIP’s Prompt Decoder requires a corpus of sys-
tem language prompts for training. Obtaining this
data can rely on scraping prompts from websites or
using interaction logs, which should be done with
user consent and possibly compensation. Future
work should investigate acquiring this data while
protecting users’ intellectual property and privacy.

(3) Usage of a Frozen Image Encoder: During
PRIP’s training, we use a frozen image encoder to
encode images. Due to resource limitations, we did
not explore the impact of different image encoders.
Future work can explore how to select and train
image encoders for PRIP.

(4) Transferability to New Systems: While PRIP
shows promise in transferring to unseen systems,
its long-term adaptability to rapidly evolving gen-
eration systems remains to be fully tested. Future
work should investigate how to further improve
PRIP’s transferability, possibly by adapting the
pivot-system module for different systems.

(5) Hallucination Problem: Since the Prompt
Decoder cannot directly access user inputs when
generating system language, hallucinations may
occur. We address this issue by using the user in-
put as a prefix during inference. Yet this restricts
PRIP’s capabilities, as using redundant or unclear
user inputs as prefixes can affect the refinement ef-
fectiveness. Future work should further investigate
this problem.
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8 Ethical Considerations

The development and deployment of PRIP raise
several ethical considerations that should be ad-
dressed in future applications:

(1) Intellectual Property Protection: PRIP relies
on system languages provided by users for training.
It is crucial to implement appropriate incentives
and revenue-sharing mechanisms to protect the in-
tellectual property of these users.

(2) Privacy Protection: When using prompt logs
for training, user privacy must be fully respected. It
is necessary to obtain users’ consent in advance and
implement appropriate anonymization measures.

(3) Bias and Fairness: Like all AI systems,
PRIP’s outputs are influenced by the data it is
trained on. If image preference data contains bi-
ases, these biases can be reflected in the refined
prompts, potentially showing societal stereotypes
and biases in generated images.

(4) Misuse Potential: The enhanced capability
in text-to-image generation can be misused for cre-
ating misleading or harmful content. Ensuring that
PRIP and similar technologies are used responsibly
requires robust guidelines and possibly technologi-
cal safeguards against such misuse.

(5) Accessibility and Inclusion: By facilitating
more intuitive interaction with text-to-image sys-
tems, PRIP contributes to making these technolo-
gies more accessible. However, it is crucial to en-
sure that these advancements are equally accessible
to users across different languages, cultures, and
socio-economic backgrounds.

9 Broad Impact

PRIP’s development has broad implications for
both society and the field of AI:

(1) Enhancing Creative Expression: By simplify-
ing the process of prompt refinement, PRIP enables
users, especially those without technical expertise,
to more effectively leverage the power of text-to-
image generation systems for creative expression,
educational purposes, and more.

(2) Research in AI and Human-Computer Inter-
action: PRIP’s novel approach to prompt refine-
ment contributes to the understanding of how hu-
mans interact with AI systems. It opens new av-
enues for research in natural language processing,
computer vision, and human-computer interaction,
particularly in the context of improving the intu-
itiveness and effectiveness of AI interfaces.

(3) Potential Negative Consequences: While
PRIP enhances user experience, the technology’s
ability to generate realistic images from refined
prompts raises concerns about misinformation, pri-
vacy, and the ethical use of AI-generated content. It
is important for the research community to address
these issues and to develop ethical guidelines and
best practices for the use of such technologies.
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A Appendix

A.1 Comparison with ReFL

PRIP enhances input prompts for text-to-image
generation systems, while alternative approaches
like ReFL directly finetune the diffusion models
themselves. Both utilize similar reward scores and
reinforcement learning techniques.

Method Average on Four Datasets
ImageReward HPSv2 Relevance Win Win+Tie

ReFL 0.421 27.64 1.42 0% 100%
SD1.4+PRIP 0.404 27.77 1.45 53% 80%
ReFL+PRIP 0.640 28.14 1.44 64% 89%

Table 6: Comparison with ReFL, a SD1.4 model fine-
tuned with user preference. Win ratio shows preference
against ReFL. Results highlight that PRIP outperforms
ReFL in manual evaluations and that integrating PRIP
with ReFL yields further enhancements.

Quantitative Analysis: Table 6 details a compar-
ison of their performance. The automated metrics
suggest that PRIP, despite only adjusting the input,
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rivals the performance of ReFL that finetunes the
entire model. By feeding PRIP’s refined prompts
to ReFL during inference, we observe further im-
provements, implying that the strengths of the two
methods are complementary. From the perspective
of human evaluation, images generated by PRIP
are notably preferred, a finding that diverges from
the ImageReward scores. Considering that ReFL’s
training utilizes ImageReward, ReFL may adver-
sarially attack this metric (Akhtar and Mian, 2018),
resulting in seemingly high but perhaps not genuine
scores. PRIP, while also trained with ImageReward,
operates under strict constraints imposed by a fixed
text-to-image model, thereby avoiding potential
attack to the reward model.

User Prompt SD1.4 ReFL SD1.4+PRIP ReFL+PRIP

A digital art depicting
a chicken wearing a
suit.

The interior of a
spaceship orbiting
alpha centauri.

A horse and astronaut
in one image.

A plane flies in the
sky passing over the
moon.

Table 7: Examples of PRIP and ReFL: The table show-
cases the user prompts in the first column, followed by
images generated using different methods in the subse-
quent columns. Both ReFL and PRIP enhance the per-
formance of SD1.4 individually, and their combination
yields even better outcomes.

Image Examples: Table 7 showcases the images
generated by ReFL and PRIP. We can see that both
ReFL and PRIP enhance the generation quality of
SD1.4. For instance, the first and third examples
illustrate that ReFL and PRIP align the generated
images more closely with the prompts and that their
combination achieves even better images. This ob-
servation is consistent with our quantitative find-
ings.

A.2 Human Annotation Process

We recruit annotators to manually evaluate the out-
put images from different generation systems. We
recruit five annotators in total, from different back-
grounds. The annotator is paid for 30$ per hour.
Each data item is labeled by three annotators, and

the median value is used as the final label.
The annotators are informed about the intended

usage of the data: "The data annotated is used for
scientific research, and does not involve any per-
sonal privacy. The annotation process will not have
any physical or psychological impact on the sub-
jects. The results of this research may be published
in academic conferences/journals/books, or used
for teaching. The dataset may be made public, but
it is only for research by the academic commu-
nity, and your name or other information that may
identify you will not appear in any published or
teaching materials."

We provide the instructions for the Preference
Annotation task and the Relevance Annotation Task
in the following.

A.2.1 Preference Annotation
The instruction for the Preference Annotation task
is mainly the same as Wu et al. (2023): “ We will
provide a prompt that describes the image the user
wants to draw. You will see two images, which are
generated from two different AI models. Please
consider the prompt and choose the better image
from the perspectives of universal and personal
aesthetic appeal. This task mainly involves two
aspects: text-image alignment and image quality.
Although we encourage and value personal prefer-
ence, it’s important to consider the following funda-
mental principles when balancing the two aspects
or facing a dilemma: (1) When Image (A) surpasses
Image (B) in terms of aesthetic appeal and fidelity,
or Image (B) suffers from severe distortion and
blurriness, if Image (B) aligns only slightly better
with the prompt, Image (A) should take precedence
over Image (B). (2) When facing a dilemma that
images are relatively similar in terms of aesthetics
and personal preference, please carefully read and
consider the prompt for sorting based more on the
text-image alignment. (3) It is crucial to pay spe-
cial attention to the capitalized names. If there is
any term or content you are not familiar with, we
recommend you to search for sample images and
explanations online. ”

A.2.2 Relevance Annotation
We will provide a prompt that describes the image
the user wants to draw. You will see one image,
which is generated from an AI system. Please con-
sider the prompt and choose how relevant the image
is to the prompt.

• 0: The image is completely irrelevant to the
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given prompt. The image does not contain any
of the key entities mentioned in the prompt.
This also applies if the image only matches the
prompt in style or detail, but does not contain
the corresponding key entities.

• 1: The image is partially relevant to the given
prompt. The image contains some of the key
entities mentioned in the prompt, but may dif-
fer in style, action, or detail.

• 2: The image is perfectly relevant to the given
prompt. The subject, style, and details of the
image are all consistent with the prompt.

A.3 Datasheet
In this paper, we use two public datasets, namely
DiffusionDB (Wang et al., 2023) for training and
HPSv2 benchmark (Wu et al., 2023) for evaluation.

• License: The DiffusionDB dataset is under
“CC0 1.0 License” license. The HPSv2 bench-
mark is under ‘Apache-2.0 license’.

• Intended use: our use is consistent with the
dataset creators’ intended use. For Diffu-
sionDB, the authors stated that the dataset
can help “design human-AI interaction tools
to help users more easily use these models.”.
The HPSv2 benchmark is exactly proposed
to evaluate text-to-image generation perfor-
mance.

• Content Processing: Since we directly use the
two public datasets and do not preprocess the
datasets, we also inevitably use the potentially
harmful content from the two datasets. Ac-
cording to both creators, the data is filtered by
NSFW classifiers but still may contain a small
portion of harmful content.

• Coverage: The two datasets cover a wide
range of topics, including anime, concept art,
paintings, and realistic photos. The languages
are mainly English, and also include other
languages like Japanese and Chinese.

• Train/Val/Test: We use DiffusionDB for train-
ing and validation. We construct 300k image
preference pairs and 900k system language
prompts for training. We randomly sample
1,000 prompts from DiffusionDB for valida-
tion. HPSv2 is used as the test set. It con-
tains four categories, each consisting of 800
prompts.

A.4 Computational Experiments
Preference Encoder is initialized from Flan-T5-
Large (Chung et al., 2022) and is of 738M parame-
ters. Prompt Decoder is initialized from Llama 2
7B (Touvron et al., 2023) and is of 7B parameters.
We use Transformers library (Wolf et al., 2020) for
training and inference. User-pivot warmup, pivot-
system warmup and RL takes 24, 144, and 384
GPU hours on A100 devices.

We empirically tune the training hyper-
parameters such as learning rate to minimize the
validation loss on a held-out set. During warmup,
Preference Encoder is trained for 3 epochs with
a learning rate of 0.001, and Prompt decoder is
trained for 2 epochs and a learning rate of 2×10−5.
During user-pivot-system RL training, we use Im-
ageReward and HPSv2 to output preference scores,
and train PRIP for 1, 000 steps with a batch size of
512 and a constant learning rate of 0.001

A.5 PRIP Model Card
The two components of PRIP, namely the
Preference Encoder and the Prompt Decoder,
share the same model architecture with Flan-T5-
Large (Chung et al., 2022) and Llama 2 (Touvron
et al., 2023), respectively.

Preference Encoder
Initialization Flan-T5-Large
Input Text
Output R32×768

Prompt Decoder
Initialization Llama 2
Input R32×768

Output Text

Table 8: PRIP Model Card.

A.6 Use of AI Assistant
We used AI assistant tools such as ChatGPT for
polishing. However, AI-generated text is only used
for reference in writing and is added to the article
after careful consideration and modification. The
help of AI lies in providing suggestions to make
the paper more readable. We do not directly copy
large chunks of text generated by ChatGPT into
our paper without checking or modification.
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