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Abstract

Recent advances in large language models
(LLMs) have stepped forward the development
of multilingual speech and machine transla-
tion by its reduced representation errors and
incorporated external knowledge. However,
both translation tasks typically utilize beam
search decoding and top-1 hypothesis selec-
tion for inference. These techniques struggle
to fully exploit the rich information in the di-
verse N -best hypotheses, making them less op-
timal for translation tasks that require a sin-
gle, high-quality output sequence. In this pa-
per, we propose a new generative paradigm
for translation tasks, namely “GenTranslate”,
which builds upon LLMs to generate better
results from the diverse translation versions
in N -best list. Leveraging the rich linguistic
knowledge and strong reasoning abilities of
LLMs, our new paradigm can integrate the rich
information in N -best candidates to generate a
higher-quality translation result. Furthermore,
to support LLM finetuning, we build and re-
lease a HypoTranslate dataset that contains over
592K hypotheses-translation pairs in 11 lan-
guages. Experiments on various speech and ma-
chine translation benchmarks (e.g., FLEURS,
CoVoST-2, WMT) demonstrate that our Gen-
Translate significantly outperforms the state-of-
the-art model1.

1 Introduction

Recent advances in large language models (LLMs)
have attracted a surge of research interest due
to their strong abilities in logical reasoning and
language generation (OpenAI, 2022, 2023; Tou-
vron et al., 2023a,b). These models have achieved
surprisingly wide-ranging success across various
natural language processing (NLP) tasks (Brown
et al., 2020; Wang et al., 2022; Wei et al., 2022a,b;
Ouyang et al., 2022).

1This work is open sourced at: https://github.com/Y
UCHEN005/GenTranslate
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Figure 1: Illustration of (a) Typical seq2seq translation
with beam search decoding and top-1 hypothesis selec-
tion, (b) our “GenTranslate” with LLM integration.

In the realm of NLP, the translation tasks, which
encompasses speech and machine translation (ST
& MT), hold significant practical importance for
global communication. Similar to other NLP
tasks, translation tasks also gain a notable progress
thanks to the recent advancement of LLMs (Zhang
et al., 2023a; Lyu et al., 2023). In the domain of
speech translation, Whisper (Radford et al., 2023)
demonstrates superior performance by collecting
680K-hour data for web-scale model training. Au-
dioPaLM2 (Rubenstein et al., 2023) integrates both
text- and speech-based language models into a uni-
fied architecture to process and generate text and
speech, thereby augmenting speech translation per-
formance to a great extent. On the other hand,
LLMs also show remarkable ability in machine
translation. NLLB (Costa-jussà et al., 2022) is the
first to extend LLMs’ linguistic capability to over
200 languages. BigTranslate (Yang et al., 2023b) is
finetuned on LLaMA (Touvron et al., 2023a) with
multilingual instruction tuning, which achieves
comparable performance to ChatGPT (OpenAI,
2022) and Google Translate. Most recent work
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proposes SeamlessM4T (Barrault et al., 2023a),
a foundational multilingual and multitask model
that can translate across speech and text, which
achieves the state-of-the-art on both ST and MT
tasks on various public datasets.

Despite the superior performance, most existing
translation models employ the typical beam search
algorithm for inference and select the top-1 hypoth-
esis as final output (see Fig. 1 (a)), following that
in automatic speech recognition (ASR) (Tsunoo
et al., 2021). However, this strategy discards the 2
to N -best hypotheses that could be advantageous
to the generation of ground-truth translation. As
illustrated in Fig. 2, the discarded 2 to N -best hy-
potheses contain abundant semantic information
that is the key to composite the ground-truth utter-
ance, while the 1-best hypothesis lacks this part of
information. As a result, the typical top-1 hypothe-
sis selection is sub-optimal to the translation tasks
that require a single informative and high-quality
output sequence (Li et al., 2022; Xiao et al., 2022).

Inspired by the recent works on LLMs-enhanced
ASR (Ma et al., 2023b; Chen et al., 2023; Yang
et al., 2023a; Radhakrishnan et al., 2023), we pro-
pose a new generative paradigm for translation
tasks, namely GenTranslate (see Fig. 1 (b)). Lever-
aging the rich linguistic knowledge and strong rea-
soning ability of LLMs, our paradigm integrates
the diverse translation versions in the N -best list
from foundation model to generate a higher-quality
translation result. Furthermore, in order to support
LLM finetuning, we also build and release a Hypo-
Translate dataset that contains over 592K pairs of
N -best hypotheses and ground-truth translation in
11 languages. Experimental evidence on various
ST and MT benchmarks (e.g., FLEURS, CoVoST-2,
WMT) demonstrate that our proposed GenTrans-
late significantly outperforms the state-of-the-art
model with efficient LLM finetuning.

Our contributions are summarized as follows:

• We propose GenTranslate, a new generative
paradigm for translation tasks that leverages
LLMs to generate higher-quality translation
results from the diverse N -best hypotheses
decoded from foundation translation model.

• We release a HypoTranslate dataset to support
LLM finetuning, which contains over 592K
pairs of N -best hypotheses and ground-truth
translation in 11 languages.

• Experiments on various ST and MT bench-
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Figure 2: t-SNE visualization of the n-gram tokens
(n=1,2,3) in ST 1-best hypothesis (green), 2 to N -best
hypotheses (blue), and the ground-truth translation (or-
ange), where the text embeddings are extracted using
SBERT (Reimers and Gurevych, 2019). It indicates that
the 2 to N -best hypotheses contain richer information
than 1-best for generating ground-truth translation.

marks show that our GenTranslate signifi-
cantly outperforms the state-of-the-art model.

2 Related Work

2.1 Large Language Models
There is recently a surge of research interests in
Transformer-based large language models, such as
ChatGPT (OpenAI, 2022), GPT-4 (OpenAI, 2023)
and LLaMA (Touvron et al., 2023a,b). Benefiting
from the giant model size and oceans of training
data, LLMs can understand better the linguistic
structures and semantic meanings behind raw text,
which thus shows remarkable performance on a
wide range of natural language processing (NLP)
tasks (Brown et al., 2020; Wei et al., 2022a; Ouyang
et al., 2022). Thereafter, with techniques like in-
context learning (Xie et al., 2021) and efficient fine-
tuning (Hu et al., 2021; Yang et al., 2021b), LLMs
further show powerful ability on downstream gen-
erative and reasoning tasks (Lampinen et al., 2022;
Yang et al., 2023a; Hu et al., 2023b; Zhang et al.,
2023b). Our proposed GenTranslate is exactly in-
spired by the promising generative ability of LLMs.

2.2 Speech and Machine Translation
The advancement of LLMs has notably enhanced
the capabilities of translation tasks. In the do-
main of speech translation (Liu et al., 2021), Whis-
per (Radford et al., 2023) demonstrates commend-
able effectiveness, leveraging extensive web-scale
data. AudioPaLM2 (Rubenstein et al., 2023) in-
tegrates text- and speech-based language models,
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Figure 3: Left: Overview of the GenTranslate paradigm (e.g., De→En). Right: Details of efficient LLM finetuning.

thereby augmenting the speech translation perfor-
mance. In the context of machine translation,
NLLB (Costa-jussà et al., 2022), a model fine-
tuned on LLMs, extends its linguistic range to over
200 languages. Additionally, BigTranslate (Yang
et al., 2023b) utilizes instruction tuning to enhance
the translation capabilities of LLMs. The most
recent innovation, SeamlessM4T (Barrault et al.,
2023a), represents a highly-unified model capable
of fluid translation between speech and text, set-
ting new benchmarks in both ST and MT tasks.
However, it is noteworthy that the majority of these
methodologies rely on beam search decoding (Yang
et al., 2021a; Hu et al., 2023a) and top-1 hypothesis
selection for inference. How to leverage N -best hy-
potheses to deliver better translation result remains
to be an open question.

2.3 LLMs-Enhanced ASR
Recent works investigate LLMs to enhance the
ASR output by error correction (Ma et al., 2023a;
Chen et al., 2023), which serves as a post-
processing technique to improve the recognition
result (Leng et al., 2021). In particular, they lever-
age LLM finetuning (Zhang et al., 2023b) and
in-context learning (Wang et al., 2023) to correct
the wrongly recognized tokens in hypotheses by
second-pass reasoning, which achieves promising
improvement. Inspired by them, in this work we
leverage LLMs to integrate the diverse translation
versions in N -best list to generate a informative
and higher-quality translation result.

3 Methodology

In this section, we introduce the proposed method.
First, we describe the latest foundational translation
model, SeamlessM4T, which we employ for beam
search decoding and hypotheses generation (§3.1).

Then, we introduce our LLMs-based GenTranslate
paradigm by N -best hypotheses integration (§3.2).
Finally, we present the details of our released Hypo-
Translate dataset for GenTranslate training (§3.3).

3.1 Foundational Translation Model:
SeamlessM4T

Recent work (Barrault et al., 2023a,b) proposes
SeamlessM4T2 (Massively Multilingual & Multi-
modal Machine Translation), a single Transformer-
based (Vaswani et al., 2017) model that supports
speech-to-speech translation, speech-to-text trans-
lation, text-to-speech translation, text-to-text trans-
lation, and automatic speech recognition for up to
100 languages. During development process, it
is firstly pre-trained on 1 million hours of speech
data by self-supervised learning, and it is then fine-
tuned on a 406K-hour multimodal corpus of auto-
matically aligned speech translations named Seam-
lessAlign. Experiments show that SeamlessM4T
yields superior performance on all of the five sup-
ported tasks. In particular, it has achieved the state-
of-the-art on both ST and MT tasks in terms of
BLEU score on various public benchmarks.

Considering its effectiveness, generality and pop-
ularity, we employ SeamlessM4T as the foundation
model for both speech and machine translation in
our system, as depicted in the left part of Fig. 3.
Given an input speech Ssrc or text T src in source
language (e.g., German), SeamlessM4T translates
it into target language (e.g., English) text by beam
search decoding, which generates N -best hypothe-
ses list T tgt

N = {T tgt
1 , T

tgt
2 , · · · , T tgt

N }.

2https://github.com/facebookresearch/seamless
_communication
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3.2 GenTranslate
3.2.1 Overall Framework
To solve the information loss in typical top-1 hy-
pothesis selection, we leverage LLMs to generate
a final translation result based on the decoded N -
best hypotheses. Since each candidate in N -best
list represents one unique version of translation
for source language input, our GenTranslate can
integrate their rich information to generate a higher-
quality translation result, thanks to the strong lin-
guistic and reasoning ability of LLMs. This new
generative paradigm can be formulated as:

T tgt = MGT(T tgt
N , I), (1)

where I is a proper instruction for LLM prompting.
The goal of GenTranslate is to learn a mapping
MGT from N -best hypotheses to the true trans-
lation. Following typical sequence-to-sequence
learning strategy, we employ the ground-truth trans-
lation T tgt* as supervision signal and optimize the
LLM to learn MGT in an auto-regressive manner.
The cross-entropy-based training loss is defined as:

LGT =
L∑

l=1

− logPθ(t
tgt*
l |ttgt*

l−1, · · · , t
tgt*
1 ; T tgt

N , I),

(2)
where t

tgt*
l is the l-th token of T tgt*, L denotes

the sequence length, and θ denotes the learnable
parameters in LLM (i.e., adapter).

3.2.2 Efficient LLM Finetuning
Considering the giant scale of LLMs, we adopt
the popular efficient finetuning strategy, LLaMA-
Adapter (Zhang et al., 2023b), which is comparable
to LoRA tuning (§4.3.4). As shown in Fig. 3 (right),
it inserts a set of learnable adaptation prompts into
the top-L of total H Transformer layers in a pre-
trained LLM to learn high-level semantics. Denote
the prompt for l-th layer as Pl ∈ RU×D, where U
is prompt length and D is embedding size.

Assume we gain M tokens including instruction
and already generated response, i.e., Tl ∈ RM×D,
now we aim to predict the (M + 1)-th token as re-
sponse. The learnable adaptation prompt is concate-
nated with Tl as prefix, i.e., [Pl;Tl] ∈ R(U+M)×D,
which provides learned instruction knowledge to
guide the subsequent response generation.

Furthermore, considering the prompt Pl is ran-
domly initialized and thus could disturb the LLM
tuning at early training stage, a zero-initialized
attention mechanism is devised to mitigate such

disturbance. Denote the current M -th token as
T
(M)
l ∈ R1×D, in attention there are three projec-

tion layers to generate query, key and value:

Ql = Linearq(T
(M)
l ),

Kl = Lineark([Pl;Tl]),

Vl = Linearv([Pl;Tl]),

(3)

Then the attention score is calculated as Al =
Ql · Kl/

√
D ∈ R1×(U+M), which captures the

correlation between current token and the history
tokens as well as prompts to predict the next token.
Therefore, it can be split into two parts accordingly:

Al = [AP
l ;A

T
l ]

T , (4)

where AP
l ∈ RU×1 is the attention score of U

adaptation prompts and AT
l ∈ RM×1 is that of M

history tokens. Since the adaptation prompts are
randomly initialized, their attention scores may cast
disturbance on next-token prediction at early train-
ing stage. To this end, a learnable gating factor gl
with zero initialization is introduced to adaptively
control the weight of prompt in attention:

Ag
l = [gl · softmax(AP

l ); softmax(AT
l )]

T , (5)

Finally, the attention output of l-th Transformer
layer is obtained with a linear projection:

O
(M)
l = Linearo(A

g
l · Vl) ∈ R1×D, (6)

It is then employed to predict the next token
T
(M+1)
l as response. The zero-initialization mech-

anism yields an effective trade-off between the pre-
trained knowledge of LLM and the learned instruc-
tional knowledge through adaptation prompt.

3.3 HypoTranslate Dataset
In order to support the LLM finetuning for Gen-
Translate, we release a HypoTranslate dataset that
contains over 592K pairs of N -best hypotheses and
ground-truth translation in 11 languages. In par-
ticular, we use the state-of-the-art SeamlessM4T-
Large as foundation translation model to decode
N -best hypotheses from input speech by beam
search algorithm, where the beam size N is set to
5. Specifically, for ST task we investigate two pop-
ular pipelines in literature, i.e., end-to-end ST and
cascaded ASR+MT. Thanks to the universal ability
of SeamlessM4T on ST, ASR and MT tasks, we
only need one model to build above two pipelines.

To build HypoTranslate dataset, we select sev-
eral public ST and MT corpora in both X→En and
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X→En Ar Cy De El Es Fa Fr Hi It Ja Pt Ta Uk Vi Zh Avg.

End-to-end ST Methods
Whisper-Large V2 (2023) 25.5 13.0 34.6 23.7 23.3 19.6 32.2 22.0 23.6 18.9 38.1 9.2 29.4 20.4 18.4 23.5
AudioPaLM2 (2023)* 29.0 7.2 38.7 18.8 26.9 25.7 36.5 21.7 27.8 11.1 38.4 15.0 26.9 15.6 21.3 24.0
SeamlessM4T-Large (2023a) 32.8 31.7 35.8 25.6 25.0 28.2 33.1 26.3 25.0 17.0 38.9 16.0 30.2 21.6 19.8 27.1
GenTranslate (ours) 34.6 33.6 39.2 29.4 29.8 30.5 37.0 28.3 29.7 18.6 43.0 17.4 33.9 24.1 21.7 30.1
SeamlessM4T-Large-V2 (2023b)† 34.7 34.9 37.1 27.3 25.4 30.3 33.7 28.5 26.5 19.5 38.5 22.1 33.2 25.7 23.0 29.4
GenTranslate-V2 (ours) 37.6 36.8 40.7 31.5 29.9 33.4 37.8 30.4 31.2 21.0 43.0 23.4 36.2 27.2 25.0 32.3

Cascaded ASR+MT Methods
Whisper + NLLB-3.3b (2022) 35.5 29.6 40.5 31.1 30.9 28.2 39.7 26.7 30.0 24.7 44.3 20.0 35.3 26.4 25.4 31.2
SeamlessM4T (ASR+MT) (2023a) 38.9 37.0 39.7 29.0 27.7 34.1 37.7 33.9 28.9 21.7 42.3 23.7 34.0 24.9 24.4 31.9
GenTranslate (ours) 39.9 39.4 41.6 32.8 31.2 35.9 40.6 34.9 32.1 22.8 45.0 24.1 36.9 27.4 25.7 34.0
SeamlessM4T-V2 (ASR+MT) (2023b)† 39.2 36.8 39.1 29.4 26.7 33.9 35.7 32.9 29.3 22.5 43.2 25.4 34.8 29.7 25.9 32.3
GenTranslate-V2 (ours) 40.0 39.1 40.9 33.8 30.0 35.4 40.0 33.0 31.6 23.7 44.2 26.4 37.1 30.9 26.9 34.2

Table 1: Speech translation results on FLEURS X→En test sets in terms of BLEU score, where more results on
chrF++ metric (Popović, 2017) are in Table 16. We use bold to denote surpassing SeamlessM4T baseline, and use
underline to denote the state-of-the-art. The baseline methods are introduced in §B.3. * denotes reported by original
paper, or else it denotes reproduced by ourselves (same for Table 2 to 5). † denotes the most latest baseline3.

X→En Fr De Ca Es Ru Zh Nl Tr Et Mn Ar Lv Sl Ja Id Avg.

End-to-end ST Methods
XLS-R-2b (2021)* 37.6 33.6 33.8 39.2 39.5 9.4 31.7 16.7 11.1 1.6 17.1 19.5 19.6 3.5 16.5 22.0
Whisper-Large V2 (2023) 35.5 35.0 31.0 39.6 42.3 16.9 40.2 27.5 14.0 0.2 38.5 13.0 16.3 24.7 47.3 28.1
ComSL-Large (2023)* 38.8 36.0 35.3 40.4 49.2 21.4 39.7 33.6 19.2 2.9 41.4 21.3 31.6 21.3 46.6 31.9
AudioPaLM2 (2023)* 44.8 43.4 38.4 44.2 55.6 25.5 48.3 41.0 30.0 7.6 48.7 35.0 42.6 25.9 56.2 39.1
SeamlessM4T-Large (2023a) 41.3 38.8 38.4 41.1 48.6 20.9 41.1 31.2 26.3 7.5 45.0 26.5 37.6 21.8 51.4 34.5
GenTranslate (ours) 41.7 39.2 38.7 42.0 50.1 21.6 42.1 33.5 28.2 8.7 49.7 30.3 38.2 22.9 54.3 36.1
SeamlessM4T-Large-V2 (2023b) 42.4 40.0 39.0 42.9 53.6 22.4 42.7 33.2 26.9 8.6 46.5 27.5 41.7 23.7 52.6 36.2
GenTranslate-V2 (ours) 42.7 40.6 39.4 43.6 54.0 23.3 44.8 37.0 27.7 10.2 48.0 30.5 42.3 25.4 55.9 37.7

Cascaded ASR+MT Methods
Whisper + NLLB-3.3b (2022) 34.4 35.5 31.7 37.9 45.4 19.0 39.8 26.7 17.5 0.1 37.0 20.6 29.4 25.5 45.9 29.8
Whisper + mBART-50 (2023)* 38.8 37.0 33.0 40.7 49.0 21.5 39.9 32.7 16.3 0.4 37.0 21.4 25.0 23.0 45.5 30.7
SeamlessM4T (ASR+MT) (2023a) 41.5 39.8 37.5 41.1 53.2 21.4 42.4 29.9 26.5 8.0 45.2 28.8 38.6 22.0 50.6 35.1
GenTranslate (ours) 41.8 40.2 38.4 42.1 53.7 22.9 43.8 34.3 29.4 9.5 49.7 31.2 39.6 22.3 54.6 36.9
SeamlessM4T-V2 (ASR+MT) (2023b) 43.0 40.6 38.8 43.0 55.2 22.9 43.2 33.9 27.2 8.6 47.0 27.8 41.9 24.7 53.1 36.7
GenTranslate-V2 (ours) 43.1 41.1 39.5 43.3 55.6 24.5 44.9 37.4 27.8 10.3 48.7 30.4 42.0 26.0 58.4 38.2

Table 2: Speech translation results on CoVoST-2 X→En test sets in terms of BLEU score. Remarks follow Table 1.

En→X language directions. For speech translation,
we select FLEURS (Conneau et al., 2023), CoVoST-
2 (Wang et al., 2020), and MuST-C (Di Gangi et al.,
2019). For machine translation, we select FLO-
RES (Costa-jussà et al., 2022), WMT’16 (Bojar
et al., 2016), WMT’19 (Barrault et al., 2019), and
WMT’20 (Loïc et al., 2020) corpora. As a result,
we obtain over 592K hypotheses-translation pairs
in 11 languages. The details of dataset statistics are
presented in §A.3 and Table 15, 17.

Since the hypotheses-translation data pairs in Hy-
poTranslate dataset are monolingual, we can also
use ASR dataset to benefit GenTranslate training,
especially for low-resource language pairs. Rele-
vant studies are illustrated in §4.3.2 and Table 7.
Our best result was obtained by first performing
translation with SeamlessM4T and then integrating
the N -best candidates using LLMs.

3Our experiments are mainly conducted on SeamlessM4T-
Large as they had already been done before Meta released the
latest SeamlessM4T-Large-V2 on November 30th, 2023. For
comprehensive evaluation, we rerun the main experiments on
V2, which demonstrate similar effectiveness of our paradigm.

4 Experiments

4.1 Setup
4.1.1 Model Selection
LLMs. We select the popular LLaMA-2 (Touvron
et al., 2023b) for our paradigm. Specifically, we
employ LLaMA-2-7b4 for English-target directions
(X→En) and LLaMA-2-13b for non-English-target
directions (En→X), as LLaMA-2 shows superior
ability on English language while less-optimal on
other languages. In addition, for En→X we also
try some latest multilingual LLMs like BigTrans-
late5 (Yang et al., 2023b) and ALMA6 (Xu et al.,
2023b) that are finetuned on LLaMA-13b.
Adapter. We follow the default settings of LLaMA-
Adapter (Zhang et al., 2023b). The number of
tunable Transformer layers L is set to H−1, which
means all layers except the first one are tunable

4https://huggingface.co/meta-llama/Llama-2-7
b-hf

5https://huggingface.co/James-WYang/BigTransl
ate

6https://huggingface.co/haoranxu/ALMA-13B
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En→X
FLEURS CoVoST-2 MuST-C

Es Fr It Ja Pt Zh Avg. Fa Ja Zh Avg. Es It Zh Avg.

End-to-end ST Methods
SeamlessM4T-Large (2023a) 23.8 41.6 23.9 21.0 40.8 28.6 30.0 18.3 24.0 34.1 25.5 34.2 29.9 16.2 26.8
GenTranslate (ours) 25.4 43.1 25.5 28.3 42.4 34.3 33.2 21.1 29.1 42.8 31.0 33.9 29.4 18.5 27.3
SeamlessM4T-Large-V2 (2023b) 23.8 42.6 24.5 21.7 43.0 29.5 30.9 16.9 23.5 34.6 25.0 32.1 27.5 15.6 25.1
GenTranslate-V2 (ours) 25.5 44.0 26.3 28.9 44.5 34.9 34.0 19.4 29.0 43.6 30.7 32.2 27.3 18.1 25.9

Cascaded ASR+MT Methods
Whisper + NLLB-3.3b (2022) 25.1 41.3 25.0 19.0 41.5 23.5 29.2 13.6 19.0 32.0 21.5 35.3 29.9 13.5 26.2
SeamlessM4T-Large (ASR+MT) (2023a) 24.6 44.6 25.4 22.5 41.9 31.2 31.7 18.8 24.0 35.1 26.0 35.1 30.8 17.7 27.9
GenTranslate (ours) 26.8 45.0 26.6 29.4 43.1 36.8 34.6 21.8 30.5 43.3 31.9 35.5 31.0 19.6 28.7
SeamlessM4T-V2 (ASR+MT) (2023b) 24.7 44.1 25.1 20.6 43.6 30.6 31.5 17.4 23.8 35.4 25.5 33.0 27.8 14.5 25.1
GenTranslate-V2 (ours) 27.0 44.3 26.4 27.8 44.5 36.1 34.4 20.8 29.7 43.5 31.3 33.2 28.3 16.9 26.1

Table 3: Speech translation results on FLEURS, CoVoST-2, and MuST-C En→X test sets in terms of BLEU score.
We use bold to highlight surpassing SeamlessM4T baseline, and use underline to highlight the state-of-the-art
performance. The baseline methods are introduced in §B.3, and all of their results are reproduced by ourselves.

X→En Ar De El Es Fa Fr It Ja Uk Zh Avg.

ALMA-13b (Xu et al., 2023b) 10.8 27.7 12.1 18.1 10.2 27.4 19.6 14.2 22.7 16.9 18.0
BigTranslate (Yang et al., 2023b) 18.6 35.9 9.5 29.0 1.4 38.7 29.0 16.9 25.9 23.0 22.8
NLLB-3.3b (Costa-jussà et al., 2022) 43.0 44.6 37.7 32.2 38.7 46.2 34.6 28.1 40.8 29.5 37.5
SeamlessM4T-Large (Barrault et al., 2023a) 43.7 45.1 37.7 31.5 39.0 45.1 35.2 26.1 41.2 29.9 37.5
GenTranslate (ours) 43.9 45.3 38.5 35.5 39.4 46.4 36.6 26.7 41.8 30.5 38.5
SeamlessM4T-Large-V2 (Barrault et al., 2023b) 41.5 44.1 35.6 29.9 37.6 45.5 33.5 25.5 39.0 29.0 36.1
GenTranslate-V2 (ours) 42.0 44.5 36.6 34.4 38.1 46.7 35.1 26.7 39.3 29.9 37.3

Table 4: Machine translation results on FLORES X→En test sets in terms of BLEU score. Remarks follow Table 3.

En→X
WMT’16 WMT’19 WMT’20

Avg.
Ro Cs Lt Ja Zh

ALMA-13b (2023b) 6.2 6.1 0.3 3.5 11.3 5.5
BigTranslate (2023b) 21.4 19.0 8.7 7.3 29.0 17.1
NLLB-3.3b (2022) 31.0 25.3 16.0 15.2 26.9 22.9
SeamlessM4T-Large 32.7 26.0 17.2 17.0 27.2 24.0
GenTranslate (ours) 33.5 27.2 19.4 21.4 30.7 26.4
SeamlessM4T-Large-V2 32.2 25.2 16.2 15.2 28.7 23.5
GenTranslate-V2 (ours) 33.2 26.6 18.2 19.3 31.6 25.8

Table 5: Machine translation results on WMT’16,19,20
En→X test sets in BLEU. Remarks follow Table 3.

with inserted prompts. The prompt length U is set
to 10. More details are provided in §B.1.

4.1.2 Training Details
The batch size is set to 4, with accumulation itera-
tions set to 8 (i.e., real batch size is 32). We train
2 epochs with AdamW optimizer (Loshchilov and
Hutter, 2018), with learning rate initialized to 1e−2

and then linearly decrease to 1e−5 during training.

4.2 Comparison with the State-of-the-art

4.2.1 Speech Translation
X→English (En). Table 1 and 2 present the X→En
speech translation performance on FLEURS and
CoVoST-2 datasets. We can observe from Ta-
ble 1 that all the strong baselines like Whisper,
AudioPaLM2 and SeamlessM4T-Large perform
well on 15 X→En directions, where SeamlessM4T-
Large is the best (27.1 BLEU). With LLMs in-

troduced for N -best integration, our GenTrans-
late achieves consistent improvements on various
source languages X, where further analysis on lan-
guage family is presented in §4.4.1. As a result,
our GenTranslate shows 3.0 BLEU improvement
over SeamlessM4T-Large, which verifies the effec-
tiveness of LLMs for generative translation7.

Following the speech translation literature, we
also investigate cascaded ASR+MT methods for
evaluation. We can observe from Table 1 that,
with the same SeamlessM4T-Large backbone, cas-
caded system outperforms end-to-end system by
4.8 BLEU score, which is consistent with previous
findings (Xu et al., 2023a). Latest SeamlessM4T-
Large-V2 further improves V1 model, and our Gen-
Translate shows significant and consistent gains of
performance over theses two backbones.

Table 2 presents the X→En ST results on more
language directions of CoVoST-2 dataset, where we
introduce more latest baselines for comprehensive
comparison. In end-to-end methods, SeamlessM4T-
Large achieves a good 34.5 BLEU score though
underperforms the state-of-the-art AudioPaLM28.
In comparison, our GenTranslate achieves a promis-

7Latest SeamlessM4T-Large-V2 achieves significant gains
over V1, based on which the proposed GenTranslate also
shows similar effectiveness in our study.

8We speculate it could be attributed to the train-test do-
main mismatch because SeamlessM4T-Large outperforms Au-
dioPaLM2 by a large margin on FLEURS dataset in Table 1.

79



En→X
FLEURS CoVoST-2 WMT

Es Fr It Pt Avg. Fa Ja Zh Avg. Ro Cs It Ja Zh Avg.

SeamlessM4T-Large (2023a) 24.6 44.6 25.4 41.9 34.1 18.8 24.0 35.1 26.0 32.7 26.0 17.2 17.0 27.2 24.0

GenTranslate with
BigTranslate (2023b) 25.3 44.2 25.5 40.8 34.0 5.2 23.5 42.6 23.8 31.3 24.9 15.8 13.9 27.9 22.8
ALMA-13b (2023b) 24.9 43.5 25.1 40.6 33.5 19.2 29.3 43.9 30.8 31.1 25.5 17.7 17.3 26.8 23.7
LLaMA-2-13b (2023b) 26.8 45.0 26.6 43.1 35.4 21.8 30.5 43.3 31.9 33.5 27.2 19.4 21.4 30.7 26.4

Table 6: Effect of different multilingual LLMs on GenTranslate, in terms of the speech translation results on
FLEURS and CoVoST-2 En→X test sets, as well as the machine translation results on WMT En→X test sets.

De→En BLEU Score

End-to-end ST Methods
SeamlessM4T (ST) (Barrault et al., 2023a) 35.8
SeamlessM4T (ST) + GenTranslate 39.2

Cascaded ASR+MT Methods
SeamlessM4T (ASR+MT) (Barrault et al., 2023a) 39.7
SeamlessM4T (ASR+MT) + GenTranslate 41.6

ASR+GenTranslate Method
SeamlessM4T (ASR) + GenTranslate with

LLaMA-2-7b (Touvron et al., 2023b) 36.8
BigTranslate (Yang et al., 2023b) 38.2
ALMA-7b (Xu et al., 2023b) 40.6

Table 7: Performance of ASR+GenTranslate system on
FLEURS De→En ST test set. As shown in Fig. 4, it first
uses ASR to produce German N -best hypotheses, and
then leverages LLMs to generate the English translation
from them. Different LLMs are investigated here.

ing improvement over SeamlessM4T. Similar phe-
nomenon can be observed in cascaded systems,
where SeamlessM4T significantly outperforms the
competitive baselines that combine state-of-the-
art ASR and MT models, and our GenTranslate
moves one step forward with 1.8 BLEU improve-
ment. Similar improvements can be observed on
SeamlessM4T-Large-V2 backbone.

English (En)→X. For comprehensive evaluation,
we also present En→X ST results on three datasets
in Table 3. SeamlessM4T (both Large and Large-
V2) achieves excellent performance on En→X
ST tasks under both end-to-end and cascaded sys-
tems. In comparison, our proposed GenTranslate
achieves significant performance improvements
(∼3 BLEU score) in various language directions.
Since En→X translation tasks produce non-English
N -best hypotheses for LLM integration, such per-
formance gains indicates the excellent multilingual
abilities of LLMs (i.e., LLaMA-2).

4.2.2 Machine Translation
X→English (En). Table 4 presents the X→En MT
results on FLORES dataset. The baseline meth-
ods ALMA-13b and BigTranslate show limited
performance. NLLB-3.3b achieves an improved
performance of 37.5 BLEU, which is comparable to

N-best Hypotheses

Source Language Speech

ich bin sehr glücklich
ich bin so glücklich

ich bin in hochstimmung
ich bin super glücklich

ich habe gute laune

Instruction +
Please integrate the
following German

hypotheses and then
translate it into English:

               LLM Adapter

Beam
Search

Frozen Finetune

+ Concatenate

Target Language Text

I'm in high spirits

ASR

Intergrate

Figure 4: Illustration of the “ASR+GenTranslate” sys-
tem for ST task as introduced in Table 7 and §4.3.2.
This system engages LLMs into the translation process
by combining it with the N -best integration process.

SeamlessM4T-Large. Based on that, our GenTrans-
late achieves the state-of-the-art with consistent
gains on all language directions except Ja→En.
English (En)→X. Table 5 presents the En→X
MT results on WMT test sets. Similar to previ-
ous results, we observe much higher BLEU scores
of NLLB-3.3b than ALMA-13b and BigTrans-
late. SeamlessM4T-Large surpasses NLLB-3.3b
by large-scale multitask training. The proposed
GenTranslate achieves the state-of-the-arts on all
language directions with a gain of 2.4 BLEU score.
Please note that SeamlessM4T-Large-V2 underper-
forms V1 on selected MT datasets, but our Gen-
Translate achieves consistent gains on both of them.

In summary, we observe consistent improve-
ments of GenTranslate over various baselines (i.e.,
SeamlessM4T, Whisper, etc.), various tasks (i.e.,
ST and MT), various test data (i.e., FLEURS,
WMT, etc.), and various language directions (i.e.,
X→En and En→X). Therefore, the effectiveness
and generality of our approach are well verified.

4.3 Ablation Study
4.3.1 Effect of Different LLMs
According to Table 3 and 5, LLaMA-2 has shown
excellent multilingual ability. To further investigate
the role of this ability in GenTranslate, we select
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X→En Ar Cy De El Es Fa Fr Hi It Ja Pt Ta Uk Vi Zh Avg.

SeamlessM4T (ASR+MT) 38.9 37.0 39.7 29.0 27.7 34.1 37.7 33.9 28.9 21.7 42.3 23.7 34.0 24.9 24.4 31.9

GenTranslate with
LLaMA-Adapter 39.9 39.4 41.6 32.8 31.2 35.9 40.6 34.9 32.1 22.8 45.0 24.1 36.9 27.4 25.7 34.0
LLaMA-LoRA 40.2 39.3 41.8 32.8 31.6 36.0 40.6 35.2 32.4 22.5 45.1 24.1 36.7 27.1 26.0 34.1

Table 8: Comparison between LLaMA-Adapter and LLaMA-LoRA for efficient LLM finetuning in our GenTranslate,
in terms of the speech translation results on FLEURS X→En test sets.

X→En
Indo-European non-Indo-European

Fa Hi It Es Fr Pt Cy De El Uk Avg. Ar Vi Ja Ta Zh Avg.

SeamlessM4T (ASR+MT) 34.1 33.9 28.9 27.7 37.7 42.3 37.0 39.7 29.0 34.0 34.4 38.9 24.9 21.7 23.7 24.4 26.7
GenTranslate (ours) 35.9 34.9 32.1 31.2 40.6 45.0 39.4 41.6 32.8 36.9 37.0 39.9 27.4 22.8 24.1 25.7 28.0

∆ BLEU 1.8 1.0 3.2 3.5 2.9 2.7 2.4 1.9 3.8 2.9 2.6 1.0 2.5 1.1 0.4 1.4 1.3

Table 9: Effect of language family on our proposed GenTranslate. We report speech translation results on FLEURS
X→En test sets in this study. For simplicity, we split all the languages into two families, i.e., Indo-European (same
as English) and non-Indo-European, and more detailed information are presented in Table 14.

X→En Ar De Es Fr Pt Zh Avg.

SeamlessM4T-Large 32.8 35.8 25.0 33.1 38.9 19.8 30.9

GenTranslate with

N =

1 31.3 35.4 26.9 35.2 41.5 19.3 31.6
3 34.2 38.9 29.5 36.4 42.8 21.3 33.9
5 34.6 39.2 29.8 37.0 43.0 21.7 34.2
8 34.8 39.9 29.4 36.9 43.0 21.5 34.3
10 35.3 39.8 29.4 36.6 43.2 21.6 34.3
15 34.9 39.5 29.6 36.4 42.8 21.6 34.1

Table 10: Effect of N -best list size on GenTranslate (de-
fault N=5), in terms of ST results on FLEURS X→En.

two latest multilingual LLMs for comparison, i.e.,
BigTranslate and ALMA-13b. Table 6 shows that
both of them perform worse than LLaMA-2-13b
for ST and MT tasks. One explanation is, Big-
Translate and ALMA-13b are finetuned on MT task
that requires cross-lingual ability, while the En→X
GenTranslate mainly requires strong monolingual
ability of language X, such mismatch may explain
why MT finetuning fails to enhance GenTranslate.

4.3.2 Role of LLMs in GenTranslate
To further investigate the role of LLMs in our Gen-
Translate, we build an ASR+GenTranslate system
for ST task as shown in Fig. 4. Take De→En as
an example, we first send the German speech input
into ASR to produce N -best transcriptions, which
are then fed by LLMs to generate English transla-
tion. In other words, LLMs are assigned N -best in-
tegration and translation tasks at the same time. As
shown in Table 7, among the three evaluated LLMs,
ALMA-7b achieves the best performance thanks to
its MT finetuning during development, but it still
underperforms the best cascaded method (40.6 vs.
41.6). We can conclude from such observations
that 1) LLaMA-2 provides reasonable translation

ability and it can be further improved via MT task
finetuning (i.e., ALMA). 2) In this study, LLM un-
derperforms SeamlessM4T in translation task, but
it shows remarkable ability in N -best integration.
Therefore, future work may focus on how to better
engage LLMs into the translation part.

4.3.3 Effect of N -best List Size

GenTranslate relies on powerful LLMs and in-
formative N -best hypotheses to generate higher-
quality translation output. Therefore, the amount
of information in N -best hypotheses could be a
key factor of GenTranslate’s performance. We can
observe from Table 10 that with the increase of
N, the performance of GenTranslate first improves
and then drops, where the best choice ranges from
5 to 10. We believe that small N results in insuf-
ficient information for generation of ground-truth
translation, while too large N leads to information
redundancy and thus increases the miscorrection
and hallucination. In this work, we set N to 5 for
the best trade-off between efficiency and quality.

4.3.4 LLaMA-Adapter vs. LLaMA-LoRA

Apart from LLaMA-Adapter, low-rank adaptation
(LoRA) (Hu et al., 2021; Yu et al., 2023) is an-
other popular efficient LLM finetuning strategy. Ta-
ble 8 compares the performance between LLaMA-
Adapter and LLaMA-LoRA for proposed Gen-
Translate, in terms of the BLEU results of ST task
on FLEURS X→En test sets. We can observe sim-
ilar BLEU performance of these two strategies on
GenTranslate (34.0 vs. 34.1), indicating that the
efficient LLM finetuning strategy is not a key factor
in GenTranslate paradigm.
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Method Utterance BLEU Score

N -best Candidates

TV reports show that white smoke is escaping from the plant. 28.6
TV reports show that white smoke is escaping from the facility. 12.2
Television reports show that white smoke is escaping from the plant. 34.2
Television reports show that white smoke is escaping from the facility. 19.2
TV reports show that white smoke escapes from the plant. 31.7

GenTranslate (ours) Television reports show white smoke coming out of the plant. 58.8

Ground-truth Translation Television reports show white smoke coming from the plant. -

Table 11: Case study of GenTranslate. The test sample is selected from the FLEURS De→En ST test set.

4.4 Analysis

4.4.1 Effect of Language Family

Table 9 analyzes the effect of language family using
the X→En ST results. The source language X is
grouped into two categories depending on whether
it belongs to Indo-European family (English is also
Indo-European language). First, we observe bet-
ter results of SeamlessM4T when X belongs to
Indo-European family, indicating that translation
within same family is easier than across different
families. Then, we also observe larger BLEU im-
provement of GenTranslate over baseline when X
is Indo-European language (2.6 vs. 1.3). The rea-
son could be, within-family translation produces
N -best hypotheses with higher quality and richer
information, which is beneficial to GenTranslate.

4.4.2 Case Study

Table 11 shows a case study where GenTrans-
late outperforms the 1-best hypothesis by a large
margin. We may speculate two key points about
its working mechanism, where it first extract the
word “Television” from 3rd/4th hypotheses to re-
place “TV” and then reason out the word “coming”
that does not exist in N -best list. Therefore, our
paradigm may not only integrate the N -best sen-
tences for better result, but also improve the trans-
lation quality by itself. Another non-English case
study is in Appendix C.1.

4.4.3 Visualizations of GenTranslate Output

Fig. 5 visualizes the n-gram tokens in GenTrans-
late output, which contains sufficient semantic in-
formation to match the ground-truth translation.
In comparison, the 1-best hypothesis lacks such
information to produce high-quality translation out-
put, which highlights the contribution of N -best
hypotheses in GenTranslate paradigm (see Fig. 2).

200 100 0 100 200

200

100

0

100

200
1-best
Ground-Truth
GenTranslate

Figure 5: t-SNE visualization of n-grams in 1-best hy-
pothesis (green), ground-truth translation (orange) and
GenTranslate output (purple). It’s an extension of Fig. 2.

5 Conclusion

In this paper, we propose a generative paradigm
for translation tasks, namely GenTranslate, which
leverages LLMs to integrate the diverse candidates
in the decoded N -best list and generate a higher-
quality translation result. Furthermore, we release
a HypoTranslate dataset to support LLM finetuning,
which contains over 592K hypotheses-translation
pairs in 11 languages. Experimental evidence
on various speech and machine translation bench-
marks shows that our GenTranslate significantly
outperforms the state-of-the-art model.

Limitations

There are two limitations existed in this work.
First, the contribution of LLMs in our GenTrans-
late paradigm focuses on N -best hypotheses inte-
gration, while the translation part is actually done
by SeamlessM4T model. Experiment results in
Table 7 also indicate that LLMs are good at N -
best hypotheses integration and SeamlessM4T is
good at translation. Therefore, our future work
could focus on how to better engage LLMs into
the translation part to further improve the transla-
tion quality. Another limitation is about the latest
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second version of SeamlessM4T released by Meta,
which indicates a stronger baseline for GenTrans-
late. In fact, our experiments had already been done
on SeamlessM4T-Large before Meta released the
latest SeamlessM4T-Large-V2 on November 30th,
2023. For comprehensive evaluation, we also rerun
our main experiments on this latest V2 backbone,
and our GenTranslate has shown similar effective-
ness on it (highlighted in gray in Table 1 to 5). For
brevity, we prefer to leave the ablation study and
analyses on SeamlessM4T-Large backbone only, as
our GenTranslate paradigm has shown similar ef-
fectiveness and patterns on V1 and V2 backbones.
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A HypoTranslate Dataset Details

In this section, we introduce the details of our pro-
posed HypoTranslate dataset. We first introduce
the speech and machine translation corpora that we
utilize to build HypoTranslate in §A.1 and §A.2.
Then, we present the dataset statistics in §A.3.

A.1 Speech Translation Corpus Selection

For speech translation task, we select three popular
and public datasets that cover multiple languages:

FLEURS9 (Conneau et al., 2023): Few-shot Learn-
ing Evaluation of Universal Representations of
Speech (FLEURS) benchmark provides an n-way
parallel speech dataset in 102 languages built on
top of the machine translation FLORES-101 bench-
mark (Goyal et al., 2022), with approximately 12
hours of speech supervision per language. In this
work, we select 15 X→En and 6 En→X language
directions of speech translation data for evaluation.

CoVoST-210 (Wang et al., 2020): CoVoST-2 is
a popular multilingual speech translation corpus
based on Common Voice (Ardila et al., 2019) that
consists of 2,880 hours speech data recorded from
78K speakers. In this work, we select 15 X→En
and 3 En→X language directions for evaluation.
Specifically, for En→X language directions, we
randomly select 1,000 testing samples from the
original test split for higher evaluation efficiency.

MuST-C11 (Di Gangi et al., 2019): MuST-C is a
multilingual speech translation corpus whose size
and quality facilitate the training of end-to-end sys-
tems for spoken language translation from English
into 15 languages. In this work, we select 3 En→X
language directions for evaluation.

A.2 Machine Translation Corpus Selection

For machine translation task, we select two popular
and public datasets that cover multiple languages:

FLORES12 (Costa-jussà et al., 2022): FLORES
consists of 3001 sentences sampled from English-
language Wikimedia projects for 204 total lan-
guages. Approximately one third of sentences are
collected from each of these sources: Wikinews,
Wikijunior, and Wikivoyage. The content is profes-
sionally translated into 200+ languages to create

9https://huggingface.co/datasets/google/fleurs
10https://github.com/facebookresearch/covost
11https://mt.fbk.eu/must-c-releases/
12https://huggingface.co/datasets/facebook/flo

res

FLORES dataset. In this work, we select 10 X→En
language directions for evaluation.

WMT: The Conference on Machine Translation
(WMT) is a popular evaluation benchmark for MT
task. In this work, we select the newstest data of
Ro→En language direction from WMT’1613 (Bo-
jar et al., 2016), Cs→En and It→En directions from
WMT’1914 (Barrault et al., 2019), Ja→En and
Zh→En directions from WMT’2015 (Loïc et al.,
2020) for evaluation, and corresponding newdev
data is used for validation. The training data is ob-
tained from ParaCrawl-V916 (Bañón et al., 2020)
and JParaCrawl17 (Morishita et al., 2020) datasets.

A.3 Statistics

After performing beam search decoding on the
selected speech and machine translation corpora
introduced above, we collect over 592K pairs of
N -best hypotheses and ground-truth translation to
build the HypoTranslate dataset. The statistics are
illustrated in Table 15 and 17, which present the
number of hypotheses-translation pairs and the av-
erage utterance length. We plan to release the Hy-
poTranslate dataset to public upon publication and
open the development venue for more data.

B Experimental Setup Details

B.1 Model Setups

We select two latest foundation LLMs for eval-
uation, including LLaMA-2-7b (Touvron et al.,
2023b) and LLaMA-2-13b (Touvron et al., 2023b).
In addition, in order to evaluate the multilingual
ability of LLMs for GenTranslate with non-English-
target directions, we also select two latest finetuned
LLMs on MT task, including BigTranslate (Yang
et al., 2023b) and ALMA-13b (Xu et al., 2023b).
Table 12 compares their main configurations. For
efficient LLM finetuning, we follow the default set-
tings of LLaMA-Adapter18 (Zhang et al., 2023b).

13https://www.statmt.org/wmt16/translation-tas
k.html

14https://www.statmt.org/wmt19/translation-tas
k.html

15https://www.statmt.org/wmt20/translation-tas
k.html

16https://paracrawl.eu/
17https://www.kecl.ntt.co.jp/icl/lirg/jparacra

wl/
18https://github.com/Lightning-AI/lit-gpt/blob/

main/lit_gpt/adapter.py

86

https://huggingface.co/datasets/google/fleurs
https://github.com/facebookresearch/covost
https://mt.fbk.eu/must-c-releases/
https://huggingface.co/datasets/facebook/flores
https://huggingface.co/datasets/facebook/flores
https://www.statmt.org/wmt16/translation-task.html
https://www.statmt.org/wmt16/translation-task.html
https://www.statmt.org/wmt19/translation-task.html
https://www.statmt.org/wmt19/translation-task.html
https://www.statmt.org/wmt20/translation-task.html
https://www.statmt.org/wmt20/translation-task.html
https://paracrawl.eu/
https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
https://github.com/Lightning-AI/lit-gpt/blob/main/lit_gpt/adapter.py
https://github.com/Lightning-AI/lit-gpt/blob/main/lit_gpt/adapter.py


LLM LLaMA-2-7b LLaMA-2-13b BigTranslate ALMA-13b

Number of Transformer Layers H 32 40 40 40
Number of Attention Heads Nhead 32 40 40 40

Embedding Size D 4,096 5,120 5,120 5,120
Block Size B 4,096 4,096 4,096 4,096

Vocabulary Size V 32,000 32,000 53,613 32,000

Table 12: Comparison between main configurations of different popular LLMs.

B.2 Inference Setups
In the response generation during inference stage,
we set a temperature of 0.2 and top-1 sampling, i.e.,
greedy search. We have observed over-confidence
phenomenon in our experiments (i.e., output proba-
bility distribution for decision is close to one-hot),
which results in similar performance with different
k for top-k sampling. Therefore, we select top-1
sampling for higher decoding efficiency.

B.3 Translation Baselines
To comprehensively evaluate our GenTranslate
model, we selected some of the latest and most
advanced baselines in speech and machine transla-
tion for comparison. We will introduce these in the
following subsections.

B.3.1 Speech Translation

XLS-R19 (Babu et al., 2021): XLS-R is a large-
scale model for cross-lingual speech representa-
tion learning based on Wav2vec 2.0 (Baevski et al.,
2020). They train models with up to 2B parameters
on 500K hours of publicly available speech audio
in 128 languages, which achieves superior perfor-
mance on a wide range of multilingual speech pro-
cessing tasks, including speech translation, speech
recognition and language identification.
Whisper20 (Radford et al., 2023): Whisper is a
large-scale automatic speech recognition (ASR)
system trained on 680K hours of multilingual and
multitask supervised data collected from the web,
which shows excellent robustness to accents, back-
ground noise and technical language. Moreover, it
enables transcription in multiple languages, as well
as translation from those languages into English.
AudioPaLM2 (Rubenstein et al., 2023): Au-
dioPaLM2 fuses text-based and speech-based lan-
guage models, PaLM-2 (Anil et al., 2023) and Au-
dioLM (Borsos et al., 2023), into a unified multi-
modal architecture that can process and generate

19https://huggingface.co/models?other=xls_r
20https://github.com/openai/whisper

text and speech with applications including speech
recognition and speech-to-speech translation. Au-
dioPaLM2 inherits the capability to preserve par-
alinguistic information such as speaker identity and
intonation from AudioLM and the linguistic knowl-
edge present only in text large language models
such as PaLM-2. The resulting model significantly
outperforms existing systems for speech translation
and has the ability to perform zero-shot speech-to-
text translation for many unseen languages.
ComSL21 (Le et al., 2023): ComSL is a speech-
language model built atop a composite architecture
of public pre-trained speech-only and language-
only models and optimized data-efficiently for spo-
ken language tasks. Particularly, they propose
to incorporate cross-modality learning into trans-
fer learning and conduct them simultaneously for
downstream tasks in a multi-task learning manner,
which has demonstrated effectiveness in end-to-end
speech-to-text translation tasks.

B.3.2 Machine Translation
NLLB22 (Costa-jussà et al., 2022): No Language
Left Behind (NLLB) is a first-of-its-kind, AI break-
through project that open-sources models capable
of delivering evaluated, high-quality translations
directly between 200 languages.
BigTranslate5 (Yang et al., 2023b): BigTranslate
adapts LLaMA-13b (Touvron et al., 2023a) that
covers only 20 languages and enhances it with mul-
tilingual translation capability on up to 102 lan-
guages by instruction-following finetuning, which
achieves comparable MT performance to Chat-
GPT (OpenAI, 2022) and Google Translate.
ALMA6 (Xu et al., 2023b): ALMA proposes a
novel finetuning approach for LLMs that is specif-
ically designed for MT task, eliminating the need
for the abundant parallel data that traditional trans-
lation models usually depend on, which includes
two stages: initial finetuning on monolingual data

21https://github.com/nethermanpro/ComSL
22https://huggingface.co/facebook/nllb-200-3.3

B

87

https://huggingface.co/models?other=xls_r
https://github.com/openai/whisper
https://github.com/nethermanpro/ComSL
https://huggingface.co/facebook/nllb-200-3.3B
https://huggingface.co/facebook/nllb-200-3.3B


Method Utterance BLEU Score

N -best Candidates

地球河流流入海洋的20%的水来自亚马逊. 15.0
地球河流流入海洋的20%的水源来自亚马逊. 15.0
地球河流流入海洋的全部20%的水来自亚马逊. 12.3
地球河流流入海洋的20%的水来自亚马逊 15.0
地球河流流入海洋的全部20%的水来自亚马逊 12.3

GenTranslate (ours) 地球上的河流汇入大洋的 20%的水来自亚马逊河。 18.7

Ground-truth Translation 亚马逊河占全世界所有河流的入海流量的 20%。 -

Table 13: Supplementary case study. The test sample is selected from the FLEURS En→Zh ST test set.

Language Family Sub-grouping

Persian (Fa) Indo-European Indo-Iranian
Hindi (Hi) Indo-European Indo-Iranian
Italian (It) Indo-European Indo-Iranian
Spanish (Es) Indo-European Italic
French (Fr) Indo-European Italic
Portuguese (Pt) Indo-European Italic
Welsh (Cy) Indo-European Celtic
English (En) Indo-European Germantic
German (De) Indo-European Germantic
Greek (El) Indo-European Greek
Ukranian (Uk) Indo-European Balto-Slavic
Arabic (Ar) Afro-Asiatic Semitic
Vietnamese (Vi) Austro-Asiatic Mon-Khmer
Japanese (Ja) Japonic -
Tamil (Ta) Dravidian Dravidian
Chinese (Zh) Sino-Tibetan Chinese

Table 14: Detailed language family and sub-grouping
information (Babu et al., 2021) of FLEURS datasets.

followed by subsequent finetuning on a small set of
high-quality parallel data. Built based on LLaMA-
2, it has achieved significant improvement over
prior works across multiple translation directions.

C Supplementary Experiment Results

C.1 Supplementary Case Study

Table 13 supplies a case study from FLEURS
En→Zh ST test set. We can observe that the N -best
candidate are semantically similar to each other
and only varies in sentence structure. In our Gen-
Translate paradigm, LLMs integrates the different
patterns of N -best hypotheses to generate a new
translation result with 3.7 BLEU improvement over
1-best hypothesis. Such observation verifies the ef-
fectiveness of LLMs in our GenTranslate paradigm
to generate better translation output.

200 100 0 100 200

200

100

0

100

200

1-best
2~N-best
Ground-Truth

Figure 6: t-SNE visualization of n-gram tokens in ASR
1-best hypothesis (green), 2 to N -best hypotheses (blue),
and the ground-truth transcription (orange). Different
from the ST hypotheses in Fig. 2, ASR 1-best hypothesis
aligns well with the ground-truth transcription, where
the role of 2∼N -best hypotheses is to provide diverse
candidate tokens for correcting errors.

C.2 BLEU vs. chrF++
We report translation performance in terms of the
BLEU score (Papineni et al., 2002) in most experi-
ments of this work. For more comprehensive eval-
uation, Table 16 presents both BLEU and chrF++
scores (Popović, 2017; Barrault et al., 2023a) on
FLEURS X→En test sets, where we can observe
consistent improvements of BLEU and chrF++
scores (2.1 ∆ BLEU and 0.9 ∆ chrF++) in Gen-
Translate. It indicates that both metrics are applica-
ble for the evaluation of translation tasks.

88



Data Source
Source / Target Train Dev. Test
Language X # Pairs Length # Pairs Length # Pairs Length

FLEURS (Conneau et al., 2023)
(X→En)

Arabic (Ar) 2,062 20.4 295 19.8 428 21.4
Welsh (Cy) 3,349 21.1 447 20.6 1,021 22.1
German (De) 2,926 20.7 363 20.1 862 21.9
Greek (El) 3,148 20.9 271 20.5 650 21.7
Spanish (Es) 2,732 20.8 408 20.5 908 21.8
Persian (Fa) 3,032 20.9 369 20.1 871 21.8
French (Fr) 3,119 20.8 289 19.9 676 21.8
Hindi (Hi) 2,072 20.6 239 19.2 418 21.4
Italian (It) 2,970 20.6 391 20.2 865 21.7
Japanese (Ja) 2,241 20.2 266 19.6 650 21.3
Portuguese (Pt) 2,731 20.7 386 20.2 919 21.9
Tamil (Ta) 2,317 20.7 377 20.0 591 22.0
Ukrainian (Uk) 2,741 20.8 325 20.3 750 22.0
Vietnamese (Vi) 2,927 20.7 361 20.2 857 21.8
Chinese (Zh) 3,178 21.0 409 20.6 945 22.1

CoVoST-2 (Wang et al., 2020)
(X→En)

French (Fr) 30,000 8.9 1,000 8.9 14,760 9.4
German (De) 30,000 9.8 1,000 10.2 13,511 9.8
Catalan (Ca) 30,000 10.3 1,000 10.3 12,730 10.5
Spanish (Es) 30,000 9.7 1,000 9.6 13,221 9.9
Russian (Ru) 12,112 11.9 1,000 11.9 6,300 11.8
Chinese (Zh) 7,085 12.0 1,000 11.9 4,898 11.6
Dutch (Nl) 7,108 8.2 1,000 8.5 1,699 8.5
Turkish (Tr) 3,966 8.3 1,000 8.1 1,629 8.3
Estonian (Et) 1,782 17.8 1,000 15.5 1,571 16.1
Mongolian (Mn) 2,067 11.2 1,000 11.2 1,759 11.3
Arabic (Ar) 2,283 5.8 1,000 5.7 1,695 5.7
Latvian (Lv) 2,337 6.1 1,000 6.3 1,629 6.2
Slovenian (Sl) 1,843 7.2 509 7.0 360 6.3
Japanese (Ja) 1,119 8.3 635 8.5 684 8.4
Indonesian (Id) 1,243 6.6 792 6.6 844 6.7

FLEURS (Conneau et al., 2023)
(En→X)

Spanish (Es) 2,502 25.0 394 25.1 643 26.1
French (Fr) 2,592 24.4 363 24.1 612 25.5
Italian (It) 2,564 23.2 386 22.8 640 24.4
Japanese (Ja) 2,290 53.6 351 53.1 592 55.6
Portuguese (Pt) 2,503 22.4 387 21.9 645 23.4
Chinese (Zh) 2,592 42.3 394 40.7 646 42.7

CoVoST-2 (Wang et al., 2020)
(En→X)

Persian (Fa) 30,000 10.8 1,000 9.3 1,000 9.5
Japanese (Ja) 30,000 28.5 1,000 26.6 1,000 23.3
Chinese (Zh) 30,000 19.7 1,000 19.7 1,000 16.0

MuST-C (Di Gangi et al., 2019)
(En→X)

Spanish (Es) 6,000 19.4 1,316 20.1 2,502 17.1
Italian (It) 6,000 18.2 1,309 18.8 2,574 16.4
Chinese (Zh) 6,000 49.6 888 63.7 1,823 46.3

Total 327,533 15.9 27,920 16.9 102,378 13.3

Table 15: HypoTranslate dataset (ST part) statistics in terms of the number of hypotheses-translation pairs and
average length of ground-truth utterance in different language directions.
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X→En Ar Cy De El Es Fa Fr Hi It Ja Pt Ta Uk Vi Zh Avg.

BLEU score
SeamlessM4T (ASR+MT) 38.9 37.0 39.7 29.0 27.7 34.1 37.7 33.9 28.9 21.7 42.3 23.7 34.0 24.9 24.4 31.9
GenTranslate (ours) 39.9 39.4 41.6 32.8 31.2 35.9 40.6 34.9 32.1 22.8 45.0 24.1 36.9 27.4 25.7 34.0

chrF++ score
SeamlessM4T (ASR+MT) 62.7 60.0 63.8 55.0 56.0 58.7 62.4 58.8 57.0 47.9 65.9 49.8 59.2 50.5 51.5 57.3
GenTranslate (ours) 63.1 61.2 64.9 57.0 57.1 59.7 64.0 59.1 58.0 47.6 67.2 49.7 60.8 51.6 52.0 58.2

Table 16: Speech translation results on FLEURS X→En test sets in terms of chrF++ score.

Data Source
Source / Target Train Dev. Test
Language X # Pairs Length # Pairs Length # Pairs Length

FLORES (Costa-jussà et al., 2022)
(X→En)

Arabic (Ar) 2,062 20.4 295 19.8 1,012 21.6
German (De) 2,926 20.7 363 20.1 1,012 21.6
Greek (El) 3,148 20.9 271 20.5 1,012 21.6
Spanish (Es) 2,732 20.8 408 20.5 1,012 21.6
Persian (Fa) 3,032 20.9 369 20.1 1,012 21.6
French (Fr) 3,119 20.8 289 19.9 1,012 21.6
Italian (It) 2,970 20.6 391 20.2 1,012 21.6
Japanese (Ja) 2,241 20.2 266 19.6 1,012 21.6
Ukrainian (Uk) 2,741 20.8 325 20.3 1,012 21.6
Chinese (Zh) 3,178 21.0 409 20.6 1,012 21.6

WMT’{16,19,20}
(En→X)

Czech (Cs) 15,000 12.3 2,983 15.8 1,997 18.8
Japanese (Ja) 15,000 49.8 1,998 53.1 1,000 59.8
Lithuanian (Lt) 15,000 12.0 2,000 16.5 998 16.6
Romanian (Ro) 15,000 16.7 1,999 22.6 1,999 21.7
Chinese (Zh) 15,000 35.6 1,997 47.8 1,418 60.7

Total 103,149 24.0 14,363 27.5 17,532 26.3

Table 17: HypoTranslate dataset (MT part) statistics in terms of the number of hypotheses-translation pairs and
average length of ground-truth utterance in different language directions.
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