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Abstract

When adapting Large Language Models for
Recommendation (LLMRec), it is crucial to
integrate collaborative information. Existing
methods achieve this by learning collaborative
embeddings in LLMs’ latent space from scratch
or by mapping from external models. How-
ever, they fail to represent the information in
a text-like format, which may not align opti-
mally with LLMs. To bridge this gap, we intro-
duce BinLLM, a novel LLMRec method that
seamlessly integrates collaborative information
through text-like encoding. BinLLM converts
collaborative embeddings from external mod-
els into binary sequences — a specific text for-
mat that LLMs can understand and operate on
directly, facilitating the direct usage of collabo-
rative information in text-like format by LLMs.
Additionally, BinLLM provides options to com-
press the binary sequence using dot-decimal
notation to avoid excessively long lengths. Ex-
tensive experiments validate that BinLLM in-
troduces collaborative information in a man-
ner better aligned with LLMs, resulting in en-
hanced performance. We release our code at
https://github.com/zyang1580/BinLLM.

1 Introduction

Due to the remarkable power of large language
models (LLMs), there is a growing focus on adapt-
ing them for recommender systems (LLMRec),
which has seen significant progress in the past
year (Bao et al., 2023b,a,c; Harte et al., 2023; Ra-
jput et al., 2023; Wei et al., 2024). In recommen-
dation, collaborative information, which delineates
the co-occurrence patterns among user-item inter-
actions, has emerged as a pivotal component in
modeling user interests, especially for active users
and items (Zhang et al., 2023b). However, this
information exists in a different modality from tex-
tual data and thus presents a challenge in directly
leveraged by LLMs like textual information (Zhang
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et al., 2023b; Li et al., 2023b; Bao et al., 2023a).
To enhance recommendation quality, it is undoubt-
edly crucial to seamlessly integrate collaborative
information into LLMs.

To date, two integration strategies have emerged.
The first strategy resembles latent factor mod-
els (Koren et al., 2009) by incorporating additional
tokens and corresponding embeddings into LLMs
to represent users and items, subsequently fitting
interaction data to implicitly capture collaborative
information within the embeddings (Zheng et al.,
2024a; Hua et al., 2023). However, this approach
suffers from low learning efficacy due to the inher-
ent low-rank nature of the information, leading to
tokenization redundancy within LLMs (Deletang
et al., 2024; Zhang et al., 2023b). To address these
challenges, an alternative approach leverages an
external latent factor model to capture the infor-
mation, which is then mapped into the LLM token
embedding space (Zhang et al., 2023b; Li et al.,
2023c; Liao et al., 2024), circumventing the need to
learn it from scratch. While effective, this method
introduces the additional overhead of training the
mapping model.

Whether learning collaborative information di-
rectly from scratch in the LLM token embedding
space or mapping it from external models, the re-
sulting representations diverge significantly from
the LLM’s original textual-level encoding. This,
to a certain extent, hampers the full utilization of
LLMs’ capabilities, as LLMs are initially trained
on textual data and excel at processing textually en-
coded information. For instance, introducing new
tokens alters the generative space of LLMs, poten-
tially compromising their original functionalities,
let alone capitalizing on their capabilities. There-
fore, exploring text-like encoding of collaborative
information in LLMs holds immense promise. Nev-
ertheless, it poses challenges due to the inherent
differences between textual and collaborative infor-
mation modalities (Zhang et al., 2023b).
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In this study, we delve into the central theme of
encoding collaborative information in LLMs for
recommendation, an area of promise yet not ex-
plored in LLMRec. The crux lies in transforming
collaborative information into a sequence format-
ted like text. We believe this text-like sequence
need not be comprehensible to humans; rather, it
should be interpretable by LLMs for effective uti-
lization, such as facilitating reasoning tasks like
discerning user and item similarities through se-
quence comparisons. Thus, this text sequence does
not necessarily have to adhere to conventional nat-
ural language patterns.

To this end, we introduce BinLLM, an innovative
LLMRec approach that integrates collaborative in-
formation into LLMs using a text-like encoding
strategy. We transform the collaborative embed-
dings obtained from external models into binary
sequences, treating them as textual features directly
usable by LLMs. This design is motivated by two
primary considerations: 1) the feasibility of binariz-
ing collaborative embeddings without compromis-
ing performance (Tan et al., 2020); 2) LLMs can
naturally perform bitwise operations or do so after
instruction tuning (Savelka et al., 2023), enabling
the comparison of similarities between binarized
sequences. Taking a step further, we explore rep-
resenting the binary sequence in dot-decimal nota-
tion (Abusafat et al., 2021), resulting in shorter rep-
resentations, akin to converting binary sequences
to IPv4 addresses. By fine-tuning LLMs with rec-
ommendation instruction data containing such en-
coded collaborative information, we could leverage
both textual semantics and collaborative data for
recommendation without modifying the LLMs.

The main contributions of this work are summa-
rized as follows:

• We emphasize the significance of text-like encod-
ing for collaborative information in LLMRec to
enhance alignment with LLMs.

• We introduce BinLLM, a novel method that ef-
ficiently encodes collaborative information tex-
tually for LLMs by converting collaborative em-
beddings into binary sequences.

• We perform comprehensive experiments on two
datasets, showcasing the effectiveness of our ap-
proach through extensive results.

2 Methodology

In this section, we introduce our BinLLM method,
starting with presenting the model architecture and

Table 1: Example of the used prompt template, using
the same format as CoLLM.

#Question: A user has given high ratings to the
following books: <ItemTitleList>. Additionally,
we have information about the user’s preferences
encoded in the feature <UserID>. Using all
available information, make a prediction about
whether the user would enjoy the book titled <Tar-
getItemTitle> with the feature <TargetItemID>?
Answer with "Yes" or "No". \n#Answer:

followed by a description of the tuning method.

2.1 Model Architecture

Figure 1 depicts the model architecture of BinLLM,
comprising two main components: prompt gener-
ation and LLM prediction. Similar to previous
approaches, we convert recommendation data into
prompts and then input them directly into LLMs
for prediction. However, the key distinction of Bin-
LLM is that it represents collaborative information
in a text-like format by converting collaborative
embeddings into binary sequences. We next delve
into the specifics of these two components.

2.1.1 Prompt Construction
As depicted in Figure 1, we construct prompts us-
ing a template featuring empty fields, encompass-
ing both textual fields (e.g., “<ItemTitleList>") and
ID fields (e.g., “<UserID>"). See the template ex-
ample in Table 1. By populating these fields with
corresponding users’ data, we can generate per-
sonalized prompts for recommendation purposes.
The textual fields are utilized to incorporate tex-
tual information, which can be directly filled with
corresponding textual data from the recommenda-
tion dataset, such as historical item titles in the
"<ItemTitleList>" fields. The ID fields are des-
ignated for embedding collaborative information,
which is acquired through a Text-like Encoding
(TE) module. Next, we delve into the encoding
process of collaborative information.

Text-like Encoding of Collaborative Informa-
tion. To better integrate with LLMs, we aim to
encode collaborative information in a text-like for-
mat. To accomplish this, we convert collaborative
information into a binary sequence, enabling LLMs
to perform bitwise operations for reasoning. The
encoding model involves two components: 1) Col-
laborative Model, a conventional latent factor mod-
ule capable of encoding collaborative information
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#Question: A user has …... <ItemTitleList>…… <UserID> …… enjoy the book titled 

<TargetItemTitle> …. feature <TargetItemID>? \n#Answer:

Text User and item ID

Collaborative model

Binarization & compression

“Outlive: The Science and 

Art of Longevity”

Binary  sequence

Recommen-

dation data

Text-like 

encoding

LoRA Large Language Model (LLM)

Figure 1: Model architecture overview of our BinLLM. The purple line is used to fill the text fields in the prompt
template, introducing textual information like item titles, while the red line is used to fill the ID fields in the prompt
template, introducing collaborative information.

as numerical latent vectors (i.e., collaborative em-
beddings). 2) Binarization & Compression Module,
utilized to transform collaborative embeddings into
binary sequences or further compressed formats.
• Collaborative model. Given a user u and an item
i, the collaborative model generates corresponding
embeddings for them, denoted as eu and ei, respec-
tively. Formally,

eu = fc(u; θ)

ei = fc(i; θ),
(1)

where fc represents the collaborative model param-
eterized by θ. Here, eu ∈ Rd and ei ∈ Rd are
d-dimensional embeddings that encode collabora-
tive information for the user and item, respectively.
• Binarization & compression. After obtaining
the collaborative embeddings, this component is
used to convert them into binary sequences, with
the option to compress the sequences.

Binarization. To binarize the collaborative em-
beddings, we generally follow the mechanism pro-
posed by Tan et al. (2020). Firstly, we transform
the collaborative embeddings into a suitable space
using a fully connected layer and then apply the
sign function to obtain the binary results. Formally,
for collaborative embeddings eu and ei of user u
and item i, they are converted into binary sequences
as follows:

hu = sign(σ(Weu + b))

hi = sign(σ(Wei + b)),
(2)

where hu ∈ {0, 1}d and hi ∈ {0, 1}d denote the

obtained binary representation of collaborative in-
formation for the user and item, respectively. Here,
W ∈ Rd×d and b ∈ Rd are the weights and bias
for the fully connected layer, σ(·) represents the
tanh activation function, and sign(·) denotes the
sign function. For a numerical value x, we have:

sign(x) =

{
1, if x > 0

0, else
. (3)

Through this method, we convert the numerical
collaborative embeddings into binary sequences
(e.g., ’010110....’). These sequences can be directly
inputted into LLMs and utilized for operations such
as computing logical ’AND’, thereby aiding in user
preference reasoning.

Compression. A limitation of binary sequences
is their relatively long length, which poses a chal-
lenge for LLMs not proficient in handling lengthy
sequences. Moreover, long sequences can con-
strain the inference efficiency of LLMRec. We thus
consider compressing the binary sequences while
keeping them leverageable by LLMs. Given that
IPv4 (Peterson and Davie, 2007) is originally en-
coded from binary sequences and the Web includes
sufficient knowledge about IPv4, the LLMs trained
on the Web data could potentially understand the
dot-decimal notation used by IPv4. Therefore, we
consider compressing the binary embeddings in
dot-decimal notations (Abusafat et al., 2021). We
convert every eight binary digits into a decimal
number, ranging from 0 to 255, and use the full
stop (dot) as a separation character. Here is an
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example of compressing a 32-bit binary sequence:

10101100︸ ︷︷ ︸
172.

00010000︸ ︷︷ ︸
16.

11111110︸ ︷︷ ︸
254.

00000001︸ ︷︷ ︸
1

. (4)

Here, “172.16.254.1" is the compressed result,
which significantly reduces the representation
length. Notably, the compression is optional, and
its usage depends on the length of the original bi-
nary sequence.

2.1.2 LLM Prediction
Once the empty fields in the prompt template are
filled, the resulting prompt is fed into the LLMs
for prediction. Similar to prior research (Bao et al.,
2023b; Zhang et al., 2023b), given the absence of
specific recommendation pre-training in LLMs, we
introduce an additional LoRA module (Hu et al.,
2022) for recommendation prediction. Formally,
for a generated prompt p, the prediction can be
formulated as:

ŷ = LLMΦ̂+Φ′ (p), (5)

where Φ̂ represents the pre-trained LLM’s parame-
ters, Φ

′
denotes the LoRA model parameters, and

ŷ represents the prediction results, which could be
the predicted next item or the predicted likelihood
of liking a candidate item, depending on the task.

2.2 Training

In our model architecture, two modules require
training: the text-like encoding module and the
LoRA module. The tuning for the text-like en-
coding module focuses on learning to generate the
binary sequence for collaborative information, in-
dependent of the LLMs. The tuning for LoRA aims
to instruct the LLM in making recommendations
by leveraging collaborative information. We now
present the two tuning paradigms, respectively.

2.2.1 Pre-training for Text-like Encoding
To train the text-like encoding module, we directly
utilize the binarized representation from Equa-
tion (2) to fit the training data. Formally, let D
denote the training data, and (u, i, t) ∈ D denote
an interaction between user u and item i with label
t. We train the module by minimizing the following
optimization problem:

minimize
θ,W,b

∑

(u,i,t)∈D
ℓ(t,h⊤

uhi), (6)

where {θ,W, b} denote the model parameters in
our text-like encoding module as discussed in Sec-
tion 2.1.1, hu and hi denote the binary representa-
tions1 obtained from Equation (2), h⊤

uhi represents
the predicted likelihood of user u liking item i, and
ℓ(·) denotes the common recommendation loss, in
this work, the binary cross-entropy loss.

Notably, the sign function lacks smoothness, and
its gradient is ill-defined as zero, posing an ap-
parent challenge for back-propagation. To enable
training the model in an end-to-end fashion, we ap-
proximate the gradient using the straight-through
estimator (STE), following the approach outlined
by Tan et al. (2020). That is, we directly use the
gradients of the output as the gradients of the input
for the sign function.

2.2.2 LoRA Tuning
To tune the LoRA module, we consider two tuning
methods: intuitive tuning and two-step tuning.

Intuitive tuning: This method directly tunes the
LoRA module from scratch with the prompts that
contain the collaborative information.

Two-step tuning: In intuitive tuning, a potential
challenge arises in scenarios like rating prediction
tasks, where binary representations can serve as
highly effective features with relatively low learn-
ing complexity2. Incorporating collaborative in-
formation from scratch might cause the model to
overly depend on these features, potentially ne-
glecting other attributes akin to learning shortcut
features. To address this, we propose an additional
two-step tuning strategy. Initially, we train the
model using a prompt that excludes collaborative
information. Subsequently, we refine the model
further by fine-tuning it using the complete prompt
that contains the collaborative information.

3 Experiments

In this section, we conduct experiments to answer
the following research questions:
RQ1: Does BinLLM effectively incorporate col-
laborative information into LLMs to improve rec-
ommendation performance? How does its perfor-
mance compare with that of existing methods?

1Notably, during training, we will convert the binary values
of 0 to -1 for hu and hi following the approach used in prior
work (Tan et al., 2020).

2Because the model could achieve satisfactory results by
solely performing bitwise "AND" operations on the collab-
orative representations of the given user and candidate item,
referencing the learning process of binary representation.
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Table 2: Statistics of the processed datasets.

Dataset #Train #Valid #Test #User #Item
ML-1M 33,891 10,401 7,331 839 3,256

Amazon-Book 727,468 25,747 25,747 22,967 34,154

RQ2: How do our design choices influence the
performance of the proposed method BinLLM?

3.1 Experimental Settings

Recommendation Task. Given that this is an ini-
tial exploration of text-like encoding for collabora-
tive information, our experiments primarily concen-
trate on the click/rating prediction task, with other
recommendation tasks being ignored. Specifically,
we aim to predict whether a user u (comprising
other profile information such as historical interac-
tions) would click on/like a given candidate item i.
The task aligns with that of CoLLM, which inves-
tigates the utilization of collaborative information
for recommendation through embedding mapping
in latent space. Hence, our experimental setup gen-
erally follows that of CoLLM.

Datasets. We conduct experiments on two repre-
sentative datasets:

• ML-1M (Harper and Konstan, 2016): This refers
to a widely recognized movie recommendation
benchmark dataset, MovieLens-1M3, provided
by GroupLens research. The dataset comprises
user ratings for movies and includes textual infor-
mation for users and items, such as movie titles.

• Amazon-Book (Ni et al., 2019): This pertains
to the "Books" subset within the renowned Ama-
zon Product Review dataset4. This dataset ag-
gregates user reviews of books from Amazon,
encompassing both the review score and review
comments. Additionally, it includes textual infor-
mation about the items.

For dataset processing, we adhere entirely to the
setup of CoLLM, encompassing label processing
and data selection/splitting methods. The statistics
of the processed datasets are presented in Table 2.

Compared Methods. In this work, we imple-
ment BinLLM with Matrix Factorization (Koren
et al., 2009) as the collaborative model in its text-
encoding module. To assess the effectiveness of
BinLLM, we compare it with four categories of

3https://grouplens.org/datasets/movielens/1m/
4https://nijianmo.github.io/amazon/index.html

methods: conventional collaborative filtering meth-
ods (MF, LightGCN, SASRec, DIN), LLMRec
methods without integrating collaborative informa-
tion (ICL, Prompt4NR, TALLRec), LLMRec meth-
ods with integrated collaborative information (Per-
sonPrompt, CoLLM), and methods combining lan-
guage models and collaborative models (CTRL).

• MF (Koren et al., 2009): This refers to a classic
latent factor-based collaborative filtering method
— Matrix Factorization.

• LightGCN (He et al., 2020): This is one rep-
resentative graph-based collaborative filtering
method, utilizing graph neural networks to en-
hance collaborative information modeling.

• SASRec (Kang and McAuley, 2018): This is
a representative sequential-based collaborative
filtering method that utilizes self-attention for
modeling user preferences.

• DIN (Zhou et al., 2019): This is a representative
collaborative Click-Through Rate (CTR) model,
which employs target-aware attention to activate
the most relevant user behaviors, thereby enhanc-
ing user interest modeling.

• CTRL (DIN) (Li et al., 2023b): This is a state-
of-the-art (SOTA) method for combining lan-
guage and collaborative models through knowl-
edge distillation. We implement its collaborative
model as DIN.

• ICL (Dai et al., 2023a): This is an In-Context
Learning-based LLMRec method, which directly
asks the original LLM for recommendations.

• Prompt4NR (Zhang and Wang, 2023): This
is a state-of-the-art (SOTA) soft prompt tuning-
based LLMRec method. Initially designed to
leverage the language model (LM), we extend
it to utilize LLMs, taking the implementation in
CoLLM (Zhang et al., 2023b).

• TALLRec (Bao et al., 2023b): This is a state-of-
the-art LLMRec method that aligns LLMs with
recommendations through instruction tuning.

• PersonPrompt (Li et al., 2023a): This is a LLM-
Rec method, which integrates collaborative in-
formation by adding new tokens and token em-
beddings to represent users and items. It could
be regarded as a personalized soft-prompt tuning
method.

• CoLLM (Zhang et al., 2023b): This is a state-
of-the-art LLMRec method that integrates col-
laborative information by mapping collaborative
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Table 3: Overall performance comparison on the ML-1M and Amazon-Book datasets. “Collab.” denotes collabora-
tive recommendation methods. “Rel. Imp.” denotes the relative improvement of BinLLM compared to baselines,
averaged over the two metrics.

Dataset ML-1M Amazon-Book
Methods AUC UAUC Rel. Imp. AUC UAUC Rel. Imp.

Collab.

MF 0.6482 0.6361 12.9% 0.7134 0.5565 14.7%
LightGCN 0.5959 0.6499 15.8% 0.7103 0.5639 14.2%
SASRec 0.7078 0.6884 3.0% 0.6887 0.5714 15.3%

DIN 0.7166 0.6459 5.6% 0.8163 0.6145 2.0%
LM+Collab. CTRL (DIN) 0.7159 0.6492 5.4% 0.8202 0.5996 3.0%

LLMRec
ICL 0.5320 0.5268 35.8% 0.4820 0.4856 50.7%

Prompt4NR 0.7071 0.6739 4.1% 0.7224 0.5881 10.9%
TALLRec 0.7097 0.6818 3.3% 0.7375 0.5983 8.2%

PersonPrompt 0.7214 0.6563 4.5% 0.7273 0.5956 9.9%
LLMRec+Collab. CoLLM-MF 0.7295 0.6875 1.5% 0.8109 0.6225 1.7%

CoLLM-DIN 0.7243 0.6897 1.7% 0.8245 0.6474 -1.0%
Ours BinLLM 0.7425 0.6956 - 0.8264 0.6319 -

embeddings into the latent space of the LLM.
We consider two implementations: CoLLM-MF,
which utilizes MF to extract collaborative embed-
dings, and CoLLM-DIN, which uses the DIN to
extract collaborative embeddings.

Hyper-parameters and Evaluation Metrics.
For all methods, we strictly adhere to the hy-
perparameter settings outlined in the CoLLM pa-
per (Zhang et al., 2023b), with Vicuna-7B used as
the employed LLM. It’s worth noting that for our
method, we set the dimension of the collaborative
embeddings (i.e., the length of the binary represen-
tations in Equation (2)) to 32 by default. Consid-
ering the length is not very large, we choose not
to perform compression in our text-like encoding
module by default. We tune the hyper-parameters
based on the AUC metric on the validation dataset.

Regarding evaluation metrics, we employ two
widely used metrics for click/rating prediction:
AUC (Area under the ROC Curve), which measures
the overall prediction accuracy, and UAUC (AUC
averaged over users), which provides insights into
the ranking quality for users.

3.2 Performance Comparison
In this subsection, we initially examine the overall
performance of the compared methods and subse-
quently analyze their performance in warm-start
and cold-start scenarios, respectively.

3.2.1 Overall Performance (RQ1)
We summarize the overall performance of the com-
pared methods in Table 3. From the table, we draw
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(c) ML-1M Cold
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(d) Amazon-book Cold

Figure 2: Performance comparison in warm and cold
scenarios on ML-1M and Amazon-Book. The left y-axis
represents AUC, while the right one represents UAUC.

the following observations:

• When compared to baselines, our BinLLM
achieves the best performance overall, except
when compared to CoLLM-DIN on the UAUC
metric. These results confirm the superiority of
BinLLM in leveraging both collaborative infor-
mation and the power of LLMs to achieve better
recommendation performance.

• Comparing LLMRec methods that integrate col-
laborative information with LLMRec methods
that do not consider collaborative information,

9186



we observe that incorporating collaborative in-
formation generally improves performance and
enables LLMRec to surpass traditional collabora-
tive and LM-based methods. These results under-
score the importance of integrating collaborative
information into LLMs for recommendation.

• Comparing BinLLM with existing LLMRec
methods that also consider collaborative infor-
mation, our BinLLM consistently outperforms
CoLLM-MF and PersonPrompt. Compared with
CoLLM-DIN, BinLLM still achieves better re-
sults except for the UAUC metric on Amazon-
book. Considering that CoLLM-DIN employs a
more advanced collaborative model while Bin-
LLM relies solely on MF, these results confirm
that encoding collaborative information in a text-
like manner better aligns with LLMs, allowing
us to leverage their power for recommendation
more effectively.

• Among LLMRec methods that consider collabo-
rative information, PersonPrompt, which learns
token embeddings for users and items from
scratch, performs the worst, significantly lagging
behind others. This can be attributed to the low
learning efficacy resulting from the introduction
of additional tokens and token embeddings.

3.2.2 Warm and Cold Performance
When integrating collaborative information into
LLMRec, one consideration is to enhance their
warm-start performance, enabling them to achieve
good performance in both warm-start and cold-start
scenarios. We now investigate the performance
in the two scenarios. Specifically, we adhere to
the protocol outlined in the CoLLM paper (Zhang
et al., 2023b) to partition the testing data into warm
data and cold data based on the interaction count
of users and items, and subsequently evaluate the
model on them. We summarize the results in Fig-
ure 2. Here, we compare four representative meth-
ods: MF, TALLRec, CoLLM-MF, and BinLLM.

According to the figure, in the warm scenarios,
TALLRec, an LLMRec method without consider-
ing collaborative information, performs worse than
MF, while both CoLLM and BinLLM outperform
MF, with BinLLM being the best. These results
indicate that collaborative information is impor-
tant for warm-start performance, and our text-like
encoding has superiority in combining the infor-
mation with LLMs. In the cold-start scenarios,
all LLMRec methods outperform MF, confirming
the superiority of LLMRec in cold-start scenar-

Table 4: Results of the ablation studies on ML-1M and
Amazon-Book, where “TO", “IO", “IT" denote “Text-
Only", “ID-Only", “Intuitive-Tuning", respectively.

Datasets ML-1M Amazon-book
Methods AUC UAUC AUC UAUC
BinMF 0.7189 0.6654 0.8087 0.5895

BinLLM-TO 0.7097 0.6818 0.7375 0.5983
BinLLM-IO 0.7307 0.6797 0.8173 0.5919
BinLLM-IT 0.7286 0.6842 0.8246 0.6165

BinLLM 0.7425 0.6956 0.8264 0.6319

ios. Moreover, BinLLM enhances the cold-start
performance compared to CoLLM in most cases,
possibly due to the binarized embeddings having
better generalization.

3.3 In-depth Analyses (RQ2)
In this subsection, we conduct experiments to an-
alyze the influence of BinLLM’s different compo-
nents on its effectiveness.

3.3.1 Ablation Study
We first further verify the benefits of introducing
text-like encoding of collaborative information into
LLMs. Specifically, we compare the default Bin-
LLM with the following variants: 1) BinMF, which
avoids using the LLM but directly utilizes the bi-
nary representations for recommendations like MF,
2) BinLLM-TO, which removes the ID field from
BinLLM’s prompt template, i.e., only using the
text information, 3) BinLLM-IO, which removes
the text field from BinLLM’s prompt, i.e., only us-
ing the collaborative information. Additionally, we
also study the influence of the two-step tuning by
comparing a variant that employs intuitive tuning,
denoted by BinLLM-IT. The comparison results
are summarized in Table 4.

From the table, we make the following obser-
vations: 1) BinMF underperforms all BinLLM
variants that consider collaborative information,
confirming the superiority of leveraging LLMs for
recommendation. 2) BinLLM-TO underperforms
other BinLLM variants, indicating that introducing
collaborative information is crucial for enhancing
LLMRec performance. 3) BinLLM-IO generally
underperforms BinLLM-IT and the default Bin-
LLM, highlighting the importance of considering
both textual and collaborative information. Lastly,
comparing BinLLM-IT with the default BinLLM,
BinLLM-IT consistently performs worse. This ver-
ifies our claims about tuning designs: directly tun-
ing LLMs with prompts containing collaborative
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Figure 3: Performance of BinLLM with (w comp.) and
without compression (w/o comp.). The left y-axis repre-
sents AUC, while the right one represents UAUC.

information from scratch may lead to underutiliza-
tion of both textual and collaborative information.

The influence of text-like encoding method. Tak-
ing a further step, we explore how the perfor-
mance changes when the collaborative information
is encoded in alternative textual formats instead
of binary sequences. Specifically, we examine a
variant called BinLLM-emb-str, which employs
UMAP (McInnes et al., 2018) to reduce the dimen-
sionality of the embeddings and converts the results
into strings for integration into our prompt. We
compare this variant with the original BinLLM and
CoLLM on the ML-1M dataset, yielding the fol-
lowing AUC results: 0.7343 for BinLLM-emb-str,
0.7425 for BinLLM, and 0.7243 for CoLLM. As
the results indicate, directly converting the original
embeddings into strings leads to inferior perfor-
mance compared to our proposed method. How-
ever, it is noteworthy that BinLLM-emb-str still
outperforms CoLLM. This finding suggests that
encoding collaborative information in text formats
is usually advantageous, compared to the method
(CoLLM) performed in latent space.

3.3.2 The Influence of Compression
In the preceding experiments, we did not use com-
pression for our text-like encoding of collaborative
information by default. Here, we conduct experi-
ments to study its influence by comparing BinLLM
with compression (w comp.) and without com-
pression (w/o comp.). The comparison results of
recommendation performance are summarized in
Figure 3. According to the figure, BinLLM with
compression generally shows comparable perfor-
mance to BinLLM without compression. Moreover,
when compared with baselines, the comparison
trends are similar to BinLLM without compres-
sion (with only some differences observed for the
UAUC metric on the ML-1M dataset when com-

pared with CoLLM). These results indicate that
compression can reduce the representation length
while maintaining performance to a large extent.

As shown in the example of Equation (4), the
dot-decimal notation can compress the length of
collaborative representation by approximately 2.5
times5. However, in our experiments, the inference
acceleration did not reach this level. This is because
we only included the collaborative representations
for the target user and items, which constitute a
smaller part of the total prompt. Specifically, the
inference time for BinLLM without compression
and with compression was 106s and 93s on ML-
1M, and 483s and 435s on Amazon, respectively.
If considering collaborative information for all his-
torically interacted items, as done by Liao et al.
(2024), the expected inference acceleration would
be more significant.

4 Related Work

• Collaborative Information Modeling. Collabo-
rative information modeling is pivotal for personal-
ized recommendations, and significant efforts have
been dedicated to this area in traditional research.
Initially, the information modeling relied on statisti-
cal methods (Sarwar et al., 2001). Subsequently, la-
tent factor models became prevalent, leading to the
development of prominent models such as MF (Ko-
ren et al., 2009) and FISM (Kabbur et al., 2013).
Later, neural network-enhanced latent factor mod-
els made substantial advancements (He et al., 2017;
Tang and Wang, 2018; Hidasi et al., 2016; Chen
et al., 2023). These studies achieved remarkable
success in both academia and industry, inspiring ex-
ploration into collaborative information modeling
for LLMRec. In this study, we propose a method
to encode collaborative information in a text-like
format, making it suitable for LLM usage.
• LLMRec. As the impressive capabilities exhib-
ited by LLMs, an increasing number of researchers
in the recommendation community are now explor-
ing the potential of applying LLMs to recommenda-
tion systems (Wu et al., 2023; Lin et al., 2023a; Li
et al., 2024). This exploration can be categorized
into two groups. The first group focuses on directly
harnessing the abilities of LLMs by employing
suitable prompts to stimulate their performance in
recommendation scenarios (Dai et al., 2023b; Hou
et al., 2024; Shi et al., 2024). On the other hand, an-
other group of researchers argues that LLMs have

5Ignoring the dot "." in the sequence.
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limited exposure to recommendation tasks during
pre-training, and recommendation data often pos-
sess personalized characteristics (Bao et al., 2023b;
Zhang et al., 2023a). Consequently, it becomes
crucial to explore tuning methods that can enhance
the recommendation performance of LLMs (Lin
et al., 2024a; Zheng et al., 2024b; Lin et al., 2024b,
2023b). As researchers delve deeper into their stud-
ies, it has been discovered that LLMs often exhibit
an excessive reliance on semantic knowledge for
learning, while paying insufficient attention to the
acquisition of collaborative information between
entities (Bao et al., 2023a).

Researchers have initiated endeavors to incorpo-
rate collaborative information into LLMs. Some
researchers attempt to look for ID encoding meth-
ods to introduce new tokens through vocabulary ex-
pansion and train these tokens from scratch (Zheng
et al., 2024a; Hua et al., 2023; Rajput et al., 2023;
Zhu et al., 2024). Among them, Hua et al. utilize
statistical information, Zheng et al. and Rajput
et al. employ vector quantization techniques. How-
ever, this approach often faces with low learning
efficacy. Another group of researchers explores
using a latent factor model to capture collaborative
information (Zhang et al., 2023b; Li et al., 2023c;
Liao et al., 2024), which is then mapped onto the
semantic space of LLMs through a mapping layer.
This method exhibits better learning efficacy but
requires additional training of the mapping layer.
Moreover, due to the non-text-like format of collab-
orative information, both sets of methods face chal-
lenges in aligning with the information processing
mechanism in LLMs, limiting their performance.

5 Conclusion

In this study, we emphasize the importance of text-
like encoding of collaborative information model-
ing to enhance recommendation performance for
LLMRec. We introduce BinLLM, a novel approach
designed to incorporate collaborative information
in a text-like format by binarizing collaborative
embeddings for LLMRec. This encoding allows
the collaborative information to be utilized in a
manner better aligned with how information is pro-
cessed in LLMs. Extensive results demonstrate the
superiority of BinLLM.

Limitations

Currently, this paper has certain limitations in ex-
perimental validation: 1) It relies solely on Vicuna-

7B for experiments; 2) The current experiments
focus solely on rating/click prediction tasks, ne-
glecting other recommendation tasks like next-item
prediction. In the future, we aim to expand exper-
iments accordingly. Additionally, at the method-
ological level, similar to existing LLMRec meth-
ods, this paper faces challenges with low inference
efficiency for real-world recommendation scenar-
ios, particularly in the all-ranking setting. In the
future, we could explore applying existing accelera-
tion methods like pruning to improve speed. More-
over, exploring recommendation generation meth-
ods that avoid multiple inferences for individual
users is another avenue worth exploring.

Ethical Considerations

In this paper, we present BinLLM, designed to
encode collaborative information in a text-like for-
mat for LLMRec. Our method binarizes numeri-
cal embeddings and thus doesn’t raise ethical con-
cerns. Moreover, the data we use are publicly
available and don’t include sensitive details like
gender. However, recommendations involve user
behavioral data, which might raise privacy con-
cerns, which are addressable through introducing
the mechanism of user consent. Additionally, using
LLMs may have hidden negative societal biases.
We advocate for conducting thorough risk assess-
ments and advise users to be wary of potential risks
linked with model usage.
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