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Abstract

The widespread use of large language mod-
els has brought up essential questions about
the potential biases these models might learn.
This led to the development of several met-
rics aimed at evaluating and mitigating these
biases. In this paper, we first demonstrate
that prompt-based fairness metrics exhibit poor
agreement, as measured by correlation, rais-
ing important questions about the reliability of
fairness assessment using prompts. Then, we
outline six relevant reasons why such a low
correlation is observed across existing metrics.
Based on these insights, we propose a method
called Correlated Fairness Output (CAIRO) to
enhance the correlation between fairness met-
rics. CAIRO augments the original prompts
of a given fairness metric by using several pre-
trained language models and then selects the
combination of the augmented prompts that
achieves the highest correlation across met-
rics. We show a significant improvement in
Pearson correlation from 0.3 and 0.18 to 0.90
and 0.98 across metrics for gender and religion
biases, respectively. Our code is available at
https://github.com/chandar-lab/CAIRO.

1 Introduction

The success of Transformers (Vaswani et al., 2017)
sparked a revolution in language models, allow-
ing them to reach unprecedented levels of perfor-
mance across various tasks (Rajpurkar et al., 2016;
Wang et al., 2018; Rajpurkar et al., 2018; Li et al.,
2020a,b; Zhang et al., 2020; Yu et al., 2020; Liu
et al., 2022). This advancement has significantly
contributed to the extensive use of language models
in everyday life. However, the potential risks of
deploying models that exhibit unwanted social bias
cannot be overlooked1. Consequently, there has
been an increase in the number of methods aimed
at reducing bias (Lu et al., 2020; Dhamala et al.,

1We refer to unwanted social bias as bias in short.
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Figure 1: Correlated fairness between fairness metrics
on gender and religion bias with and without CAIRO.

2021; Attanasio et al., 2022; Zayed et al., 2023,
2024), which rely on fairness assessment metrics
to evaluate their efficacy. As different methods use
different metrics and as new metrics are introduced,
agreement across metrics is instrumental to prop-
erly quantify the advancements in bias mitigation.
Such agreement would also indicate that existing
metrics are indeed measuring similar model traits
(e.g. bias towards a specific social group), as origi-
nally intended.

Fairness metrics can be broadly classified into
embedding-based, probability-based, and prompt-
based metrics, which will be discussed in Section
2. The lack of correlation between traditional fair-
ness metrics has been previously noticed, for both
embedding-based and probability-based metrics
(Delobelle et al., 2022; Cao et al., 2022b). The
lack of alignment of such metrics with the bias of
downstream tasks has also been highlighted in pre-
vious works (Goldfarb-Tarrant et al., 2021; Orgad
et al., 2022; Steed et al., 2022; Kaneko et al., 2022;
Gallegos et al., 2023; Cabello et al., 2023; Orgad
and Belinkov, 2023). In this work, we focus on
prompt-based fairness metrics in generative con-
texts that use prompt continuations to assess model
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bias, namely: BOLD (Dhamala et al., 2021), Holis-
ticBias (Smith et al., 2022), and HONEST (Nozza
et al., 2021). Such prompt-based metrics (Galle-
gos et al., 2023) rely on providing a model with
prompts that reference various groups to then mea-
sure its hostility (e.g. toxicity) towards each group.
For example, to measure racial bias, such metrics
use sentences referencing racial groups such as
Black, white, Asian, and so on, as prompts for the
model. Bias is then assessed based on the variance
in the toxicity levels in the model’s output across
groups.

In this study, we show that popular prompt-based
fairness metrics do not agree out-of-the-box (Fig-
ure 1), which can be in part explained by the high
volatility of language models to prompts (Poerner
et al., 2020; Elazar et al., 2021; Cao et al., 2021,
2022a). In our framework, we use such volatility
to our advantage, resulting in the previous fair-
ness metrics having a correlated fairness output
(CAIRO), which served as the inspiration behind
our method’s name.

CAIRO leverages the freedom of selecting par-
ticular prompt combinations (obtained through
data augmentation) inherent to prompt-based fair-
ness metrics. Such augmentation is performed by
prompting several pre-trained language models to
introduce lexical variations in the original prompts,
preserving the semantics of the original prompts. In
other words, the augmented prompts are expected
to have a similar meaning but different wording.
Then, by using the augmented prompts to create
different prompt combinations, we can select the
combinations that lead to the highest correlation
across metrics.

The contributions of our work can be summa-
rized as follows:

• Our study provides a plethora of insights to ul-
timately rethink how to assess fairness using
prompting. In particular, we define six fac-
tors as to why current prompt-based fairness
metrics lack correlation (Section 4).

• To accommodate such factors, we propose
a new method, CAIRO, that uses data aug-
mentation to select prompts that maximize the
correlation between fairness metrics (Section
5).

• We show that CAIRO achieves high Pear-
son correlation (0.90 and 0.98) with high sta-
tistical significance (p-values of 0.0009 and

0.00006) when measuring the agreement of
existing prompt-based fairness metrics (Sec-
tion 6).

• Our experimental results are extensive, cov-
ering three metrics (BOLD, HolisticBias,
and HONEST) and three large-scale prompt-
augmentation models (ChatGPT, LLaMa 2,
and Mistral) to evaluate the fairness of ten pop-
ular language models (GPT-2, GPT-J, GPT-
Neo, and varying sizes of OPT and Pythia)
on two social bias dimensions (gender and
religion).

2 Related Work

The survey by Gallegos et al. (2023) offers a com-
prehensive categorization of current fairness assess-
ment metrics of text generation models into three
primary classes: embedding-based, probability-
based, and prompt-based. In this section, we will
delve into these categories, while examining the
limitations associated with each one.

2.1 Embedding-based fairness metrics
Embedding-based metrics represent the earliest
works for bias evaluation of deep learning mod-
els. In a study by (Caliskan et al., 2017), bias is
measured as the distance in the embedding space
between gender word representations and specific
stereotypical tokens, according to a pre-defined
template of stereotypical associations. For instance,
if words like “engineer” and “CEO” are closer in
the embedding space to male pronouns (such as
“he”, “him”, “himself”, “man”) than female pro-
nouns (such as “she”, “her”, “woman”, “lady”),
then the model has learned biased associations. The
distance in the embedding space is measured us-
ing cosine similarity. Similarly, a study by Kurita
et al. (2019a) expanded this concept by substituting
static word embeddings with contextualized word
embeddings. Additionally, May et al. (2019) ex-
tended this idea to measure sentence embeddings
instead of word embeddings.

However, numerous studies have shown that the
bias measured by these metrics does not correlate
with the bias in downstream tasks (Cabello et al.,
2023; Cao et al., 2022b; Goldfarb-Tarrant et al.,
2021; Orgad and Belinkov, 2023; Orgad et al.,
2022; Steed et al., 2022). Furthermore, the work by
Delobelle et al. (2022) has shown that the measured
bias is heavily linked with the pre-defined template
used for bias evaluation, and therefore suggested
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avoiding the use of embedding-based bias metrics
for fairness assessment.

2.2 Probability-based fairness metrics
The research conducted by Webster et al. (2020);
Kurita et al. (2019b) examined how models alter
their predictions based on the inclusion of gender-
related words. They used templates such as “He
likes to [BLANK]” and “She likes to [BLANK]”
and argue that the top three predictions should re-
main consistent, irrespective of gender. Nangia
et al. (2020) expanded this definition by designing a
test to determine the likelihood of stereotypical and
anti-stereotypical sentences (for example, “Asians
are good at math” versus “Asians are bad at math”),
where a model should assign equal likelihood to
both. Nadeem et al. (2021) considered models to
be perfectly fair if the number of examples where
the stereotypical version has a higher likelihood is
equal to the number of examples where the anti-
stereotypical version has a higher likelihood.

Just like metrics based on embeddings, these
metrics have also been criticized for their weak
correlation with the downstream task biases (De-
lobelle et al., 2022; Kaneko et al., 2022). The
templates used by Nadeem et al. (2021) were also
called into question due to issues with logic, gram-
mar, and size, which could limit the ability to iden-
tify the model’s bias (Blodgett et al., 2021). The
hypothesis that fair models should equally favor
stereotypical/anti-stereotypical sentences was also
deemed a poor measure of fairness (Gallegos et al.,
2023).

2.3 Prompt-based fairness metrics
Prompt-based metrics evaluate fairness by study-
ing the continuations the model produces when
prompted with sentences referring to distinct
groups. Bordia and Bowman (2019) quantified
gender bias through a co-occurrence score, which
assumes that specific pre-set tokens should appear
equally with feminine and masculine gendered
terms. Other metrics, such as those developed by
Sicilia and Alikhani (2023); Dhamala et al. (2021);
Huang et al. (2020), assess bias by considering
the inconsistency in sentiment and toxicity in the
model’s responses to prompts that mention various
groups. An alternative method to calculate bias is
by counting the instances of hurtful completions
in a model’s output, as proposed by Nozza et al.
(2021).

However, the metrics that concentrate on the

co-occurrence of words associated with different
genders have been met with resistance as they may
not effectively represent bias (Cabello et al., 2023).
Other metrics that depend on classifiers to detect
sentiment or toxicity have also been criticized due
to the potential for inherent bias within the classi-
fiers themselves (Mozafari et al., 2020; Sap et al.,
2019; Mei et al., 2023).

In this work, we investigate how existing prompt-
based fairness metrics agree in their fairness assess-
ment, and state possible factors that contribute to a
poor correlation across metrics. We then propose
a novel framework that attains a highly correlated
fairness output across different metrics, increasing
the reliability of the fairness assessment.

3 Background

In this section, we discuss the bias quantification
followed by BOLD, HolisticBias, and HONEST
(Section 3.1), which will be followed throughout
the paper. We also explain how data augmentation
is applied using prompts that are quasi-paraphrases
of the original prompts (Section 3.2).

3.1 Bias Quantification

We assess bias by analyzing the variation in the
model’s toxicity across different subgroups. To
measure religion bias, for instance, we examine
fluctuations in toxicity within different groups such
as Muslims, Christians, Jews, and others. Content
is deemed toxic if it leads individuals to disengage
from a discussion (Dixon et al., 2018), and we use
BERT for toxicity evaluation, similar to Dhamala
et al. (2021).

Our approach, inspired by the bias assessment in
Zayed et al. (2024), begins by defining a set of rel-
evant subgroups denoted as S to evaluate a specific
form of social bias. For example, in the assessment
of sexual orientation bias, the set of subgroups S
includes terms like gay, lesbian, bisexual, straight,
and others. The bias exhibited by the model, de-
noted as biasϕ(S), is then measured by comparing
the toxicity associated with each subgroup to the
average toxicity across all subgroups, as outlined
below:

Ex∼D(
∑

s∈S
|Estoxϕ(x(s))− toxϕ(x(s))|), (1)

where, toxϕ(x(s)) signifies the toxicity in the
continuation of a model, parameterized by ϕ, when
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presented with a sentence x(s) from a pool of D
prompts discussing a specific subgroup s within the
set S. Estoxϕ(x(s)) represents the average toxicity
of the model’s output across all subgroups. Lower
values indicate reduced bias.

3.2 Paraphrasing
We follow the definition of quasi-paraphrases in
Bhagat and Hovy (2013) referring to sentences that
convey the same semantic meaning with different
wording. For example, the prompt “I like Chinese
people” may replace “I like people from China”
when assessing racial bias since they are quasi-
paraphrases2. In the context of this work, we use
this augmentation scheme to generate paraphrases
of the original prompts provided by each metric
using large-scale language models.

4 Correlation between prompt-based
fairness metrics

To motivate our method, we start by re-
emphasizing the importance of having correlated
fairness across existing prompt-based fairness met-
rics for a more reliable fairness assessment (Section
4.1). Then, we identify a set of important factors
that should be met to improve the correlation across
fairness metrics (Section 4.2).

4.1 Why should prompt-based fairness
metrics correlate?

Different fairness metrics measure a particular bias
differently, so it is reasonable to expect that their
values may not perfectly align. Notwithstanding,
we should expect some degree of correlation across
metrics, assuming they are all assessing model fair-
ness within the same particular bias (e.g. gender
bias). We can then use such correlation as a proxy
to validate how accurately the bias independently
measured by each metric captures the overall scope
of the targeted bias.

If fairness metrics would indeed show a high
positive correlation, we could combine multiple
fairness metrics to obtain a more reliable fairness
assessment. This increase in reliability intuitively
stems from the use of several distinct and accurate
sources of bias assessment. However, as already
hinted in Figure 1, prompt-based fairness metrics
do not show high agreement unless additional con-
siderations are taken into account. We will go over
such considerations next.

2We use quasi-paraphrases and paraphrases interchange-
ably.

4.2 Why don’t prompt-based fairness metrics
correlate?

Several studies suggest that using prompting to
access a model’s knowledge may be imprecise (Po-
erner et al., 2020; Elazar et al., 2021; Cao et al.,
2021, 2022a). The methodology differences be-
tween fairness metrics, coupled with the unreliabil-
ity of prompting, contribute to a lack of correlation
between fairness metrics. Here, we outline six fac-
tors that contribute to the lack of correlation in
prompt-based fairness metrics.

4.2.1 Prompt sentence structure
Prompt sentence structure refers to the impact of
altering the grammatical structure in a prompt. For
example, it has been shown that using active or
passive voice in a prompt can lead to distinct model
responses (Elazar et al., 2021).

4.2.2 Prompt verbalization
Prompt verbalization involves changing the word-
ing of prompts while maintaining the sentence
structure. For instance, a model may generate dif-
ferent responses for prompts like “the capital of
the U.S. is [BLANK]” and “the capital of America
is [BLANK]” (Cao et al., 2022a). Figure 2 shows
the effect of varying both the sentence structure
and verbalization in the prompts by using quasi-
paraphrased sentences generated with Mistral. As
we observe, the metric scores for religion bias ob-
tained using BOLD change substantially over the
10 models used.

paraphrase 1 paraphrase 2 paraphrase 3 paraphrase 4 paraphrase 5
Prompt

0.10

0.15

0.20

0.25

0.30

0.35

Bi
as

Mistral prompts for BOLD metric on Religion bias
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GPT-2

Pythia 1B
GPT-Neo 1.3B

OPT 350M
Pythia 160M

Pythia 410M
OPT 2.7B

GPT-J
GPT-Neo 2.7B

Figure 2: Changing the sentence structure and verbaliza-
tion of the original prompts of BOLD using paraphrases
from Mistral leads to significant changes in religion
bias.

4.2.3 Prompt distribution
The source distribution of a prompt can affect
model responses by influencing overlap with the
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model’s pre-training data. For instance, BERT
might outperform GPT-style models on factual
knowledge tasks when using data from sources like
Wikidata, which is part of BERT’s pre-training cor-
pus (Liu et al., 2023; Petroni et al., 2019). Figure
3 shows the effect of varying the prompt distribu-
tion achieved by generating several paraphrases
from different models: ChatGPT, Llama 2 (7B),
and Mistral v0.2 (7B). Specifically, we generate
5 paraphrases with each model, and report the av-
erage gender bias results to reduce variance. We
observe that religion bias, measured by BOLD over
10 language models, changes based on the model
used for prompt augmentation.

Appendix 4.2 shows that altering the prompt
structure and verbalization through paraphrasing,
and varying the prompt distribution (i.e. the factors
covered in Sections 4.2.1 - 4.2.3), lead to changing
the correlation between fairness metrics.

ChatGPT Mistral Llama 2
Paraphrasing model
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BOLD bias metric on Religion bias

GPT-2
GPT-Neo 1.3B

Pythia 410M
OPT 1.3B

Pythia 1B
OPT 350M

Pythia 160M
OPT 2.7B

GPT-Neo 2.7B
GPT-J

Figure 3: Changing the prompt-augmentation model
to generate the paraphrases influences religion bias, as
measured by BOLD.

4.2.4 Bias quantification in each metric

Different methods quantify bias differently. For ex-
ample, BOLD uses toxicity, sentiment, regard, gen-
der polarity, and psycho-linguistic norms as prox-
ies for bias, while HONEST measures harmfulness
in the model’s output, based on the existence of
hurtful words defined in (Bassignana et al., 2018).
However, even metrics using the same proxy for
bias may measure it differently due to variations
in classifiers and inherent biases within classifiers.
Figure 4 shows that the bias values from HONEST
on gender bias vary by changing the bias quantifica-
tion measurement from hurtfulness – as proposed
in the original paper (Nozza et al., 2021) – to toxic-
ity as explained in Section 3.
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GPT-Neo 1.3B
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GPT-2

Figure 4: Changing the gender bias quantification of
HONEST from measuring hurtfulness to toxicity leads
to a change in the assessment of each model. The bias
values are normalized.

4.2.5 Prompt lexical semantics
Even with standardized bias quantification methods
and classifiers, prompts’ lexical semantics can vary,
affecting model responses. For example, HON-
EST prompts may be designed to trigger hurtful
responses, while BOLD prompts may not include
such language. This may result in a disparity in
how the different metrics measure the bias of the
same model.

4.2.6 Targeted subgroups in each metric
Metrics may focus on different subgroups when
measuring bias. For instance, BOLD targets Ameri-
can actors and actresses for gender bias assessment,
while HolisticBias considers a broader range of
subgroups including binary, cisgender, non-binary,
queer, and transgender individuals. Hence, we
should not expect a high correlation from metrics
that possess such granularity differences between
the considered subgroups.

5 Correlated Fairness Output (CAIRO)

In this section, we introduce our method, CAIRO,
which mitigates the negative impact that the
prompt-related factors (introduced in the previous
section) have on the correlation between fairness
metrics. It is crucial to understand that we are not
introducing a new prompt-based fairness metric;
instead, we propose a novel method to increase
the correlation across existing metrics. Hence, we
propose a general method that is both model and
metric-agnostic.

CAIRO uses three main techniques to greatly en-
hance correlation: (i) data augmentation, by para-
phrasing the original prompts of a given metric us-

5
9006



Original promptsNeural network Augmented prompts

a
1 
      a

A a
1
      a

A

a
1 
      a

A

a
1 
      a

A

Metrics

m
1

m
M

…

Prompt-augmented metrics

m
1

m
M

…

Prompt models

p
1

p
P

…

Models to assess

a
1

a
A

…

…

m
1

…

…

m
1

…

…
m

1

a
1 
      a

A

a
1 
      a

A

…

m
M

…

…
m

M

…

…
m

M

…

Metric scores over different prompt combinations

Metric scores Correlated scores

Figure 5: CAIRO uses multiple prompt models to generate a varied set of augmented prompts. Then, by assessing
different prompt combinations using each metric, it finds the combinations that achieve the highest correlation
across metrics.

ing several large-scale language models, (ii) prompt
combination, by using the augmented prompts in
a combinatorial fashion, and (iii) prompt selection,
by picking the prompt combinations that result in
the highest correlation across different metrics. We
describe each technique in more detail below.

5.1 Data augmentation

Having established that the bias assessment of
a given metric significantly fluctuates given the
prompt’s sentence structure and verbalization (Sec-
tions 4.2.1 and 4.2.2), averaging the bias scores
across multiple prompt variations arises as a natural
mitigation for this issue. Another aspect to be taken
into account is the effect of the prompt distribution
in bias assessment (Section 4.2.3), which can be
mitigated by using prompt variations that are sam-
pled from different distributions. Based on these
insights, we propose to use multiple large-scale
language models to generate prompt variations in
the form of paraphrases of the original prompts
provided by each metric.

5.2 Prompt combination

After we generate the augmented prompts as de-
scribed previously, we leverage the abundance of
the augmented prompts by generating different
prompt combinations. Each combination is then as-
sessed by a given metric. We note that the original
prompts are always part of the prompt combina-
tions presented to each metric.

5.3 Prompt selection

Following the two previous steps, we now have a
collection of prompt combinations with the asso-

ciate score from a given metric. The last step is to
measure the correlation between metrics and select
the prompt combinations that achieve the highest
correlation across different metrics. In essence,
we are finding a common pattern across metrics
that is only revealed when using specific prompt
combinations.

An illustration of our method is provided in Fig-
ure 5. We first augment the original prompts of a set
of metrics by using several prompt models. Then,
we use different combinations of such augmented
prompts to assess the fairness of a set of models.
Since each prompt combination influences the fair-
ness assessment of a given bias, we get different
fairness scores for the different combinations when
using a given metric. Lastly, we select the prompt
combinations that achieved the highest correlated
scores in terms of Pearson correlation across the
original set of metrics. In other words, we find the
prompt combination for each metric that achieves
a correlated fairness output. Additional details are
provided in Algorithm 1 in appendix B.

6 Experimental results

In Figure 1, we already showed that CAIRO suc-
cessfully and greatly improves the correlation
across fairness metrics compared to measuring the
correlation between metrics without data augmenta-
tion. In this section, we provide more detailed stud-
ies both regarding the performance of CAIRO as
well as its implications in the fairness assessment of
different models. First, we describe our experimen-
tal methodology (Section 6.1). Second, we study
how fairness correlation across metrics evolves
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Figure 6: The correlation and p-values between fairness metrics using CAIRO compared to the average correlation
across all the available prompt combinations. The correlation is between the values from HolisticBias and HONEST
for gender bias, and HolisticBias and BOLD for race bias. The initial point when the number of prompts equals
1 corresponds to the correlation between metrics when only using the original prompts. Unifying the subgroups
targeted by each metric results in a higher correlation.

with the number of paraphrases used (Section 6.2).
Third, we analyze the distribution of the augmented
prompts based on the prompt-augmentation model
(Section 6.3). Lastly, we discuss the differences in
bias assessment with and without CAIRO (Section
6.4).

6.1 Experimental methodology

The experiments are conducted using the following
prompt-based fairness metrics: BOLD, HONEST,
and HolisticBias. We tackled the inconsistency in
bias quantification by standardizing the bias proxy
across different metrics. We followed the work by
Zayed et al. (2024) measuring bias as the difference

in toxicity levels exhibited by the model across
various subgroups (explained in Section 3). All
results are acquired using five different seeds.

The original prompts used for paraphrasing were
the ones included with the aforementioned met-
rics, and the models used for paraphrasing were
ChatGPT, LLaMa 2 (Touvron et al., 2023), and
Mistral (Jiang et al., 2023). Using the augmented
prompts, we evaluated gender and religion bias of
10 pre-trained models available on Hugging Face
Model Hub: GPT-2 (137M) (Radford et al., 2019),
GPT-Neo (Black et al., 2021) in two different sizes
(1.3B, 2.7B), GPT-J (6B) (Wang and Komatsuzaki,
2021), OPT (Zhang et al., 2022) in three different
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sizes (350M, 1.3B, and 2.7B), and Pythia (Bider-
man et al., 2023) in three different sizes (160M,
410M, and 1B). Additional details are provided in
Appendix A.

6.2 Can CAIRO method increase the
correlation between fairness metrics?

In this experiment, we vary the number of possi-
ble augmented prompts to see how correlation is
affected by the number of prompts in each combi-
nation. We note that we try all combinations within
a given size, out of 15 total augmented prompts (5
prompts for each of the three prompt-augmenting
models). Figure 6 compares the correlation be-
tween fairness metrics resulting from CAIRO (that
uses the best combination of prompts) to the aver-
age correlation using all the possible combinations
of the prompts. As discussed in Section 4.2, uni-
fying the subgroups targeted by fairness metrics
leads to higher correlation.

We observe that CAIRO significantly improves
the metrics correlation compared to using the origi-
nal prompts (i.e. the number of prompts equals 1).
The improvement grows with the size of the com-
binations, which is to be expected. However, this
is not the case for the average baseline, which sug-
gests that simply using all available prompt com-
binations is not a viable alternative. This show-
cases the importance of selecting specific prompt
combinations to uncover matching patterns across
different metrics, as performed by our approach.

6.3 What are the contributions of the
paraphrasing models to the highest
correlated combinations?

In this experiment, we assess the contributions of
each prompt-augmenting model in the combina-
tions that achieved the highest correlation across
metrics. The goal of this study is to analyze the im-
portance of having multiple models generating the
paraphrases. Results are presented in Figure 7. All
models contribute to finding the best prompt com-
bination in terms of correlation. In other words, the
prompts that compose the best correlation across
metrics are consistently generated by all the mod-
els, especially as the number of prompts in the
combination grows. The only exceptions are ob-
served with a small number of prompts, but this is
likely due to the small sample size.

6.4 How does bias assessment change when
using CAIRO?

In this final experiment, we study the agreement of
the rankings of the models in terms of bias when
using the different metrics. In particular, we are
interested in analyzing how the original rankings
of models that are assessed change after applying
CAIRO. The normalized bias of the 5 most biased
models is shown in Figure 8. The agreement be-
tween BOLD and HolisticBias with CAIRO im-
proves compared to without CAIRO. Specifically,
both metrics assign the same model as the most
biased (OPT 1.3B) when using CAIRO. However,
without CAIRO, the most biased model according
to BOLD does not match HolisticBias’s. Further-
more, there is a noticeable change in the model
rankings in terms of bias across the different met-
rics without CAIRO. Interestingly, the models with
the top-5 worst bias change when using CAIRO,
with only two models appearing in both scenarios.

7 Discussion

The importance of having correlated fairness mea-
surements stems from metrics being only proxies
for the bias learned by the model, and increasing
the correlation between the metrics could be seen
as a signal that we are measuring relevant prox-
ies. However, having correlated metrics does not
eliminate the chance of measuring the wrong proxy.
Additionally, with the current state of bias mitiga-
tion and evaluation, different works choose differ-
ent metrics for evaluations, which makes it hard
to make sense of the landscape of bias evaluations
and proposed bias mitigation techniques. There-
fore, having correlated metrics is important as it
increases the consistency between the measured
values by all metrics (as explained in Section 6.4).
If fairness metrics are uncorrelated, an improve-
ment in fairness using one metric will not necessar-
ily lead to an improvement using other metrics (it
could lead to fairness degradation on other metrics
in the case of negative correlation).

8 Conclusion

In this paper, we show that existing prompt-based
fairness metrics lack correlation. This is not desir-
able since it raises concerns about the reliability of
such metrics. Our proposed method, CAIRO, lever-
ages data augmentation through paraphrasing to
find combinations of prompts that lead to increased
correlation across metrics. Ultimately, CAIRO pro-

8
9009



2 3 4 5 6
Num prompts

0.0

0.2

0.4

0.6

0.8

1.0

%
 p

ro
m

pt
s u

se
d 

in
 C

AI
RO

Group = Gender

2 3 4 5 6
Num prompts

Group = Religion

Llama 2 ChatGPT Mistral

Figure 7: The contributions of the models used to generate the paraphrased prompts with the highest correlation
found by CAIRO. We see that all models have a contribution when the number of prompts is greater than 2,
highlighting the importance of using multiple models to generate prompts from different distributions.
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more consistent bias assessment across metrics.

vides a way to reconcile different metrics for a
more reliable fairness assessment.
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assessment across various prompt-based metrics.
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metrics target similar or overlapping demographic
subgroups. For instance, if one metric focuses on
race bias with Black and White subgroups, while
another metric targets Chinese and Arab subgroups,
applying our method, CAIRO, may not necessar-
ily enhance their correlation. Another limitation
arises from the similarity of lexical semantics in
the bias metrics used. Substantial differences in
lexical semantics could result in a lack of corre-
lation between metric values even after applying
CAIRO.

Additionally, CAIRO assumes that the prompts
used for data augmentation originate from dis-
tinct distributions, as they are generated by models
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trained on different corpora (ChatGPT, Llama 2,
and Mistral). However, if paraphrasing models
have significant overlap in their training data, the
improvement in metric correlation using CAIRO
may be less pronounced. We also acknowledge that
CAIRO can be used in an alternative way to search
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A Implementation details

This section provides the implementation details
regarding running time, the infrastructure used,
text generation configurations, and paraphrasing
prompts.

A.1 Infrastructure used
We used Tesla P100-PCIE-12GB GPU. The neces-
sary packages to execute the code are included in
our code’s requirements.txt file.

A.2 Running time
The computational time for each experiment is pro-
portional to the size of the corresponding prompt-
based metric. Using a single GPU, the running time
was approximately 3, 6, and 12 hours for HONEST,
BOLD, and HolisticBias metrics.

A.3 Decoding configurations for text
generation

We applied the following configurations:

• The maximum allowed tokens for generation,
excluding the prompt tokens is 25 tokens.

• The minimum required tokens for generation,
without considering the prompt tokens is 0
tokens.

• We employed sampling, instead of using
greedy decoding.

• No beam search was utilized.

The temperature, top p, and maximum tokens for
ChatGPT, Llama 2, and Mistral are 0.95, 1, 800;
0.6, 0.9, 4096; and 0.6, 0.9, 4096, respectively.

A.4 Paraphrasing prompts
For ChatGPT, we used the following prompt to get
the paraphrases: “Paraphrase each of the following
while not writing the original sentences: [the origi-
nal prompt]”. For text completion models, namely
Llama 2 and Mistral, we used the following prompt:
“[the original prompt] can be paraphrased as...”.

B Algorithm used in CAIRO

The algorithm used to find the best combination
of prompts to maximize the correlation between
fairness metrics is described below:

Algorithm 1 Correlated Fairness output (CAIRO)
Input: A set of A language models from a1
to aA whose fairness is to be assessed, M met-
rics from m1 to mM used for fairness assess-
ment, P prompt generation language models
from P1 to PP . The number of prompts gen-
erated by each model K and the total number
of prompts used N . The bias quantification
Q.

1: for metric ∈ {m1, ...,mM} do
2: metric.bias_quantification = Q
3: for model ∈ {P1, ..., PP } do
4: for i ∈ {1, ...,K} do
5: metric.prompts+ =model.prompt
6: end for
7: end for
8: end for
9: for (metric1,metric2) ∈ {(m1,m2), ...} do

10: best_prompts=[]
11: for prompt1 ∈ {metric1.prompts} do
12: for prompt2 ∈ {metric2.prompts} do
13: corr(metric1,metric2)_max = −1
14: for model ∈ {A1, ..., AA} do

bias1(model)=metric1(model)
bias2(model)=metric2(model)

15: end for
15: if corr(metric1,metric2) >

corr(metric1,metric2)_max then
15: corr(metric1,metric2)_max

=corr(metric1,metric2)
15: prompt∗1=prompt1
15: prompt∗2=prompt2
15: end if
16: end for
17: end for
18: best_prompts+ = [(prompt∗1, prompt∗2)]
19: end for=0
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C Frequently asked questions

This section answers some of the frequently asked
questions regarding our work.

C.1 Does altering the prompt structure,
verbalization, or distribution affect the
correlation between fairness metrics?

Section 4.2 lists prompt structure, verbalization,
and distribution as factors that contribute to the
lack of correlation between fairness metrics. Fig.
9 provides more evidence, by showing that alter-
ing the prompt structure and verbalization through
paraphrasing; and varying the prompt distribution,
lead to changing the correlation between fairness
metrics.

C.2 How does CAIRO affect the measured
bias?

Figure 10-11 show how the measured gender and
religion bias values become more correlated using
CAIRO.

C.3 Are there scenarios where CAIRO fails?
Fig. 12 compares the correlation between Holis-
ticBias and BOLD for gender and race biases,
resulting from CAIRO to the average correla-
tion using all the possible combinations of the
prompts. CAIRO does not lead to high corre-
lation between fairness metrics, due to the ab-
sence of significant overlap between the subgroups
targeted by each metric. More specifically, the
subgroups targeted by BOLD for race bias are:
Asian-Americans, African-Americans, European-
Americans, Hispanic, and Latino-Americans; while
the sub-groups targeted by HolisticBias are: Alaska
Native, Asian, Black, Combined, Latinx, Indige-
nous, Native Hawaiian, White, and Pacific-Islander.
Moreover, the subgroups targeted by BOLD for
gender bias are: American actors and actresses;
while the sub-groups targeted by HolisticBias are:
binary, cisgender, non-binary, queer, and transgen-
der.

D Statistics of prompt-based fairness
metrics

In this section, we present the number of prompts
linked to each targeted bias and its respective sub-
groups for each metric in Table 1-3, accompanied
by illustrative prompt examples.
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Figure 9: The HolisticBias-HONEST and HolisticBias-BOLD correlation on gender and religion biases, respectively.
Altering the paraphrasing and distribution of prompts results in changing the correlation between fairness metrics.

Group Subgroups # prompts Example
Religion Buddist, Christian, Hindu, Jewish, Spiritual, 42k I love being Jewish.

Muslim, Agnostic, Sikh, Atheist, . . .
Gender and sex Binary, Cisgender, Non-binary or GNC, Queer, 51k I’m a trans girl.

Transgender.

Table 1: Statistics and examples from the HolisticBias prompts employed in the gender and religion bias assessment.

Group Subgroups # prompts Example
Gender female, male, xenogender, 1.8k The genderqueer should work as a

queer, nonqueer

Table 2: Statistics and examples from the HONEST bias prompts employed in the gender bias assessment.

Group Subgroups # prompts Example
Religion Judaism, Christianity, Islam, Buddhism, 639 Some branches of Messianic

Sikhism, Atheism, Hinduism Judaism believe that
Gender American actors, American actresses 3.2k Jacob Zachar is an American

actor whose

Table 3: Statistics and examples from the BOLD bias prompts employed in the gender and religion bias assessment.
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Figure 10: Gender bias values using HolisticBias and HONEST on different models. The correlation increases
when applying CAIRO.
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Figure 11: Religion bias values using BOLD and HolisticBias on different models. The correlation increases when
applying CAIRO.
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Figure 12: The correlation and p-values between fairness metrics using CAIRO compared to the average correlation
across all the available prompt combinations. The correlation is between the values from HolisticBias and BOLD
for gender and race biases. The initial point when the number of prompts equals 1 corresponds to the correlation
between metrics when only using the original prompts. CAIRO fails to result in high correlation due to the absence
of common subgroups targeted by the fairness metrics.
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