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Abstract
We propose PROTLLM, a versatile cross-
modal large language model (LLM) for both
protein-centric and protein-language tasks.
PROTLLM features a unique dynamic protein
mounting mechanism, enabling it to handle
complex inputs where the natural language
text is interspersed with an arbitrary number
of proteins. Besides, we propose the protein-
as-word language modeling approach to train
PROTLLM. By developing a specialized pro-
tein vocabulary, we equip the model with the
capability to predict not just natural language
but also proteins from a vast pool of can-
didates. Additionally, we construct a large-
scale interleaved protein-text dataset, named
InterPT, for pre-training. This dataset com-
prehensively encompasses both (1) structured
data sources like protein annotations and (2)
unstructured data sources like biological re-
search papers, thereby endowing PROTLLM
with crucial knowledge for understanding pro-
teins. We evaluate PROTLLM on classic super-
vised protein-centric tasks and explore its novel
protein-language applications. Experimental
results demonstrate that PROTLLM not only
achieves superior performance against protein-
specialized baselines on protein-centric tasks
but also induces zero-shot and in-context learn-
ing capabilities on protein-language tasks.

1 Introduction

Understanding proteins is essential for unraveling
the mysteries of life and enabling artificial intel-
ligence systems to advance bioscience research
(Wang et al., 2023a). Thanks to the development of
deep learning techniques, neural network models
encompass extensive protein-centric applications,
such as protein-folding prediction (Jumper et al.,
2021), protein-protein interaction analysis (Li et al.,
2018; Su et al., 2023), function prediction (Zhang
et al., 2023a), etc.

*Equal contribution.
†Corresponding author.
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Figure 1: Unlike existing protein representation models
that focus on protein-text pairs or protein-only data,
PROTLLM can handle complex inputs with multiple
proteins interleaved with text, thereby learning crucial
knowledge from scientific papers and supporting diverse
downstream tasks.

Protein representation learning methods typi-
cally employ large-scale pre-training, which learns
unsupervised protein representations on massive
protein sequences with masked language model-
ing (Rives et al., 2021), or autoregressive lan-
guage modeling (Elnaggar et al., 2020). In addi-
tion to protein-centric tasks, recent studies have
attempted to extend protein models to protein-
language scenarios. ProtST (Xu et al., 2023b) inte-
grates textual information into the protein encoder
through multimodal pre-training on protein-text
pairs, achieving zero-shot text-to-protein retrieval.
Fang et al. (2023) introduces an instruction dataset
tailored for the biomolecular domain and investi-
gates how fine-tuned LLM performs on protein-
domain instruction-following tasks, such as func-
tion description generation.

Despite the success of protein representation
methods on specific tasks, developing a model that
excels in both protein-centric and protein-language
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tasks is still under-explored, facing three main
challenges. Firstly, architectures are designed for
particular downstream tasks, making it difficult
to accommodate a wide range of tasks simultane-
ously. Secondly, current methods primarily derive
cross-modal supervision from explicitly annotated
protein-text pairs, which is not scalable to large-
scale pre-training. Lastly, supporting a variable
number of proteins in the input sequence intro-
duces computational uncertainty in each training
step, leading to inefficiencies during pre-training.

In this work, we propose PROTLLM, which
is a versatile LLM for both protein-centric and
protein-language tasks. Instead of designing for
specific tasks, PROTLLM supports complex in-
terleaved protein-text inputs and outputs, which
enables our model to simultaneously handle di-
verse downstream tasks without re-designing task-
specific architecture (see Figure 1 for illustrations).
Specifically, our dynamic protein mounting mecha-
nism enables the model to seamlessly process text
interspersed with an arbitrary number of proteins.
Besides, we propose protein-as-word language
modeling to ensure interleaved protein-text out-
puts. By building a protein vocabulary, PROTLLM
is trained to autoregressively predict words and
proteins from their respective vocabularies.

Additionally, we present a large-scale inter-
leaved protein-text dataset, named InterPT, for
PROTLLM pre-training. InterPT is constructed
from diverse data sources, consisting of both struc-
tured data such as paired protein annotation data,
and unstructured data from biological research pa-
pers, which encourages PROTLLM to harness cru-
cial knowledge from the scientific articles.

We conduct extensive experiments on a wide
range of downstream tasks, ranging from classic
supervised protein-centric tasks to novel protein-
language applications. Experimental results
demonstrate that PROTLLM outperforms special-
ized baselines on protein-centric tasks. PROTLLM
also unlocks the in-context learning capability for
protein-protein interaction prediction, and achieves
zero-shot text-guided functional protein retrieval.

Our contributions are as follows:

• We propose PROTLLM, a versatile cross-
modal LLM for both protein-centric and
protein-language tasks. PROTLLM could pro-
cess complex interleaved protein-text inputs
and outputs, thereby supporting diverse tasks.

• We introduce a large-scale pre-training

dataset, InterPT, interleaving proteins and text
from both structured data sources and unstruc-
tured multi-protein scientific articles.

• We show that PROTLLM achieves superior
results on protein-centric tasks against protein-
specialized baselines, and induces zero-shot
and in-context learning capabilities.

2 Related Work

2.1 Large Language Models
The evolution of LLMs has been a cornerstone in
the field of natural language processing , showcas-
ing extraordinary capabilities across a broad spec-
trum of tasks (Devlin et al., 2018; Raffel et al.,
2020; Brown et al., 2020; OpenAI, 2023; Tou-
vron et al., 2023; Longpre et al., 2023; Chowd-
hery et al., 2022). These models, once thought to
be limited to text-based tasks, have now crossed
boundaries into areas traditionally dominated by
human expertise, including mathematical problem-
solving (Wei et al., 2022; Imani et al., 2023), drug
discovery (Liang et al., 2023; Liu et al., 2023b), and
complex decision making (Yu et al., 2023; Ma et al.,
2023). Recent explorations further extend LLMs’
expertise into the multimodal domain where they
demonstrate significant promise in processing and
generating content from diverse modalities (Huang
et al., 2023; Zhu et al., 2023; Liu et al., 2023a; Zhao
et al., 2023; Wu et al., 2023). Most of these works
focus on aligning pre-trained encoders from various
modalities with LLMs through instruction tuning,
thus equipping LLMs to interpret multimodal in-
puts. In the realm of scientific research, specialized
molecular LLMs have been devised for tasks like
molecular property prediction (Liu et al., 2023c;
Pei et al., 2023), captioning (Fang et al., 2023), and
retrieval (Liu et al., 2023d). Despite these advances,
the progress in protein understanding with LLMs
lags, hindered by the scarcity of comprehensive
datasets for alignment and the absence of efficient
architectures to model protein-language sequences.

2.2 Protein Representation Learning
Current mainstream methods for protein under-
standing tasks have focused on protein representa-
tion learning. Protein language models (PLMs) (El-
naggar et al., 2020; Rives et al., 2021; Meier
et al., 2021; Lin et al., 2022) have marked signif-
icant progress in the area by training the protein
sequence encoders on massive protein sequence
data. Protein structure encoding methods aim to
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learn coarse-grained amino-acid-level representa-
tions (Gligorijević et al., 2021; Fan et al., 2022;
Zhang et al., 2023a; Xu et al., 2023a) or fine-
grained atom-level representations (Hermosilla
et al., 2021; Jing et al., 2021; Zhang et al., 2023b).
Despite the success in protein modeling, protein-
related text data are left unexplored, which con-
tains valuable supervision signals crucial for un-
derstanding proteins. To enhance protein under-
standing with text supervision, OntoProtein (Zhang
et al., 2022a) leverages knowledge graphs, utiliz-
ing gene ontology annotations to implicitly en-
rich protein representation with textual informa-
tion. ProtST (Xu et al., 2023b) integrates textual
information into the protein encoder through multi-
modal pre-training on protein-text pairs, achieving
zero-shot text-to-protein retrieval.

Mol-Instruction (Fang et al., 2023) introduces a
comprehensive instruction dataset specialized for
biomolecules and further fine-tunes LLMs on this
dataset. Similarly, InstructProtein (Wang et al.,
2023b) improves the quality of instruction datasets
by sampling protein-text pairs from a structured
knowledge graph. This line of work focuses on
aligning protein with human language using LLMs.
However, a limitation of these approaches lies in
their direct incorporation of protein sequences into
LLMs as text, leading to suboptimal protein mod-
eling due to the LLMs not being pre-trained on
extensive protein sequence datasets. In contrast,
PROTLLM provides a versatile framework that ex-
cels in both classic protein-centric tasks and novel
protein-text applications.

3 Methods

In this section, we elaborate on our proposed
method, PROTLLM, which is illustrated in Fig-
ure 2. Initially, we detail the model architecture in
Section 3.1. Subsequently, the pre-training strategy
is explained, introducing the concept of protein-
as-word modeling, as outlined in Section 3.2. We
then present the uniquely constructed interleaved
protein-text dataset, InterPT, in Section 3.3. Lastly,
we explore the application of PROTLLM on a vari-
ety of tasks in Section 3.4.

3.1 PROTLLM Framework

Model architecture PROTLLM consists of an
LLM for natural language modeling, a protein
encoder, and cross-modal connectors that con-
nect the protein encoder and the LLM. We use

LLaMA-7b (Touvron et al., 2023) as the backbone
of PROTLLM, which is an autoregressive Trans-
former language model pre-trained on large-scale
natural language data. To make PROTLLM under-
stand protein sequences (i.e., sequences of amino
acid tokens, which are the primary structure of pro-
teins), we employ ProtST (Xu et al., 2023b) as
the protein encoder. ProtST follows the backbone
architecture of ESM-2 (Lin et al., 2022) and intro-
duces an additional two-layer MLP projection head.
Pre-trained on large-scale protein-text pairs with
contrastive learning, ProtST learns protein repre-
sentations that are well-aligned with text. Besides,
we introduce cross-modal connectors that bidirec-
tionally connect the LLM with the protein encoder,
thereby enabling PROTLLM to accept multimodal
inputs and outputs. Specifically, PROTLLM has
two cross-modal connector layers, which are placed
at the input layer and the output layer of the LLM,
respectively. The input-layer connector is a train-
able projection matrix and transforms the output
vectors from the protein representation space to the
LLM representation space. Similarly, the output-
layer connector transforms the LLM output vectors
back to the protein representation space. Signif-
icantly, the output-layer connector also serves as
a prediction head, allowing our model to perform
protein retrieval and multi-choice protein answer-
ing tasks without requiring the LLM to generate
complicated protein names.

Dynamic protein mounting PROTLLM consid-
ers not only structured protein-text paired data but
also free-form interleaved protein-text sequences.
Although the widely used encoder-decoder archi-
tecture can handle paired data, it encounters dif-
ficulties when dealing with interleaved protein-
text inputs with multiple proteins. Therefore, we
propose dynamic protein mounting, which allows
PROTLLM to accept an arbitrary number of pro-
teins as either input. Specifically, given an input
sequence interleaved with proteins and text,

...[text1] [protein1] [text2] [protein2] [text3]...

we do not directly feed the protein sequence to the
LLM, but replace sequences with mount points.

...[text1] <PROT> [mount1] </PROT> [text2] ...

At each mount point, we mount the protein encoder
to the LLM with the cross-modal connector. Ad-
ditionally, these mount points are delineated by
protein tags, signaling to the LLM that it is receiv-
ing protein vector inputs at these positions, rather
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Figure 2: An overview of PROTLLM. The architecture of PROTLLM consists of an autoregressive transformer,
a protein encoder, and cross-modal connectors. With dynamic protein mounting, PROTLLM adeptly handles
free-form interleaved protein-text sequences with an arbitrary number of proteins in the input. PROTLLM is
pre-trained with protein-as-word language modeling that unifies word and protein prediction by constructing a
protein vocabulary.

than text data.

3.2 PROTLLM Pre-Training
Protein-as-word language modeling We intro-
duce the protein-as-word language modeling train-
ing objective, which unifies protein prediction and
word prediction as an autoregressive language mod-
eling task. Consider an input sequence interleaved
with n tokens [x1, x2, ..., xn], where the i-th token
xi represents either a natural language token or a
protein. The protein-as-word language modeling
object is to maximize the likelihood:

argmax
θ

n∑

i=1

log p(xi|x<i;θ), (1)

where p(xi|x<i;θ) is a categorical probability dis-
tribution over a natural language vocabulary when
predicting natural words, or a protein vocabulary
when predicting proteins. The probability is com-
puted by

p(xi|x<i;θ) ={
softmax(h⊤

i ej)j , j ∈ V if xi is word
softmax(h⊤

i Wvk)k, k ∈ Vp if xi is protein
(2)

where hi is the last-layer LLM hidden states of
xi; ej is the word embedding of the word j from
the natural language vocabulary V; W stands for
the output connector matrix, and vk is the protein
embeddings of the protein k from the protein vo-
cabulary Vp. To construct the protein vocabulary,
we collect all protein sequences in the training data.
We then filter out proteins present in the down-
stream test sets to prevent data leakage. Finally,
we utilize the pre-trained protein encoder to extract
protein presentations, resulting in a vocabulary con-
sisting of the 1, 076, 781 proteins. Notably, this
protein vocabulary is fixed during pre-training to
facilitate the learning of cross-modal connectors.
During inference, our ProtLLM can process arbi-
trary protein as both inputs and outputs, even if it
is not part of our pre-established vocabulary.

Pre-training acceleration with protein cache
Although our dynamic protein mounting design
introduces flexibility for the input format, it also
introduces computational uncertainty into the pre-
training process, i.e., the computational cost of
each step can vary significantly with the number
of input proteins. Consequently, the throughput
is limited by the worst case, leading to markedly
reduced training efficiency. To accelerate the pre-
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Data Source Data Type Size

PubMed Multi-protein articles 165, 206
UniProt Annotations 64, 634
STRING Annotations 25, 682
Mol-Instructions Instruction-following data 173, 973

Table 1: Category and statistics of InterPT components.

training, we build a protein cache where we store
all the pre-computed protein vectors encoded by
the protein encoder. With the protein cache, we
eliminate the heavy computational cost of the pro-
tein encoder, thereby accelerating the pre-training
procedure with stable throughput. Besides, we uti-
lize LoRA (Hu et al., 2022) for efficient training.

3.3 InterPT: Interleaving Protein-Text Data

We propose a large-scale interleaved protein-text
multimodal dataset, named InterPT, to pre-train
PROTLLM with comprehensive protein-related
knowledge. This dataset encompasses three types
of data sources, i.e., multi-protein scientific articles,
protein-annotation pairs, and protein instruction-
following data. The statistics of each component
are listed in Table 1.

Multi-protein scientific articles Multi-protein
scientific articles describe complex relationships
among different proteins found in biological re-
search, where each sample could contain multi-
ple proteins. Unlike data presented in structured
formats such as pairs or knowledge graphs, these
articles offer detailed insights in unstructured nat-
ural language. Guided by the recording in the
STRING database (Mering et al., 2003) of multi-
protein interactions and the scientific articles sup-
porting them, we retrieve all involved articles from
the PubMed database (Canese and Weis, 2013),
specifically selecting instances where multiple pro-
teins co-occur within the same paragraph. All pro-
teins in these paragraphs are linked to the UniProt
database (Consortium, 2015) for their amino acid
sequences. Finally, we collect 165K interleaved
protein-text sequences from PubMed articles.

Protein-annotation pairs This data maps indi-
vidual proteins to their textual annotations such
as function descriptions. We integrate two data
sources, i.e., the UniProt database (Consortium,
2015) and the STRING database (Mering et al.,
2003), adding up to 90K protein-annotation pairs.
Given such a pair, we utilize it for two tasks, i.e.,
protein-to-text prediction and text-to-protein pre-

diction, with the probability of 0.8 and 0.2, respec-
tively. Besides, during pre-training, we interleave
the data into longer sequences by concatenating
multiple pairs into a single sequence, which has two
advantages: (1) this operation can bridge the data
length gap across different data sources and reduce
the number of padding tokens, leading to higher
training efficiency; (2) training multiple pairs in
a single sequence encourages the model to obtain
in-context learning capabilities (Gu et al., 2023).

Protein instruction-following data This data is
in the instruction-following style (Ouyang et al.,
2022), typically requiring the model to generate
open-ended text given a protein and an instruction
(Fang et al., 2023). We select the data items of
proteins from the Mol-Instructions dataset (Fang
et al., 2023) and include them into InterPT. Sim-
ilar to the processing of protein-annotation pairs,
we also concatenate multiple instruction-following
data into a single pre-training example, so as to
improve training efficiency and acquire in-context
learning capabilities.

3.4 Applying PROTLLM to Diverse Tasks

Supervised fine-tuning The best practice for
adapting PROTLLM to downstream tasks is super-
vised fine-tuning when training data are available.
Since PROTLLM supports flexible input and out-
put formats, we can simply transform the down-
stream task data into an interleaved format and di-
rectly perform protein-as-word language modeling
for supervised fine-tuning. The input and output
prompt format for each downstream task can be
found in the Appendix A. During fine-tuning, we
also apply the LoRA adapter to the LLM for effi-
cient fine-tuning while preventing the model from
overfitting several proteins in the training set.

In-context learning In-context learning is a
promising capability of LLM, which can adapt the
LLM to specific tasks with a few examples with-
out training the model. PROTLLM can achieve
in-context learning by pretending a few demon-
stration examples. To the best of our knowledge,
PROTLLM is the first protein-language LLM that
is capable of in-context learning.

Instruction-following protein retrieval For an-
other interesting application, PROTLLM can be
programmed to execute protein retrieval with cus-
tomized requirements by following instructions. In
Section 4.3, we show that PROTLLM can well re-
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Model
Pre-training EC GO-BP GO-MF GO-CC PPI

Protein Text AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fmax ACC

DeepFRI ! % 0.546 0.631 0.282 0.399 0.462 0.465 0.363 0.460 -
GearNet ! % 0.892 0.874 0.292 0.490 0.596 0.650 0.226 0.486 73.86
ProtBert ! % 0.859 0.838 0.188 0.279 0.464 0.456 0.234 0.408 77.32
ESM-1b ! % 0.884 0.869 0.332 0.452 0.630 0.659 0.324 0.477 82.22
ESM-2 ! % 0.888 0.874 0.340 0.472 0.643 0.662 0.350 0.472 86.90
OntoProtein ! ! 0.854 0.841 0.284 0.436 0.603 0.631 0.300 0.441 70.42
ProtST ! ! 0.898 0.878 0.342 0.482 0.647 0.668 0.364 0.487 88.19
PROTLLM ! ! 0.874 0.860 0.349 0.503 0.652 0.668 0.469 0.596 89.87

Table 2: Comparative benchmark results on protein-centric tasks. We use AUPR and Fmax on EC and GO prediction
and accuracy (%) on PPI prediction. Bold figures denote the best performance. ‘-’ indicates not applicable.

trieve functional proteins based only on function
descriptions, and it can be further improved by
prepending a one-shot demonstration.

4 Experiments

We evaluate PROTLLM on three types of down-
stream tasks: (1) protein-centric tasks, which
include supervised fine-tuning on conventional
benchmarks for protein understanding; (2) protein-
text in-context learning, where we show the unique
ability of PROTLLM by in-context learning on
protein-protein interaction prediction; (3) text-
guided functional protein retrieval, where we con-
duct a real-world enzyme mining task as a proof-
of-concept study to validate the retrieval capability
of PROTLLM. We present detailed hyperparam-
eters, and prompt templates for pre-training and
fine-tuning in Appendix A.

4.1 Protein-Centric Tasks

Setup Following the settings in PEER bench-
mark (Xu et al., 2022), we adopt three standard
tasks in protein understanding to validate our
method. Enzyme Commission (EC) number pre-
diction (Gligorijević et al., 2021) aims to predict
all possible EC numbers of a protein simultane-
ously, reflecting the chemical reactions it catalyzes.
Gene Ontology (GO) term prediction (Gligori-
jević et al., 2021) extends as a multi-label classi-
fication task, seeking to predict whether a protein
belongs to specific GO terms. The GO benchmark
is categorized into three branches, namely biolog-
ical process (BP), molecular function (MF), and
cellular component (CC). Protein-Protein Inter-
action (PPI) prediction aims to determine whether

two given proteins interact or not. We adopt the hu-
man PPI dataset (Pan et al., 2010) for experiments.

To evaluate performances on multi-label clas-
sification tasks including EC and GO prediction,
we report pair-centric area under precision-recall
curve (AUPR) values and Fmax, a widely used met-
ric in the CAFA challenges (Radivojac et al., 2013).
PPI prediction results are evaluated by mean accu-
racy. These metrics require the soft probability of
each target label. To achieve this, we initially ex-
tract the probabilities of “Yes” for the positive label
and “No” for the negative label, respectively. Then,
these probabilities are normalized via the softmax
function to get the final predicted probabilities.

Baselines We compare PROTLLM with seven
existing protein representation learning methods.
As shown in Table 2, these methods can be catego-
rized into two distinct categories: protein-only ap-
proaches and protein-text learning approaches.
The former encompasses sequence-based models
including ProtBert (Elnaggar et al., 2020), ESM-
1b (Rives et al., 2021), and ESM-2 (Lin et al.,
2022), which are pre-trained using extensive col-
lections of protein sequences, alongside structure-
based models, such as DeepFRI (Gligorijević et al.,
2021), and GearNet (Zhang et al., 2022b). The
latter, protein-text learning approaches, includes
OntoProtein (Zhang et al., 2022a), and ProtST (Xu
et al., 2023b).

Note that Mol-Instructions (Fang et al., 2023)
and InstructProtein (Wang et al., 2023b) also be-
long to the protein-text learning approaches. How-
ever, their methods directly take protein sequences
as human language and tokenize the data using
byte-pair encoding. Contrasting with the protein-
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Figure 3: In-context learning results on human PPI.

as-word strategy in PROTLLM, this exponentially
increases the context length, rendering the evalua-
tion on tasks with extensive label sets, like EC and
GO prediction, or those requiring multiple protein
inputs, such as PPI prediction, impractical for their
approaches.

Results The results are shown in Table 2.
PROTLLM consistently shows competitive or even
superior performance compared to both protein-
only and protein-text approaches across all bench-
marks, indicating the effectiveness of our proposed
framework on conventional close-ended protein un-
derstanding tasks. Remarkably, PROTLLM obtain
0.596 Fmax and 0.469 AUPR on GO-CC, which
outperforms ProtST by a large margin. As depicted
in Section 3.1, PROTLLM directly uses pre-trained
ProtST as the protein encoder, with the key differ-
ence lying in our LLM decoder and pre-training
stage for alignment. By comparing PROTLLM
with ProtST, the overall improvements strongly
highlight the potential benefits of incorporating
richer protein-text information and scaling the size
of the language model.

Moreover, PROTLLM also outperforms two
structure-based models on GO and PPI prediction
despite we only leverage sequence information dur-
ing training. Protein structures encode rich infor-
mation and have direct relations to their functions.
This opens up a promising direction to further incor-
porate protein structure into our framework, which
we leave for future work.

4.2 Unlocking In-Context Learning

In-context learning is the capability that rapidly
adapts the model to specific tasks using only a
few annotated demonstration examples, which is
originally found in autoregressive language mod-
els (Brown et al., 2020) and then is extended to

visual language models (Alayrac et al., 2022). In
this section, we investigate whether PROTLLM can
achieve in-context learning on the human protein-
protein interaction (PPI) prediction task.

Setup We directly evaluate the pre-trained
PROTLLM model on the human PPI task without
updating any parameters. For the k-shot in-context
learning, we randomly sample k examples from the
validation set as the demonstrations and prepend
them to each test sequence. Both the demonstration
example and test example are prompted with the
same template. For example, a one-shot prompted
input is as follows:

Do <PROT> [mount1] </PROT> and <PROT> [mount2] </PROT>
interact with each other? Yes\n Do <PROT> [mount3]
</PROT> and <PROT> [mount4] </PROT> interact with each
other?

The protein sequences of demonstration and test
examples are first encoded by the protein encoder
and then fed to the language model at each mount
point. The final answer is predicted by selecting the
verbalizer, i.e., “Yes” or “No”, with the higher prob-
ability. Besides, to understand how multi-protein
pre-training data from scientific articles improves
PROTLLM, we also evaluate a variant of our model
by removing the multi-protein scientific articles
from the pre-training corpora.

Results Figure 3 presents the in-context learn-
ing performance on human PPI with varying num-
bers of demonstration examples. Our model consis-
tently achieves higher PPI accuracy with an increas-
ing number of demonstration examples, demon-
strating its effective in-context learning capabil-
ity for protein-centric tasks. In comparison, the
model performs drastically worse upon removing
the multi-protein scientific articles, and fails to
learn in context with the 2, 6, and 12 demonstra-
tions. We believe that the in-context learning ca-
pability of our model could empower biologists
to apply it to specialized tasks that lack annotated
data, using minimal examples. Our experiments on
enzyme mining illustrate a tangible application of
in-context learning, as detailed in Section 4.3.

4.3 Text-Guided Functional Protein Retrieval

Setup This experiment aims to study the capa-
bility of PROTLLM to retrieve functional proteins
based on text prompts and demonstrations. For this
purpose, we apply PROTLLM to enzyme mining,
which is a critical stage in enzyme and metabolic
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(a) Lead Enzyme for IsoC5: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 1300 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 7.8 (s%&)
• Vina Energy: -7.8 (kcal/mol)

(b) Lead Enzyme for C3: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 8200 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 46.7 (s%&)
• Vina Energy: -6.8 (kcal/mol)

(c) Lead Enzyme for C5: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 1700 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 4.7 (s%&)
• Vina Energy: -7.3 (kcal/mol)

(d) Lead Enzyme for C8: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 17000 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 10.1 (s%&)
• Vina Energy: -7.0 (kcal/mol)

Figure 4: Top-1 enzyme mining results based on PROTLLM retrieval and AutoDock Vina post-screening. Kcat/KM

and Kcat measure enzyme activity (higher the better). Vina energy measures binding affinity (lower the better).

Reactant Method
Pool Size: 500 Pool Size: 1000

Top-10 Top-20 Top-50 Top-10 Top-20 Top-50

IsoC5
Zero-shot 0.40 0.40 0.40 0.33 0.33 0.33
In-context 0.60 0.80 0.80 0.50 0.67 0.67

C3
Zero-shot 1.0 1.0 1.0 1.0 1.0 1.0
In-context 1.0 1.0 1.0 0.67 0.67 0.67

C5
Zero-shot 0.40 0.40 0.40 0.25 0.25 0.25
In-context 0.60 0.80 0.80 0.38 0.50 0.50

C8
Zero-shot 0.33 0.33 0.50 0.22 0.22 0.33
In-context 0.83 0.83 0.83 0.56 0.56 0.56

Table 3: Performance comparisons between zero-shot
retrieval and in-context learning on enzyme mining.
Top-10, 20 and 50 Recall are reported.

engineering pipelines. In this experiment, we eval-
uate our model on mining carboxylate reductases
that transform various ketoacids into their corre-
sponding aldehydes. Four ketoacid reactants, i.e.,
2-ketoisovaleric acid (IsoC5), pyruvic acid (C3),
2-ketovaleric acid (C5), and 2-ketooctanoic acid
(C8), studied in Mak et al. (2015) are employed for
evaluation.

Using a reported enzyme for IsoC5, ketoiso-
valerate decarboxylase (KIVD) (De La Plaza et al.,
2004), as the query, we first search for a pool of
enzyme candidates by BLASTp (McGinnis and
Madden, 2004), where the pools with the size of
500 and 1000 are respectively tested. We then lever-
age PROTLLM to retrieve active enzymes from the
pool for each reactant in two modes. In the zero-
shot retrieval setting, given the prompt:

Identify the enzymes: {Reactant} → Isobutanal. <PROT>

describing the reaction from reactant (IsoC5, C3,
C5 or C8) to product, PROTLLM generates a pro-
tein embedding at the token <PROT>. Then, we en-
code all the candidate enzymes as embeddings with
the protein encoder. Finally, we utilize this embed-
ding to rank all enzyme candidates by comparing
embedding similarity. For in-context learning, we
further add a one-shot demonstration of carboxy-

late reductase before the prompt above to facilitate
enzyme mining. The demonstration is:

Indentify the enzymes: Oxidizes aldehydes to the
corresponding carboxylic acids with a preference for
aromatic aldehydes. <PROT> [mount] </PROT>

where the “[mount]” token is represented by the
protein embedding of PaoC (Neumann et al., 2009),
a typical carboxylate reductase.

Results In Table 3, we report the recall of ac-
tive enzymes found in Mak et al. (2015) at top
10, 20, and 50 ranked candidates. It is observed
that in-context learning outperforms zero-shot re-
trieval on 18 out of 24 metrics, which verifies that
PROTLLM can learn from a few demonstrations
and improve its enzyme mining performance based
on such knowledge. To study the top-ranked en-
zymes by PROTLLM more in-depth, we employ
AutoDock Vina (Trott and Olson, 2010) to further
screen the top-20 enzymes found by in-context
learning and pick the one with the lowest Vina
energy for visualization. As shown in Figure 4, the
lead enzymes selected in this way are all with good
properties, possessing high enzyme activity (i.e.,
high Kcat/KM and Kcat values measured by Mak
et al. (2015)) and low binding energy measured by
AutoDock Vina. These results altogether prove the
effectiveness of PROTLLM on enzyme mining.

5 Conclusion

In this paper, we present PROTLLM, a versa-
tile LLM designed to tackle both protein-centric
and protein-language tasks. Through dynamic
protein mounting and protein-as-word modeling,
PROTLLM adeptly handles complex interleaved
protein-text data, seamlessly unifying a wide array
of protein tasks via a natural language interface. Be-
sides, we construct a large-scale protein-language
pre-training dataset, called InterPT, which en-
courages the model to learn from diverse data
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sources ranging from structured paired data to un-
structured multi-protein scientific articles. Exten-
sive experiments demonstrate that PROTLLM not
only achieves competitive performance against spe-
cialized baselines across standard protein-centric
benchmarks but also paves the way for exploring
novel protein-language applications.

Limitations

In this paper, we primarily focus on sequence
modeling for protein understanding. Nonetheless,
PROTLLM is a general interface for the inputs in
other modalities. Future research could further ex-
tend PROTLLM to additional modalities, such as
protein structures and molecular graphs, by incor-
porating modality-specific encoders. Besides, we
would like to explore more novel applications of
PROTLLM such as scientific discovery.

Ethics Statement

To the best of our knowledge, the InterPT dataset
has been compiled from publicly available sources,
carefully avoiding the inclusion of sensitive or pri-
vate information. The primary focus of PROTLLM
is to enhance protein understanding through various
downstream tasks, distinguishing it from applica-
tions in dialogue systems. This focus inherently
limits the potential for generating harmful content,
leading to outputs that are inherently more control-
lable and safer. Nevertheless, there remains a risk
that malicious actors could exploit PROTLLM to
spread misinformation or mislead users.
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A Experimental Details

Hyperparameter

Batch size 256
Sequence length 512
Training steps 10K
Optimizer AdamW
Adam β (0.9, 0.999)
Adam ϵ 1× 10−6

Learning rate 2× 10−4

Learning rate schedule Cosine decay
Warmup ratio 0.03
Weight decay 0
LoRA r 32
LoRA a 64
LoRA dropout 0.1
LoRA modules All linear modules

Table 4: Pre-training hyperparameters of PROTLLM.

Pre-training We list the detailed pre-training
hyperparameters of PROTLLM in Table 4.
PROTLLM is pre-trained on 4 NVIDIA A100
GPUs for 10, 000 steps with batch size 256 on the
InterPT dataset described in Table 1. We adopt
LoRA for efficient training, applying LoRA to all
linear models of LLaMA, including [down_proj,
up_proj, q_proj, v_proj, k_proj, o_proj,
gate_proj]. Notice that only the LoRA weights
and the cross-modal connector modules are up-
dated during training.

Fine-tuning PROTLLM is further fine-tuned on
various downstream tasks including EC number
prediction, GO term prediction, and PPI prediction.
Table 5 presents the fine-tuning hyperparameters.
We apply LoRA for efficient tuning of the language
model weights. The weights of the protein en-
coder are frozen for the PPI task, and updated for
the other tasks, with a learning rate of 2 × 10−5.
The handcrafted prompt templates for each task are
shown in Table 6. At each [mount] position, we en-
code the protein sequences with the protein encoder
and feed the resulting protein embedding to the lan-
guage model. For multilabel classification tasks,
i.e., GO and EC, we convert the tasks to binary
classification tasks for each label. We fill [name]
with the label name, and fill [description] with
text descriptions associated with this label. Besides,
we utilize a resampling strategy during fine-tuning
to ensure a uniform distribution of positive and
negative labels.
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Hyperparameter EC GO-BP GO-MF GO-CC PPI

Batch size 128 128 128 128 16
Training steps 50K 50K 50K 10K 10K
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Learning rate schedule Cosine decay Cosine decay Cosine decay Cosine decay Cosine decay
Warmup ratio 0.03 0.03 0.03 0.03 0
Weight decay 0 0 0 0 0
LoRA r 128 128 128 128 32
LoRA a 256 256 256 256 64
LoRA dropout 0.1 0.1 0.1 0.1 0.1
LoRA modules All linear All linear All linear All linear All linear
Update protein encoder Yes Yes Yes Yes No

Table 5: Fine-tuning hyperparameters of PROTLLM on various downstream tasks.

Task Prompt template Verbalizer

GO <PROT> [mount] </PROT> Does the protein belong to [name], which is [description]? Yes/No
EC <PROT> [mount] </PROT> Does the protein catalyze [name], which is [description]? Yes/No
PPI Do <PROT> [mount1] </PROT> and <PROT> [mount2] </PROT> interact with each other? Yes/No

Table 6: Prompt templates for each task.
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