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Abstract

A major impediment to the advancement
of sign language translation (SLT) is data
scarcity. Much of the sign language data cur-
rently available on the web cannot be used
for training supervised models due to the lack
of aligned captions. Furthermore, scaling
SLT using large-scale web-scraped datasets
bears privacy risks due to the presence of
biometric information, which the responsible
development of SLT technologies should ac-
count for. In this work, we propose a two-
stage framework for privacy-aware SLT at
scale that addresses both of these issues. We
introduce SSVP-SLT, which leverages self-
supervised video pretraining on anonymized
and unannotated videos, followed by super-
vised SLT finetuning on a curated parallel
dataset. SSVP-SLT achieves state-of-the-art
finetuned and zero-shot gloss-free SLT per-
formance on the How2Sign dataset, outper-
forming the strongest respective baselines by
over 3 BLEU-4. Based on controlled experi-
ments, we further discuss the advantages and
limitations of self-supervised pretraining and
anonymization via facial obfuscation for SLT.1

1 Introduction

Used by millions worldwide, sign languages play
a crucial role in facilitating communication for
many d/Deaf and hard-of-hearing individuals. Vi-
sual in nature, these languages make use of the
co-articulated features of hands (i.e., finger posi-
tioning, shape, movement, palm orientation, etc.),
body postures, gaze, mouth gestures, mouthings
and facial expressions to convey meaning (Stokoe,
1980). Globally, there are more than 300 sign
languages, each with their own grammar and vo-
cabulary.2 American Sign Language (ASL) alone

1Code and data are available at https://github.com/
facebookresearch/ssvp slt.

2
https://www.un.org/en/observances/

sign-languages-day

STAGE I. II.

DATA
SCALE Large Smaller
SOURCE Web-mined Hand-curated
ANNOTATED ✗ ✓

ANONYMIZED ✓ ✓/ ✗
(with explicit consent)

TRAINING Self-supervised Supervised

OUTPUT Pretrained model Translations

Table 1: Our proposed generic, scalable and privacy-
aware SLT framework. We make no assumptions about
model architecture and anonymization method.

is estimated to have more than half a million na-
tive users, ranking it among the most commonly
used languages in the United States (Mitchell and
Young, 2022).

Despite the prevalence of sign languages, they
are still under-served by translation technology.
Besides under-investment (Yin et al., 2021) and
the inherent difficulty of SLT,3 another key expla-
nation for this imbalance is the lack of sufficiently
large, clean, and labeled parallel corpora. Current
state-of-the-art SLT systems require detailed and
time aligned annotations (Zhou et al., 2023; Uthus
et al., 2023), which is not scalable, as annotating
sign language data is a labour intensive task and
can only be done by proficient signers.

We argue that a promising solution to SLT’s
data scarcity is to utilize publicly available unan-
notated sign language data.4 In other domains of
computer vision and NLP, a common practice is to
pretrain on large-scale unannotated web datasets
and later finetune on curated, task-specific datasets
(Devlin et al., 2019; Radford et al., 2018, 2019;
Raffel et al., 2020; He et al., 2022). This practice is
largely unexplored in the SLT domain and comes
with additional challenges. In particular, moving

3Results of the WMT 2023 SLT task evince this difficulty;
the best system only achieved ∼1 BLEU (Müller et al., 2023).

4For example, Uthus et al. (2023) filtered their Youtube-
ASL dataset from ∼88K to 11K videos based largely on the
availability and quality of English captions.
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to large-scale sign language processing makes it
increasingly difficult to control the composition of
the training data. Because sign language videos
typically feature faces and upper bodies and thus
are biometrically identifying, such research may
exacerbate privacy risks. Hence, developing sign
language technologies responsibly requires us to
account for these risks and explore techniques to
protect privacy.

In this work, we study the effectiveness of self-
supervised video pretraining for SLT, under con-
sideration of the aforementioned privacy risks.
We first propose a generic, scalable and privacy-
aware two-stage framework for SLT, summarized
in Table 1. We introduce SSVP-SLT (Self-
Supervised Video Pretraining for Sign Language
Translation), an implementation of this framework
consisting of two or optionally three stages: pre-
training a continuous sign language encoder via
masked autoencoding (MAE; He et al., 2022) on
anonymized video, then optionally bridging the
modality gap via CLIP-style video-text pretrain-
ing (Radford et al., 2021), and finally training an
SLT system via supervised finetuning using ex-
tracted features from the pretrained model. Our
best performing models achieve 15.5 BLEU fine-
tuned and 7.1 BLEU zero-shot on the How2Sign
dataset (Duarte et al., 2021), surpassing SOTA in
both settings by over 3 BLEU while using data
anonymized via facial obfuscation. We also in-
troduce a new ASL-to-English SLT benchmark
dataset, DailyMoth-70h, consisting of ∼70h of
continuous signing in native ASL. We then eval-
uate the downstream performance impact and dis-
cuss the benefits and limitations of facial blurring
to achieve anonymization. Through controlled ab-
lation studies of SSVP-SLT, we identify what fac-
tors contribute to a strong pretraining and finetun-
ing recipe. We conclude by discussing opportuni-
ties and challenges of self-supervised pretraining
for sign language processing.

2 Background and Related Work

Gloss-free SLT Glosses are a way of represent-
ing individual signs into a written form. Being
monotonically aligned to signs, they can be a use-
ful medium between sign and spoken languages.
Most SLT approaches to date rely on them (Chen
et al., 2022a,b; Zhang et al., 2023). The task
of predicting glosses from continuous signing is
typically performed via gloss supervision either

jointly or in a cascaded approach with supervised
SLT finetuning (Camgöz et al., 2018, 2020).

However, glosses are also considered an incom-
plete and inaccurate representation of sign lan-
guage (Camgöz et al., 2020; Müller et al., 2023).
Furthermore gloss annotation is a labour intensive
task. Due to these constraints, there is a growing
body of research on gloss-free SLT. Most such ap-
proaches incorporate techniques aimed at reduc-
ing the modality gap, such as training the visual
encoder via sign spotting (Tarrés et al., 2023; Shi
et al., 2022),5 adding inductive bias in the atten-
tion mechanism (Yin et al., 2023), using concep-
tual anchor words (Lin et al., 2023), or performing
visual-language pretraining (Zhou et al., 2023).
Uthus et al. (2023) also benefit from a pretrained
text model (T5; Raffel et al., 2020). Similar to
Zhou et al. (2023), we also leverage language su-
pervision to reduce the modality gap, albeit in con-
junction with self-supervised video pretraining.

Sign Language Video Anonymization Sign
language videos typically feature signers’ faces,
which convey essential linguistic information.
However, in virtual domains, particularly in spaces
involving the discussion of sensitive topics, expos-
ing one’s face (and identity) may lead to various
forms of personal risks. Such exposures could
even lead to harm associated with professional
or insurance discrimination. For these reasons,
the d/Deaf and hard-of-hearing community has
long expressed interest in anonymization and pri-
vacy protection techniques for sign language con-
tent (Lee et al., 2021), and sign language video
anonymization has, in recent years, become an ac-
tive area of research (Isard, 2020; Xia et al., 2024).

For general-domain images and videos, simple
anonymization techniques such as facial obfusca-
tion via overlaying or blurring are widely used and
accepted (Frome et al., 2009; Yang et al., 2022).
In the sign language domain, such techniques may
be inadequate due to the loss of information in
the facial region (Lee et al., 2021). More specif-
ically, in signed language, non-manual features
such as mouthing, eyebrow and head movements
are used extensively to enrich grammar. Certain
signs with similar manual features are only disam-
biguated through mouth morphemes. Moreover,

5While Tarrés et al. (2023) do not explicitly mention the
use of sign spotting, they rely on features extracted from an
I3D model (Carreira and Zisserman, 2017) by Duarte et al.
(2022), who used an iterative sign spotting technique.
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TargetMasked Input Input
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“A two-year old cat 
named Willow”

Target Translation

Transfer parameters

SignHiera
Encoder ❄
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I. Self-supervised Video Pretraining (MAE) II. Supervised Sign Language Translation

Figure 1: Overview of our two-stage SSVP-SLT method. The first stage consists of training a SignHiera encoder
via masked autoencoding (MAE) on blurred video frames. In the second stage, a pretrained T5 model is finetuned
for SLT while the pretrained SignHiera is kept frozen (❄). The input video in the second stage can be unblurred.

facial expressions are often used to indicate em-
phasis, negation, a question, etc. (Baker-Shenk,
1985; Valli and Lucas, 2000; Neidle et al., 2000).

Recent work has focused on anonymizing sign
language content via avatars (Tze et al., 2022;
Lee et al., 2021) and transferred or synthetic hu-
man appearances (Saunders et al., 2021; Xia et al.,
2022, 2024). While promising, these approaches
are nascent and we are unaware of studies that de-
termine to what extent models can learn to recover
or disambiguate obfuscated linguistic information
from context. That being said, human studies sug-
gest that signers struggle to comprehend content
anonymized in such a way (Lee et al., 2021).

Lacking an obvious alternative, in this work
we return to the relatively straightforward tech-
nique of facial blurring. Despite its limitations,
we demonstrate that blurring can raise privacy
protection with little performance degradation.6

This, we argue, can facilitate large-scale video
anonymization when applied to publicly available
sign language data.

Masked Autoencoding for Video and Beyond
Following its success as a self-supervised learn-
ing paradigm in the image domain (He et al.,
2022), MAE has been widely applied in other ar-
eas, including audio (Huang et al., 2022), lan-
guage (Rust et al., 2023), and video (Feichten-
hofer et al., 2022; Tong et al., 2022; Wang et al.,
2023). Considering that MAEs have been shown
to be capable of acquiring both language and ba-
sic video understanding from pixels alone, it is
conceivable that high-quality sign language rep-
resentations can be learned directly from RGB
video data via MAE, given enough data. Recently,
Sandoval-Castaneda et al. (2023) explored MAE
among other self-supervised learning techniques
in the context of isolated sign language recogni-

6In Appendix A we discuss issues with pose landmarks,
often promoted as a privacy-preserving alternative to video.

tion (ISLR) and found it to be highly useful. MAE
has, however, not yet been successfully applied to
SLT. In SLT, videos are much longer, and learn-
ing high-quality representations requires models
to capture long-range spatiotemporal dependen-
cies. Our usage of MAE, or self-supervised pre-
training in general, therefore stands in contrast to
recent SLT methods, gloss-based and gloss-free
methods alike, which instead fully rely on su-
pervised training that requires annotated captions
(Zhou et al., 2023; Tarrés et al., 2023; Lin et al.,
2023; Uthus et al., 2023).

3 Generic Framework

We first outline a generic, scalable and privacy-
aware two-stage transfer learning framework for
SLT (See Table 1).

In Stage I, we train a model, with the goal to
learn high-quality continuous sign language rep-
resentations, via self-supervised learning. The
data used at this stage is always anonymized. We
make no assumptions on how the data may be
anonymized, i.e. face blurring as discussed in §2,
or more sophisticated methods such as using syn-
thetic appearances.

In Stage II, we finetune the model from the first
stage in a supervised manner using a smaller and
hand-curated parallel dataset. Ideally, the fine-
tuning dataset, being manageable in size, can be
unanonymized after gaining explicit consent from
signers in the data to minimize information loss.

4 Method

The base implementation of our framework is de-
signed as a two-step approach, termed SSVP-SLT.
We provide a high-level overview in Fig. 1.

Self-Supervised Video Pretraining (MAE) We
first aimed to pretrain a capable sign language
encoder on video data alone—no gloss, pseudo-
gloss, or spoken-language text annotations—
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allowing us to leverage large amounts of unanno-
tated sign language video in the future, alleviating
the data scarcity issue in SLT training.

Our sign video encoder, SignHiera, builds on
Hiera (Ryali et al., 2023), a vision transformer
that combines a hierarchical architecture, shown
to be crucial for learning phonetically meaningful
sign representations (Sandoval-Castaneda et al.,
2023) with masked autoencoding (MAE), a widely
used self-supervised learning paradigm (He et al.,
2022). Its hierarchical architecture also makes Hi-
era more efficient to train than other MAE-based
video transformers such as VideoMAE (Tong
et al., 2022; Wang et al., 2023) or MAE-ST (Fe-
ichtenhofer et al., 2022).

Hiera embeds a video into a sequence of spatio-
temporal tokens. A large percentage of tokens is
randomly masked, while the rest is passed through
a hierarchical transformer stack with several pool-
ing operations. The decoder receives fused multi-
scale features extracted before each pooling oper-
ation and processes them via a lightweight trans-
former stack. A final linear projection yields pixel
logits. The loss is computed as the normalized
mean squared error between the original and pre-
dicted pixel values of the masked tokens.

SignHiera is initialized from the original Hiera-
Base-16×224 checkpoint pretrained on Kinetics-
400 (Kay et al., 2017). In order to capture longer-
range spatio-temporal dependencies in signed ut-
terances, we increased the clip length from 16
to 128 video frames, leading to an 8× sequence
length, and accordingly resized and reinitialized
the position embeddings. We further added atten-
tion masking to accommodate shorter videos with
temporal padding and added a third Q-pooling op-
eration after the last encoder stage to save GPU
memory. We trained with a masking ratio of 0.9.

Supervised SLT Finetuning The translation
network is an encoder-decoder transformer model
(Vaswani et al., 2017). Our default configura-
tion uses a pretrained T5-v1.1 (Raffel et al., 2020;
Shazeer, 2020), following Uthus et al. (2023). We
also experimented with BART (Lewis et al., 2020)
and Tarrés et al. (2023)’s setup, training a ∼10M
parameter transformer from scratch.

The only difference from a text transformer is
that our translation network takes in video fea-
tures extracted from the pretrained SignHiera. We
used SignHiera’s final intermediate representa-

tions, which are of size RB×T
2
×H

32
×W

32
×D, where

B is the batch size, T=128, H=W=224 is the in-
put video size, and D=768 is the feature size. We
mean-pooled over the spatial dimensions to obtain

feature vectors of size RB×T
2
×D. Videos shorter

than 128 frames were padded for encoding, and
the padding was then removed from the extracted
features. For longer videos, we used a sliding
window with stride T

2
and concatenated the result-

ing features. A linear projection Wproj ∈ RD×D′

mapped the extracted features to a sequence of size

RB×S×D′

, with S being the sequence length of the
extracted features and D

′ the transformer’s hidden
size. This sequence was processed by the trans-
former as usual (Vaswani et al., 2017).

“The cat is named 
after Jill's hometown 

of Willow Grove, 
Pennsylvania.”
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Encoder

ViT
Decoder
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V1• T1 V2• T1 … VN• T1
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Figure 2: Overview of our LSP extension.

Adding Language-supervised Pretraining We
also experimented with extending SSVP-SLT with
a language-supervised pretraining (LSP) step to
bridge the modality gap between the input videos
and text translations. Bridging this gap may im-
prove gloss-free SLT performance, as discussed
in §2. In what follows, we refer to SSVP-SLT
with an additional LSP stage as SSVP-SLT-LSP.
The LSP stage fits in between the self-supervised
MAE pretraining and the supervised SLT finetun-
ing stage. Since language supervision requires an-
notations, the LSP stage should be considered a
part of stage II in our generic framework.

Our LSP approach is illustrated in Figure 2.
We first initialized a CLIP model (Radford et al.,
2021) with our MAE-pretrained SignHiera en-
coder as the vision tower and a pretrained T5-
v1.1 encoder as the text tower. We then jointly
trained the CLIP model via contrastive video-text
pretraining and the SignHiera model via MAE.
The goal is to help the SignHiera encoder, which
is involved in both tasks, learn strong continu-
ous sign representations grounded in the target

8627



modality (text). The videos were masked with a
90% ratio even for computing the contrastive loss,
which is similar to FLIP (Li et al., 2023), and en-
abled end-to-end training by drastically reducing
the memory footprint. The two losses (MAE and
contrastive) were balanced via GradNorm (Chen
et al., 2018), which helped stabilize training, com-
pared to using fixed loss weights.7

5 Experimental Setup

5.1 Datasets
Youtube-ASL (YT) We used Youtube-ASL
(Uthus et al., 2023), the largest available ASL
training dataset with ∼1000h of in-the-wild video
and over 2500 signers, both during pretraining
and supervised finetuning.8 We used a version in
which all signers’ faces are blurred for privacy.

How2Sign (H2S) We also used How2Sign
(Duarte et al., 2021), an ASL dataset with ∼80h
of video and nine different signers in a green
screen studio setting, for pretraining, finetuning,
and downstream evaluation of our SLT models.
Again, we used a version with blurred faces only.

DailyMoth-70h To isolate the impact of face
blurring during pretraining and finetuning on SLT
performance, we relied on a new dataset, which
we name DailyMoth-70h. This dataset con-
tains over 70h of video of a single signer from
the ASL news page TheDailyMoth and was ob-
tained through a license agreement with TheDaily-
Moth’s host.9 We used both unblurred and blurred
dataset versions and report dataset statistics in Ap-
pendix B.

5.2 Training and Evaluation Protocols
We briefly describe our training and evaluation
protocols. The full configurations for pretraining
and SLT training are listed in Appendix C.1.

Face blurring We used an internal face blur-
ring software and ensured its reliability on the
YT and H2S datasets via a combination of auto-
matic and manual verification techniques. Exam-
ple frames sampled from two blurred videos from

7In contrast to Zhou et al. (2023), we did not jointly train
the text decoder as doing so did not improve performance in
preliminary experiments and led to training instabilities.

8For the lack of a readily available larger, unannotated
dataset, Youtube-ASL fits both dimensions of our framework:
the large, publicly-available, unannotated dataset and the cu-
rated, parallel dataset.

9
https://www.dailymoth.com/

the DailyMoth-70h data are shown in Appendix
Figure 5.

MAE pretraining We largely follow the Hiera
pretraining recipe from Ryali et al. (2023). In
our default configuration, we trained for 800 ef-
fective epochs (accounting for repeated sampling
as in Feichtenhofer et al. (2022)) with the AdamW
optimizer (Kingma and Ba, 2015; Loshchilov and
Hutter, 2019). The learning rate was set to 8e−4
with linear warmup over 120 epochs and cosine
decay to 1e−5. The batch size was 2 × 128, with
2 being the repeated sampling factor. Similar to
Zhou et al. (2023), we employed video data aug-
mentation via random cropping, horizontal flip-
ping, and RandAug (Cubuk et al., 2020). We used
a 128 × 2 temporal sampling strategy, i.e., sam-
pling 128 frames with a stride of 2, which fully
accommodates ∼85–95% of videos in the data.

SLT finetuning When finetuning only on
How2Sign or DailyMoth-70h, we closely fol-
lowed the setup of Tarrés et al. (2023), training a
∼10M parameters transformer from scratch; see
Appendix C.1 for more details. For How2Sign,
we reused their lowercase unigram tokenizer
(vocab size 7K). For DailyMoth-70h, we trained
a cased tokenizer (unigram, 7K vocab size),
which we found to work better due to the large
proportion of named entities in the data.

When finetuning on Youtube-ASL, as we
needed a model with more capacity we relied on
a pretrained T5-v1.1 with default tokenizer, fol-
lowing Uthus et al. (2023). We trained for up to
100 epochs with early stopping, batch size 512
and AdamW with peak rate 5e−4, linear warmup
over two epochs and cosine decay to 1e−7. We
used dropout of 0.3 and 0.2 label smoothing in the
cross-entropy loss. We did not use video data aug-
mentation unless specified otherwise.

Language-supervised pretraining We per-
formed 200 epochs of LSP with a batch size of
512 on top of 600 epochs of MAE-only pretrain-
ing. We did not use repeated sampling, which is
incompatible with the contrastive loss. We again
used AdamW, warming up to a learning rate of
1e−4 over ten epochs, followed by cosine decay
to 1e−6. The GradNorm optimizer has a one
epoch warmup, a peak learning rate of 1e−2, and
decays to 1e−4. Data augmentation and temporal
sampling are the same as for MAE pretraining.
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METHOD BLUR FT DATA BLEU-1 BLEU-2 BLEU-3 BLEU ROUGE-L BLEURT

Baselines
Lin et al. (2023) ✗ H2S 14.9 7.3 3.9 2.2 12.6 31.7
Tarrés et al. (2023) ✗ H2S 34.0 19.3 12.2 8.0 — —

Uthus et al. (2023) ✗

H2S 15.0 5.1 2.3 1.2 — 30.0
YT 20.9 10.4 6.1 4.0 — 35.0
YT + H2S 36.3 23.0 16.1 11.9 — 44.8
YT → H2S 37.8 24.1 16.9 12.4 — 46.6

Ours
SSVP-SLT H2S

800 ✓ H2S 30.2 16.7 10.5 7.0 25.7 39.3

SSVP-SLT YT
800 ✓

H2S 38.1 23.7 16.3 11.7 33.8 44.2
YT 29.2 16.6 10.7 7.1 28.3 41.8
YT + H2S 41.6 27.2 19.3 14.3 36.8 48.6
YT → H2S 41.9 27.7 19.8 14.7 37.8 49.3

SSVP-SLT YT+H2S
800 ✓

H2S 38.9 24.1 16.4 11.6 34.0 44.5
YT 29.1 17.0 11.1 7.5 28.6 41.6
YT + H2S 41.8 27.4 19.5 14.3 36.9 48.9
YT → H2S 41.8 27.4 19.6 14.6 37.7 49.0

SSVP-SLT-LSP YT+H2S
600→200 ✓ YT + H2S 43.2 28.8 20.8 15.5 38.4 49.6

Table 2: How2Sign test performance of SSVP-SLT in different pretraining configurations compared to baselines.
The BLUR column denotes whether faces in the train and eval data are blurred. FT DATA indicates the finetuning
configuration; respectively, YT+H2S and YT→H2S refer to training on the two datasets jointly or consecutively.

Evaluation We used beam search with 5 beams
and no length penality. We evaluated every epoch
when finetuning on How2Sign or Dailymoth-70h
and every 500 steps for Youtube-ASL. We kept
the checkpoint with the highest validation BLEU-
4 and evaluated it on the respective test set.

Notation Below, we use superscript and sub-
script to indicate the pretraining dataset and num-
ber of epochs, respectively. For instance, SSVP-
SLT YT+H2S

800 refers to 800 epochs of MAE pretrain-
ing on Youtube-ASL and How2Sign. For SSVP-
SLT-LSP, 600→200 denotes 600 epochs of MAE
pretraining followed by 200 epochs of LSP.

5.3 Baselines

Lin et al. (2023) propose to bridge the visual and
text modalities via contrastive anchoring of en-
coded visual features to embeddings of concep-
tual words in the target sequence. Tarrés et al.
(2023) is the SOTA on How2Sign without addi-
tional SLT data, training a 6+3 layer transformer
from scratch on features from an I3D model (Car-
reira and Zisserman, 2017). The I3D model was
first pretrained on Kinetics (Carreira and Zisser-
man, 2017) and BOBSL (Albanie et al., 2021), and
finetuned on How2Sign for sign language recogni-
tion using annotations generated via iterative sign
spotting (Duarte et al., 2022). Uthus et al. (2023)

is the current SOTA on How2Sign, and finetunes
a pretrained T5-v1.1-Base model for SLT directly
on pose landmarks extracted from YouTube-ASL
and How2Sign videos.

5.4 Evaluation Measures

We report BLEU via SacreBLEU (Papineni et al.,
2002; Post, 2018).10 We also report ROUGE-L
(Lin, 2004) and BLEURT (Sellam et al., 2020)
from the BLEURT-20 checkpoint, which has been
shown to correlate well with human judgments.

6 Results and Discussion

Comparison against the state-of-the-art We
present our main results in Table 2. Our best
models significantly improve over the previous
12.4 BLEU state-of-the-art by Uthus et al. (2023).
SSVP-SLT achieves 14.7 and 14.6 BLEU when
pretraining on YT and YT+H2S respectively.
Our best overall model, utilizing SSVP-SLT-LSP,
achieves 15.5 BLEU, a 3.1 point improvement
over the baseline. When pretraining and finetun-
ing on YT only, we also observe a 3.1 BLEU im-
provement (4.0 vs. 7.1) over the previous SOTA
in the zero-shot setting. These results demonstrate

10
nrefs:1|case:mixed|

eff:no|tok:13a|smooth:exp|version:2.3.1
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the overall effectiveness of SSVP-SLT and, more
broadly, self-supervised pretraining for SLT.

Pretraining on YT+H2S performs almost the
same as training on YT only, with the YT-only
models even sometimes performing best. Given
the distributional gap between the datasets (in-the-
wild YT vs. studio H2S video) and the fact that the
YT+H2S models consumed more data, this find-
ing is somewhat surprising. While this may be due
in part to randomness in the training dynamics,
it could also mean that sufficient finetuning can
compensate for not accessing the H2S data at pre-
training, presumably because the pretraining set is
sufficiently large and diverse. This encouraging
result suggests that we can pretrain on large data
independently of knowing what our finetuning and
inference dataset will be—a crucial requirement
for practical SLT applications.

We find that YT data is beneficial both for pre-
training and finetuning, which emphasizes the im-
portance of training on large and diverse data and
suggests that we can expect further gains from
scaling to large public unannotated video.

Finally, we find that bridging the modality gap
via language-supervised pretraining yields a 1.2
BLEU improvement over its MAE-only counter-
part. Given enough annotated data, the technique
can be employed independently of self-supervised
pretraining at little extra cost.

BLUR BLEU ROUGE-L BLEURTPRETRAIN SLT

✗ ✗ 28.8 50.9 51.7
✗ ✓ 28.1 50.6 51.4
✓ ✗ 28.2 50.3 51.0
✓ ✓ 27.5 49.6 50.4

Table 3: Performance on unblurred test data for SSVP-
SLT trained and evaluated on DailyMoth-70h with or
without facial blurring during pretraining and SLT.

What’s the effect of blurring? We isolate the
impact of facial obfuscation via blurring on SLT
performance by training SSVP-SLT models on
DailyMoth-70h with and without blurring during
pretraining and SLT training. We report the re-
sults in Table 3. As expected, performance is best
when not blurring (28.8 BLEU) and worst when
blurring at finetuning time (28.1 and 27.5 BLEU).
Crucially, some performance can be recovered af-
ter pretraining on blurred data when performing
SLT on unblurred data (28.2 BLEU), validating

our proposed framework (see Table 1).11 This
means we can pretrain in a privacy-aware manner
without sacrificing too much performance.
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Figure 3: How2Sign test BLEU of SSVP-SLT af-
ter pretraining on YouTube-ASL and How2Sign or
How2Sign only and finetuning on the same data.

How long should you pretrain? The sign lan-
guage MAE task is intricate. The model first needs
to abstract away surface-level information such as
background and signer appearance. It then needs
to implicitly acquire an understanding of ASL,
capturing long-range dependencies in the video. It
is therefore worth investigating basic scaling prop-
erties. In Figure 3, we show downstream SLT per-
formance over the course of pretraining. Similar to
Ryali et al. (2023) and He et al. (2022), we observe
consistent downstream improvements as pretrain-
ing progresses, suggesting that the models are not
overfitting to the training data even after extensive
pretraining. These results underscore the task’s ef-
fectiveness and indicate that further scaling would
likely yield additional gains.

CLIP
SIZE

PRETRAINING
EPOCHS

BLEU ROUGE-L BLEURT

H2S
128 800 7.0 25.7 39.3
128 100 2.3 14.3 33.6
16 800 5.0 20.2 36.4

YT + H2S
128 800 14.3 36.9 48.9
128 100 12.5 34.2 46.1
16 800 10.4 31.7 44.3

Table 4: How2Sign test performance of SSVP-SLT
when pretraining on (YouTube-ASL and) How2Sign
with a clip size of 16 versus 128 video frames.

11We hypothesize that even more performance could be re-
covered if the SignHiera video encoder was unfrozen during
SLT training, allowing adaptation to the facial information.
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Is encoding longer clips necessary? Increasing
clip length is costly due to the poor scaling of
global attention, raising the question of whether
encoding longer clips is needed. Our results in-
dicate that the answer is yes. Table 4 compares
the performance of the original 16-frame Hiera
with our 128-frame SignHiera. While 16-frame
Hiera achieves non-trivial performance after 800
epochs, it is substantially outperformed by 800
epoch SignHiera (7.0 vs 5.0 BLEU for H2S and
14.3 vs 10.4 BLEU for YT+H2S). This may be
partially explained by the fact that SignHiera sees
up to 8× as much data every step. However, we
also see that 800-epoch 16-frame Hiera lags far
behind even a 100-epoch SignHiera (which has
seen roughly the same number of tokens) when
training on a large dataset (12.5 vs 10.4 BLEU
in the YT+H2S setting). When training on less
data (H2S), 16-frame Hiera is still worse than
400-epoch SignHiera (5.39 vs 5.0 BLEU, see Fig-
ure 3). Overall, this suggests that certain informa-
tion cannot easily be acquired from shorter clips.

MODEL PARAM PT BLEU ROUGE-L BLEURT

BART 140M ✗ 14.0 36.8 48.3
✓ 13.5 36.2 48.1

T5-v1.1 248M ✗ 11.6 35.0 46.1
✓ 14.3 36.9 48.9

Table 5: How2Sign test performance of SSVP-
SLT YT+H2S

800 when finetuning BART and T5, initialized
randomly (PT = ✗) or from the pretrained model (✓).

How to choose the text model? We investigate
how the architecture and initialization of the text
transformer affects performance. Table 5 com-
pares pretrained and randomly initialized BART
(Lewis et al., 2020), the English monolingual
counterpart to mBART (Liu et al., 2020), which
has previously been successfully adapted for Ger-
man and Chinese sign languages (De Coster and
Dambre, 2022; Chen et al., 2022a; Zhou et al.,
2023), and T5-v1.1 as used by Uthus et al. (2023).

Overall, T5 outperforms BART, possibly due
to larger capacity, but the gap is small. While
it is worse to finetune a randomly initialized T5
model compared to the pretrained one (corroborat-
ing findings by Uthus et al. (2023)), for BART we
find the opposite result. We conclude that whether
text pretraining is helpful needs to be evaluated on
a case-by-case basis. It may be worth investigat-
ing in the future whether an additional pretraining

or finetuning step may lead to better adaptation of
the text model to sign language.

AUG BLEU ROUGE-L BLEURT

✗ 14.3 36.9 48.9
✓ 14.7 37.2 49.0

Table 6: How2Sign test performance of SSVP-
SLT YT+H2S

800 with and without finetuning augmentation.

Should we augment data at finetuning? Aug-
mentation such as flipping, cropping, and Ran-
dAug may improve generalization, but it comes
at a high storage cost at finetuning time, as the
video features are extracted offline. Is it worth
the cost? We compared using 60 epochs of aug-
mented videos (a 60-fold increase in storage) with
not using any augmentation. The results in Table 6
show that using augmentation yields a reasonable
0.4 BLEU gain, suggesting that augmention can
be useful when storage is not a major concern.

INITIALIZATION MAE CLIP BLEU ROUGE-L BLEURT

Hiera K400
800 ✗ ✓ 2.1 14.9 35.0

SSVP-SLT YT+H2S
600

✗ ✓ 11.0 32.1 44.7
✓ ✗ 14.3 36.9 48.9
✓ ✓ 15.5 38.4 49.6

Table 7: How2Sign test performance when including
(✓) or removing (✗) the MAE and CLIP objectives
and pretraining from the original Hiera K400

800 or SSVP-
SLT YT+H2S

600 checkpoint for 200 epochs on YT+H2S,
followed by finetuning on the same data.

Are both pretraining objectives necessary? In
§6, we saw that language-supervised video-text
pretraining is highly effective when combined
with MAE. Are both necessary? We compared
pretraining for 200 epochs with either and both
objectives, initializing from a 600-epoch SSVP-
SLT checkpoint, and also performed 200 epochs of
CLIP-only pretraining from the original pretrained
Hiera. The results in Table 7 show that removing
either objective results in a performance drop. The
drop is larger when removing MAE, indicating its
continued importance after 600 epochs of MAE-
only training. Initializing from the original Hiera
results in very poor performance (2.1 BLEU), sug-
gesting that language-supervised pretraining alone
is not useful in our setting. Considering that lan-
guage supervision has previously been shown to
be effective in isolation (Zhou et al., 2023), this
may be due to the FLIP-style masking and the fact
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that we do not jointly pretrain T5. We also empha-
size that language-supervised pretraining falls un-
der stage II of our framework as it requires annota-
tions; it can, therefore, only serve as an addition to
self-supervised pretraining, but not a replacement.

7 Conclusion

Through controlled experiments, we studied the
effectiveness of self-supervised pretraining for
SLT while considering privacy risks. We introduce
SSVP-SLT, a novel, scalable, and privacy-aware
SLT method that leverages masked autoencoding
on anonymized video. It achieves state-of-the-
art ASL-to-English translation performance on
the How2Sign benchmark, outperforming the best
previous models in the finetuned and zero-shot set-
ting by over 3 BLEU.

Our results demonstrate the promise of self-
supervised learning to alleviate the data scarcity
issue and further scale up sign language process-
ing in the future. We found that video anonymiza-
tion, even via simple techniques such as face blur-
ring, has relatively little negative impact on down-
stream performance, further proving that we can
build more proficient systems without neglecting
important privacy concerns. We hope that this
work, alongside the code and data we release, will
spur future developments that benefit the d/Deaf
and hard of hearing communities.

Limitations

Compute Requirements Currently, SSVP-SLT
requires access to substantial compute to train at
the scale of Youtube-ASL (600K videos). This is
primarily due to the high dimensionality of video
data, exacerbated by the long clip length and in-
formation density in sign language content, which
creates a data-loading bottleneck and increases the
memory footprint, especially in combination with
a transformer architecture. Our longest pretrain-
ing run in full precision (fp32) took approximately
two weeks on 64 A100 GPUs. We believe that
it will be important to drive down this cost in
the future and make large-scale video pretraining
more accessible. While many simple interventions
such as mixed precision, gradient accumulation,
and gradient checkpointing could drastically re-
duce the memory footprint, they usually come at
the cost of training time or stability. In general,
we note that this limitation is not unique to our ap-
proach but often not apparent due to training being

conducted on nearly 100× smaller datasets such
as RWTH-Phoenix-Weather 2014T (7K videos;
Camgöz et al., 2018).

Anonymization We rely on face blurring for
video anonymization, which is known to incur a
loss of linguistic information (see §2). In the fu-
ture, it will be worth investigating more sophis-
ticated methods, such as using synthetic appear-
ances. Also, largely due to a lack of linguistic
tools for continuous signing, we did not investi-
gate what effects anonymization may have on the
translations qualitatively. For instance, it would
be instructive to know whether the model success-
fully disambiguates certain phonemes with similar
manual features through context in the absence of
facial information.

Languages Due to the availability of sufficiently
large datasets for our pretraining experiments, we
only experiment with American Sign Language
and English, the two highest-resource signed and
spoken languages. We aim to diversify this lan-
guage selection in the future.

Ethics Statement

Regarding performance, our models may contain
demographic biases and underperform for certain
race, gender, and age groups. For instance, even
though the YouTube-ASL dataset (a dataset we
used for pretraining and supervised finetuning)
features over 2500 signers, the authors did not pro-
vide demographic details of these signers. Sim-
ilarly, our DailyMoth-70h dataset includes only
one signer (white, male, and early middle-aged).
As such, it is unclear how our models perform for
underrepresented users, who, aside from having
diverse identities, may introduce different accents
or regional variations of ASL that our models do
not adequately capture. We call for future research
on SLT to be more explicit about documenting de-
mographic biases in their datasets and models.

Lastly, we emphasize that anonymization inher-
ently does not offer any formal privacy guarantees
in contrast to frameworks such as differential pri-
vacy (Dwork, 2006), which fundamentally comes
at a (often substantial) cost in utility (Geng et al.,
2020). As such, while our work (and the use of
facial obfuscation in general) represents an impor-
tant first step towards comprehensively protecting
the privacy of signers, it should not be relied on in
sensitive or high-stakes applications.
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A Pose landmarks vs RGB Video

Pose landmarks (e.g., from MediaPipe Holistic)
are cited as a privacy-preserving alternative to
RGB video for SLT (Moryossef et al., 2021; Uthus
et al., 2023). While they may indeed offer benefits
in terms of efficiency and generalization, we argue
that they do not offer meaningful privacy protec-
tion either. For instance, using a sufficiently large
number of facial landmarks that are estimated ac-
curately results in what is essentially a scan of the
facial geometry, a biometric identifier according
to legislation like the Biometric Information Pri-
vacy Act (BIPA).12 Despite abstracting away shal-
low information about a person’s appearance, pose
information could, therefore, be (mis)used in sim-
ilar ways as de-anonymized video. Analogous to
facial obfuscation in video, one could reduce the
number of facial landmarks or add noise to them
to hinder re-identification, but doing so also results
in (arguably even more) loss of information.

B DailyMoth-70h Dataset

We introduce DailyMoth-70h, a dataset containing
over 70h of video with aligned English captions of
a single native ASL signer (white, male, and early
middle-aged) from the ASL news page TheDaily-
Moth.13 We obtained the data via a license agree-
ment with the host of TheDailyMoth.

Download and License The fully self-
contained dataset is available under a CC
BY-NC license at https://github.com/
facebookresearch/ssvp slt.

Statistics We provide detailed dataset statistics
in Table 8 and Figure 4.

Purpose The dataset is fully self-contained and
can therefore serve as a new benchmark for study-
ing the task of single-signer translation (e.g., for
building personalized systems). Furthermore, sign
language translation involves overcoming several
challenges such as generalizing over signers, their
appearances and their signing styles as well as
mapping spatio-temporal signed utterances to spo-
ken words. DailyMoth-70h can be used to disen-
tangle some of these challenges by eliminating the
signer and style variances and allow researchers to

12
https://www.ilga.gov/legislation/ilcs/ilcs3.

asp?ActID=3004&ChapterID=57
13
https://www.dailymoth.com/
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TRAIN VALIDATION TEST FULL

Raw data
Number of signers — — — 1
Number of videos — — — 496
Video duration (hours) — — — 76.9
Time frame 01/21–04/23 02/22–04/23 02/22–04/23 01/21–04/23

Segmented data
Number of clips 41 412 2789 4185 48 386
Clip duration (hours) 65.8 4.0 6.0 75.8
Vocabulary (words) 18 495 4803 6040 19 694

Duration in seconds per clip (mean / std / 90th percentile) 5.7 / 2.4 / 8.9 5.2 / 2.1 / 7.9 5.2 / 2.1 / 7.9 5.6 / 2.3 / 8.7
Characters per caption (mean / std / 90th percentile) 43.9 / 12.7 / 58.0 44.1 / 12.8 / 59.0 43.3 / 12.9 / 59.0 43.9 / 12.7 / 59.0
Words per caption (mean / std / 90th percentile) 8.6 / 2.4 / 12.0 8.7 / 2.4 / 12.0 8.5 / 2.4 / 12.0 8.6 / 2.4 / 12.0

Table 8: DailyMoth-70h dataset statistics

ablate their models more focused on the sign-to-
spoken language mapping.

Preprocessing We first segmented the raw
videos into clips of ∼5.6 seconds on average based
on their aligned English captions. Each entry in
the SubRip subtitle (SRT) file, which maps video
timestamps to captions, was chosen to be a distinct
datapoint. Accordingly, example clips are often
sentence fragments rather than full sentences.

Afterwards, the segmented video clips were au-
tomatically cropped such that the signer is approx-
imately in the center of the frame and resized to
224 × 224 pixels. The preprocessed clips were
saved in their native framerates, which are either
24 or 30 fps.

Next, many videos had burned-in captions
which, if not removed, would reduce the transla-
tion task to a simple OCR task. We, therefore,
used an off-the-shelf text detection model to iden-
tify burned-in captions in the videos, and blurred
the captions conservatively. Although the blur-
ring may be imperfect due to errors made by the
text detector, this intervention should nevertheless
solve the concern of models shortcutting the SLT
task for the most part.

Finally, we split the data into training, vali-
dation, and test splits. The proportions (85% /
6% / 9%) were chosen to approximately match
How2Sign. The validation and test examples
were randomly sampled from the subset of videos
posted after January 2022, which avoids data
leakage from Youtube-ASL or OpenASL (Shi
et al., 2022), both of which have cut-off dates be-
fore/during January 2022, into the DailyMoth-70h
evaluation splits. The training examples were ran-
domly sampled from the full range of dates (Jan-
uary 2021 to April 2023).

C Reproducibility

C.1 Model and Training Configurations

We report our pretraining configurations for
SSVP-SLT in Table 9 and SSVP-SLT-LSP in Ta-
ble 10. Our finetuning configurations are listed in
Table 11 for Youtube-ASL (+ How2Sign) and Ta-
ble 12 for How2Sign-only and DailyMoth-70h.

C.2 Code

Our implementation uses Python 3.10 and Py-
Torch 2.0.1 (Paszke et al., 2019) compiled with
CUDA 11.7. The code is available under a
CC BY-NC license at https://github.com/
facebookresearch/ssvp slt.

C.3 Hardware & Runtime

We ran our experiments on NVIDIA A100 80GB
and V100 32GB GPUs. On Youtube-ASL (+
How2Sign), pretraining took ∼20 minutes (SSVP-
SLT) / 30 minutes (SSVP-SLT-LSP) per effec-
tive epoch on 64 A100 or 128 V100 GPUs. On
How2sign or DailyMoth-70h, an effective epoch
of SSVP-SLT pretraining took ∼3 minutes. Fine-
tuning and evaluating T5 and BART on Youtube-
ASL (+ How2Sign) took ∼8 and 4 minutes, respec-
tively, per epoch on 32 V100 GPUs. Training T5
was slower due to training in full precision as op-
posed to fp16 and using a smaller batch size with
gradient accumulation. Finetuning and evaluating
with Tarrés et al. (2023)’s setup on How2Sign or
DailyMoth-70h took ∼1 minute per epoch on a sin-
gle V100 GPU.

D Qualitative Examples

In Table 13, we provide qualitative exam-
ples of our best-performing model (15.5 BLEU
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on How2Sign), compared against the best-
performing models from Tarrés et al. (2023),
Uthus et al. (2023), as well as the reference trans-
lations. The examples were picked from the
How2Sign test split by Tarrés et al. (2023). Ex-
amples (3)–(5) are, anecdotally, more challeng-
ing than the average test example. We find that
our model is mostly on-topic and matches the
syntactic structure, although it can still struggle
with repetitions and the mixing-up of signs. Our
model’s failure patterns are more similar to Uthus
et al. (2023)’s models—possibly a result of fine-
tuning the same base model (T5-v1.1) on the same
datasets (Youtube-ASL and How2Sign). For in-
stance, in example (3), both models mistakenly
predict the verb “feed” (and mispredict everything
that comes after) but flawlessly match the syntac-
tic structure of the reference translation. Overall,
both baselines appear to exhibit a higher occur-
rence of (complete) mis-translation, which aligns
with our quantitative results.

PARAMETER VALUE

Decoder blocks 8
Decoder heads 8
Mask ratio 0.9
Drop path rate 0.2
Video size (T , C, H , W ) (128, 3, 224, 224)
Sampling Rate 2
Face Blur ✓
Random Crop ✓
Horizontal Flip ✓
RandAug ✓(4, 7)
Repeated sampling 2
Optimizer AdamW
Optimizer momentum β1 = 0.9, β2 = 0.95
Weight decay 0.05
Peak learning rate 8e−4
Learning rate schedule Cosine Decay
Minimum learning rate 1e−5
Effective warmup epochs 120
Effective epochs 800
Effective batch size 256
Gradient clipping —
Precision fp32

Table 9: SSVP-SLT pretraining settings

PARAMETER VALUE

CLIP Text tower T5-v1.1-base
CLIP Feature pooling mean
CLIP Feature projection 2-layer MLP
Decoder blocks 8
Decoder heads 8
Mask ratio 0.9
Drop path rate 0.2
Video size (T , C, H , W ) (128, 3, 224, 224)
Sampling Rate 2
Face Blur ✓
Random Crop ✓
Horizontal Flip ✓
RandAug ✓(4, 7)
Repeated sampling 1
Optimizer AdamW
Optimizer momentum β1 = 0.9, β2 = 0.95
Weight decay 0.05
GradNorm α 1.0
Peak learning rate M = 1e−4, GN = 1e−2
Learning rate schedule Cosine Decay
Minimum learning rate M = 1e−6, GN = 1e−4
Effective warmup epochs M = 10, GN = 1
Effective epochs 200
Effective batch size 512
Gradient clipping 1.0
Precision fp32

Table 10: SSVP-SLT-LSP pretraining settings. “M”
refers to the main optimizer while “GN” refers to the
GradNorm optimizer.

PARAMETER VALUE

Model & Tokenizer T5-v1.1
Dropout probability 0.3
Label smoothing 0.2
Number of beams 5
Video size (T , C, H , W ) (T , 3, 224, 224)
Sampling Rate 2
Face Blur ✓
Random Crop ✗
Horizontal Flip ✗
RandAug ✗
Min sequence length 0
Max sequence length 1024
Max target length 128
Optimizer AdamW
Optimizer momentum β1 = 0.9, β2 = 0.95
Weight decay 1e−1
Peak learning rate 5e−4
Learning rate schedule Cosine Decay
Minimum learning rate 1e−7
Warmup epochs 2
Epochs 100
Batch size 256
Early stopping ✓
Gradient clipping 1.0
Precision fp32

Table 11: Finetuning settings for Youtube-ASL.

8637



PARAMETER VALUE

Encoder layers 6
Decoder layers 3
Attention heads 4
Embedding dim 256
FFN embedding dim 1024
Output dim 256
Layerdrop 0.0
Activation function ReLU
LayerNorm Before ✓
LayerNorm Embedding ✓
Scale embeddings ✓
Decoder share embeddings ✓
Vocab size 7000
Lowercase tokenizer H2S = ✓, DM = ✗
Truecase outputs H2S = ✓, DM = ✗
Dropout probability 0.3
Label smoothing 0.2
Number of beams 5
Video size (T , C, H , W ) (T , 3, 224, 224)
Sampling Rate 2
Face Blur H2S = ✓, DM = ✓/ ✗
Random Crop ✗
Horizontal Flip ✗
RandAug ✗
Min sequence length 0
Max sequence length 1024
Max target length 128
Optimizer AdamW
Optimizer momentum β1 = 0.9, β2 = 0.95
Weight decay 1e−1
Peak learning rate 1e−2
Learning rate schedule Cosine Decay
Minimum learning rate 1e−4
Warmup epochs 10
Epochs 200
Batch size 32
Early stopping ✓
Gradient clipping 1.0
Precision fp16

Table 12: Finetuning settings for How2Sign (H2S) & DailyMoth-70h (DM).
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Figure 4: DailyMoth-70h dataset split statistics
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(a) “Hello, welcome to The Daily Moth.”

(b) “Happy New Year”

Figure 5: Example frames sampled from two videos in the blurred version of the DailyMoth-70h training split.
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(1)

Reference And that’s a great vital point technique for women’s self defense.
Tarrés et al. It’s really a great point for women’s self defense.
Uthus et al. It’s really great for women’s self defense.
Ours This is a really great point for women’s self defense.

(2)

Reference In this clip I’m going to show you how to tape your cables down.
Tarrés et al. In this clip I’m going to show you how to improve push ups.
Uthus et al. In this clip we’re going to show you how to cut a piece of clay.
Ours In this clip I’m going to show you how to clip the cable, the cable.

(3)

Reference In this segment we’re going to talk about how to load your still for distillation of
lavender essential oil.

Tarrés et al. Ok, in this clip, we’re going to talk about how to fold the ink for the lid of the oil.
Uthus et al. In this clip we’re going to talk about how to feed a set of baiting lizards for a lava field

oil.
Ours In this clip we’re going to talk about how to feed the trail for draining clean for laborer

oil.

(4)

Reference You are dancing, and now you are going to need the veil and you are going to just grab
the veil as far as possible.

Tarrés et al. So, once you’re belly dancing, once you’ve got to have the strap, you’re going to need
to grab the thumb, and try to avoid it.

Uthus et al. Their hopping and dancing is now, they’re going to need their squat and squat and
they’re going to be able to move independently.

Ours So that she’s going to get her hips up as far as she can, and now she’s going to lift her
head up as far as possible.

(5)

Reference But if you have to setup a new campfire, there’s two ways to do it in a very low
impact; one is with a mound fire, which we should in the campfire segment earlier and
the other way to setup a low impact campfire is to have a fire pan, which is just a steel
pan like the top of a trash can.

Tarrés et al. And other thing I’m going to talk to you is a little bit more space, a space that’s what
it’s going to do, it’s kind of a quick, and then I don’t want to take a spray skirt off, and
then I don’t want it to take it to the top of it.

Uthus et al. But if you have to set up a new campfire, there are two ways to do a low impact fire,
one is a cone fire, which we have to do in the tent earlier, and the other one is to set up
a campfire in a fire pan.

Ours But if you have to set up a new campfire, this is one way to do it in a low impact. One
is a monk fire. One is a campfire. The other one is to set a campfire in a campfire.
That’s just a post like the top of the post.

(6)

Reference So, this is a very important part of the process.
Tarrés et al. It’s a very important part of the process.
Uthus et al. Alright, let’s get started.
Ours It’s an important part of the process.

Table 13: Qualitative translation examples from our best-performing model compared to Tarrés et al. (2023), Uthus
et al. (2023), and the reference translations. The examples were picked from the How2Sign test set by Tarrés et al.
(2023) and do not necessarily accurately reflect progress on the task. We see that our model is mostly on-topic, but
can still struggle with repetitions and the mixing-up of signs.
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