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Abstract

Enterprise documents such as forms, receipts,
reports, and other such records, often carry rich
semantics at the intersection of textual and spa-
tial modalities. The visual cues offered by their
complex layouts play a crucial role in compre-
hending these documents effectively. In this pa-
per, we present DocLLM, a lightweight extension
to traditional large language models (LLMs)
for reasoning over visual documents, taking
into account both textual semantics and spatial
layout. Our model differs from existing mul-
timodal LLMs by avoiding expensive image
encoders and focuses exclusively on bounding
box information to incorporate the spatial lay-
out structure. Specifically, the cross-alignment
between text and spatial modalities is captured
by decomposing the attention mechanism in
classical transformers to a set of disentangled
matrices. Furthermore, we devise a pre-training
objective that learns to infill text segments. This
approach allows us to address irregular layouts
and heterogeneous content frequently encoun-
tered in visual documents. The pre-trained
model is fine-tuned using a large-scale instruc-
tion dataset, covering four core document in-
telligence tasks. We demonstrate that our solu-
tion outperforms SotA LLMs on 14 out of 16
datasets across all tasks, and generalizes well
to 4 out of 5 previously unseen datasets.

1 Introduction

Documents with rich layouts, including invoices,
contracts, and forms, constitute a significant por-
tion of enterprise corpora, and the automatic anal-
ysis of these documents offer considerable advan-
tages (Kunduru, 2023). Although Document AI
(DocAI) has made tremendous progress, there re-
mains a significant performance gap in real-world
applications due to the complex layouts, bespoke
type-setting and template diversity exhibited by

*Equal Contribution.

these visually rich documents. In particular, ac-
curacy, reliability, contextual understanding and
generalization to previously unseen domains con-
tinues to be a challenge (Cui et al., 2021).

Conventional large language models (LLMs)
such as GPT-3.5 (Brown et al., 2020), Llama (Tou-
vron et al., 2023) or Falcon (Penedo et al., 2023)
primarily accept text-only inputs and assume that
the documents exhibit simple layouts and uniform
formatting. They are not suitable for document in-
telligence tasks, which are inherently multi-modal,
requiring the understanding of both text content
and visual layout cues. Numerous vision-language
frameworks (Li et al., 2022; Huang et al., 2022)
that can process documents as images and cap-
ture the interactions between textual and visual
modalities do exist. However, these frameworks
necessitate the use of complex vision backbone
architectures (Dosovitskiy et al., 2021) to encode
image information, and often make use of spatial
information as an auxiliary contextual signal (Xu
et al., 2021; Lee et al., 2022).

In this paper, we present DocLLM, a lightweight
extension to standard LLMs that excels in several
visually rich form understanding tasks. Unlike tra-
ditional LLMs, it models both spatial layouts and
text semantics, and therefore is intrinsically multi-
modal. The spatial layout information is incorpo-
rated through bounding box coordinates of the text
tokens obtained typically using optical character
recognition (OCR), and does not rely on a complex
vision encoder component. Consequently, our so-
lution preserves the causal decoder architecture, in-
troduces only a marginal increase in the model size,
and has reduced processing times. We demonstrate
that merely including the spatial layout structure is
sufficient for various document intelligence tasks
such as form understanding, table alignment and
visual question answering.

Existing efforts to incorporate spatial layout in-
formation typically involve either concatenating
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Figure 1: Key elements of DocLLM. (1) Input documents with text tokens and bounding boxes. (2) Extended attention
mechanism captures cross-alignment between text semantics and spatial layouts. (3) Infilling text blocks is used as
pre-training objective. (4) Task adaptation is performed on a newly collated dataset of instructions.

spatial and textual embeddings (Tang et al., 2023)
or summing the two (Xu et al., 2020). In contrast,
we treat the spatial information as a distinct modal-
ity and compute its inter-dependency with the text
modality in a disentangled manner (Meng et al.,
2021). Specifically, we extend the self-attention
mechanism of transformers to include new atten-
tion scores that capture cross-modal relationships.
There is often a correlation between the content,
position and size of the fields in a form and hence
representing their alignments at various abstraction
levels across the transformer layers can enhance
document understanding.

Visual documents often feature heterogeneous
content, irregular layouts, and disjointed text seg-
ments. A classical next token prediction in self-
supervised pre-training can be restrictive for these
documents since the preceding tokens may not al-
ways be relevant due to the diverse arrangements
of text. To tackle this issue, we propose two modi-
fications to the pre-training objective: (a) adopting
cohesive blocks of text that account for broader con-
texts, and (b) implementing an infilling approach
by conditioning the prediction on both preceding
and succeeding tokens. Due to these modifications,
the model is better equipped to address misaligned
text, contextual completions, intricate layouts, and
mixed data types. Although text spans and infilling
tasks have been studied before (Du et al., 2021),
our solution is tailored for visual documents with
an emphasis on semantically coherent blocks.

We tune DocLLM on instruction data curated
from multiple datasets for several document intelli-
gence tasks including Key Information Extraction
(KIE), Natural Language Inference (NLI), Visual
Question-Answering (VQA) and document classi-
fication (CLS). The modifications introduced by
DocLLM enhance the performance of Llama2-7B

model by 15-60% in four of five datasets unseen
during training.

Our contributions include: (1) A lightweight
extension to LLMs designed for understanding vi-
sual documents. (2) A disentangled spatial atten-
tion mechanism that captures cross-alignment be-
tween text and layout modalities. (3) An infilling
pre-training objective tailored to address irregular
layouts effectively. (4) A large instruction tuning
dataset (with OCR data) specially curated towards
visual document intelligence tasks. (5) Compre-
hensive experiments and insights into the model
behavior. Fig. 1 summarizes the framework.

2 Related Work

General Purpose Models. By treating a document
as text content, many text based LLMs (OpenAI,
2023; Touvron et al., 2023; Anil et al., 2023) can
be directly utilized for document intelligence tasks.
Despite the remarkable capabilities provided by
these LLMs, their lack of understanding of visual
elements and layouts can be severely limiting in the
DocAI context. Although multi-modal LLMs (Li
et al., 2023; Zhu et al., 2023; Liu et al., 2023a; Wu
et al., 2023; Ye et al., 2023c; Zhang et al., 2023a)
that explicitly include image information can ac-
count for visual signals, they often struggle to rec-
ognize specific structures and patterns prevalent in
enterprise documents (Liu et al., 2023c). Instead
of relying on generalized training, a model tailored
for visually rich document understanding (VRDU)
tasks can gain a nuanced comprehension of the lan-
guage, formats and data structures unique to these
types of documents.

Document Understanding Models. Models such
as LayoutLM (Xu et al., 2020), LAMPreT (Wu
et al., 2021), Pix2Struct (Lee et al., 2023), and
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UDOP (Tang et al., 2023) specifically cater towards
document processing tasks. They can account for
different modalities including text, image and lay-
out information, and are trained to exploit both the
structure and content of documents, often using
a large corpora. However, these models require
task-specific fine-tuning, may lack a flexible inter-
face and cannot understand open-domain instruc-
tions. Recent efforts like mPLUG-DocOwl (Ye
et al., 2023a) and UReader (Ye et al., 2023b) build
on LLMs and perform DocAI-focused instruction
tuning. We differ from these by avoiding expensive
visual encoders.

Model Architecture. Disentangled attention mech-
anisms, where different signals are represented by
independent vectors, have been studied before (He
et al., 2020). While we use a similar construct, our
spatial position based encodings are more complex
and applied in a multimodal context. Learning to
infill autoregressive language models has been ex-
plored in Bavarian et al. (2022), Shen et al. (2023),
and Du et al. (2021). Although we share their goal
of adding fill-in-the-middle (FIM) capability, we
differ in the mechanism by integrating FIM into the
visual document contexts and avoiding extremely
short segments.

3 DocLLM Framework

3.1 Architecture Overview

DocLLM is constructed upon the foundation of an
auto-regressive transformer language model (Tou-
vron et al., 2023; Penedo et al., 2023) following a
causal decoder structure. It integrates lightweight
visual information by utilizing the spatial posi-
tions and dimensions of text tokens obtained using
OCR. Instead of simply augmenting the text with
bounding box information via additive positional
encoding (Xu et al., 2021), separate vectors are
used to represent these two distinct modalities and
the self-attention mechanism of the transformer
architecture is extended to compute their inter-
dependencies in a disentangled manner. Further-
more, the traditional left-to-right next token predic-
tion during self-supervised training is replaced by
a block infilling objective that better leverages con-
textual information. See Figure 2 for an overview.

3.2 Disentangled Spatial Attention

Let x = (x1, ..., xi, ..., xT ) be an input sequence
of length T , where xi is a text token. In classi-
cal transformers, using a learned embedding matrix

based on the text vocabulary and a learned set of pa-
rameters for the token position in the sequence, the
input tokens are first encoded into hidden vectors
H ∈ RT×d. A self-attention head then computes
the attention scores between tokens i and j as:

Qt = HWt,q, Kt = HWt,k, At
i,j = Qt

iK
t
j
⊺

(1)
where Wq ∈ Rd×d and Wk ∈ Rd×d are projection
matrices, and the superscript t indicates the text
modality. The attention scores A ∈ RT×T along
with another projection matrix Wv are further used
to compute the hidden vectors H′, which are in turn
used as inputs for a subsequent layer:

Vt = HWt,v, H′ = softmax(
At

√
d
)Vt. (2)

In DocLLM, the input is represented
as x = {(xi, bi)}Ti=1, where bi =
(left, top, right, bottom) is the bounding
box corresponding to xi. To capture the new
modality (i.e. spatial information), we encode the
bounding boxes into hidden vectors represented
by S ∈ RT×d. We then decompose the attention
matrix computation into four different scores,
namely text-to-text, text-to-spatial, spatial-to-text
and spatial-to-spatial. Formally, the new attention
mechanism is calculated as:

Qs = SWs,q, Ks = SWs,k,

Ai,j = Qt
iK

t
j
⊺
+ λt,sQ
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(3)

where Ws,q ∈ Rd×d and Ws,k ∈ Rd×d are newly
introduced projection matrices corresponding to
the spatial modality, and λs are hyperparameters
that control the relative importance of each score.
The input hidden vectors for the next layer H′ are
computed exactly as before. However, in contrast
to equation (2), the newly calculated hidden vectors
rely not only on the text semantics but also on the
layout information of the text tokens.

It is important to mention that the hidden vec-
tors S are reused across different layers, while each
layer retains the flexibility to employ different pro-
jection matrices. We also note that the number of
extra parameters required to encode the bounding
box information is significantly lower compared to
the overhead introduced by image based models
(Li et al., 2022). By simply adding S to H sim-
ilar to Xu et al. (2020), we could have avoided
using Ws matrices altogether and further reduced
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Figure 2: DocLLM model architecture with disentangled spatial attention and infilling objective. left: Input document
with text tokens xi and bounding boxes bi. Some text blocks are randomly masked (two blocks here) and the
model predicts the tokens in these text blocks autoregressively. right: The infilling sequence is created by replacing
the sampled blocks with [M] and prepending them with [S]. The attention mechanism is extended to account for
cross-attention between text and spatial modalities.

the number of parameters. However, it would have
irreversibly coupled the layout information with
the text semantics. In contrast, our disentangled
representation of these modalities in the attention
scores enables selective focus when appropriate
(He et al., 2020), thereby providing an optimal bal-
ance between model size and effectiveness.

3.3 Pretraining

DocLLM is first pre-trained in a self-supervised fash-
ion on a large number of unlabeled documents.
Visual documents are often sparse and irregular,
featuring isolated and disconnected text fragments.
It is preferable to consider coarse segments of re-
lated tokens during pre-training rather than focus-
ing on individual tokens. Hence we use the broader
context provided by multiple tokens, referred as
blocks,1 for better comprehension. Most OCR en-
gines can provide block level information, which
makes it feasible to identify coherent text blocks
such as a heading or an address.2

Learning to infill text, where the prediction is
conditioned on both prefix and suffix tokens rather
than only preceding tokens, can be beneficial for
document understanding. The infilling objectives
enable contextually relevant completions, provide

1In Figure 2 “Name”, “John Doe” , and “Doctor” are all
examples of blocks

2In order to avoid any leakage of useful information, the
block information is only used during pre-training, and the
model is unaware of the number of tokens in a masked block.

robustness to OCR noise or misaligned tokens, and
can better handle relationships between various
document fields. Hence we modify the standard
pre-training objective to predict blocks of text given
preceding and following text blocks. Inspired by
(Du et al., 2021), we follow an autoregressive block
infilling objective, where text blocks are randomly
masked, and the masked blocks are shuffled and
reconstructed in a sequential left-to-right fashion.

Formally, let c = {c1, ..., cK} be a set of text
blocks that partitions an input sequence x into non-
overlapping contiguous tokens such that c1 ∪ ... ∪
cK = x and ck ∩ ck′ = ∅. Let z = {zm}Mm=1 be
M ≪ K different text blocks randomly sampled
from c, where each block zm = (zm,1, ..., zm,Nm)
contains a consecutive series of tokens. Further,
let x̃ be a corrupted version of x where the con-
tiguous tokens corresponding to a sampled text
block are replaced with a special mask token [M].
To facilitate the identification of the block to be
filled during text generation, each input block is
augmented with a special start token [S] while the
output block includes an end token [E]. For in-
stance, a block with tokens (x4, x5) becomes [M]
in x̃, ([S], x4, x5) when conditioned upon, and is
expected to generate (x4, x5, [E]) as output autore-
gressively.3 Let θ denote all the parameters of the
transformer model, including the projection matri-
ces discussed above. The following cross-entropy

3See Figure 2 for an illustration of these configurations.
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loss is then minimized for the infilling objective

LIF(θ) = −
M∑

m=1

Nm∑

j=1

log pθ(zm,j |x̃, z<m, zm,<j).

(4)

3.4 Instruction Tuning

Following recent work in the field of VRDU (Tang
et al., 2023; Ye et al., 2023a,b) and prior work
in NLP (Wei et al., 2022; Chung et al., 2022), we
instruction-tune DocLLM on a variety of instructions
curated from multiple DocAI datasets using tem-
plates. We employ a total of 16 datasets with their
corresponding OCRs, spanning four DocAI tasks.

The diversity of supervised fine tuning (SFT) in-
structions is critical in helping zero-shot generaliza-
tion (Wei et al., 2022; Chung et al., 2022; Ouyang
et al., 2022). Thus, we diversify templates per
task when possible, with each template asking a
different question, and in some cases, expecting
different types of answers. We re-use the templates
introduced in Ye et al. (2023a,b) when applicable.

We create the templates following what we be-
lieve end users would generally ask about docu-
ments (see Table 1). For KIE and CLS, we hypoth-
esize that (1) the extraction instructions can teach
DocLLM to correlate names of keys in the prompts
with document fields so as to retrieve values, (2)
the internal classification instructions can help the
model understand what intrinsically characterizes
each key or document type, and (3) the multiple
choice question (MCQ) instructions can teach the
model to leverage its comprehension of key names
included as choices in the prompt (resp. document
type names) to classify extracted values (resp. en-
tire documents). The templates are as follows:4

Visual Question Answering. A single template.
Prompt Example: What is the deadline for scien-
tific abstract submission for ACOG - 51st annual
clinical meeting?
Natural Language Inference. A single template.
Prompt Example: "The UN commission on Korea
include 2 Australians.", Yes or No?
Key Information Extraction. Three templates
corresponding to extraction, internal classification,
and MCQ instructions. Example prompt for extrac-
tion: What is the value for the "charity number"?

4Examples are derived from DocVQA (Mathew et al.,
2021), TabFact (Chen et al., 2020), KLC (Stanislawek et al.,
2021), RVL-CDIP (Harley et al., 2015).

Document Classification. Two templates corre-
sponding to internal classification and MCQ in-
structions. Example prompt for MCQ: What type
of document is this? Possible answers: [budget,
form, file folder, questionnaire].

See Appendix A.2 for further details.

4 Experiments

4.1 Datasets

Pre-training. We gather data for pre-training from
two primary sources: (1) IIT-CDIP Test Collection
1.0 (Lewis et al., 2006) and (2) DocBank (Li et al.,
2020). IIT-CDIP Test Collection 1.0 encompasses
a vast repository of over 5 million documents, com-
prising more than 16 million document pages. This
dataset is derived from documents related to legal
proceedings against the tobacco industry during
the 1990s. DocBank consists of 500K documents,
each featuring distinct layouts and a single page per
document. We obtain a collection of 16.7 million
pages comprising a total of 3.8 billion tokens. See
Table 6 in the Appendix for detailed statistics.

Instruction Tuning. To instruction-tune the model
for the VQA task, we collect DocVQA (Mathew
et al., 2021), WikiTableQuestions (WTQ) (Pasu-
pat and Liang, 2015), VisualMRC (Tanaka et al.,
2021), and DUDE (Landeghem et al., 2023). For
NLI, we only include TabFact (Chen et al., 2020)
in our instruction-tuning data mix, due to lack
of additional DocAI NLI datasets available. For
KIE, we gather Kleister Charity (KLC) (Stanis-
lawek et al., 2021), CORD (Park et al., 2019),
FUNSD (Jaume et al., 2019), DeepForm (Svetlich-
naya, 2020), PWC (Kardas et al., 2020), SROIE
(Huang et al., 2019), and VRDU ad-buy (Wang
et al., 2023) (with random train-test splitting). Fi-
nally, we use RVL-CDIP (Harley et al., 2015) to
build our CLS instruction-tuning data. We also
downsample RVL-CDIP in the train split to avoid
hindering the other datasets due to size. See Table
7 in the Appendix for detailed statistics.

To the above datasets, we add BuDDIE (Zmi-
grod et al., 2024), a collection of ∼1,600 business
entity filings curated from state registration web-
sites within the US. BuDDIE is annotated for three
tasks – VQA, KIE, and CLS – and we therefore
include it in the respective instruction-tuning col-
lections.5

5The instruction-tuning data is available upon re-
quest at https://www.jpmorgan.com/technology/
artificial-intelligence/initiatives/datasets
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Table 1: Prompt templates used for instruction-tuning (spatial tokens not included).

Task Template type Prompt template Expected response

VQA Extraction {document} {question} answer annotation

NLI MCQ {document} "{statement}", Yes or No? answer annotation

KIE

Extraction {document} What is the value for the "{key}"? Associated value annotation

MCQ
{document} What is "{value}" in the document? Possible choices: {keys}.
(where keys is a subset of all the key names in the dataset in random order)

Associated key annotation

Internal classification {document} What is "{value}" in the document? Associated key annotation

CLS
MCQ

{document} What type of document is this? Possible choices: {classes}.
(where classes is a subset of all the classes in the dataset in random order)

class annotation

Internal classification {document} What type of document is this? class annotation

Table 2: Performance comparison in the SDDS setting against other multimodal and non-multimodal LLMs;
non-multimodal LLMs are Zero-Shot (ZS) prompted while multimodal LLMs are instruction-tuned on the train
split of the datasets considered. ‘*’ indicates datasets for which a designated test set was not publicly available.

Dataset
GPT4+OCR Llama2+OCR mPLUG-DocOwl UReader DocLLM-1B DocLLM-7B

– (T) 7B (T) 7B (T+V) 7B (T+V) 1B (T+L) 7B (T+L)
ZS ZS SDDS SDDS SDDS SDDS

VQA

DocVQA 82.8 47.4 62.2 65.4 61.4 69.5
WTQ (Accuracy) 65.4 25.0 26.9 29.4 21.9 27.1

VisualMRC (CIDEr) 255.1 115.5 188.8 221.7 245.0 264.1
DUDE* 54.6 38.1 - - 42.6 47.2
BuDDIE 76.4 48.8 - - 84.5 86.7

NLI TabFact 77.1 48.2 60.2 67.6 58.0 66.4

KIE

KLC 45.9 27.8 30.3 32.8 58.9 60.3
CORD 58.3 13.8 - - 66.9 67.4
FUNSD 37.0 17.8 - - 48.2 51.8

DeepForm 42.1 20.5 42.6 49.5 71.3 75.7
PWC 18.3 6.8 - - 25.7 29.06

SROIE 90.6 56.4 - - 91.0 91.9
VRDU a.-b.* 43.7 18.7 - - 87.6 88.8

BuDDIE 66.1 10.8 - - 95.4 96.0

CLS RVL-CDIP 68.2 32.8 - - 90.9 91.8
BuDDIE 84.9 40.9 - - 98.3 99.4

4.2 Evaluation Setup

Model Configuration. We train two variants
of DocLLM: DocLLM-1B, which is based on the
Falcon-1B architecture (Penedo et al., 2023), and
DocLLM-7B, which is based on the Llama2-7B ar-
chitecture (Touvron et al., 2023).6 The maximum
sequence length is set to 1,024 for both these mod-
els during the entire training process. See Appendix
B for a detailed discussion on the model configura-
tion and training hyper-parameters.

Settings. We investigate two experimental settings:
Same Datasets, Different Splits (SDDS): Follow-
ing previous work (Lee et al., 2023; Davis et al.,
2022; Kim et al., 2022; Tang et al., 2023; Ye et al.,

6Since LLaMA2 does not come with pre-trained weights
at 1B parameters, we use the Falcon-1B architecture for the
smaller version of DocLLM.

2023a,b), we first evaluate DocLLM on the unseen
test split (or dev split when labeled test split is not
publicly available) of each of the 16 datasets com-
posing the instruction tuning data. The motivation
behind this very typical setting is to check how
DocLLM performs when tasks and domains suppos-
edly stay the same from train to test.

Same Tasks, Different Datasets (STDD): Follow-
ing (Wei et al., 2022; Chung et al., 2022; Dai
et al., 2023; Zhang et al., 2023a), we also eval-
uate DocLLM on held-out datasets. More precisely,
we instruction-tune the pretrained checkpoint of
DocLLM on prompts from 11 of the 16 datasets con-
sidered in SDDS, then evaluate DocLLM on the test
split of the remaining five datasets. The rationale
behind this evaluation setting is to assess the per-
formance of DocLLM when tasks are unchanged
but domains and layouts differ from train to test.
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Table 3: Performance comparison in the STDD setting on held-out VRDU datasets against non-multimodal LLMs.

Model Size Setting DocVQA KLC BuDDIE
VQA KIE VQA KIE CLS

GPT4+OCR – ZS 82.8 45.9 76.4 66.1 84.9
Llama2+OCR 7B ZS 47.4 27.8 48.4 10.8 40.9

DocLLM-1B 1B STDD 53.5 40.1 65.5 63.0 20.8
DocLLM-7B 7B STDD 63.4 49.9 73.3 72.6 31.1

(a) Prompt: What is the value for
the “advertiser”?
DocLLM: Bloomberg/D/President
GPT4+OCR: MIKE BLOOMBERG 2020

(b) Prompt: What is written
under the heading ‘emergency
protein allowances’?
DocLLM: Grams per person per day
GPT4+OCR: Men (70 Kg.) 50 55 ...

(c) Prompt: How many objectives
are listed under at-event
activities?
DocLLM: 4
GPT4+OCR: 5

Figure 3: Qualitative examples of DocLLM-7B performance for KIE (Svetlichnaya, 2020) and VQA (Mathew et al.,
2021) tasks. Correct answers are highlighted in blue and incorrect answers are highlighted in red.

Table 4: Ablation study on disentangled spatial attention.
T and S stands for text and spatial modality respectively.

Mode Cross-Modal Interactions NTP Accuracy

Additive SEmbed + TEmbed 38.16

T2T 35.43
T2S + T2T 38.08
S2T + T2T 38.05

Disentangled S2S + T2T 39.12
T2S + S2S + T2T 39.06
S2T + S2S + T2T 39.07

T2S + S2T + S2S + T2T 39.02

Table 5: Ablation study on the block infilling objective.

Pretraining Objective NTP Accuracy

Causal Learning 32.6
Causal Learning + Spatial 36.2
Block Infilling + Spatial 39.1

We believe examining this setting in the DocAI
field is relevant because industry use cases usu-
ally encountered in practice revolve around VQA,
KIE, and CLS, while document characteristics tend
to change more often in production. We specif-
ically isolate DocVQA, KLC, and BuDDIE for
STDD evaluation in order to (1) exclude at least
one dataset per task from SFT when possible, (2)
leave enough datapoints per task in the training
split of the instruction-tuning data, (3) avoid data
leakage, and (4) benchmark models on popular yet

challenging datasets when possible. Due to the
high cost of instruction-tuning, we were not able to
run experiments with other held-out datasets.

Baselines. In SDDS and STDD, we benchmark
DocLLM against comparably-sized SotA LLMs us-
ing ZS prompts that contain the text extracted
from each document using an OCR engine (exclud-
ing the spatial information) (Touvron et al., 2023;
Ouyang et al., 2022). In SDDS, we also report
numbers from recent DocAI LLMs evaluated in a
similar setting (Ye et al., 2023a,b). As motivated
in Section 2, we do not consider DocAI models
that require task-specific fine-tuning such as Lay-
outLMv3 (Huang et al., 2022) or Pix2Struct (Lee
et al., 2023), and/or dataset-specific prompts such
as UDOP (Tang et al., 2023). We instead focus
on LLMs with out-of-the-box instruction following
capability.7

Metrics. Following previous work (Borchmann
et al., 2021; Lee et al., 2023; Ye et al., 2023b,a), we
evaluate all VQA datasets using Average Normal-
ized Levenshtein Similarity (ANLS) (Biten et al.,
2019), with the exception of VisualMRC, for which
we use CIDEr8 (Vedantam et al., 2015) and WTQ,
for which we use accuracy. Performance on all

7Refer to Appendix C.4 for a comparison against SotA
models regardless of architecture.

8This is done to remain consistent with the results reported
by other baselines.

8535



CLS and NLI datasets is measured using accuracy.
We evaluate all KIE datasets with the F1 score.

4.3 Results
SDDS Setting. Table 2 shows that DocLLM-7B
excels in 12 out of 16 datasets, inclusively com-
pared to ZS results of GPT4 and Llama2, and
SDDS results of mPLUG-DocOwl and UReader.
Among equivalent models (excluding GPT4), our
model outperforms in 14 out of 16 datasets. Specif-
ically, DocLLM demonstrates superior performance
in layout-intensive tasks such as KIE and CLS. In
VQA and NLI, its performance surpasses that of
most multimodal language models, although it un-
derperforms compared to GPT4. GPT4 outper-
forms DocLLM in VQA, possibly due to the higher
complexity of reasoning and abstraction involved
in VQA datasets compared to tasks like KIE or
CLS.9 DocLLM-1B demonstrates performance close
to that of our larger model, suggesting that the
smaller model can derive significant benefits from
the architecture of DocLLM.
STDD Setting. Table 3 shows that our model
demonstrates superior performance compared to
Llama2 across four out of five datasets, and
achieves the best score overall for two of them (KIE
task again). DocLLM also outperforms mPLUG-
DocOwl on DocVQA and both mPLUG-DocOwl
and UReader on KLC, despite both baselines hav-
ing been instruction-tuned on these datasets. How-
ever, it is important to note that classification accu-
racy is notably lower in our model. This discrep-
ancy may stem from the fact that our model has
been trained using only one CLS dataset, limiting
its ability to generalize effectively to new datasets.
Qualitative Comparisons. Figure 3 shows
qualitative examples, comparing the outputs of
DocLLM-7B and GPT4. Figure 3a corresponds to a
KIE instruction, showing that DocLLM can provide
correct answers when a question requires some
knowledge of the semantic nuances of enterprise
documents. DocLLM’s spatial reasoning abilities
are demonstrated in Figure 3b, where the model
correctly locates the heading ‘emergency protein
allowances’ and identifies the text immediately un-
derneath it. Figure 3c highlights a limitation, with
the model failing at a counting task, at which GPT4
succeeds. See Appendix C.1 for more examples.
Ablation Analysis. We conduct ablation studies
based on Next Token Prediction (NTP) accuracy

9See Appendix C.2 for further details.

to validate the main contributions of DocLLM. We
observe that incorporating the spatial modality in
the attention mechanism performs better over the
classical text-only modality, thereby validating the
utility of disentangled spatial attention (See Table
4). Furthermore, block infilling with spatial modal-
ity outperforms causal learning, highlighting the
value of fill-in-the-middle objectives (See Table 5).
Appendix D contains more details.

5 Discussion

Impact. DocLLM enables language models to go be-
yond plain text settings and offers immediate utility
in visually rich document understanding tasks. By
accommodating complex layout structures, DocLLM
allows documents with rich layouts to be included
in the pre-training corpus without requiring exten-
sive preprocessing. The explicit modeling of spatial
relationships enables perceiving the documents as
inherently structured knowledge.

Flexibility. The support for multi-page documents,
implemented through page breaks and document
boundaries, enhances the model’s ability to com-
prehend documents with diverse lengths. This over-
comes the constraints of small multimodal models
that can handle only a single page and multimodal
LLMs mainly designed for images.

Limitations. The use of English-language datasets
derived from limited enterprise domains (such as
IIT-CDIP) may introduce inherent representational
biases in VRDU models, including DocLLM. Also,
DocLLM may be vulnerable to inaccurate bounding
box information produced by an OCR engine.10

However, several modern off-the-shelf solutions
can robustly extract text from documents (Heg-
ghammer, 2022), mitigating this issue. DocLLM’s
support for long-form documents is restricted by
its context length. Increasing the model size and
allowing unbounded context length during infer-
ence can address this limitation. DocLLM is trained
and designed to capture the characteristics of en-
terprise documents. Consequently, its efficacy may
be restricted when applied to documents outside
this domain, such as presentation decks or mar-
keting reports. Finally, DocLLM may not excel at
complex reasoning tasks, especially those requiring
a deep understanding of numerical concepts. See
Appendix F for additional discussion.

10Appendix E studies the robustness of DocLLM to noisy
input bounding boxes.
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6 Conclusions

We introduced DocLLM, a lightweight extension to
traditional LLMs, tailored for generative reason-
ing over documents with rich layouts. DocLLM es-
chews expensive image encoders and instead uti-
lizes bounding box information to capture the spa-
tial layout structure of documents. This is achieved
through a disentangled attention mechanism that
models cross-alignment between text and spatial
modalities. Notably, our model addresses the chal-
lenges posed by irregular layouts and heteroge-
neous content using a learning to infill pre-training
objective. Tuning the model on a carefully curated
instruction dataset provides a flexible interface for
interactions. Our evaluation across various docu-
ment intelligence tasks demonstrates that DocLLM
surpasses equivalent models both for in-domain
and out-of-domain datasets. In the future, we plan
to infuse vision into DocLLM in a lightweight man-
ner.
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A Dataset Details

A.1 Preprocessing

Of the datasets used in our study, IIT-CDIP and
DocBank do not provide token-level OCR out-
put. Therefore we process both datasets using
the Tesseract-OCR engine.11 For the remaining
datasets, we used the OCR output provided by each
publisher.

A.2 Instruction Tuning Templates

For the extraction template, we add a “None” an-
swer if a key does not exist in the given document,
following Ye et al. (2023a,b). As described in Sec-
tion 3.4 and Table 1, to increase diversity in the
training data, we derive internal classification and
MCQ instructions in addition to extraction instruc-
tions from the original KIE annotations. However,
to stay consistent with benchmarks from previous
work (Ye et al., 2023a,b), we only keep the prompts
derived from the extraction template in the test split
of each KIE dataset. To avoid the cold start prob-
lem induced by potentially unseen types of docu-
ments in testing or production usage, we only keep
the MCQ prompts for the test split of each CLS
dataset. Note that when a prompt accepts more
than one answer, we create multiple copies of the
prompt with one acceptable answer assigned to
each. We only perform this “flattening” operation
in the training split of the dataset.

A.3 Dataset Statistics

See Table 6 for pretraining dataset details and Table
7 for instruction tuning dataset details.

B Training Details

DocLLM-1B is composed of 24 layers, each with
16 attention heads and a hidden size of 1,536.
DocLLM-7B comprises 36 layers, 32 heads, and a
hidden size of 4,096. Using pretrained weights as
the backbone for the text modality, we extend the
Falcon-1B and Llama2-7B models by adding the
disentangled attention and block infilling objective
as described in Section 3. We start directly from
the pretrained weights of the backbone LLMs in
order to continue their pretraining in a multimodal
manner and avoid catastrophic forgetting of instruc-
tion following abilities (Luo et al., 2023; Zhai et al.,
2024).

11https://github.com/tesseract-ocr/tesseract

Table 6: Pretraining dataset statistics.

Dataset #Docs #Pages #Tokens

CDIP 5,092,636 16,293,353 3,637,551,478
DocBank 499,609 499,609 228,362,274
Total 5,592,245 16,792,962 3,865,913,752

Table 7: Instruction tuning dataset statistics.

Task #Train prompts #Test prompts

VQA 145,090 24,347
NLI 104,360 12,720
KIE 236,806 38,039
CLS 149,627 21,813
Total 635,883 96,919

For DocLLM-1B, we use a pre-training learning
rate of 2 × 10−4 with 1,000 warmup steps, em-
ploying a cosine scheduler, and Adam optimizer
(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.96
and a weight decay of 0.1. For instruction tun-
ing we use a learning rate of 1 × 10−4 with 500
warmup steps and a cosine scheduler, and the same
parameters for weight decay and Adam optimizer
as the pre-training phase. The Adam epsilon is
set to 1 × 10−5. We pretrain for one epoch, and
instruction-tune for a total of 10 epochs.

For DocLLM-7B, pretraining involves a learning
rate of 3× 10−4 with 1,000 warmup steps and co-
sine scheduler, weight decay of 0.1, and Adam opti-
mizer with β1 = 0.9, β2 = 0.95. Instruction tuning
uses a learning rate of 1× 10−4 with 500 warmup
steps and a cosine scheduler, weight decay of 0.1,
and Adam optimizer with β1 = 0.9, β2 = 0.95.
Adam epsilon is set at 1× 10−6. We conduct one
epoch of pretraining, followed by three epochs of
instruction tuning, considering available computing
resources.

The DocLLM-7B models are trained with 16-bit
mixed precision on 8 24GB A10G GPUs using
fully sharded data parallelism, implemented with
the Accelerate library.12 The DocLLM-1B model, on
the other hand, is trained on a single 24GB A10G
GPU.

Table 8 provides an overview of the model con-
figuration and training hyper-parameters that were
used.

12https://huggingface.co/docs/accelerate
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Table 8: Model configuration and training hyperparameters setting for DocLLM-1B and -7B.

DocLLM-1B DocLLM-7B

Backbone Falcon-1B (Penedo et al., 2023) Llama2-7B (Touvron et al., 2023)
#Parameters 1,524,963,328 7,853,019,136
Layers 24 36
Attention heads 16 32
Hidden size 1,536 4,096
Precision bfloat16 bfloat16
Batch size 2 5
Max context length 1,024 1,024

Pretraining Instruction tuning Pretraining Instruction tuning

Learning rate 2× 10−4 1× 10−4 3× 10−4 1× 10−4

Warmups 1,000 500 1,000 500
Scheduler type cosine cosine cosine cosine
Weight decay 0.1 0.1 0.1 0.1
Adam βs (0.9, 0.96) (0.9,0.96) (0.9,0.95) (0.9,0.95)
Adam epsilon 1× 10−5 1× 10−5 1× 10−6 1× 10−6

(a) Prompt: What is the doctor’s
id no.?
DocLLM: 162
GPT4: No information provided

(b) Prompt: What is the value for
the “contract num”?
DocLLM: 1328762
GPT4: 09732930

(c) Prompt: What is the value for
the “gross amount”?
DocLLM: None
GPT4: 40,000.00

(d) DocLLM: resume
GPT4: form

(e) DocLLM: budget
GPT4: scientific report

(f) DocLLM: budget
GPT4: invoice

Figure 4: Qualitative examples of DocLLM-7B performance versus a SotA baseline (GPT4). Correct answers are
highlighted in blue and incorrect answers are highlighted in red. (a): VQA example from the DocVQA dataset
(Mathew et al., 2021). (b)-(c): KIE examples from the DeepForm dataset (Svetlichnaya, 2020). (d)-(f): CLS
examples from the RVL-CDIP dataset (Harley et al., 2015). The prompt used here was: What type of document
is this? Possible answers: [letter, memo, email, file folder, form, handwritten, invoice,
advertisement, budget, news article, presentation, scientific publication, questionnaire,
resume, scientific report, specification].
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C Detailed Performance Analysis

C.1 Qualitative Examples

Figure 4 shows additional qualitative examples
from the DocLLM-7B output, where 4a highlights a
VQA example from the DocVQA dataset (Mathew
et al., 2021), 4b and 4c display two KIE examples
from the DeepForm dataset (Svetlichnaya, 2020),
and the bottom row shows CLS examples from the
RVL-CDIP dataset (Harley et al., 2015).

As Figures 4a and 4e show, DocLLM can pro-
vide correct answers when the question requires
some knowledge of the semantic nuances of en-
terprise documents. As an example, in Figure 4e,
GPT4 mislabels a tax report issued by a local tax
council as a scientific report, possibly due to the
numeric contents of the table, whereas DocLLM is
able to associate the content and the correspond-
ing issuing authority with a budget report. Figure
4b demonstrates DocLLM’s spatial reasoning capa-
bility. The rightmost column of Figure 4 shows
examples of failure by DocLLM. Each failure case
demonstrates a limitation in the design and scope
of the model. Figure 4c shows an example where
DocLLM is unable to extract the gross amount. This
error is due to the fact that the correct answer falls
outside of the context window of the model, as it
is located on the fourth page of a multi-page doc-
ument. Lastly, Figure 4f shows an example for
which the class predicted by DocLLM, i.e. “budget”,
is semantically viable, but is nevertheless not the
correct class. In future studies, we plan to address
some of the above mentioned limitations, and in-
crease the context length of the model.

C.2 DocVQA Deep-Dive

We conduct an in-depth analysis of the performance
of DocLLM-7B on the various question categories
of DocVQA. Table 9 lists the categories under
which the DocVQA questions are listed. The “M”
column identifies the modality that is expected to
be uniquely helpful to the corresponding category.
As an example, the “Figure/Diagram” category in-
cludes questions over charts and diagrams the an-
swers to which rely on visual reasoning, e.g. “What
is the variable taken along the x axis?” Whereas the
“Form” category includes questions the answers to
which require reasoning over layout, e.g. “What
is the text at the top right corner of the page??”13

13Note that the text modality has been highlighted for the
“Handwritten” category because the DocVQA dataset provides
OCR output for all documents. In the absence of OCR output,

Table 9: DocLLM-7B scores for DocVQA categories.

Category M ANLS

Figure/Diagram V 41.4
Form L 82.2
Table/List L 66.2
Layout L 72.4
Free text T 64.6
Image/Photo V 47.8
Handwritten T 62.8
Yes/No - 43.9
Other - 56.8

Needless to say, all modalities are often crucial to
answering all question types. The modalities listed
in the table are those expected to offer a uniquely
important signal to the model.

As depicted in Table 9, DocLLM exhibits strong
performance on “Form” and “Layout” questions, at-
taining scores of 82.2 and 72.4 respectively. These
results underline the model’s proficiency in under-
standing and processing structured document for-
mats and layouts. Conversely, the "Image/Photo",
"Figure/Diagram", and "Yes/No" questions have
lower scores of 47.9, 41.4, and 43.9 respectively.
The absence of integrated vision features might
account for DocLLM’s lower capacity in recogniz-
ing certain visual cues. Overall, DocLLM shows the
strongest performance when reasoning over layout
is key, and the weakest performance when visual
reasoning is key.

Table 10: DocLLM-7B performance comparison against
GPT4+OCR and GPT4V. BuDDIE KIE GPT4V results
were obtained on a sample of 5K (cost & API limits).

Model Setting DocVQA BuDDIE
VQA VQA KIE CLS

GPT4+OCR ZS 82.8 76.4 66.1 84.9
GPT4V ZS 88.4 67.9 70.0 86.0

DocLLM-7B SDDS 69.5 86.7 96.0 99.4
DocLLM-7B STDD 63.4 73.3 72.6 31.1

C.3 GPT4V Performance Comparison

Given the recent roll out of the GPT4V API14 and
the interest it has generated, we also benchmark
DocLLM-7B against GPT4V on DocVQA and BuD-
DIE (Table 10). We select these datasets in order to
include both SDDS and STDD results in the com-

the vision modality could play a more crucial role.
14https://openai.com/blog/

new-models-and-developer-products-announced-at-
devday
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parison. Moreover, as BuDDIE was not publicly
released before this work, we can be certain that
GPT4 and GPT4V were not trained on it. Due to
cost and daily API usage limitations, we were not
able to cover additional datasets.

We first observe that GPT4V does not uniformly
outperform GPT4+OCR on the datasets consid-
ered. Both models show close ZS performance in
BuDDIE CLS, but GPT4+OCR beats GPT4V in
BuDDIE VQA while GPT4V tops GPT4+OCR on
BuDDIE KIE and DocVQA. The additional vision
component of GPT4V seems to help in general, es-
pecially for datasets such as DocVQA. However, as
the characteristics of these model are undisclosed,
analyzing their performance differences in depth
is difficult. We do note that, despite its lack of
visual and spatial features, GPT4+OCR fares well
on VQA, KIE, and CLS tasks, and might be able
to partially model the spatial relationships in docu-
ments based on the natural ordering of OCR tokens.
Its robustness to OCR token position permutations
is however not guaranteed.

Next, we observe that DocLLM-7B also outper-
forms GPT4V in addition to GPT4+OCR on BuD-
DIE SDDS. In the STDD evaluation setting, which
is closer to out-of-distribution ZS inference, our
model still exhibits competitive performance in
VQA and KIE – although not consistently exceed-
ing the scores of the likely larger GPT4 models.
DocLLM’s lack of vision encoder appears to be
mostly detrimental on DocVQA, where it particu-
larly struggles on “Image/Photo” and “Figure/Dia-
gram” questions, as seen in Section C.2.

C.4 SotA Performance Comparison
In Table 11, we compare DocLLM-7B against the
SotA on the datasets considered in this paper. Note
that BuDDIE is not included here as it was not pub-
licly released before this work. Similarly, DUDE
and VRDU ad-buy are not considered in this sec-
tion, since we used validation and bespoke splits
respectively to evaluate models on them (see the
caption on Table 2). FUNSD and PWC are also
excluded from this study, as the prompts we built
for these datasets leveraged annotations differently
than previous work: our FUNSD KIE questions
are based on the annotated key-value links, and
our PWC KIE questions are formulated using the
annotated set of Machine Learning tasks covered
by the dataset.

Table 11 offers a few notable takeaways. First,
despite the recent progress in multi-modal docu-

ment understanding, a foundation model that out-
ranks others across a wide range of tasks and
datasets does not currently exist. Most SotA mod-
els are single-task fine-tuned models that outper-
form others in one or a few datasets, as seen here
with LayoutT5 (Tanaka et al., 2021), StructuralLM
(Li et al., 2021), PASTA+DATER (Ye et al., 2023d),
GPT-3.5+DP+PyAgent+MixSC (Liu et al., 2023b),
and GraphDoc (Zhang et al., 2023b). The same
observation applies to general NLP (Brown et al.,
2020; Wang et al., 2022; Chowdhery et al., 2022;
Naveed et al., 2023). While UDOP tops all mod-
els on three KIE datasets, it remains an expert
model that requires dataset-specific prompts and
per dataset fine-tuning (on top of its multitask su-
pervised pretraining) in order to reach the perfor-
mance reported. Similarly, Pix2Struct, a special-
ist model with a ViT encoder and a text decoder
pretrained on 80M website screenshots, exhibits
strong performance on DocVQA (76.6 for its 1.3B-
parameter variant), but underperforms in chart and
infographics understanding compared to general-
ist multimodal LLMs such as UReader. Its per-
formance on KIE and CLS datasets is also under-
studied. On table-based datasets such as WTQ
and TabFact, SotA models rely on large, text-only
LLMs to reason over data using SQL or Pandas
– thus reducing their ability to generalize to non-
tabular document data. The abstractive reasoning
limitations of DocLLM-7B are more apparent on
these table-based datasets, but our single model
performs competitively in KIE and CLS (even on
KLC and Deepform, despite DocLLM’s relatively
short context-length).

Second, recent multimodal LLMs such as Qwen-
VL-Max15 and GPT4V16 show impressive ZS per-
formance in VQA. These generalist models report
strong performance on DocVQA and other datasets
like ChartQA (Masry et al., 2022) and Infograph-
icVQA (Mathew et al., 2022) (which we do not
consider in this paper) thanks to their additional vi-
sion encoder.17 However, the lack of transparency
about their size, exact architecture, training pro-
cedure, and training data makes it hard to draw
any conclusions. On DocVQA, DocLLM-7B outper-
forms Qwen-VL-10B (Bai et al., 2023). Moreover,
as these recent multimodal LLMs were designed

15https://qwenlm.github.io/blog/qwen-vl/
16https://openai.com/research/gpt-4
17In future studies, we hope to equip DocLLM with access

to the vision modality too — albeit in a more efficient manner
than is typically implemented.
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Table 11: DocLLM-7B (SDDS) performance comparison against SotA models.

Dataset Model Modality SotA DocLLM-7B

VQA

DocVQA Qwen-VL-Max T+V 93.1 69.5(qwenlm.github.io/blog/qwen-vl)

WTQ (Accuracy) GPT-3.5+DP+PyAgent+MixSC T 73.6 27.1(Liu et al., 2023b)

VisualMRC (CIDEr) LayoutT5 T+V+L 364.2 264.1(Tanaka et al., 2021)

NLI TabFact PASTA+DATER T 93.0 66.4(Ye et al., 2023d)

KIE

KLC UDOP T+V+L 82.8 60.3(Tang et al., 2023)

CORD UDOP T+V+L 97.6 67.4(Tang et al., 2023)

DeepForm UDOP T+V+L 85.5 75.7(Tang et al., 2023)

SROIE GraphDoc T+V+L 98.45 91.9(Zhang et al., 2023b)

CLS RVL-CDIP StructuralLM T+L 96.1 91.8(Li et al., 2021)

to tackle a wide range of tasks (e.g., image cap-
tioning) and not just DocAI, their ZS performance
on certain tasks considered here (document NLI,
KIE, CLS) has not been investigated – making a
thorough comparison with our model even more
complex.

Finally, despite lower performance compared
to the top-performing model in each category,
DocLLM still shows superior performance to gen-
eralist LLMs of comparable size, as indicated in
Table 2. The model also proves robust to out-of-
distribution data in ZS, as demonstrated in Table
3.

D Ablation Studies

We conduct ablation studies to validate the three
main contributions of DocLLM: (1) disentangled spa-
tial features, (2) the block infilling pre-training
objective, and (3) the masking strategy used for
decoding. For all ablations, we use Next Token
Prediction (NTP) out-of-sample accuracy to com-
pare configurations at the pre-training stage. Due
to resource restrictions, each experiment uses a sub-
set of our pre-training corpus: we randomly sam-
ple 100,000 chunks and predict on 1,000 unseen
documents. A chunk is a collection of documents
wherein the total number of tokens across the col-
lection is less than the maximum input context
length. The hyperparameters are set consistently
following Table 8 across all ablation experiments.

Disentangled Spatial Attention. To measure the
effect of disentangled spatial attention on cross-

(a) Causal decoder

(b) Prefix decoder

Figure 5: A simplified illustration of attention masks for
causal-decoder and prefix-decoder for block infilling.
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Figure 6: Performance comparison on NTP between
causal decoder and prefix decoder.

modal interactions, we train the models by setting
the λ hyperparameter in Eq 4 to 0 or 1. Table 4 enu-
merates the attention combinations, and the results
suggest that keeping only the spatial-to-spatial in-
teraction (i.e. λs,s = 1) yields the highest NTP ac-
curacy. The performance differences among other
configurations, such as text-to-spatial and spatial-
to-text, are subtle. Notably, the vanilla text-only
self-attention mechanism yields the lowest NTP
accuracy, underlining the importance of incorporat-
ing spatial features for understanding documents
with rich layouts. For all experiments in Section 4,
we therefore set λs,s = 1, λs,t = 0, and λt,s = 0.
We opt for simplicity by choosing a hard mode
over a soft one while acknowledging the potential
advantage of flexibility for the latter.

Autoregressive Block Infilling. To evaluate the ef-
fectiveness of the proposed autoregressive block in-
filling objective especially comparing with the con-
ventional left-to-right causal learning, we bench-
mark three configurations in our ablation study:
(1) causal learning, (2) causal learning with spa-
tial modality, and (3) block infilling with spatial
modality. As highlighted in Table 5, autoregres-
sive block infilling exhibits the best performance.
Additionally, the performance gain of adding the
spatial modality to the causal learning proves the
advantage of the spatial modality.

Prefix Decoder and Causal Decoder. For
document-conditioned generation, an intuitive
choice is to employ a prefix decoder with prefix
masking that utilizes bidirectional attention mech-
anism for the entire document, as illustrated in
Figure 5b. We investigate this assumption through
experiments where we compare a prefix decoder
against the conventional causal decoder. Specif-
ically, we conduct experiments on these two de-
coders for different settings outlined in the Disen-
tangled Spatial Attention ablation to study their
resulting performance.

The results in Figure 6 show marginal differ-
ences between these two decoders across the five
configurations, with the causal decoder having a
slight edge over the prefix. The minor difference
suggests that both masking methods are compara-
ble in modeling documents. Thus the bidirectional
attention enabled by the prefix decoder may not be
crucial in this context, and we consequently elect to
use a causal decoder for all experiments in section
4.

E Robustness to inaccurate OCR
Bounding Boxes

To assess DocLLM’s sensitivity to inaccurate to-
ken bounding boxes, we conduct experiments on
DocVQA and inject variable amounts of noise to
shift the borders of the original OCR data. Each
border is shifted by ϵ ∼ N (0, l2σ2), where l is the
length of the sides orthogonal to the border consid-
ered and σ is the hyperparameter we use to control
the amount of noise injected. We clip tail values
beyond ±2lσ and restrict σ to values between 0
and 0.25 to avoid accidentally swapping bounding
box borders.

We observe in Table 12 that DocLLM-1B’s perfor-
mance on DocVQA remains very stable when input
OCR borders are randomly shifted, highlighting the
model’s robustness to moderately inaccurate spatial
coordinates.

Table 12: DocLLM-1B robustness to inaccurate
bounding box information on DocVQA

σ (noise level) 0 0.125 0.25

DocLLM-1B 61.4 60.9 60.8

F Additional Discussion

The main concept for a cohesive block is to en-
sure meaningful infilling during the pretraining
phase, preventing disconnected predictions. How-
ever, the choice of OCR engines to obtain such co-
hesive blocks remains an open area for exploration.
Practical comparisons with various OCR engines
and/or layout parsers are left as future work, as
LayoutLMs underscore the importance of accurate
OCR for improved VQA results. They leverage
the Microsoft Azure API, demonstrating superior
performance compared to TesseractOCR, as indi-
cated in the DocVQA leaderboard.18 Consequently,

18https://rrc.cvc.uab.es/?ch=17&com=evaluation&
task=1
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researchers are also encouraged to utilize more ac-
curate OCR engines for potential enhancements, if
such resources are available.

We have presented a collection of SDDS re-
sults alongside zero-shot outcomes. To mitigate
prompt influence in the zero-shot results, a rigor-
ous methodology was implemented. This involved
the engagement of three independent prompt engi-
neers, each undergoing five rounds of refinement
for zero-shot settings, followed by a series of post-
processing techniques to enhance result reliability.
The best results are thus obtained from each of the
three groups. We still acknowledge the potential
for refinement and improvement.

We share some internal training experiences, ac-
knowledging the absence of robust validation. First,
we observe that a higher weight decay (e.g., 0.1 ver-
sus 0.01) generally improves performance in both
pretraining and instruction tuning. During the in-
struction tuning phase, a higher initial learning rate,
such as 1e-4 versus 5e-5, leads to enhanced per-
formance. Overall, we’ve observed that the cosine
scheduler tends to outperform linear or constant
schedulers across various settings.
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