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Abstract

In this paper, we primarily address the issue of
dialogue-form context query within the interac-
tive text-to-image retrieval task. Our method-
ology, PlugIR, actively utilizes the general
instruction-following capability of LLMs in
two ways. First, by reformulating the dialogue-
form context, we eliminate the necessity of
fine-tuning a retrieval model on existing vi-
sual dialogue data, thereby enabling the use
of any arbitrary black-box model. Second, we
construct the LLM questioner to generate non-
redundant questions about the attributes of the
target image, based on the information of re-
trieval candidate images in the current context.
This approach mitigates the issues of noisi-
ness and redundancy in the generated ques-
tions. Beyond our methodology, we propose
a novel evaluation metric, Best log Rank Inte-
gral (BRI), for a comprehensive assessment of
the interactive retrieval system. PlugIR demon-
strates superior performance compared to both
zero-shot and fine-tuned baselines in various
benchmarks. Additionally, the two methodolo-
gies comprising PlugIR can be flexibly applied
together or separately in various situations. Our
codes are available at https://github.com/
Saehyung-Lee/PlugIR.

1 Introduction

Text-to-image retrieval, a task focused on locat-
ing target images in an image database that cor-
respond to an input text query, has seen signifi-
cant advancements thanks to the development of
vision-language multimodal models (Radford et al.,
2021; Li et al., 2022). Conventionally, methods in
this domain have adopted a single-turn retrieval
approach, reliant on the initial text input, which ne-
cessitates comprehensive and detailed descriptions
from users. Recently, Levy et al. (2023a) have in-
troduced a chat-based image retrieval system utiliz-
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ing large language models (LLMs) (Radford et al.,
2019) as questioners to facilitate multi-turn dia-
logues, enhancing retrieval efficiency and perfor-
mance even with simplistic initial image descrip-
tions given by users. However, this chat-based re-
trieval framework confronts certain limitations, in-
cluding the requirement of fine-tuning to adeptly
encode dialogue-style texts, a process that is both
resource-intensive and impractical for scalability.
Moreover, the reliance of the LLM questioner on
initial descriptions and dialogue histories, without
the ability to view the image candidates, poses a
risk of generating queries about non-existent at-
tributes in the target image, based on the LLM’s
parametric knowledge.

To overcome these challenges, this paper in-
troduces PlugIR, a novel plug-and-play interac-
tive text-to-image retrieval methodology that is
tightly coupled with LLMs. PlugIR comprises
two key components: context reformulation and
context-aware dialogue generation. Harnessing the
instruction-following proficiency of LLMs, PlugIR
reformulates the interaction context between users
and questioners into a compatible format for pre-
trained vision-language models (Li et al., 2022).
This process enables the direct application of an
array of multimodal retrieval models, including
black-box variants, without necessitating further
fine-tuning. Additionally, our approach ensures that
the LLM questioner’s inquiries are grounded in the
context of the retrieval candidates set, thereby al-
lowing it to formulate questions pertinent to the
target image’s attributes. During this process, we
inject the retrieval context in text form as an in-
put context for the LLM questioner to reference.
Subsequently, our methodology also incorporates
a filtering process that selects the most context-
aligned, non-repetitive questions, thereby stream-
lining the search options. Figure 1 illustrates the
overall structure of our proposed interactive text-
to-image retrieval system.
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Figure 1: The main framework of the plug-and-play interactive text-to-image retrieval system.

We identify three critical aspects for assessing
interactive retrieval systems: user satisfaction, effi-
ciency, and ranking improvement significance. We
show that existing metrics, such as Recall@K and
Hits@K (Patel et al., 2022; Levy et al., 2023a),
fall short in these areas. For instance, Hits@K
fails to account for efficiency, which is better with
fewer interactions to locate the target image. To re-
solve these issues, we introduce the Best log Rank
Integral (BRI) metric. BRI effectively covers all
three essential aspects, offering a comprehensive
evaluation independent of a specific rank K, unlike
Recall@K or Hits@K. We empirically demonstrate
that BRI aligns more closely with human evalua-
tion compared to existing metrics.

Experiments across diverse datasets, including
VisDial (Das et al., 2017), COCO (Lin et al., 2014),
and Flickr30k (Young et al., 2014), show that Plu-
gIR significantly outperforms the existing interac-
tive retrieval systems using zero-shot or fine-tuned
models (Levy et al., 2023a). Moreover, our ap-
proach shows significant adaptability when applied
to diverse retrieval models, including black-box
models. This compatibility extends the utility of
our approach, allowing it to be adapted to a broader
spectrum of applications and scenarios. We sum-
marize our contributions as follows:
• We present the first empirical evidence showing

that zero-shot models struggle to understand di-
alogues and introduce a context reformulation
method as a solution. This method does not ne-
cessitate fine-tuning the retrieval model.

• We propose a LLM questioner designed to ad-
dress the searching bottleneck issue caused by

noisy and redundant questions
• We introduce BRI, a novel metric aligned with

human judgment, specifically designed to enable
comprehensive and quantifiable evaluation of in-
teractive retrieval systems.

• We verify the effectiveness of our framework
across a diverse range of environments, highlight-
ing its versatile plug-and-play capabilities.

2 Related Work

Text-to-Image retrieval task The task of retriev-
ing a target image from an image pool through user
interaction is known as text-to-image retrieval. Var-
ious methods have been proposed for retrieving
target images using various forms of user interac-
tion (Levy et al., 2023b; Liu et al., 2021; Vo et al.,
2019; Wu et al., 2021). Notably, ChatIR (Levy
et al., 2023a) introduced a method for image re-
trieval through dialogue between a user and an au-
tomated system. Further related works are provided
in Appendix G due to the space limitations.

Vision-Language models Vision-language mod-
els (VLMs) have emerged as a pivotal area in AI
research, aiming to bridge the gap between visual
and textual understanding. CLIP (Radford et al.,
2021) introduces the vision-language landscape by
leveraging a contrastive learning framework. By
jointly embedding images and their associated text
descriptions, CLIP demonstrates a robust ability to
perform various vision-language tasks, especially
in zero-shot classification across a wide range of
concepts. Subsequently proposed BLIP (Li et al.,
2022) goes further by introducing a model capa-
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ble of both understanding and generation task, and
addressing the issue of noisy captions in web data
used for pre-training. As a result, BLIP exhibits
exceptional performance in zero-shot image-text
retrieval. Several pioneering models, such as BLIP-
2 (Li et al., 2023), have significantly advanced this
field, exhibiting remarkable capabilities in cross-
modal representation learning, and we make use of
these VLMs as our text-to-image retrieval models.

Large language models Beginning with the Gen-
erative Pretrained Transformer (GPT) series (Rad-
ford et al., 2018, 2019; OpenAI, 2023b), a variety
of works have proposed scaling up the parameters
of language models to the billion-scale (Touvron
et al., 2023a,b). Increasing the number of parame-
ters has not only enhanced the performance of lan-
guage models but also revealed various emergent
abilities (Wei et al., 2022a), which have enabled
remarkable performance in a range of downstream
tasks, including zero-shot and few-shot learning.
Beyond training high-performance LLMs, top-
ics on techniques like Chain-of-Thought prompt-
ing (Wei et al., 2022b) and self-consistency (Wang
et al., 2022) to effectively extract answers from
trained LLMs are active research area.

3 Method

3.1 Preliminaries: Interactive Text-to-Image
Retrieval

Interactive text-to-image retrieval is a multi-turn
task that begins with a simple initial description,
D0, provided by the user. This task involves a di-
alogue between the user and the retrieval system
about the image corresponding to D0 (the target
image), forming a context used as the search query
for the target image in each turn (round). In each
round t, the retrieval system generates a question
Qt about the target image, and the user responds
with an answer At, thereby creating the dialogue
context Ct = (D0, Q0, A0, . . . , Qt, At) for that
round. This dialogue context undergoes appropri-
ate processing, such as concatenating all text ele-
ments, to form a single text query used for image
searching in that round. During the image search-
ing, the retrieval system matches all images in the
connected image pool with the text query and ranks
them based on a similarity score. The performance
of the retrieval system can be evaluated based on
the retrieval rank of the target image.

For evaluation, two primary metrics are com-
monly used: Recall@K and Hits@K. When evalu-
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Figure 2: Round-by-round text-to-image retrieval per-
formances of CLIP, BLIP, BLIP-2, and the Amazon
Titan multimodal foundation model (ATM). In the 0th
round, an image caption is provided as the query, and
with each subsequent round, a single question-answer
pair is added. Solid lines represent Recall@10, while
dotted lines indicate Hits@10.

ated using Recall@K, success is determined if the
target image’s rank computed in the current round
is among the top K. For Hits@K, success is defined
as the target image appearing in the top-K results
at any round up to the current one.

3.2 Context Reformulation

Do zero-shot models understand dialogs? To
demonstrate the necessity of the proposed method,
we assess the degree to which zero-shot mod-
els comprehend and effectively employ given dia-
logues in the interactive text-to-image retrieval task.
We specifically track changes in the retrieval perfor-
mance of zero-shot models, which comprise three
white-box models (CLIP, BLIP, and BLIP-2) and
one black-box model1, by incrementally providing
an additional question-answer pair related to the tar-
get image over 10 rounds. Thus, in the 10th round,
the input query is a dialogue encompassing one
image caption and 10 question-answer pairs. We
posit that if a zero-shot model is capable of under-
standing dialogues and utilizing them effectively
in the image retrieval task, it will exhibit enhanced
performance in the later rounds compared to its ini-
tial performance in round 0, which solely involved
the use of the image caption.

Figure 2 illustrates a progressive improvement
in the Hits@10 scores of all tested zero-shot mod-

1https://docs.aws.amazon.com/bedrock/latest/
userguide/titan-multiemb-models.html
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els across successive rounds. This trend suggests
that some query samples, initially unsuccessful in
retrieval, achieve success as the dialogues are en-
riched in later rounds. However, we advise against
hastily concluding that dialogues are effective as
input queries for zero-shot models based solely on
these observations. Our analysis, informed more by
the Recall@10 than the Hits@10 scores, leads to a
different conclusion: the zero-shot models appear
to struggle with comprehending dialogues in the
text-to-image retrieval task.

In fact, Hits@K scores can increase over consec-
utive rounds by simply adding noise to the similar-
ity matrix between image captions and candidate
images. This occurs because Hits@K requires only
one successful retrieval attempt at any point up
to each round. In contrast, Recall@K reflects the
quantity of information present in “each” round’s
queries in the text-to-image retrieval task. Figure
2 shows that all the retrieval models under study
achieve their highest Recall@10 scores when us-
ing only image captions as input queries. Notably,
the CLIP, BLIP, and BLIP-2 models experience
a decrease in Recall@10 as the round progresses.
This trend implies that the appended dialogues, in
the context of these zero-shot models, predomi-
nantly function as noise. In CLIP, BLIP, and BLIP-
2, the effect of noise becomes more pronounced
with the increased dialogue length. The Amazon
Titan multimodal foundation model (ATM), while
not showing a decrease in Recall@10 with longer
dialogues, does not exhibit enhanced performance
either, suggesting that the added dialogues may not
substantially contribute to the informative context.

A plug-and-play approach. To overcome the
challenge of zero-shot retrieval models not effec-
tively using dialogues in text-to-image retrieval
tasks, one strategy could be the fine-tuning of pre-
trained retrieval models using datasets that consist
of image and dialogue pairs. For instance, Levy
et al. (2023a) has fine-tuned the BLIP model on
VisDial to attain higher Hits@K scores. We pro-
vide empirical evidence in Section 5.1, illustrating
that this method can equip retrieval models with the
capability to comprehend dialogues. However, the
implementation of such tuning-based approaches
depends on certain conditions that are not always
feasible: (i) Access must be available to the re-
trieval model parameters; (ii) Sufficient and suit-
able training data must be obtained. For example,
this method is not applicable to black-box retrieval

models like ATM.
In this study, we investigate a novel approach

that adapts text queries to be better understood
by retrieval models, rather than modifying the re-
trieval models to accommodate the format of the
text queries. More specifically, rather than directly
using dialogues as input queries, we utilize LLMs
to convert dialogues into a format (e.g., caption-
style) more aligned with the training data distri-
bution of the retrieval models. This strategy ef-
fectively bypasses the constraints associated with
tuning-based methods, as it does not necessitate
the fine-tuning of the retrieval models. The text
prompts used for the context reformulation can be
found in Appendix A.

3.3 Context-aware Dialogue Generation

Is the additional information in dialogues
actually effective? The motivation for the refor-
mulation proposed in the previous section is based
on the observation that the dialogue form tends to
function more as noise than as useful information
for a pre-trained retriever. In this section, we aim to
delve beyond the form of the context and focus on
the actual contents of the context. We identify two
key issues when relying solely on the dialogue con-
text to generate questions about the target image.
Firstly, the generated questions may inquire about
attributes that are unrelated to the target image. For
example, questions asking the objects not in the
target image are likely to elicit negative responses.
This case itself may function as noise within the
dialogue context. Consequently, compared to pre-
vious rounds, the context representation introduces
more confusion in the retrieval process, leading to
a decrease in retrieval performance.

The second is the potential redundancy of gener-
ated questions. In the question generation process,
general questions like “What is the person in the
photo doing?” can often be answered based on the
information already available in the dialogue con-
text, without needing to view the target image. In
such cases, the question-answer pair also fails to
provide valuable additional information, resulting
in redundancy. Consequently, this redundancy does
not contribute to enhancing retrieval performance
in subsequent rounds. In the following sections,
we address these issues and propose a questioner
structure that can be flexibly applied in various sit-
uations, effectively tackling the challenges of noise
and redundancy in dialogues.
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Algorithm 1 Retrieval Context Extraction
1: Input: dialogue context c, image pool I,

number of candidates n,
number of clusters m,
similarity function sim,
K-means clustering function KMeans,
image captioning function Captioning

2: Initialize SR ← {}
3: while |SR| < n do
4: Append argmaxx∈I sim(c,x) to SR

5: Pop x from I
6: end while
7: S

(1)
R , . . . ,S

(m)
R ← KMeans(SR)

8: Define pc(x) =
exp(sim(c,x))∑

x′∈SR
exp(sim(c,x′))

9: Initialize T ← {}
10: for i = 1 to m do
11: x̂(i) ← argmin

x∈S(i)
R

H(px)

12: Append Captioning(x̂(i)) to T
13: end for
14: return T

A plug-and-play approach. To address the is-
sue of generated questions dealing with unrelated
attributes to the target image, we inject the infor-
mation about the retrieval candidate images of the
current round as the textual input of the LLM ques-
tioner. For this process, we first extract images from
the image pool that are similar to the (reformulated)
dialogue context in the embedding space, establish-
ing these as the set of “retrieval candidates”. These
similar images contain attributes analogous to the
current dialogue context, which includes some in-
formation about the target image, ensuring that the
questions generated about these attributes are some-
what guaranteed to be related to the target image.

We apply K-means clustering to the candidate
image embeddings. Subsequently, we obtain the
similarity score distribution for each candidate im-
age against the other candidates. For each cluster,
the image with the lowest entropy in its similarity
distribution is selected as the representative. This
selection is based on the rationale that a lower en-
tropy in the similarity distribution suggests that
the corresponding image contains more concrete
and distinguishable attributes. For example, among
images belonging to the same cluster, the image
corresponding to the caption “home office” exhibits
high entropy, while another image corresponding
to the caption “a desk with two computer monitors
and a keyboard” exhibits low entropy.

Algorithm 2 Filtering Process

1: Input: dialogue context c, questions Q,
retrieval candidates set SR,
similarity function sim,
context answering function Answer

2: Define pc(x) =
exp(sim(c,x))∑

x′∈SR
exp(sim(c,x′))

3: Define
pc,q(x) =

exp(sim(concat(c,q),x))∑
x′∈SR

exp(sim(concat(c,q),x′))

4: Initialize Q′ ← {}
5: for q in Q do
6: if Answer(c,q) == “uncertain” then
7: Append q to Q′

8: end if
9: end for

10: q̂← argminq∈Q′ DKL(pc||pc,q)
11: return q̂

The K images obtained through this method are
then converted into textual information via an ar-
bitrary image captioning model and provided as
additional input to the LLM questioner. This re-
trieval context extraction process is shown in Al-
gorithm 1. To ensure the LLM questioner effec-
tively grounds the textual information of the re-
trieval candidates, we utilize a chain-of-thought
(CoT) approach. This includes providing the LLM
questioner with few-shot examples as additional
instructions, which involve the effective utilization
of retrieval candidates. Appendix A contains the
CoT prompts provided to the LLMs.

Questions generated by grounding in the addi-
tional context extracted from the retrieval search
space include attributes related to the target image
but can still be redundant. To prevent the generation
of such questions, we employ an additional filter-
ing process which is shown in recent work (Zheng
et al., 2023). For each question generated by the
questioner, we prompt an LLM agent to respond
with “uncertain” if it cannot derive an answer from
the corresponding description and dialogue, which
implies the question is free from redundancy. We
then only use questions answered with “uncertain”.

The filtering process can effectively remove
questions answerable without viewing the target
image but fails to exclude those that are unanswer-
able even with the target image present. These fail-
ure questions address attributes related to the can-
didates set but unrelated to the target image. We
observe that the use of such unsuitable questions
causes a relatively abrupt change in the similarity
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distribution between the query and candidate im-
ages, resulting in decreased retrieval performance.
Consequently, we select the question that exhibits
the lowest Kullback-Leibler (KL) divergence of the
similarity distributions about dialogue contexts and
the distribution about dialogue contexts combined
with the question. Algorithm 2 shows the filtering
process of PlugIR. The context-aware dialogue gen-
eration process, as configured in this manner, can
be used synergistically with the context reformula-
tion described in the previous sections. It also pos-
sesses the flexibility to be utilized independently,
especially in scenarios where a fine-tuned retrieval
model for the dialogue context is utilized.

3.4 The Best log Rank Integral Metric

When evaluating an interactive retrieval system, the
following key aspects are essential:
1. User satisfaction: This is considered fulfilled if

the system manages to retrieve the target image
at least once within its query budget.

2. Efficiency: The system efficiency is gauged by
rounds needed for successful retrieval; fewer
rounds indicate better performance.

3. Ranking improvement significance: Enhance-
ments in higher ranking positions are intrinsi-
cally more challenging, and as such, they should
be given more emphasis in metric evaluations.
For instance, the improvement in metrics should
be markedly more significant when an image’s
rank ascends from 2 to 1, as opposed to an as-
cent from 100 to 99. This distinction highlights
the increased challenge and value associated
with reaching the top rankings.

Recall@K, commonly used for non-interactive re-
trieval system evaluation, falls short of fully ad-
dressing these three aspects in our specific context.
Hits@K, recommended by Levy et al. (2023a) for
interactive systems, meets the criteria for user satis-
faction but lacks in addressing the latter two aspects
adequately. Consequently, this paper introduces a
novel evaluation metric designed to comprehen-
sively address all three of these considerations.

To address the aspect of user satisfaction, we
define “Best Rank” as follows:

Definition 1. Let R(q) denote the retrieval rank of
the target image corresponding to a query q. Then,
the Best Rank π for a query qt at round t is

π(qt) =

{
min(π(qt−1), R(qt)) if t ≥ 1

R(q0) if t = 0
.

Best Rank measures the most successful retrieval
out of all attempts up to each round. To reflect the
second and third aspects, we introduce Best log
Rank Integral (BRI), defined using π as follows:

Definition 2. Let Q and T be a test query set and a
designated system query budget, respectively. Then,
BRI is defined as

E
q∈Q

[
1

2T
log π(q0)π(qT ) +

1

T

T−1∑

t=1

log π(qt)

]
.

BRI can be interpreted as the average area under
the log π graph for round t across all queries Q.
The quicker the improvement in the ranks of target
images, the less area there is under the graph. The
logarithmic nature of the function causes a more
substantial decrease in BRI as it nears the top ranks,
with a lower BRI signifying better performance of
the interactive retrieval system. Notably, BRI dif-
fers from Recall@K and Hits@K in its approach
to evaluation. Rather than dichotomizing data sam-
ples based on a specific rank (K), it calibrates the
results across all data samples for the evaluation,
making it a more general and reliable metric.

To prove the reliability of BRI, we compare its
correlation with human preference against those
of previously proposed metrics in Section 4.3. The
results confirm that BRI aligns considerably more
closely with human evaluation than other metrics.

4 Experiments

4.1 Experimental Settings

We evaluate our method on VisDial, COCO, and
Flickr30k datasets. BLIP is used as the default text-
to-image retrieval model unless explicitly stated,
while BLIP-2 and ATM are also used for the exper-
iment on adaptability. We employ ChatGPT (Ope-
nAI, 2023a) as the language model responsible for
generating questions in all experiments, and BLIP-
2 takes the place of human answerers in providing
answers for the generated questions, considering
the impracticality of human answerers.

In all experiments conducted in this paper, the
number of clusters m is uniformly set to 10. Ap-
pendix K presents the study about the effects of
different m values on the performance.

We report the results mainly with two metrics:
Hits@10 and our proposed BRI. These evaluation
metrics are selected because other metrics may lead
to misinterpretations of interactive text-to-image
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(a) VisDial (b) COCO (c) Flickr30k

Figure 3: Hits@10 comparisons of our proposed method with ZS and FT on VisDial, COCO, and Flickr30k.

Table 1: Comparisons with baselines on VisDial, COCO,
and Flickr30k

Method
BRI ↓

VisDial COCO Flickr30k

ZS 1.0006 0.3576 0.5812
FT 1.0106 0.3531 0.5793

PlugIR (ours) 0.7674 0.2396 0.3733

retrieval systems’ performance. Examples substan-
tiating this, along with further implementation de-
tails, are provided in Appendix B.

Baselines and PlugIR. We compare our pro-
posed PlugIR with two baselines, ZS and FT.
• ZS: A simple method that utilizes a zero-shot re-

trieval model. LLM questioner not aligned to re-
trieval context generates questions, and dialogues
are directly used as queries for retrieval.

• FT: A method corresponding to Levy et al.
(2023a), which uses a fine-tuned retrieval model.
The rest are the same as ZS.

• PlugIR: Our proposed method that employs
a zero-shot retrieval model. LLM questioner
aligned to retrieval context generates questions,
and revised dialogues via context reformulation
are used as queries for retrieval.

4.2 Results
Table 1 presents the BRI results of ZS, FT, and Plu-
gIR on VisDial, COCO, and Flickr30k. Across all
three datasets, our proposed method outperforms
both the ZS and FT baselines. Figure 3 demon-
strates that PlugIR surpasses the baseline methods
in all rounds in terms of the Hits@10 score.

A comparative analysis of the evaluation results
for ZS and FT confirms that BRI provides a more

Table 2: Comparisons of BRI and existing metrics in
terms of alignment with human preference

Measure
Correlation coefficients with human

Recall MRR NDCG Hits BRI (ours)

Spearman 0.46 0.67 0.67 0.51 0.88
Pearson 0.51 0.70 0.68 0.60 0.88

comprehensive assessment compared to Hits@10.
To be specific, in Figure 3a, FT lags behind ZS
until round 4, then outperforms ZS from round 5
onwards. Consequently, at the end of the dialog
rounds, Hits@10 indicates that FT outperforms ZS.
However, in the VisDial results shown in Table 1,
we find that ZS and FT are comparable in terms of
BRI. This is due to BRI considering not only the
number of successful retrievals (user satisfaction)
but also the number of rounds required for success
(efficiency). Therefore, ZS’s achievement of more
successful retrievals in the early rounds results in a
similar BRI score to FT.

4.3 BRI’s Alignment with Human Evaluation

We engage 30 human testers to measure human
preference for interactive text-to-image retrieval
systems (for more details, please refer to Ap-
pendix C) and then explore its correlation with Re-
call, mean reciprocal rank (MRR), normalized dis-
counted cumulative gain (NDCG), Hits, and BRI.
MRR and NDCG are metrics similar to Recall but
additionally, consider the ranking improvement sig-
nificance. The correlations are quantified using the
Spearman and Pearson correlation coefficients. The
findings presented in Table 2 reveal that BRI is
significantly more strongly correlated with human
preference than the other metrics.
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Figure 4: Round-by-round text-to-image retrieval perfor-
mances of Model fine-tuning and context reformulation.
Solid lines represent Recall@10, while dotted lines in-
dicate Hits@10.

Table 3: Experimental results across various retrievers

Methods
BRI ↓

BLIP BLIP-2 ATM

ZS 1.0006 0.8520 1.1329
PlugIR (ours) 0.7674 0.6647 0.8236

5 Analysis

5.1 Analyzing Dialogue Utilization in Model
Fine-tuning and Context Reformulation

As previously illustrated in Figure 2, zero-shot
models have difficulties in understanding dialogues.
In this section, we investigate whether model fine-
tuning and context reformulation actually enhance
the retrieval models’ utilization of dialogues. We
present the Recall@10 and Hits@10 for both
model fine-tuning and context reformulation on
the VisDial validation set in Figure 4. The figure re-
veals that both methods, unlike the results in Figure
2, achieve improved Recall@10 when augmenting
queries with dialogues compared to using only im-
age captions (round 0). Notably, we observe that
these two methods behave differently in improving
retrieval performance in our scenario. Model fine-
tuning achieves a higher Recall@10 but a lower
Hits@10 compared to context reformulation. This
implies that model fine-tuning is more focused
on succeeding in retrieval for the same samples
that were successful in previous rounds, compared
to context reformulation. Conversely, context re-
formulation, while less successful in retrieval per

round compared to model fine-tuning, achieves a
higher Hits@10 by improving dialogue utilization
across the entire test query set. In interactive text-
to-image retrieval scenarios, the aggregate retrieval
information accumulated up to each round holds
more significance than the information from each
round individually. The superior BRI of context re-
formulation compared to model fine-tuning reflects
this aspect (see Table 4).

5.2 Adaptability to Various Pre-trained
Models

Due to its ability to function without the need for
fine-tuning processes using dialogue datasets, Plu-
gIR can utilize a wide range of retrievers, includ-
ing black-box models. Table 3 presents the results
of evaluating PlugIR’s performance using two ad-
ditional retrievers, BLIP-2 and ATM, beyond the
BLIP retriever used in previous experiments. It is
observed that PlugIR outperforms the ZS baseline
in all retriever settings, indicating that our method-
ology is not limited to specific retrievers and can be
universally applied. Regarding performance across
different retrievers, both ZS and PlugIR show simi-
lar trends, but a reduction in performance disparity
between different retrievers is noted with PlugIR.
This suggests that using PlugIR could reduce the
cost associated with searching for an optimal re-
triever. Additional results for the Hits@10 metric
can be found in Appendix E.

5.3 Robustness to Context Perturbation

In our scenario, users may have their unique speak-
ing styles, leading to variations in the input distri-
bution of the retrieval system. From the perspective
of these context perturbations, we compare the ro-
bustness of our proposed method with those of ZS
and FT. To ensure a fair comparison, we assume
that each method has the same questioner and con-
duct experiments by perturbing user responses in
a fixed dataset (VisDial validation set). The exper-
imented context perturbations include character-
level substitution and deletion, and style transfer
(Reif et al., 2022) to "informal," "slang," and "tech-
nical" styles. We use the TextAttack library (Morris
et al., 2020) for character-level perturbations and
GPT-3.5 for style transfer. In Table 4, we observe
that our method employing LLMs to reformulate di-
alogues before using them as inputs to the retrieval
model exhibits greater robustness against the tested
context perturbations compared to directly using
dialogues as inputs in ZS and FT models.
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Table 4: Robustness comparisons against context pertur-
bations including character-level substitution and dele-
tion (Char.) and style transfer to Informal, Slang, and
Technical. ∆ denotes the absolute performance degra-
dation relative to Clean (no perturbation). We list the
Hits@10 from the final (10th) round.

Perturb. Method Hits@10 ↑ ∆ BRI ↓ ∆

Clean
ZS 84.98 0.00 1.0335 0.0000
FT 87.98 0.00 0.9987 0.0000

PlugIR 91.81 0.00 0.8507 0.0000

Char.
ZS 82.07 2.91 1.1255 0.0920
FT 84.54 3.44 1.1192 0.1205

PlugIR 91.04 0.77 0.8624 0.0117

Infor.
ZS 83.24 1.74 1.0721 0.0386
FT 87.06 0.92 1.0340 0.0353

PlugIR 90.94 0.87 0.8732 0.0225

Slang
ZS 82.75 2.23 1.0955 0.0620
FT 85.56 2.42 1.0780 0.0793

PlugIR 90.26 1.55 0.9082 0.0575

Tech.
ZS 81.69 3.29 1.1181 0.0846
FT 85.56 2.42 1.0701 0.0714

PlugIR 89.78 2.03 0.9119 0.0612

5.4 Compatibility with Fine-tuned Models

The context-aware dialogue generation (CDG)
module that incorporates an LLM questioner also
can be independently combined with the various
retriever models, even with the models fine-tuned
for texts with dialogue form. Table 5 demonstrates
the effective combination of the CDG with FT, indi-
cating that our context-aware dialogue generation
module can generate effective questions for various
retrievers. Additional results about the Hits@10
metric can be found in Appendix E.

5.5 Ablation Study

We conduct an ablation study on PlugIR, evaluating
them in terms of Recall@10 and Hits@10. PlugIR
comprises context reformulation (CR) and context-
aware dialogue generation (CDG). The CDG can be
subdivided into retrieval context extraction (RCE)
and filtering (F) parts. Figure 5 presents the com-
parison of various combinations in terms of Re-
call@10 and Hits@10, which is conducted on the
dialogue generated by the LLM questioner and an-
swered by BLIP-2. Compared to the ZS baseline,
each component progressively influences perfor-
mance improvement in terms of Hits@10. Notably,
the application of the F process leads to signifi-
cant enhancements in Recall@10, which indicates,
as mentioned in Section 3, an effective reduction
in redundancy during question generation. The re-

Table 5: BRI results for the FT + CDG (Ours)

Methods BRI ↓
FT 1.0106
FT + CDG 0.9457
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Figure 5: Round-by-round text-to-image retrieval per-
formances in the ablation study. Solid lines represent
Recall@10, while dotted lines indicate Hits@10.

sults of the ablation study for BRI performance are
shown in Appendix E.

Additionally, further analysis in Appendix H
demonstrates that PlugIR not only has a higher
success rate in retrieval but also finds target im-
ages faster than FT. We provide a discussion about
the hallucination of LLM agents of PlugIR in Ap-
pendix J.

6 Conclusion

We investigate the dialogue-form interaction with
LLMs in the context of text-to-image retrieval.
Our proposed PlugIR progressively refines the text
query for image retrieval using the dialogue be-
tween LLM questioner and the user. Specifically,
an LLM converts the dialogue into a format bet-
ter understood by retrieval models. PlugIR enables
the direct application of an array of multimodal
retrieval models, including black-box models, with-
out necessitating further fine-tuning. Moreover, we
newly propose the Best log Rank Integral (BRI)
metric allowing for the measurement of compre-
hensive performance in multi-turn tasks. We verify
the effectiveness of our retrieval system across a
diverse range of environments, highlighting its ver-
satile plug-and-play capabilities.
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Limitations

PlugIR adapts dialogues into a format compati-
ble with pre-trained retrieval models. This means
implementing PlugIR necessitates an understand-
ing of the specific retrieval model. Our experi-
ments show that the caption-style format is effec-
tive across all tested retrieval models and is likely to
work with most others, although this is not univer-
sally guaranteed. Some retrieval models might ben-
efit from alternative text query formats more than
from the caption-style. For example, the training
datasets of recently proposed large vision language
models (Liu et al., 2024, 2023) include various
samples in dialogue format. Therefore, any interac-
tive text-to-image retrieval system utilizing large
vision-language models might prefer queries in di-
alogue form (we provide additional experiments
in this direction in Appendix I). We identify this
aspect as both a limitation of our current study and
an avenue for future research.

Ethics Statement

PlugIR demonstrates the capability to achieve ef-
fective performance in text-to-image retrieval tasks
by leveraging the high-performance capabilities of
a black-box multi-model text-image model and a
large language model. However, this process poses
a potential risk in retrieving individual data within
the image pool. Additionally, there is a concern
about the user’s personal information leakage to
the server operating the Large Language Model
(LLM) during interactions between the LLM ques-
tioner and the user.
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Table 6: Retrieval results example using methods A and
B, showcasing differences in the user satisfaction aspect

Method
Retrieval rank

Round 0 Round 1 Round 2

A 100 100 100
B 100 10 100

Table 7: Evaluation results of each metric for the two
methods in Table 6

Metric A B Good or Bad

Recall@10 ↑ 0.0 0.0 Bad
MRR@10 ↑ 0.0 0.0 Bad

NDCG@10 ↑ 0.0 0.0 Bad
Hits@10 ↑ 0.0 1.0 Good

BRI ↓ 4.6 2.9 Good

A Prompting Examples for LLM

We show prompting examples for LLM in Table
17, Table 18, Table 19, and Table 20.

B Experimental Details

B.1 Evaluation Metric
In Sections 3.2 and 5.1, we employed both Re-
call@10 and Hits@10 to assess the impacts of
ZS, FT, and our proposed method. However, Re-
call@10 was not included in our main evaluations.
This decision was based on the concern that us-
ing recall as an evaluation metric for interactive re-
trieval systems might create misleading perceptions
of their effectiveness. We identified three key per-
spectives to be considered when evaluating these
systems. Through illustrative examples, we demon-
strate how conventional metrics can potentially mis-
represent system performance, addressing each per-
spective in turn. For these examples, it is assumed
that a user can view ten images per round.

User satisfaction. Table 6 illustrates the retrieval
ranks that methods A and B assigned to the same
target image over three rounds. Table 7 then shows
the values of baseline metrics and BRI at the end
of user-system interaction (in round 2). In Table 6,
while the A method maintains a constant rank of
100 across three rounds, the B method allows the
user to locate the target image in round 1, demon-
strating its superior effectiveness compared to A.
However, Table 7 reveals that, except for Hits@10
and BRI, other metrics do not consider this aspect

Table 8: Retrieval results example using methods A and
B, showcasing differences in the efficiency aspect

Method
Retrieval rank

Round 0 Round 1 Round 2

A 100 100 10
B 100 10 10

Table 9: Evaluation results of each metric for the two
methods in Table 8

Metric A B Good or Bad

Recall@10 ↑ 1.0 1.0 Bad
MRR@10 ↑ 0.1 0.1 Bad

NDCG@10 ↑ 0.3 0.3 Bad
Hits@10 ↑ 1.0 1.0 Bad

BRI ↓ 4.0 2.9 Good

of interactive retrieval systems, resulting in both
methods receiving the same evaluations.

Efficiency. In Table 8, both methods A and B
eventually assign a rank of 10 to the target image.
However, the B method stands out because it en-
ables the user to locate the target image in round
1, potentially reducing costs by obviating the need
for round 2, thereby proving more efficient than
the A method. Table 9, however, reveals that all
measures, except for BRI, overlook this efficiency
aspect.

Ranking improvement significance. In Table
10, although both methods A and B display the
target image to the user in round 1, the B method
assigns it a higher rank (nearer to 1) compared to
A, making its retrieval more straightforward. Table
11 shows that metrics like MRR@10, NDCG@10,
and BRI take this factor into account and conse-
quently rate B more positively than A. However,
Recall@10 and Hits@10 do not account for this
particular aspect.

To summarize, employing traditional metrics
like Recall@K in evaluating interactive retrieval
systems can result in scores that only capture a
fraction of these systems’ capabilities. Basing sys-
tem comparisons and assessments of superiority
on such incomplete metrics might lead to mislead-
ing conclusions. For this reason, we opted not to
use Recall@K as our main evaluation metric. Note
that Hits@K has been utilized in prior research
for assessing interactive retrieval systems, and we
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Table 10: Retrieval results example using methods A and
B, showcasing differences in the ranking improvement
significance aspect

Method
Retrieval rank

Round 0 Round 1

A 100 10
B 100 5

Table 11: Evaluation results of each metric for the two
methods in Table 10

Metric A B Good or Bad

Recall@10 ↑ 1.0 1.0 Bad
MRR@10 ↑ 0.1 0.2 Good

NDCG@10 ↑ 0.3 0.4 Good
Hits@10 ↑ 1.0 1.0 Bad

BRI ↓ 3.5 3.1 Good

have included it in our main evaluation to facilitate
comparisons.

Additionally, all scores except for BRI depend
on the hyper-parameter of "the number of images a
user can view at each round (@K)." However, this
value can be highly variable, and thus the evalua-
tion results can easily change. In contrast, BRI’s
independence from this hyper-parameter makes it
a more stable and reliable evaluation metric. Nev-
ertheless, we provide additional analyses in Ap-
pendix D, using only conventional metrics includ-
ing Recall, MRR, NDCG, and Hits.

B.2 Further Implementation Details

We utilze gpt-3.5-turbo-0613 API as our LLMs.
For hyperparameters, we use a temperature of 0.7
and a maximum token length of 32 for the question
generation. For the context reformulation, we use a
temperature of 0.0 and a maximum token length of
512. For filtering, we use a temperature of 0.0 and
a maximum token length of 10.

Regarding datasets, we generate dialogues for
the entire 2,064 images in the VisDial validation
set. Concerning COCO and Flickr30k, we generate
dialogues on a sample of 2,000 images from each
dataset. We set the number of candidates n is set
differently depending on the dataset used in the
experiment; for VisDial, n = 500, for COCO, n =
200, for Flickr30k, n = 300. This corresponds to
approximately 1% of the image pool (search space)
size of each dataset.
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Figure 6: Different retriever results.

C Human Evaluation Details

We measured human preferences of 30 machine-
learning researchers who accepted to participate in
the human evaluation as follows:
1. We prepared instances containing interactions

between a user and an interactive text-to-image
retrieval system. Each instance included one
target image, a 5-round dialogue, and the top-5
images for each round. To facilitate the testers’
evaluation (and to allow for easy recognition of
the overall results at a glance), we decided to
show five images for each of the five rounds for
a single target image.

2. 60 instances were presented to each of the 30
human testers, accompanied by the following
instructions:
“Interactive image retrieval is a process where
the system finds a target image desired by the
user through interaction. When you evaluate,
the scenario involves the user initially provid-
ing a brief description of the target image to the
system. The system then formulates questions
based on this description to correctly identify
the target image, and the user responds to these
questions. The process begins from round 0,
where the user inputs a brief description into
the system. From round 1 onwards, each round
consists of the system asking a question about
the target image based on the information ex-
changed with the user in previous rounds, and
the user responding accordingly. At the end of
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each round, the system, based on the informa-
tion gathered so far, searches for five candidate
target images and presents them to the user in
ranked order. The user can choose to end their
interaction with the system at the conclusion
of any round. Additionally, each round incurs
monetary and time costs. You will evaluate the
system’s usefulness based on the interaction log
on the left, which documents five rounds of in-
teraction with the system.”

3. For each instance, human testers are required to
answer the following questions:
“Assuming you are using a system with the fol-
lowing log:
Q1. The system will be effective.
(Yes: 5, No: 1)
Q2. The system will be efficient.
(Yes: 5, No: 1)”
Our questions aim to evaluate the system in
terms of effectiveness and efficiency, which
are generally considered in system assessments,
without biasing the human testers’ preferences.

4. The average of the scores assigned to each in-
stance is used as the human preference score.

We provide a screenshot of the test in Figure 7.

D Additional Analyses Using
Conventional Metrics

We compare FT and our proposed method in a man-
ner similar to Section 5.1 of the manuscript. This
comparison utilizes metrics such as Recall@10,
MRR@10, NDCG@10, Hits@10, and the average
number of rounds required for successful retrieval.

MRR and NDCG enhance the concept of recall
by incorporating the notion of ranking improve-
ment significance. However, FT’s higher MRR
and NDCG scores than PlugIR’s, as seen in the
MRR@10 and NDCG@10 results of Table 12 be-
yond round 6, should not lead to the conclusion
that FT outperforms PlugIR in terms of ranking im-
provement significance. This interpretation is cau-
tioned against because a consistent trend is evident
across the Recall@10, MRR@10, and NDCG@10
results. In other words, the superiority of FT’s
MRR and NDCG scores over PlugIR’s is largely
influenced by recall factors, rather than the ranking
improvement significance. An in-depth analysis of
these methods regarding recall is presented in Sec-
tions 3.2 and 5.1 of our manuscript as follows: FT
achieves a higher Recall@10 but a lower Hits@10
compared to our proposed method. This implies

that FT is more focused on succeeding in retrieval
for the same samples that were successful in previ-
ous rounds, compared to ours. Conversely, the pro-
posed method, while less successful in retrieval per
round compared to FT, achieves a higher Hits@10
by improving dialogue utilization across the entire
test query set. In interactive text-to-image retrieval
scenarios, the aggregate retrieval information accu-
mulated up to each round holds more significance
than the information from each round individually.
The superior BRI of PlugIR compared to FT re-
flects this aspect.

Nevertheless, we offer the following new anal-
yses, not provided in our manuscript, by com-
paring the results of Recall@10, MRR@10, and
NDCG@10 in Table 12:

- In the results at the zeroth round of Table 12, FT
exhibits slightly higher recall than PlugIR but lower
MRR and NDCG. This implies that fine-tuning the
retrieval model on the visual dialogue dataset may
disrupt the precise matching between captions and
their corresponding images.

- In the round 4 and 5 results of Table 12, while
FT shows similar or slightly higher recall compared
to PlugIR, it has lower MRR and NDCG. This indi-
cates that PlugIR surpasses FT in terms of ranking
improvement significance.

E Additional Analyses

We show Hits@10 results of analysis about the
adaptability to various pre-trained models in Fig 6.
Fig 8 shows the Hits@10 results of analysis about
the compatibility of the context-aware dialogue
generation process with fine-tuned models. Table
13 presents the BRI results of the ablation study.

F PlugIR Example

We show an example of PlugIR in Fig 9.

G Related Work

In this section, we explore potential baselines and
state-of-the-art methods tailored for the image re-
trieval task, and discuss how existing methods dif-
fer from our approach in terms of methodology.

While the topic of interactive text-to-image re-
trieval is popular, existing methods in this field
take a different approach with our method. Notably,
Guo et al. (2018) and Wu et al. (2021) rely on one-
sided feedback from the user, contrasting with our
focus on a question-answer dialogue between the
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Figure 7: Test screen used for measuring human preference

Table 12: Round-by-round text-to-image retrieval performances

Metrics Methods
Round

0 1 2 3 4 5 6 7 8 9 10

Recall@10
FT 71.5 73.9 74.9 75.3 76.0 77.5 78.2 78.3 78.8 79.4 79.5

Ours 71.1 74.3 75.5 76.3 76.1 76.8 76.1 76.0 75.1 74.4 74.3

MRR@10
FT 0.50 0.53 0.54 0.56 0.56 0.56 0.57 0.58 0.58 0.58 0.58

Ours 0.51 0.53 0.56 0.56 0.57 0.57 0.56 0.56 0.56 0.55 0.54

NDCG@10
FT 0.55 0.58 0.59 0.60 0.60 0.61 0.62 0.63 0.63 0.63 0.63

Ours 0.56 0.58 0.61 0.61 0.62 0.62 0.61 0.61 0.60 0.60 0.59

Hits@10
FT 71.5 76.2 78.9 80.5 82.0 83.3 84.4 84.9 85.6 86.1 86.4

Ours 71.1 79.0 83.1 85.9 87.6 88.7 89.4 90.1 90.7 91.1 91.5

Table 13: Ablation study for BRI metric

Methods BRI ↓
ZS 1.0006
CR 0.8907
CR + RCE 0.7829
CR + RCE + F 0.7674

system and the user. Consequently, comparing per-
formance of these lines of work with our method is
challenging due to the different experimental set-
ting. Instead, we provide a comparison from a per-
spective of methodology. Guo et al. (2018) and Wu
et al. (2021) rely solely on user feedback without
a questioner system, potentially leading to signif-
icant performance variations based on individual
users. Moreover, users in their systems bear the

burden of contemplating and providing feedback,
contributing to substantial user fatigue. In contrast,
our approach involves the system in actively for-
mulating optimal questions for image retrieval. As
a result, users only need to provide answers, sig-
nificantly reducing user fatigue. Additionally, our
method can minimize performance variations at-
tributed to different users. This methodological dis-
tinction underscores the practical advantages of our
setting, offering a more user-friendly and consistent
interactive text-to-image search experience.

On the other hand, in the compositional image re-
trieval (CIR) field, there are recent papers related to
interactive image retrieval. CIR methodologies typ-
ically involve the incorporation of not only textual
information but also reference images to facilitate
the retrieval of target images. Examples include
Baldrati et al. (2022) and Karthik et al. (2023). In
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Figure 8: Hits@10 results for the FT + CDG (Ours)

Table 14: The number of average rounds needed for
successful retrieval (#ARNSR)

Methods #ARNSR

FT 3.41
PlugIR (ours) 2.85

particular, Karthik et al. (2023) share a commonal-
ity with our approach by utilizing LLM. However,
comparing performances with CIR methods poses
a challenge due to the fundamental differences be-
tween two tasks, CIR and text-to-image retrieval,
in that CIR additionally incorporates the use of
reference images.

Upon thorough investigation, it appears that our
approach and the baseline, ChatIR (Levy et al.,
2023a), are the only two approaches utilizing a
question-answer dialogue in the current landscape
of text-to-image retrieval. We believe that our fo-
cus on question-answer dialogue sets our method
apart from existing methods, providing a distinc-
tive angle in the realm of interactive text-to-image
retrieval.

H Efficiency Comparison: Fine-Tuned vs.
PlugIR

We provide an analysis of the efficiency of PlugIR,
our proposed method. While a high BRI score for
PlugIR might not directly reflect its efficiency, as
BRI encompasses a range of important factors be-
yond just efficiency, we turn our attention to a more

Table 15: Preference of LLaVA-1.6-7B on dialogue-
form vs. caption-form

Rounds Dialogue Caption

1 492 1572
2 675 1389
3 853 1211
4 923 1141
5 992 1072
6 989 1075
7 967 1097
8 923 1141
9 846 1218
10 800 1264

intuitive measure of efficiency: the average number
of rounds required for successful retrieval. Results
from Table 14 indicate that PlugIR is more effi-
cient than the tuning-based approach. Furthermore,
the higher Hits@10 scores of PlugIR compared to
those of FT indicate that our method not only finds
target images faster than FT but also has a higher
success rate in retrieval.

I Evaluating Query Style Preference in a
Large Vision-Language Model: Caption
versus Dialogue

we conducted the following experiment to in-
vestigate whether instruction-tuned large vision-
language models also show a preference for
caption- or dialogue-form:
1. We create multiple-choice questions for each

image in the VisDial validation dataset, each
with one question and two choices.

2. The question is as follows: "What is more rele-
vant to the photo?"

3. The first choice (Dialogue-form) is: "Caption:
<caption>. Dialogue: <dialogue>." Here, "<cap-
tion>" is the image’s caption, and <dialogue> is
the dialogue from the VisDial sample.

4. The second choice (Caption-form) is: "Caption:
<ours caption>." Here, "<ours caption>" is a cap-
tion created through our context reformulation
of the first choice’s caption and dialogue.

5. To eliminate bias in the order of choices, we
vary the order and feed the VQA sample to the
model.

We conducted the experiment on LLaVA-1.6-7B2,
and the results are summarized in Table 15. In Ta-

2https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
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ble 15, "Rounds" indicates the length of the dia-
logue, with each round adding a set of question
and answer. From Table 15, we can see that the
LLaVA model also prefers the caption form. Al-
though there are intervals where the preferences
appear to be similar (rounds 5-7), we can see that
the preference for captions increases again as more
information is provided.

J Hallucination Issues in Context-aware
Dialogue Generation

In this section, we discuss the hallucination is-
sues that appeared in the LLM agents in PlugIR,
where LLMs are utilized within three steps of the
pipeline: context reformulation, question genera-
tion, and filtering. We have occasionally discovered
issues where parts of the content within a dialog
are omitted during the context reformulation pro-
cess. Additionally, during the filtering process, we
have identified instances where, despite the LLM’s
capability to answer through dialog history, it clas-
sifies certain questions as non-redundant, deem-
ing them unanswerable based on existing dialog
content. Both of these instances can be linked to
the hallucination problem in LLMs’ inference pro-
cesses, where some input content is ignored.

Moreover, we have observed a phenomenon
where the format of questions generated by LLMs
tends to conform to the structure of example ques-
tions provided in the prompt. For instance, if the
example questions in the prompt predominantly in-
quire with "What," the questions generated by the
LLM are mostly of the form such as "What is the
color of the object in the photo?" This phenomenon
becomes particularly pronounced when the expla-
nations of how retrieval candidates were utilized
in the added Chain of Thought (CoT) examples
are specific. The more detailed the explanation, the
more grounded the LLM questioner becomes in
that example, enabling it to use retrieval candidates
more effectively in generating questions. However,
this also leads to the issue where the generated ques-
tions strongly adhere to the format of the example
questions, due to the LLM questioner being heavily
grounded not just in the explanation but also in the
question format of the example. We believe this
is related to the hallucination issue where LLM
grounds on content considered noise within the
given context, distracting the reasoning process.

m 5 10 15 20
BRI ↓ 0.8742 0.8456 0.8280 0.8246

Table 16: BRI scores about the various the number of
clusters (m)

K Effects of Different Clusters

Increasing the number of clusters (m) corresponds
to increasing the number of captions injected into
the LLM questioner, allowing the LLM questioner
to refer to a more diverse set of characteristics from
the retrieval candidates set. However, if the num-
ber of clusters increases beyond a certain level,
captions sharing overlapping characteristics may
become redundant and potentially hinder the LLM
questioner’s ability to generate correct questions.

We conduct further studies on how the perfor-
mance of BRI varies with different values of m.
Table 16 presents the results for PlugIR, which ap-
plies only context reformulation (CR) and retrieval
context extraction (RCE) utilizing the 2024.02 ver-
sion of ChatGPT. We observe that as the number
of clusters increases, BRI performance improves.
However, beyond a certain threshold, the extent
of improvement becomes marginal (m = 15 vs.
m = 20 comparison). This indicates that while
increasing the number of clusters can initially con-
tribute to enhancing BRI, there is a point of dimin-
ishing returns where further increases do not yield
significant improvements.

Similarly, setting the size of the retrieval candi-
date set (n) too small may fail to accurately grasp
the context of the retrieval task, while setting it too
large may increase the proportion of information
unrelated to the target image in the image pool.
Therefore, finding the optimal m and n for the im-
age pool used by the user will also be a meaningful
element in successfully applying our work.

L Usage of AI Writing Assistance

The paper was composed with linguistic assistance
from AI assistant ChatGPT, which included para-
phrasing, and spell-checking the author’s original
content.
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System
(Task
Description)

You are a proficient question generator tasked with aiding in the retrieval of a target image. Your role
is to generate questions about the target image of the description via leveraging two key information
sources:
[Description]: This is a concise explanation of the target image. [Dialogue]: Comprising question and
answer pairs that seek additional details about the target image. Your generated question about the
description must be clear, succinct, and concise, while differing from prior questions in the [Dialogue].

User
(Train
Example)

[Description] a man is doing a trick on a skateboard
[Dialogue] Question: What type of trick is the man performing on the skateboard? Answer: a jump
Question: What is the location of the jump trick being performed? Answer: a skate park Question:

Assistant
(Train
Example)

what is the outfit of the man performing the jump trick at a skate park?

User (Query) [Description] {Initial Description} [Dialogue] {Dialogues} Question:

Table 17: 1-shot prompting example for LLM questioner of baseline.

System
(Task
Description)

You are a proficient question generator tasked with aiding in the retrieval of a target image. Your role
is to generate questions about the target image of the description via leveraging three key information
sources:
[Retrieval Candidates]: These are captions of images which are the candidates of the retrieval task for the
target image described in [Description]. [Description]: This is a concise explanation of the target image.
[Dialogue]: Comprising question and answer pairs that seek additional details about the target image.
You should craft a question that narrows down the options for the attributes of the target image through
drawing the information from the retrieval candidates. The generated question about the target image
must be clear, succinct, and concise. Also, the question should only be asked about common objects in
the description and candidates, which cannot be answered only from the description and the dialogue.
Please explain how did you utilize the information sources for generating a question.

User
(Train
Example)

[Retrieval Candidates] 0. man in yellow shirt 1. a boy in a skateboard park 2. the biker is performing a
trick 3. a man in a green hat doing half-pipe with a skateboard 4. a skateboarding man catches the air in
the midst of a trick [Description] a man is doing a trick on a skateboard [Dialogue] Question: what type
of trick is the man performing on the skateboard? Answer: a jump Question: what is the location of the
jump trick being performed? Answer: a skate park Question:

Assistant
(Train
Example)

what is the outfit of the man performing the jump trick at a skate park?
Explanation: To generate a question about the description, I will utilize the retrieval candidates that
mention the outfit of the man. Candidates 0 and 3 provide information about the man’s wearing. The
description mentions the man’s trick on a skateboard, and the dialogue mentions the type and the location
of the trick. Since the attribute about the outfit does not appear in the description and the dialogue, the
generated question cannot be answered from the information in the description and the dialogue about the
target image. Also, the generated question is asking for the common objective, man, in the descriptions
and candidates, not for the different objective from the description and the retrieval candidates 0 and 3,
for example, a shirt and a half-pipe.

User (Query) [Retrieval Candidates] {Retrieval Context} [Description] {Initial Description} [Dialogue] {Dialogues}
Question:

Table 18: 1-shot prompting example for LLM questioner utilizing CoT and the additional context from the set of
retrieval candidates.

System
(Task
Description)

Answer the question only according to the given context. If you cannot determine the answer or there are
no objects that are asked by the question in the context , answer "Uncertain".

User (Query) [Context] {Context} [Question] {Question} [Answer]

Table 19: 0-shot prompting example for LLM agent guided to answer the question according to the given context.
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System
(Task
Description)

Your role is to reconstruct the [Caption] with the additional information given by following [Dialogue].
The reconstructed [New Caption] should be concise and in appropriate form to retrieve a target image
from a pool of candidate images.

User
(Train
Example)

[Caption]: a woman sits on a bench holding a guitar in her lap [Dialogue]: is this in a park? yes, i believe
it is, are there others around? no, she is alone, does she have a collection bucket? no, is her hair long?
yes, pretty long, is she wearing a dress? i don’t think so, hard to tell, does she have shoes on? yes, flip
flops, is there grass nearby? yes, everywhere, is it a sunny day? yes, are there trees? in the background
there are trees, is the guitar new? i don’t think so [New Caption]:

Assistant
(Train
Example)

a woman with pretty long hair sits alone on a grassy bench in a park on a sunny day, holding a guitar in
her lap without a collection bucket, wearing flip flops, with trees in the background, with a slightly worn
guitar

User (Query) [Caption]: {caption} [Dialogue]: {dialogue} [New Caption]:

Table 20: 1-shot prompting example for LLM to reformulate the dialogue context.

1

𝑫𝟎: a giraffe

𝑸𝟎:where is the giraffe located?

𝑨𝟎 : in a zoo

𝑸𝟏:What is the color of the giraffe's spots in 
its surroundings?? 

𝑨𝟏 : brown

𝑸𝟐:What is the common feature of the 
surroundings of the giraffe in the retrieval 
candidates?? 

𝑨𝟐 : fence

𝑸𝟑:what is the other object in the image?

𝑨𝟑 : a woman

a giraffe in a zoo

a brown-spotted giraffe in a zoo

a giraffe with brown spots stands in a 
zoo surrounded by a fence

a brown-spotted giraffe stands in a zoo 
surrounded by a fence, with a woman 

also present in the image

Predicted 
target rank Rank #1 Rank #2 Rank #3

Reformulated Context

497

316

612

207

1

Dialogue Context

Target Image

Figure 9: The example of the plug-and-play interactive text-to-image retrieval system.
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