
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8360–8383
August 11-16, 2024 ©2024 Association for Computational Linguistics

Inducing Systematicity in Transformers by
Attending to Structurally Quantized Embeddings

Yichen Jiang Xiang Zhou Mohit Bansal
UNC Chapel Hill

{yichenj, xzh, mbansal}@cs.unc.edu

Abstract

Transformers generalize to novel compositions
of structures and entities after being trained
on a complex dataset, but easily overfit on
datasets of insufficient complexity. We observe
that when the training set is sufficiently com-
plex, the model encodes structurally equiva-
lent sentences using a systematic attention pat-
tern. Inspired by this observation, we propose
SQ-Transformer (Structurally Quantized) that
explicitly encourages systematicity in the em-
beddings and attention layers even with low-
complexity data. At the embedding level, we
introduce Structure-oriented Vector Quantiza-
tion (SoVQ) to cluster word embeddings into
several classes of structurally equivalent en-
tities. At the attention level, we devise the
Systematic Attention Layer (SAL) and an al-
ternative, Systematically Regularized Layer
(SRL) that operate on the quantized word em-
beddings so that sentences of the same struc-
ture are encoded with invariant or similar at-
tention patterns. Empirically, we show SQ-
Transformer achieves stronger compositional
generalization than the vanilla Transformer on
multiple low-complexity semantic parsing and
machine translation datasets. In our analy-
sis, we show SoVQ indeed learns a syntacti-
cally clustered embedding space, and SAL/SRL
induces generalizable attention patterns, alto-
gether leading to improved systematicity.1

1 Introduction

Natural languages demonstrate compositionality,
which states that the meaning of a complex ex-
pression is determined by its syntactic structure
and the meanings of its lexical constituents (Chom-
sky, 1957; Montague, 1970). It leads to humans’
algebraic capacity to systematically understand a
potentially infinite number of novel combinations
of known structures and entities. For example,

1Our code is publicly available at https://github.
com/jiangycTarheel/SQ-Transformer.

someone who understands “The cat is asleep” and
“The dog is awake” must simultaneously understand
“The dog is asleep” and “The cat is awake”.

Early works argued that neural networks are as-
sociative devices that cannot capture composition-
ality (Fodor and Pylyshyn, 1988; Marcus, 1998)
and are supported by the empirical results that a
Transformer (Vaswani et al., 2017) trained to parse
“walk twice”, “walk around left”, and ‘jump’ fails
to parse “jump twice” and “jump around left” in
SCAN ADDJUMP (Lake and Baroni, 2018). Later
works presented a more promising picture: for ex-
ample, Zhou et al. (2023) found that Transformers
trained on an augmented, high-complexity dataset
with more examples and diverse entities/structures
can systematically generalize to novel compo-
sitions in SCAN ADDJUMP. Studies on large
pretrained models (Furrer et al., 2020; Drozdov
et al., 2023) also reveal their ability to systemati-
cally generalize. However, data augmentation re-
quires domain-specific knowledge and pretraining
on large datasets is also prohibitively expensive.
Therefore, how to induce systematicity with low-
complexity data has a significant value for improv-
ing the model’s data efficiency, and remains an
open and important research question.

To understand the emergence of systematicity in
Transformers, we start by analyzing the attention
maps from models trained on SCAN ADDJUMP

data of different complexities. First, we demon-
strate that a Transformer trained on the original,
low-complexity training set (with only 4 primi-
tives) uses different attention weights to encode
in-distribution training sentences like “walk around
left” (Fig. 1a) and an unobserved sentence “jump
around left” (Fig. 1b). It only achieves 3.7% test
accuracy in unobserved sentences. In contrast, the
same model trained on large augmented data (with
84 distinct primitives like ‘walk’ and ‘jump’) uses
highly similar attention patterns to encode these
two sentences (see Fig. 1c and Fig. 1d). This model
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(a) Attention maps encoding
“walk around left”, trained on
original ADDJUMP.

(b) Attention maps encoding
“jump around left”, trained on
original ADDJUMP.
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(c) Attention maps encoding
“walk around left”, trained on
20x augmented ADDJUMP.
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(d) Attention maps encoding
“jump around left”, trained on
20x augmented ADDJUMP.

Figure 1: Attention maps encoding a training example “walk around left” and a test example “jump around left”.
The maps in (a) and (b) are from the Transformers trained on the original SCAN ADDJUMP training set; the maps
in (c) and (d) are from the model trained on 20x augmented training set (Zhou et al., 2023) with 20 times more
primitives like ‘walk1’ (mutated from ‘walk’) and more examples like “walk1 around left”. In all attention maps,
brighter yellow squares correspond to an attention value close to 1 and darker purple squares correspond to an
attention value close to 0. We highlight the attention maps in (b) that differ from (a) in red boxes. When trained on
20x augmented training set, the model encodes the two examples with highly similar attention maps across all layers
and heads (c and d). We show the attention maps on other examples of the structure “$x around left” in Fig. 5.

achieves 100% test accuracy and encodes the syn-
tactic structure “$x around left” with a unified at-
tention pattern invariant to the choice of $x, as
long as $x has the same syntactic function (e.g.,
being a verb). Over the entire test set, we observe
many such reused attention.2 Therefore, we test the
hypothesis that this ability to systematically reuse
learned attention patterns on novel sentences is crit-
ical for a Transformer to systematically generalize.

To this end, we propose SQ-Transformer with
two improvements to the embeddings and attention
layers respectively, so as to induce the same sys-
tematicity seen above, even with low-complexity
training data. The first improvement brings lin-
guistic categorization to the word embeddings: as
Johnson (2004) argues “the claim that natural lan-
guages are systematic presupposes a natural non-
overlapping linguistic categorization of all the ex-
pressions.” For example, for the model to gen-
eralize to the unseen “jump twice”, it first has to
learn that ‘jump’ belongs to the same category as
other primitives like ‘walk’ and ‘run’. Motivated by
this theory and the finding, we propose Structure-
oriented Vector Quantization (SoVQ) to actively
cluster all word embeddings into a fixed number of
structural equivalence classes, and quantize each
word into a code embedding shared among an en-
tire class. We introduce a variational and gener-
alized Brown Clustering (Brown et al., 1992) ob-
jective. This unsupervised objective encourages
a “predictive clustering” such that the class of a
token can be predicted by the classes of its context

2We discuss a quantified analysis in Sec. 5.3.

tokens, and hence ensures that words of the same
syntactic function are in the same class. After be-
ing trained on examples like “walk”, “walk around
left”, and “jump”, SoVQ can quantize ‘jump’ and
‘walk’ into the same class with a code embedding
encoding their shared role in a sentence structure.

Our second improvement encourages a unified
attention pattern for encoding sentences of a com-
mon syntactic structure. The general belief in cog-
nitive science states that systematicity involves a
capacity to represent common structural relations
among the equivalently cognizable entities (Phillips
and Wilson, 2016). That is, a systematic mind can
always represent a structure even if one or more
of its entities is substituted with any equivalently
cognizable entity.3 Since SoVQ has quantized
each class of equivalently cognizable entities into
a code embedding, we then propose the Systematic
Attention Layer (SAL) that uses these code em-
beddings as the queries and keys, and the word
embeddings as the values (Fig. 2a). When encod-
ing sentences with a common syntactic structure
like “$x around left”, SAL is hard-invariant for
any $x in a structural equivalence class C estab-
lished by SoVQ. It thus enables the Transformer
to systematically represent common structural rela-
tions among those quantized classes of equivalently
cognizable entities.

To retain the attention’s ability to represent non-
structural relations that commonly exist in natural

3The notion of “equivalently cognizable entities” generally
refers to entities within an equivalence class with respect to
certain structural equivalence (e.g., all proper nouns).
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languages, we also introduce an alternative to SAL:
Systematically Regularized Layer (SRL). It inher-
its the architecture of a regular attention layer, but
additionally minimizes the L2 distance between
the layers’ outputs computed from word embed-
dings and the layers’ outputs computed from quan-
tized word embeddings (Fig. 2b). Therefore, unlike
SAL, SRL encourages attention’s soft invariance
to structurally equivalent entities: sentences with
common structures are processed with similar but
not necessarily the same attention pattern. Overall,
we name this model with SoVQ and SAL/SRL as
(Structurally Quantized) SQ-Transformer.

To demonstrate that predictive clustering in
embeddings and invariance in attention can lead
to systematicity in the model’s predictions, we
train and evaluate SQ-Transformer from scratch
on multiple low-complexity semantic parsing
and machine translation datasets requiring com-
positional generalization. In semantic pars-
ing, SQ-Transformer improves upon Transformer
on SCAN ADDJUMP x2 (Jiang et al., 2022)
(40%→99.4%), AROUNDRIGHT (Loula et al.,
2018) (69.5%→99.6%), and COGS (Kim and
Linzen, 2020) (82.6%→83.4%). In machine trans-
lation, SQ-Transformer achieves higher BLEU
scores (60.5→62.8) and lower novel compound
translation error (29.6%→18.1%) on CoGni-
tion (Li et al., 2021). Importantly, it also shows gen-
eralizability to higher-complexity, natural datasets
that do not have a significant distribution shift be-
tween training and test sets: in WMT En↔De
and En↔Fr, SQ-Transformer with SRL obtains
significantly higher BLEU scores. We further ana-
lyze SQ-Transformer and present two findings: (1)
SoVQ can more effectively cluster word embed-
dings based on their syntactic functions compared
to VQ; (2) SAL and SRL learn attention patterns
that can systematically encode unseen composi-
tions of structure and entities. These analyses ex-
plain the working mechanism of SQ-Transformer
and verify our insights in designing these modules.

In summary, SQ-Transformer quantizes word
embeddings based on their syntactic functions and
learns generalizable attention for sentences of the
same structure. As a result, it can correctly parse
and translate more sentences with unseen composi-
tions of syntactic structures and lexical constituents.
We hope this work sheds light on the inner mecha-
nism of Transformers’ generalization and inspire
future work in architecture design.

2 Background

Vector Quantization (VQ) (Agustsson et al.,
2017; Van Den Oord et al., 2017) is a compression
technique that represents a set of representations ex
of the variable x by a small, fixed number of code
embeddings z. The code is inferred with the near-
est neighbor look-up on a codebook Z ∈ RK×D

made up of K embeddings of the dimension D:

q(zk|x) =
{
1 if k = argminj f(ex, zj)

0 otherwise

VQ(x) = zk where q(zk|x) = 1

(1)

where f is a distance function (e.g., negative cosine
similarity).4 The discrete code embeddings are
updated using exponential moving averages of ex.
Previous works (Van Den Oord et al., 2017; Razavi
et al., 2019; Ramesh et al., 2021) have shown that
VQ-VAE can generate high-fidelity, continuous sig-
nals like images and speech. The exploration of
VQ on languages (Lingle, 2023) remains limited.
In this work, we use VQ to cluster words based on
their syntactic function (Sec. 3.1).

Brown Clustering (Brown et al., 1992) is a word
clustering algorithm that divides a vocabulary V
into m mutually exclusive classes by maximiz-
ing the mutual information I(Z1, Z2) between the
classes of a random bigram (X1, X2) in a sentence:

max
Z:V→[m]

=
∑

z1,z2

#(z1, z2)

N
log(

#(z1, z2)N

#(z1)#(z2)
) (2)

where #(z, z′) denotes the number of occur-
rences of the cluster pair (z, z′) for any bigram in
[x1...xN ].5 This algorithm can cluster a vocabulary
based on the syntactic functions of words by pro-
moting “predictive clustering”: the class of a token
must be predictable from the class of its context to-
ken. However, it requires nontrivial combinatorial
optimization and is difficult to scale and generalize
for modern neural networks. In Sec. 3.1.2, we pro-
pose a variational Brown Clustering objective that
can be optimized with gradient descent.

3 SQ-Transformer

In this section, we introduce the components of
SQ-Transformer and discuss their technical details.

4We use the smallest index when there is a tie in argmin.
5By assuming a uniform distribution over consecutive

word pairs (xi−1, xi), Brown et al. (1992) approximate
p(z1, z2) and p(z) using #(z1,z2)

N
and #(z)

N
to derive Eqn. 2.
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Notations. We denote the source and target se-
quences as [xi] and [yj ]. The seq2seq framework
consists of an encoder with word embeddings Ex

and a decoder with word embeddings Ey. For quan-
tizing Ex and Ey, we define two codebooks Zx and
Zy with Kx and Ky code embeddings respectively.

3.1 Structure-oriented Vector Quantization

Same as the original VQ, Structure-oriented Vector
Quantization (SoVQ) clusters the (sub)word em-
beddings into several classes and quantizes each
class into a shared code embedding z (Eqn. 1).
We discuss a previous MMI objective and then
propose variational Brown Clustering that better
cluster words based on their syntactic functions.

3.1.1 Variational MMI objective

Stratos (2019) proposed an unsupervised part-of-
speech tagging method by maximizing the mutual
information (MMI) between the inferred class Z of
a token X and its surrounding context X̂ . It defines
q(z|x) that directly infers the class of x (posterior)
and p(z|x̂) that predicts the cluster of x based on
its context x̂ (prior). It maximizes the variational
lower bound of the mutual information I(X̂, Z):

I(X̂, Z) = H(Z)−H(Z|X̂)

≥ H(Z)−H(q, p)
(3)

where H(q, p) is the cross entropy over samples.
We show more details about the derivation of this
lower bound in Appendix A.1. As we can see
in Eqn. 3, maximizing this ELBo is equivalent to
(1) minimizing cross-entropy between the cluster
inference posterior q(z|x) and cluster prediction
prior p(z|x̂), so that words appearing in the same
context are assigned to the same class (we intro-
duce Theorem. 1 to demonstrate this); and (2) maxi-
mizing the entropy H(Z) of the cluster distribution
to avoid assigning all words to the same cluster.

3.1.2 Variational Brown Clustering

In this work, we propose another MMI objective
that marries the original Brown Clustering objec-
tive I(Z1, Z2) and the variational MMI (Eqn. 3).
First, we redefine the cluster prediction distribu-
tion as p(z|ẑ), where ẑ are the quantized codes of
all context tokens x̂ inferred from q(z|x̂) (Eqn. 1).
This differs from the p(z|x̂) that predicts the cluster
of x directly from its context x̂. Then, instead of
maximizing the ELBO of I(X̂, Z), we maximize

the ELBO of I(Ẑ, Z):

I(Ẑ, Z) = H(Z)−H(Z|Ẑ)

≥ H(Z)−H(q(z|x), p(z|ẑ))
(4)

This inequality is still valid6 even though we re-
placed X̂ and p(z|x̂) in Eqn. 3 with Ẑ and p(z|ẑ).
The objective I(Ẑ, Z) becomes the exact Brown
Clustering objective if we set x̂ as a random context
token rather than all of them. We show the imple-
mentation of this variational loss in Appendix A.4.

We argue that this variational Brown Cluster-
ing objective can better cluster words based on
their syntactic functions than the lower bound of
I(X̂, Z) (Eqn. 3). This is because, according
to Theorem. 1, maximizing I(X̂, Z) can only clus-
ter words that appear in similar contexts into the
same class. However, some words having the same
syntactic function might rarely occur in the same
context due to semantics. For example, ‘police’ and
‘professor’ usually appear in very different contexts:
“The police arrested a thief.” and “The profes-
sor appraised a student.” Therefore, maximizing
I(X̂, Z) might not push the model to assign them
to the same cluster. In comparison, maximizing
I(Ẑ, Z) (Brown Clustering objective) can encour-
age clustering structurally equivalent words that ap-
pear in various contexts together: even though ‘po-
lice’ and ‘professor’ have different X̂ , they share
the same Ẑ given a structure-oriented word clus-
ter.7 We support this claim with ablations in Sec. 4.

3.2 Systematic Attention Layer
Now that we have quantized each class of words
into a code z encoding structural information, we
then use z as the queries and keys in computing
the attention weights. Here we show the encoder’s
self-attention module (visualized in Fig. 2a):

MHAttn(Q,K, V ) = softmax(QKT )V

zl+1 = MHAttn(q = zl, k = zl, v = zl)

xl+1 = MHAttn(q = zl, k = zl, v = xl)

where x0 and z0 are the non-contextualized word
embeddings and their quantized code embeddings
respectively. The two MHAttn modules share all
parameters. We call it the Systematic Attention
Layer (SAL) because this modified attention mod-
ule promotes the systematic reusing of attention

6We show the derivation in Appendix A.3.
7The necessary clustering scheme that can achieve the

purpose is [{arrested,appraised}, {thief,student}].
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(a) The Systematic Attention Layer (SAL).
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(b) The Systematically Regularized Layer (SRL).

Figure 2: Architecture of the Systematic Attention Layer (SAL) and the Systematically Regularized Layer (SRL).
We omit the LayerNorm inside each “residual FFN” module for brevity. Both SAL (a) and SRL (b) run two separate
attention streams at training, where SAL (a) additionally shares the key and query between the two streams. In
decoding, SRL (b) does not compute the second stream originating from SoVQ.

patterns: as words of the same syntactic function
(e.g., ‘cat’ and ‘dog’, ‘asleep’ and ‘awake’) are
in the same cluster, the transformer would process
two sentences of the same syntactic structure (“The
cat is asleep” and “The dog is awake”) using the
same attention pattern. As a result, a model that
understands one sentence is more likely to gen-
eralize to the other one, which is the key ability
stemming from a systematic language understand-
ing. Similarly, we also use SAL with regular cross
attention in the decoder (see Appendix A.5 for de-
tails). In summary, SAL enforces hard attention
invariance among sentences of the same syntactic
structure, but at the cost of the flexibility of encod-
ing non-structural relations that commonly exist in
natural languages (e.g., idioms, commonsense, etc).
We discuss these cases in Sec. 6.

3.3 Systematically Regularized Layer

To encourage systematicity in attention while keep-
ing its ability to encode non-structural relations, we
instead use the attention outputs zl computed from
the quantized embeddings to regularize the atten-
tion outputs xl computed from word embeddings,
by minimizing the squared L2 distances (MSE loss)
between zl and xl for all layers l:

zl+1 = MHAttn(q = zl, k = zl, v = zl)

xl+1 = MHAttn(q = xl, k = xl, v = xl)

where x0 are the word embeddings. We name it
Systematically Regularized Layer (SRL) and visu-
alize it in Fig. 2b. Unlike SAL, SRL demonstrates
“soft invariance” so that sentences of a common
structure are processed with similar (because of the
L2 regularization loss) but not necessarily the same

attention pattern. During inference, we do not need
to perform SoVQ and compute zl since it is only
used to regularize xl in training. Therefore, SRL
does not incur any computation or memory over-
head than a vanilla Transformer layer in inference.

4 Experiments

4.1 Datasets

We use three semantic parsing tasks includ-
ing SCAN ADDJUMP (Lake and Baroni, 2018),
AROUNDRIGHT (Loula et al., 2018), COGS (Kim
and Linzen, 2020), and the CoGnition (Li et al.,
2021) En→Zh translation task, all of which re-
quire OOD compositional generalization to test
examples. For example, SCAN ADDJUMP tests
the models’ ability to parse syntactic structures
(e.g., “$x twice”) combined with a novel entity
($x = ‘jump’), which is never associated with other
structures during training. We also use WMT17
English↔German (Bojar et al., 2017) and WMT14
English↔French (Bojar et al., 2014) to test models
for generalizability. We introduce each dataset in
detail in Appendix B.1.

4.2 Results

Semantic Parsing results. We show the exper-
imental setup in Appendix B.2. We report the re-
sults on the two SCAN tasks and COGS in Table 1.
Specifically, SQ-Transformer with SAL achieves
significant8 improvements over the baseline on
SCAN ADDJUMP9 and AROUNDRIGHT. With
SRL, SQ-Transformer manages to outperform the

8Bootstrapped test with α < 0.01.
9Both models are trained with 2x augmented SCAN AD-

DJUMP from Jiang et al. (2022).
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Model JUMP AROUNDR COGS

PREVIOUS MODELS

LSTM-RNN 1.2 2.5±2.7 -
CGPS-RNN 98.8±1.4 83.2±13.2 -
Lex Learn 92.0±0.2 95.0±0 82.0±0

OUR MODELS

Transformer 40.04±17.3 69.47±9.2 82.60±0.5

SQ-Transformer 99.42±1.0⋆ 99.63±0.6⋆ 83.36±0.7

Table 1: Test accuracy from the SCAN ADDJUMP,
AROUNDRIGHT, and COGS. We report previous mod-
els: LSTM-RNN (Lake and Baroni, 2018), CGPS-
RNN (Li et al., 2019), and Lex Learn (Akyurek and
Andreas, 2021). We report our models’ average (± std.)
results from 5 random seeds. SQ-Transformer results
with ⋆ use SAL while others use SRL.

Model CTER (↓) BLEU
Instance Aggregate

PREVIOUS MODELS

Transformer 28.4 62.9 59.5
Proto-Transformer 21.7 51.8 60.1

Dangle-Transformer 22.8 50.6 60.6
Consistency-Reg 20.2 48.3 61.3

OUR MODELS

Transformer 29.55 61.62 60.45
SQ-TransformerSRL 18.14 48.89 62.78

Table 2: Compound Translation Error Rate (CTER,
lower is better) and BLEU on the Compositional Gen-
eralization test set from the CoGnition En-Zh. We also
report the results from Proto-Transformer (Yin et al.,
2022), Dangle-Transformer (Zheng and Lapata, 2022),
and consistency-regularized Transformer (Yin et al.,
2023). The best result is bold and the 2nd is underlined.

Model En-De De-En En-Fr Fr-En

Transformer 28.10 31.30 37.01 34.24
SQ-TransformerSRL 29.21 31.96 38.38 35.56

Table 3: BLEU on WMT17 En↔De, WMT14 En↔Fr.

baseline on the larger, more natural COGS dataset.
This shows the effectiveness of SQ-Transformer in
generalizing to unseen combinations of syntactic
structure and lexical constituents. We compare the
performance of SAL and SRL on a small, synthetic
dataset and a larger, natural dataset in Sec. 5.1.

Machine Translation results. We evaluate the
baseline Transformer as well as SQ-Transformer
on the CoGnition compositional generalization test
set and WMT test sets and report their BLEU 4 (Pa-
pineni et al., 2002) scores. For CoGnition, we
also report the novel compound translation error
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(a) Source embeddings trained
with no quantization.
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(b) Source embeddings trained
with SoVQ (6 classes).

Figure 3: T-SNE visualization of embeddings learned
on SCAN ADDJUMP dataset (Lake and Baroni, 2018).

SQ-Transformer ADDJUMP CoGnition

w. SAL 99.42±0.98⋆ 59.85±0.49⋆

w. SRL 47.36±20.83† 62.35±0.52†

None 53.79±18.36 61.11±0.34

- SoVQ 78.44±34.01⋆ 60.93±0.13†

- Brown 97.75±3.93⋆ 61.52±0.22†

Table 4: Ablation: test accuracy on SCAN ADDJUMP
and BLEU on CoGnition (averaged over 5 runs). ‘-
SoVQ’ uses the original Vector Quantization. ‘- Brown’
uses the MMI objective from Stratos (2019). Results
with ⋆ use SAL while results with † use SRL.

(CTER) (Li et al., 2021). It examines whether all
of the atoms (tokens) in the novel compound are
correctly translated in the generated Chinese sen-
tence. Specifically, instance-level CTER denotes
the percentage of the test instances in which one
or more atoms in the novel compound are trans-
lated incorrectly. Aggregate-level CTER denotes
the percentage of novel compounds that are trans-
lated wrong in at least one instance. Compared
to the Transformer baseline, SQ-Transformer ob-
tains significantly higher BLEU scores on CoG-
nition En→Zh (Table 2), WMT17 En↔De, and
WMT14 En↔Fr tasks (Table 3). On CoGnition,
SQ-Transformer also achieves substantially lower
instance and aggregate compound error rate in its
Chinese translation. This improvement shows that
SoVQ and SRL enable the model to correctly trans-
late more novel compounds: for example, translat-
ing “the dog he liked” by generalizing from training
expressions of the same structure like “the dress
she liked” and “an animal she liked”.

5 Analysis

In this section, we conduct an ablation study
(Sec. 5.1) and analyze the embeddings (Sec. 5.2)
as well as the attention patterns (Sec. 5.3).
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Figure 4: T-SNE visualization of embeddings learned on SCAN ADDJUMP dataset (Lake and Baroni, 2018) with
na atomic expressions (e.g., jump7→JUMP and walk 7→WALK) for each primitive and the model’s accuracy (acc).

5.1 Ablation Study

We conduct an ablation study on the components of
SQ-Transformer in Table 4. Most notably, we find
that SAL only works on small, synthetic datasets
like SCAN ADDJUMP but not on CoGnition; while
SRL works on larger, more natural datasets like
CoGnition and COGS but not on SCAN tasks.
This finding corroborates other structure-based at-
tention (Li et al., 2019; Russin et al., 2020) that
only achieve strong performance on small, syn-
thetic datasets. It suggests that generalizing on
SCAN requires learning its grammar from an ex-
treme data setting, which might only be possible
via strictly structural inductive biases like SAL’s
hard invariance to primitive substitution. Natural
languages, on the other hand, require learning both
structural and non-structural relations (discussed
in Sec. 6), which is not possible using SAL. Later
(in Sec. 5.3), we will show how SRL injects a sim-
ilar, but soft invariance into attention to perform
strongly on more natural tasks. Moreover, we show
that using the original attention layer (‘None’) or
original VQ (‘-SoVQ’) results in a significant drop
in performance on SCAN ADDJUMP and CoGni-
tion. Finally, optimizing our Variational Brown
Clustering loss brings extra benefits compared to
the MMI (‘-Brown’) objective Stratos (2019).

5.2 Analyzing the Embedding Space

Visualizing SCAN embedding space. We vi-
sualize the embedding matrices using 2-d t-
distributed Stochastic Neighbor Embedding (t-
SNE) , which projects each embedding into a 2-
dimensional coordinate (Hinton and Roweis, 2002).
In Fig. 3b, we show that the source embeddings
learned by SoVQ on SCAN ADDJUMP are clus-
tered based on their syntactic functions in a sen-
tence structure: the conjunction words (‘and’, ‘af-

ter’), direction adverbs (‘left’, ‘right’), preposi-
tions (‘around’, ‘opposite’), and adverbs (‘twice’,
‘thrice’) are clustered together respectively. Most
importantly, the rare primitive ‘jump’ is clustered
together with other primitives. This enables the
SQ-Transformer with SAL to generalize to unseen
expressions like “jump twice” by reusing the same
attention pattern as it has learned for “walk twice”.
On the contrary, in Fig. 3a, words of the same syn-
tactic functions (e.g., ‘jump’ and ‘walk’) are distant
apart in the t-SNE space. This prevents the Trans-
former from generalizing to novel expressions like
“jump twice”. Finally, SoVQ also learns structure-
based word clusters on COGS that has a larger
vocab (discussed in Appendix C.2).

Case Study: Learning the syntactic equivalence
of ‘jump’ and ‘walk’. The major challenge in
SCAN ADDJUMP is to recognize the equivalent
syntactic function of the rare primitive ‘jump’ and
other common primitives like ‘walk’ based on the
only syntactic structure10 that has both ‘jump’ and
‘walk’ as a constituent. Next, we present a case
study of how SoVQ manages to learn this equiv-
alence and demonstrate three necessary precondi-
tions. First, it is important to choose the proper
number of clusters so that the model cannot af-
ford to reserve a cluster for ‘jump’ only. For
example, if we initialize 12 classes instead of 6
classes for the vector quantization, the model will
put ‘jump’ into a separate class from ‘walk’ and
‘run’. Second, the model must be exposed to a
sufficient number of examples that put ‘jump’
and ‘walk’ in the same syntactic structure (con-
text). In Fig. 4, we show the t-SNE visualization of
the source embeddings and generalization accuracy
when the model is trained with different (na) repe-

10Atomic expressions like “jump7→JUMP”, “walk 7→WALK.”
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titions of atomic expressions for each primitive.11

In all four cases, SoVQ can roughly cluster words
based on their syntactic functions (e.g., ‘twice’ and
‘thrice’ are always together). However, there are
some subtle differences regarding the clustering of
verb primitives (shown in red). When na equals
1 or 10 (Fig. 4a, Fig. 4b), SQ-Transformer can
hardly generalize (accuracy < 5%) and the ‘jump’
is located distantly with other verbs in red. With
100/1000 atomic expressions per primitive (Fig. 4c,
Fig. 4d), SQ-Transformer achieves significantly
improved generalization and learns more compact
clusters of verbs. Finally, our variational Brown
Clustering objective is indispensable for clus-
tering words based on their syntactic functions.
This can be seen in both final results (Table 4) and
the distribution of the embedding space (Fig. 6).

5.3 Analyzing the Attention Patterns

In this part, we reveal that SQ-Transformer indeed
learns attention patterns that systematically gen-
eralize to novel expressions. As we have shown
above, SoVQ can cluster words in the SCAN vocab
into multiple structural equivalence classes {Ci}.
Therefore, by computing the queries and keys using
the quantized embeddings, Systematic Attention
Layers (SAL) are guaranteed to produce the same
attention maps given any examples of a common
structure (e.g., $x around left ∀$x ∈ Ci).

Next, we focus on analyzing the attention maps
learned by the Systematically Regularized Layer
(SRL). Unlike SAL, SRL still computes the atten-
tion weights using word embeddings as the queries
and keys, but is regularized to keep its outputs close
to the code representations from SAL. To evalu-
ate the effectiveness of regularization, we collect
48 pairs of source sentences from the CoGnition
test set. The sentences within each pair are quan-
tized into the same sequence of codes (e.g., “he
stopped every girl.” and “he found each child.”) by
SoQV.12 We then count the percentage of attention
heads that assign the highest weight to the same to-
ken when processing two examples in a pair. In this
metric, SQ-Transformer achieves 79.8% compared
to the baseline with 72.8%. This demonstrates that
SRL learns systematic attention patterns in repre-
senting structures, while maintaining generalizabil-
ity to natural data like CoGnition and WMT.

11“na=1000” means there are 1000 “jump 7→JUMP”, 1000
“walk 7→WALK”, etc. in the training set.

12We show all 48 pairs of sentences in Table 6.

6 Discussion

In this part, we (1) discuss why the Systematic
Attention Layer (SAL) can only work on small,
synthetic datasets like SCAN; and (2) further moti-
vate the Systematically Regularized Layer (SRL)
that achieves a balance between compositionally
encoding structures and maintaining flexibility in
incorporating non-compositional relationships that
commonly exist in natural languages.

Recall SAL represents the “common structural
relations” by computing attention weights in the
quantized, syntactic space. This ensures that sen-
tences that have (1) the same structure and (2)
equivalently cognizable entities at all positions13

are processed with the same attention weights
across all heads and layers. However, natural lan-
guages are only approximately compositional, indi-
cating that sometimes the meaning of a piece of text
does not only depend on its structure and its lexical
constituents. We discuss two situations where SAL
is overly strict and thus prevents the model from
encoding non-structural linguistic features.

Situation 1: Semantics. We use the classic
Winograd Challenge (Levesque et al., 2012) to
demonstrate how lexical semantics, or more specif-
ically, commonsense knowledge affects the com-
prehension of a sentence. Here, the model sees
two sentences that differ only in one or two words,
which are often of the same syntactic role but con-
tain a referential ambiguity resolved in opposite
directions. For example:

• The trophy doesn’t fit in the brown suitcase
because it’s too big. What is too big? Answer:
The trophy.

• The trophy doesn’t fit in the brown suitcase
because it’s too small. What is too small?
Answer: The suitcase.

Here, it is necessary to use commonsense seman-
tics to resolve the ambiguous anaphora. However,
the attention maps learned by SAL for these two
sentences would be the same, given that “big” and
“small” are most likely quantized into the same
class. Therefore, a model with SAL cannot encode
this commonsense knowledge into the attention.

Situation 2: Pragmatics. Other than the inabil-
ity to incorporate commonsense to resolve the co-
reference within a sentence, SAL with “hard invari-
ance” over structural equivalence classes is only

13E.g., “The cat is awake” and “The dog is asleep”.
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designed for capturing local dependency within a
sentence. It cannot scale to represent the complex
relationships between words across sentences. Pre-
viously, Sartran et al. (2022) bias the attention with
the sentence parse tree, and reported deteriorated
performance on document-level language model-
ing. Similarly, we observe that using quantized em-
beddings to compute cross-attention weights would
result in degenerated performance on SCAN tasks,
and thus opt for the original word embeddings as
the queries and keys (Appendix A.5).

In both situations, it is necessary to compute the
attention using the word embeddings rather than
their quantized code embedding, so that the atten-
tion can capture other non-structural relations (e.g.,
commonsense) as well. Empirically, we also show
that using the SAL results in degenerated perfor-
mance on COGS and CoGnition datasets (Table 4),
which include a much larger vocab plus more natu-
ral and longer expressions. Therefore, as we moti-
vated in Sec. 3.3, we instead use the more flexible
SRL to achieve strong performance on these tasks.

7 Other Related Work

Compositional generalization. Earlier works in-
vestigated compositionality of neural networks
in language learning (Wong and Wang, 2007;
Brakel and Frank, 2009), compositional count-
ing (Wiles, 1998; Weiss et al., 2018), and syntax
learning (Linzen et al., 2016). Recent works (Lake
and Baroni, 2018; Kim and Linzen, 2020; Loula
et al., 2018; Bastings et al., 2018; Keysers et al.,
2020; Tsarkov et al., 2021; Hupkes et al., 2020)
embed the compositional challenge into semantic
parsing tasks and directly evaluate seq2seq models
on an out-of-distribution test set.

Previous works have also proposed many novel
methods to improve the compositional generaliza-
tion of neural models. Such methods include novel
architectures (Li et al., 2019; Russin et al., 2020;
Dessì and Baroni, 2019; Gordon et al., 2020; Oren
et al., 2020; Zheng and Lapata, 2021), grammar-
based approaches (Shaw et al., 2021; Kim, 2021),
task decomposition (Herzig et al., 2021), data aug-
mentation (Andreas, 2020; Akyürek et al., 2021;
Akyürek and Andreas, 2022), careful architecture
selection (Csordás et al., 2021), and novel learning
methods (Lake, 2019; Conklin et al., 2021; Jiang
et al., 2022; Xu et al., 2022).

Structures captured by Transformer. Re-
searchers have long been studying how the at-

tention maps of Transformers encode the syntac-
tic structure (e.g., dependency parse) of a sen-
tence (Hewitt and Manning, 2019; Phang et al.,
2019; Clark et al., 2019; Limisiewicz et al., 2020;
Murty et al., 2023a). Recently, Jian and Reddy
(2023) substituted words in a sentence with words
from the same syntactic category and then aver-
aged the attention maps of a BERT (Devlin et al.,
2019) model across these “syntactically invariant
sentences”. Our analysis in Fig. 1 also makes use of
such syntactically invariant sentences. We further
reveal the correlation between the emergence of
systematic attention patterns and the model’s gen-
eralization ability in a Transformer trained from
scratch, which leads to our effort to inject linguistic
structure into the model, as discussed below.

Incorporating linguistic knowledge into models.
Many previous works have tried to incorporate
linguistically-informed labels, especially syntactic
labels, into neural networks (Sennrich and Haddow,
2016; Strubell et al., 2018; Sachan et al., 2021;
Qian et al., 2021; Sartran et al., 2022). Following
this idea, later works explored the syntactic equiv-
alence of ‘jump’ and other verbs to induce com-
positionality (Akyurek and Andreas, 2021; Jiang
and Bansal, 2021; White and Cotterell, 2022) for
SCAN. Most relevantly, Chakravarthy et al. (2022)
manually implemented several abstract “roles” for
tokens in SCAN and computed the attention using
the role embeddings. Our work differs from most
of these works in that we do not require any exter-
nal labels (e.g., parse tree) of sentences and instead
automatically infer the syntactic “roles” for each
token using Structure-oriented Vector Quantization
and leverage them in Systematic Attention Layers
and Systematically Regularized Layers.

8 Conclusion

In this work, we propose SQ-Transformer with
Structure-oriented Vector Quantization and two
types of attention layers that use the quantized em-
beddings as the keys and values. Our experiments
show that SQ-Transformer can better generalize to
unseen expressions in multiple semantic parsing
and machine translation tasks. We conduct multi-
ple analyses and show that SoVQ can cluster word
embeddings based on their syntactic roles and the
model learns systematic attention patterns in pro-
cessing sentences of the same syntactic structure.
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9 Limitations

In this work, the proposed Structure-oriented Vec-
tor Quantization (SoVQ) mainly clusters the un-
contextualized, lexical constituents based on their
syntactic roles. It does not explicitly encourage
phrasal constituents with the same syntactic role to
be close together in the representation space. There-
fore, we find that SQ-Transformer does not achieve
better performance than the vanilla Transformer on
COGS test examples with “deeper recursion depth”
or “novel combination modified phrases and gram-
matical roles”, both of which require generalizing
to novel combinations of grammatical structures
and phrasal constituents.

SoVQ on uncontextualized embeddings also
does not consider polysemy, which requires assign-
ing a token to potentially different syntactic classes
based on its context (discussed in Appendix D.1).
However, our work is the first to apply vector quan-
tization to improve compositional generalization
of Transformers. We showed that clustering the
lexical embeddings can already improve the Trans-
former in learning a compositional representation
of the sentences. Therefore, we believe releasing
our promising results by structurally clustering lex-
ical components can potentially inspire more re-
searchers in the community to take on this chal-
lenging but rewarding task of structurally clustering
contextualized, phrasal representations.

Same as other Vector Quantization methods, we
need to manually set the number of classes for
clustering/quantizing embeddings (hyperparame-
ter search details discussed in Appendix B.2). To
prove the effectiveness of SoVQ, we initialize 4
clusters for SCAN tasks (whose vocabulary size is
smaller than 20) and 16/32 clusters for tasks like
CoGnition and WMT. This is because having too
many clusters loosens the information bottleneck
and fails to induce generalization. Future work
incorporating SoVQ into the pretraining stage of
foundation models does not need to tune the num-
ber of classes for every new task, but only needs to
set it once given the size of its universal vocabulary.

10 Ethics Statement

Our SQ-Transformer architecture is designed to
build models with a stronger ability to generalize
to unseen compositions. It can be used as the back-
bone of a large foundation model with better data
efficiency in acquiring a generalizable understand-
ing of natural languages. However, we note the

models to be built with our architecture should be
used with careful consideration. Since this is only
a study aiming to improve the generalization abil-
ity of Transformer models and we do not release
or plan to release a model pretrained for general
use, we thus do not study the undesired behavior
of the proposed model. Therefore, future works,
which intend to use our SQ-Transformer or any pro-
posed components (SoVQ, Systematic Attention
Layer, and Systematically Regularized Layer) in
training a large language model for real-world us-
age, need to conduct a thorough study on its safety
and potential risks (similar to usage of any other
deep learning models), including but not limited to
honesty, truthfulness, fairness, toxicity, etc.
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Appendix

A Structure-oriented Vector Quantization

Notations. We denote the source sequence as
[x1...xN ] and the target sequence as [y1...yM ]. The
framework consists of an encoder with word em-
beddings Ex ∈ RNx×D and an autoregressive de-
coder with word embeddings Ey ∈ RNy×D, where
Nx and Ny are the number of tokens in vocabulary
and D is the dimension of the embeddings. For
quantizing Ex and Ey, we define two codebooks
Zx ∈ RNx×Dz and Zy ∈ RNy×Dz , where Nx and
Ny are the number of codes and Dz is the dimen-
sion of the code embedding.

A.1 Generalized Brown Clustering Objective.
Here, we present the details of the Brown Cluster-
ing (Brown et al., 1992)., the generalized Brown
Clustering objective (Stratos, 2019), and its Evi-
dence Lower Bound (ELBO) Eqn. 3 (with proofs)
discussed in Sec. 3.1.

Brown Clustering. Brown Clustering is an un-
supervised word clustering algorithm that was pro-
posed and popularized before the trend of neural
networks. Brown clustering divides a vocabulary
V into m clusters by maximizing the mutual infor-
mation (MMI) between the clusters (ZX , ZY ) of
a random bigram (X,Y ) in a corpus of N words
(x1...xN ). The algorithm assumes a uniform distri-
bution over consecutive word pairs (xi−1, xi) and
optimizes the MMI objective:

max
Z:V→[m]

=
∑

z,z′

#(z, z′)
N

log(
#(z, z′)N
#(z)#(z)

) (5)

where #(z, z′) denotes the number of occur-
rences of the cluster pair (z, z′) for any bigram in
(x1...xN ). This objective is intractable, so (Brown
et al., 1992) proposed a greedy algorithm that (1)
initializes the clusters by assigning each word to a
distinct class and then (2) merges the pair of classes
that leads to the least loss in the average mutual
information for a total of |V | −m times.

This original algorithm failed on vocabularies
larger than 5000 words. To the remedy, the au-
thors instead (1) initialize m classes that each con-
tain one of the m most frequent words and (2)
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repeatedly merge a pair of clusters that yields the
smallest decrease in mutual information. However,
this heuristic requires nontrivial combinatorial op-
timization and is difficult to scale and generalize.

The Generalized MMI Objective. Stratos
(2019) generalized the Brown Clustering to the
setting by maximizing the mutual information be-
tween the posterior clustering probability q(z|x)
and prior p(z|x̂), where x is a random token from
a sentence and x̂ is its surrounding context. Since
p and q are conditionally independent given (x, x̂),
we have p(z, z′|x, x̂) = q(z|x)p(z′|x̂). Thus, the
mutual information between p and q given a single
sentence (x, x̂) is:

Jx,x̂ =
∑

z,z′
q(z|x)p(z′|x̂)logq(z|x)p(z

′|x̂)
q(z)p(z′) (6)

The author then maximizes Ex,x̂∼D[Jx,x̂]. This
objective becomes the exact Brown Clustering
in Eqn. 5 if (1) x̂ is a random context token; (2)
p and q are tied and are hard clustering instead of
probabilistic soft clustering.

A.2 A Variational Lower Bound of MMI.

Stratos (2019) further improved the generalized
Brown Clustering and derived a novel objective as
the difference between the entropy of the cluster
distribution H(Z) and the cross entropy between q
and p:

Jvar = H(Z)−H(q, p) (7)

where H(q, p) is the cross entropy between q and
p over samples:

H(q, p) = E
x,x̂∼D

[
−
∑

z

q(z|x)logp(z|x̂)
]

(8)

Intuitively, minimizing the cross entropy between q
and p can improve their mutual information. Maxi-
mizing H(Z) encourages the equal occurrence of
each cluster and can prevent the trivial solution that
assigns all tokens x in the corpus into the same
cluster.

The objective in Eqn. 7 can also be seen as the
lower bound of the mutual information between
two random variables I(X̂, Z), where X̂ is the con-
text of a token X and Z is its cluster inferred from
q(z|x). This lower bound is shown in McAllester
(2018) and we replicate it below.

First, since I(X̂, Z) = H(Z) − H(Z|X̂) and
by definition we have the conditional entropy:

H(Z|X̂)

=−
∑

x̂,z

p(x̂, z)log
p(x̂, z)

p(x̂)

=
∑

x̂,z

p(x̂, z)log
p(x̂)

p(x̂, z)

=
∑

x̂,z

p(x̂, z)log
1

π(z|x̂)

= E
(x̂,x)∼D
z∼q(·|x)

[log
1

π(z|x̂) ]

(9)

where π(z|x̂) is the ground-truth prior probability
of the cluster of a token given its context. If we
introduce a variational distribution p(z|x̂) to ap-
proximate π(z|x̂) and further expand Eqn. 8, we
have

H(q, p)

= E
(x,x̂)∼D

[
−
∑

z

q(z|x)logp(z|x̂)
]

= E
(x,x̂)∼D

[∑

z

q(z|x)log 1

p(z|x̂)
]

= E
(x̂,x)∼D
z∼q(·|x)

[
log

1

p(z|x̂)

]

= E
(x̂,x)∼D
z∼q(·|x)

[
log

π(z|x̂)
π(z|x̂)p(z|x̂)

]

= E
(x̂,x)∼D
z∼q(·|x)

[
log

1

π(z|x̂)

]
+ E

(x̂,x)∼D
z∼q(·|x)

[
log

π(z|x̂)
p(z|x̂)

]

=H(Z|X̂) +DKL(π||p)
(10)

where DKL is Kullback–Leibler divergence. There-
fore, we can see that H(p, q) is an upper bound of
H(Z|X̂), and hence H(z)−H(q, p) is the lower
bound of I(X̂, Z). Stratos (2019) argues that max-
imizing I(X̂, Z) over the cluster inference distri-
bution q enforces “predictive coding” because it
pushes the cluster inferred from q(z|X) to be more
informative of the context X̂ .

As we can see in Eqn. 3, maximizing this ELBo
is equivalent to (1) minimizing cross-entropy be-
tween the cluster inference posterior q(z|x) and
cluster prediction prior p(z|x̂) and (2) maximiz-
ing the entropy H(Z) of the cluster distribution.
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First, minimizing the cross-entropy H(q, p) en-
forces “predictive clustering”: the class of x must
be predictable from its context x̂. We introduce a
theorem to show how this leads to assigning words
appearing in the same context to the same class.

Theorem 1. Let xa and xb be two tokens that only
appear in the same sets of context X̂ . Let p′, q′ =

argmin
p,q

H(q(z|xa), p(z|x̂))+H(q(z|xb), p(z|x̂))

Then, we have: q′(z|xa) = q′(z|xb) ∀z ∈ Z,
which means xa and xb are clustered into the same
class in the optimal solution.

The proof is straightforward: the minimum value
of the cross-entropy loss is 0, and this can only be
achieved when q(z|xa) = q(z|xb) = p(z|x̂). To
better understand the mathematical intuition of this
theorem, consider the case where all adjectives
are categorized into the same cluster. Then, we
can confidently predict the class of $x=‘amazing’
based on the context “The food tastes $x.”, thus
achieving the low cross-entropy with the posterior.

Second, maximizing the entropy of the cluster
distribution pushes the model to utilize every clus-
ter z in the latent space with (almost) equal prob-
ability. It thus prevents the trivial solution that
assigns all tokens to only one random cluster k:
p(zk|x) = q(zk|x) = 1 to minimize the first cross-
entropy term (H(p, q) = 0). Empirically, this
variational MMI objective achieves strong unsu-
pervised POS tagging performance (Stratos, 2019).

A.3 The Variational Brown Clustering

In this work, we propose another MMI objective
that marries the original Brown Clustering objec-
tive (Eqn. 5) and the alternative objective (Eqn. 3).
First, we redefine the cluster prediction distribu-
tion as p(z|ẑ), where ẑ are the quantized codes of
all context tokens x̂ inferred from argmax(q(z|x̂)).
This differs from the p(z|x̂) that predicts the clus-
ter of x directly from its context x̂. Then, instead
of maximizing the ELBO of I(X̂, Z), we maxi-
mize the ELBO of I(Ẑ, Z). Next, we derive the
lower bound of I(Ẑ, Z) in a similar way to Eqn. 9
and Eqn. 10. First, by definition we have:

I(Ẑ, Z) = H(Z)−H(Z|Ẑ)

Then, we rewrite H(Z|Ẑ) as:

H(Z|Ẑ)

=−
∑

ẑ,z

p(ẑ, z)log
p(ẑ, z)

p(ẑ)

=
∑

ẑ,z

p(ẑ, z)log
p(ẑ)

p(ẑ, z)

=
∑

ẑ,z

p(ẑ, z)log
1

π(z|ẑ)

=
∑

ẑ,z

∑

x̂,x

p(x̂, x)p(ẑ, z|x̂, x)log 1

π(z|ẑ)

= E
(x̂,x)∼D
z∼q(·|x)
ẑ∼q(·|x̂)

[log
1

π(z|ẑ) ]

(11)

where π(z|ẑ) is the ground-truth code predic-
tion distribution given its context’s codes. If
we introduce a variational distribution p(z|ẑ) and
rewrite Eqn. 8 with the newly defined p(z|ẑ), we
have:

H(q, p)

= E
(x̂,x)∼D
ẑ∼q(·|x̂)

[
−
∑

z

q(z|x)logp(z|ẑ)
]

= E
(x̂,x)∼D
ẑ∼q(·|x̂)

[∑

z

q(z|x)log 1

p(z|x̂)

]

= E
(x̂,x)∼D
ẑ∼q(·|x̂)
z∼q(·|x)

[
log

1

p(z|ẑ)

]

= E
(x̂,x)∼D
ẑ∼q(·|x̂)
z∼q(·|x)

[
log

π(z|ẑ)
π(z|x̂)p(z|ẑ)

]

= E
(x̂,x)∼D
ẑ∼q(·|x̂)
z∼q(·|x)

[
log

1

π(z|ẑ)

]
+ E

(x̂,x)∼D
ẑ∼q(·|x̂)
z∼q(·|x)

[
log

π(z|ẑ)
p(z|ẑ)

]

=H(Z|Ẑ) +DKL(π||p)

Therefore, H(q, p) is the upper bound of H(Z|Ẑ),
and hence H(Z)−H(q, p) is the lower bound of
I(Ẑ, Z).

A.4 Implementation of MMI objectives
Finally, we show our empirical implementation of
the MMI objective. First, we implement q(z|x) as
the cosine similarity between the word embedding
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ex and code embedding z. We implement p(z|x̂)
as a separate Transformer network that takes the
context14 of x as the input and predicts the class
of x. Following Stratos (2019), we estimate these
terms from the training data:

q′(z) =
1

N

N∑

i=1

q(z|xi)

H ′(Z) = −
∑

z

q′(z)logq′(z)

H ′(p, q) =
1

N

N∑

i=1

(−
∑

z

q(z|xi)logp(z|ẑi))

(12)

where N is the number of tokens. We then add
α(H ′(p, q)−H ′(Z)) to the overall loss, where α
is a tunable coefficient.

A.5 Systematic Attention Layer for Decoder
In Sec. 3.2, we introduce the Systematic Atten-
tion Layer (SAL) for a Transformer encoder. Here,
we introduce SAL for a Transformer decoder with
encoder-decoder cross attention. we can use the
quantized embedding z as the queries and keys
in computing the self-attention weights but use the
word embedding x as the queries and keys for cross
attention. This is because we find that long-term,
cross-sentence relationships cannot be determined
by words’ syntactic functions only (Sec. 6):

zl+ = SelfAttn(q = zl−1, k = zl−1, v = zl−1)

zl+ = CrossAttn(q = zl, k = zxL, v = zxL)

yl+ = SelfAttn(q = zl−1, k = zl−1, v = yl−1)

yl+ = CrossAttn(q = yl, k = xL, v = xL)

where y0 and z0 are the non-contextualized word
embeddings and their quantized code embeddings
respectively, xL and zxL are the encoder’s final layer
outputs (as shown in Fig. 2a). In the equation above,
the cross-attention that computes yl (last row) is
the same as a regular Transformer layer. After the
final layer, we project zL and supervise it to predict
the code of the next token, same as how we project
xL to predict the next token.

A.6 Information Bottleneck Interpretation
Tishby and Zaslavsky (2015) state that to have a
generalizable deep neural network, it is necessary

14The context can be either the whole sentence with x
masked (bidirectional context) or the preceding words of x
only (left context).

to optimize the Information Bottleneck (IB) trade-
off between compression and prediction for each
layer. It is equivalent to minimizing the Lagrangian
I(Xl−1, Xl)− βI(Xl, Y ), where Xl is a mapping
(e.g., representation produced by the l-th layer in
a neural net) of X and I(Xl, Y ) is the mutual in-
formation between Xl and the label Y . This objec-
tive suggests that we need to find the most concise
representation Xl that is also sufficient to encode
I(Xl, Y ) at each layer l. On the one hand, mini-
mizing I(Xl−1, Xl) can prevent redundant infor-
mation from flowing to the next layer, which could
be exploited to establish some spurious correlations
between Xl and Y . On the other hand, maximiz-
ing I(Xl, Y ) ensures that sufficient information is
encoded in layer l to enables the final prediction of
Y .

We argue that SoVQ and SRL can implicitly min-
imize I(Xl−1, Xl) for l = 0, 1...L: (1) SoVQ clus-
ters the N word embeddings X0 around K code
embeddings (N > Z15), thus achieving a lower
H(X0) compared to an unrestricted embedding
space and minimizing I(X,X0); (2) SRL, on the
other hand, clusters the layer’s outputs computed
from word embeddings around the layer’s outputs
computed from code embeddings. It thus reduces
H(Xl) to minimize I(Xl−1, Xl) for l = 1...L.
Therefore, from the standpoint of information the-
ory, SoVQ and SRL impose information bottle-
necks on the embedding layer and every attention
layer to improve the generalization of the entire
network.

B Experiments

B.1 Datasets

We use a series of semantic parsing and machine
translation tasks requiring compositional general-
ization and the common WMT tasks. All seman-
tic parsing datasets are in English. None of the
datasets includes any information that can name
or uniquely identify individual people or offensive
content. Since SCAN, COGS, and CoGnition do
not have a compositional generalization validation
set, we randomly sample 20% of the test data and
use it as the validation set.

SCAN ADDJUMP (Lake and Baroni, 2018) tests
the models’ ability to generalize syntactic struc-
tures (e.g., “$x twice”) to a novel entity ($x =

15For example, we only use 16 codes (K=16) to quantize
40356 subword embeddings for the WMT17 En-De tasks.
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(a) Attention maps encoding
“walk around left”, trained on
original ADDJUMP.
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(b) Attention maps encoding
“look around left”, trained on
original ADDJUMP.
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(c) Attention maps encoding
“run around left”, trained on
original ADDJUMP.

(d) Attention maps encoding
“jump around left”, trained on
original ADDJUMP.
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(e) Attention maps encoding
“walk around left”, trained on
20x augmented ADDJUMP.
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(f) Attention maps encoding
“look around left”, trained on
20x augmented ADDJUMP.
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(g) Attention maps encoding
“run around left”, trained on
20x augmented ADDJUMP.
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(h) Attention maps encoding
“jump around left”, trained on
20x augmented ADDJUMP.

Figure 5: Attention maps encoding training examples “walk around left”, “look around left”, “run around left” and
a test example “jump around left” from the Transformers trained on the original SCAN ADDJUMP training set (a,
b, c, d), and 20x augmented training set (Zhou et al., 2023) (e, f, g, h). We highlight the attention patterns in (d)
that differ from (a), (b), (c) in red boxes. When trained on 20x augmented training set, the model encodes the two
examples (c and d) with highly similar attention maps across all layers and heads.

‘jump’). Here we use the augmented training set
with 2 times more primitives (Jiang et al., 2022),
which includes 97906 examples. The validation
and test sets have 1541 and 7706 examples respec-
tively.

SCAN AROUNDRIGHT (Loula et al., 2018)
tests the models’ ability to generalize a common
syntactic structure “$x1 around $x2” to an entity
($x2=‘right’) that is only associated with other
structures during the training. The train, valida-
tion, and test sets have 15225, 895, and 4476 ex-
amples respectively. The SCAN ADDJUMP and
AROUNDRIGHT dataset are released under BSD
License.

COGS (Kim and Linzen, 2020) challenges mod-
els to parse a diverse set of natural language sen-
tences into their corresponding logical forms based
on lambda calculus to accurately reflect the seman-
tic representation of the natural sentence. The train,
validation, and test sets have 24155, 4200, and
21000 examples respectively. The COGS dataset
is released under MIT License.

CoGnition (Li et al., 2021) is an English-to-
Chinese translation dataset with a synthetic OOD
test set, where each sentence contains novel com-
positions of seen structures and constituents. The

train, validation, and test sets have 196246, 2160,
and 10800 examples respectively. The CoGnition
dataset is released for public use and has no explicit
license.

WMT. We use WMT17 English↔German (Bo-
jar et al., 2017) and WMT14 English↔French (Bo-
jar et al., 2014) translation tasks. WMT17 En↔De
has 3961179 English-German sentence pairs in the
training set, 40058 sentence pairs in the validation
set, and 3003 sentence pairs in the test set. WMT17
En↔Fr has 35762532 English-German sentence
pairs in the training set, 26854 sentence pairs in the
validation set, and 3003 sentence pairs in the test
set.

B.2 Experimental Setup

Semantic parsing experiments. We use a 3-
layer Transformer encoder and a 3-layer Trans-
former decoder with 4 heads per layer, a hidden
size of 256, and a feedforward size of 512. We
share input and output embeddings of the decoder.
We optimize the model using Adam (Kingma and
Ba, 2015), with β1 = 0.1, β2 = 0.98. All models are
trained for 100,000 steps and we choose the best
checkpoint on validation set for evaluation. On
SCAN tasks where the original vocab size is small
(17 for source and 10 for target, including special
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tokens), we try source codebook sizes [4,6,8] and
target codebook sizes [3,4,5], and end up using 6
codes for quantizing source tokens and 4 codes
for quantizing target tokens. On COGS with 747
source tokens and 687 target tokens, we try source
and target codebook sizes [8,16,32], and end up
using 32 codes for quantizing source tokens and 16
codes for quantizing target tokens.

Machine translation experiments. We use a 6-
layer Transformer encoder and a 6-layer Trans-
former decoder with 8 heads per layer, a hidden
size of 512, and a feedforward size of 1024. It has
the same size as the Transformer used in Yin et al.
(2023). We share input and output embeddings of
the decoder. The model parameters are optimized
by Adam (Kingma and Ba, 2015), with β1 = 0.1,
β2= 0.98. All models are trained for 1 million steps
on CoGnition and 2 million steps on WMT training
sets. We then choose the best checkpoint on the val-
idation set for evaluation. During decoding, we use
a beam size of 5 and a maximum generation length
of ax + b where a=1.2 and b=10. On CoGnition
with 2004 source English tokens and 5500 target
Chinese tokens (including special tokens), we try
source and target codebook sizes [16,32,64,128],
and end up using 64 codes for quantizing source
tokens and 32 codes for quantizing target tokens.
On WMT tasks, we follow the tokenization and
preprocessing steps in fairseq16, and use 16 codes
each for quantizing source tokens and target tokens.

C Additional Analyses

C.1 Probing the Code Embeddings

In Sec. 3.1, we argue that word embeddings x are
being quantized into codes z largely based on their
syntactic function in a linguistic structure. To sup-
port this argument, we conduct a probing experi-
ment on the CoGnition dataset by training a linear
classifier on top of the codes z (frozen) to predict
the Part-of-speech (POS) tag of the corresponding
words x. We find that this classifier can correctly
predict the POS tag in 40.8% of the cases. Given
the fact that z contains no context information and
thus is inherently limited in predicting the finer
POS tags (whether “like” is a verb or a preposition),
the result of this probing experiment supports our
argument that the quantized embeddings (code) z

16https://github.com/facebookresearch/
fairseq

encode a large number of syntactic roles of lexical
features.

C.2 Visualizing COGS Embedding Space
In Fig. 7, we show the t-SNE of the source em-
bedding matrices learned on COGS. Compared
to SCAN, COGS has a much larger vocabulary
(748 VS 13) and more diverse syntactic structures.
Again, in Fig. 7c we show that SoVQ can cluster
the word embeddings based on their syntactic func-
tions. For example, the “red cluster” (in the middle
of 2-d t-SNE space) is mostly made of names like
“Andrew” and “Olivia”. The “yellow cluster” on
the right side is comprised of verbs in their past par-
ticiple forms (e.g., “smiled, rolled”). The “green”
cluster at the bottom includes animals like “fish”,
“bear”, and “giraffe”. In Table 5, we show 10 words
sampled from the source vocabulary and their clos-
est neighbors in the 2-d t-SNE space. One interest-
ing finding is that the word ‘can’ is clustered with
nouns like ‘block’, ‘bee’, and ‘ring’. This is be-
cause in the COGS training set, ‘can’ is only used
as a noun and never used as a modal verb.

The embedding space learned by the Trans-
former baseline, on the other hand, does not demon-
strate any patterns that can connect the distribution
and the syntactic role of a word Fig. 7a. We can
observe that sometimes words that are different
tenses of the same verb (e.g., “given” and “gave” in
the red circle) or have connections in their seman-
tics (e.g., “sleep” and “bed” in the blue circle) are
clustered together. The Transformer with vanilla
Vector Quantization, although learns a more cluster-
separated embedding space Fig. 7b, also does not
demonstrate any noticeable similarities of words
within a cluster.

Overall, based on the difference in how words
are clustered in the embedding space, we can
state that Structural-oriented Vector Quantization
(SoVQ) can effectively cluster words based on their
syntactic functions.

C.3 Visualizing the attention patterns of
vanilla Transformer.

As is discussed in Sec. 2, we train a vanilla Trans-
former model with 3 layers and 4 heads on the
SCAN ADDJUMP training set of different com-
plexities (Zhou et al., 2023). For example, the 20x
augmented training set has 20 times more primi-
tives (excluding jump) that appear in a variety of
syntax structures. In Fig. 8, we visualize its at-
tention maps from processing two separate expres-
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(a) Source embeddings trained with no
quantization.
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(b) Source embeddings trained with
vanilla VQ.
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(c) Source embeddings trained with
SoVQ.

Figure 6: T-SNE visualization of embeddings learned on SCAN ADDJUMP dataset (Lake and Baroni, 2018), with 6
clusters used in VQ.
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(a) Source embeddings of the Baseline.
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(b) Source embeddings with vanilla VQ.
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(c) Source embeddings with SoVQ.

Figure 7: T-SNE of embeddings learned on COGS (Kim and Linzen, 2020), with 32 clusters used in VQ.

Source Word Closest Words

William Sophia, Riley, Carter, Nora, Madison, John, Jack, Lillian, Sebastian, Christopher
draw float, love, scream, double, see, shark, help, roll, frown, worship
ate gave, wanted, noticed, laughed, smirked, hoped, talked, napped, doubled
bear manager, writer, cow, warrior, governor, crocodile, bicycle, boulder, bag, cloud
cookie piano, rug, car, banana, melon, bench, bottle, bible, storage, turtle
improve redden, poke, pierce, discover, throw, toss, slide, freeze, disintegrate, Paula
bed taxi, pot, sphere, cot, couch, bunker, backpack, glacier, vehicle, bin
preferred jogged, smiled, sketched, craved, touched, gasped, yearned, supported, saw, crumple
teacher strawberry, raisin, beast, soap, monster, clock, rose, child, lawyer, chief
can block, bee, ring, blender, tripod, seat, jacket, dog, donkey, beer
table stage, speaker, desk, barrel, boat, trunk, house, room, stand

Table 5: Words sampled from the source vocabulary of COGS and their closest words in the 2-d t-SNE space.

sions: “walk around left”, which is in the training
set, and “jump around left”, which is excluded from
the training set. We also show the generalization ac-
curacy and Kullback–Leibler (KL) divergence be-
tween the two attention distributions, averaged over
all heads and layers. In summary, we show that as
the number of distinct primitives increases, the KL

divergence between the attention distributions of
these two examples decreases. This improvement
in attention similarity positively correlates with the
improvement of the generalization accuracy. With
20x more lexical primitives than the original train-
ing set, the KL divergence reaches 0.001 and the
accuracy reaches 100%. This observation provides
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(a) “walk around left”, trained
on ADDJUMP.

(b) “jump around left”, trained
on ADDJUMP (KL: 0.337).
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(c) “walk around left”, trained
on ADDJUMP 2x.
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(d) “jump around left”, trained
on ADDJUMP 2x (KL: 0.080).
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(e) “walk around left”, trained
on ADDJUMP 20x.
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(f) “jump around left”,
trained on ADDJUMP 20x
(KL:0.001).
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(g) “walk around left”, trained
on ADDJUMP 200x.
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(h) “jump around left”,
trained on ADDJUMP 200x
(KL:0.001).

Figure 8: Encoder’s attention maps and their average KL-divergence between the two examples, from the vanilla
Transformer trained on the SCAN ADDJUMP datasets of different number of distinct primitives (Zhou et al., 2023)
(original, 2x, 20x, 200x), where the model achieves 3.67%, 15.78%, 100%, and 100% accuracy on the entire test set
respectively.

a mechanistic explanation of how a Transformer
trained on more complex data acquires better out-
of-domain generalization to novel combinations of
structure and lexical entities.

C.4 Analyzing the Attention Pattern of SRL.

We show the example pairs used in Sec. 5.3. We
collect a total of 48 pairs of source sentences from
the test set. The source sentences within each pair
are quantized into the same sequence of clusters
(e.g., “he stopped every girl.” and “he found each
child.”) by our SQ-Transformer.

D More Discussion

D.1 Polysemy

Vector Quantization on token embeddings assigns
a token to one of several mutually exclusive classes
(Eqn. 1). Therefore, it does not explicitly consider
polysemy, which requires assigning a token to po-
tentially multiple syntactic classes based on its con-
text. For example, depending on the context, “sign”
could belong to the verb class or the noun class.
Empirically we find that words with multiple syn-
tactic roles indeed have non-zero quantization prob-
abilities to multiple classes: after being trained on
the WMT En-De, the embedding of “sign” has a
0.3 probability of being quantized to a class mostly
including verbs, and a 0.65 probability of being
quantized to a class mostly including nouns. This

is because, while the cluster inference posterior
q(z|x) is conditioned on the lexical embeddings
only, the cluster prediction prior p(z|ẑ) is condi-
tioned on the context and thus can predict the two
distinct syntactic roles of the word “sign”. As a
result of minimizing their cross-entropy, the poste-
rior q(z|x) also learns a bi-modal class distribution
for x =“sign”.

With that being said, since a token can only be
assigned to the top class (noun class for “sign”)
before any contextualization, the verb sense of
“sign” is lost after SoVQ. Therefore, to accurately
quantize polysemies like “sign”, future works can
explore quantizing contextualized representation,
like the outputs after the first 3 layers, of words.
This can potentially lead to better-quality, context-
aware code representation used in the downstream
SAL/SRL.

D.2 Scaling Up Model and Data

Scaling up the training data. In this work, we
trained SQ-Transformer on datasets up to the scale
of WMT machine translation datasets, which are
the most popular benchmarks in evaluating seq2seq
neural architectures (as used in Vaswani et al.
(2017)). We also support our main arguments via
proof-of-concept experiments based on semantic
parsing. We do not train SQ-Transformer on larger
web-scale, language-modeling datasets and leave
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Sentence 1 Sentence 2

She chose another child he liked . She chose another clown he liked .
She also found every small girl . She also met each small clown .
He took every large clown . He caught every special clown !
He heard each large girl . He saw each small girl .
He heard every silly girl . He found every dirty girl .
The man took every large clown . The cat caught every special clown .
He stopped every girl . He met each girl .
She saw the silly clown . She watched the dirty girl .
She met each small clown . She watched every large girl .
She invited the large clown . She saw the special child .
The smart doctor he liked was very proud . The dirty dog he liked was extremely excited .
He invited each small boyfriend on the floor . He found every large boyfriend on the floor .
He left every small girl he liked . He caught each large child he liked .
Taylor met the special girl . Taylor heard the small clown .
He visited the large child he liked . He heard the large girl he liked .
I chose another clown he liked . I chose another child he liked .
She visited each silly boyfriend on the floor . She found every dirty boyfriend on the floor .
He hated the large clown on the floor . He applied to the large doctor on the floor .
Taylor hated the small building . Taylor hated the large building .
Any red doctor at the store jumped back . Any small farmer at the store pushed him .
She woke any large building on the floor . She woke any small building on the floor .
I chose each large boyfriend on the floor . I chose each small car on the floor .
His neighbors heard the special clown on the floor . His friend heard the small clown on the floor .
He looked under any small chair on the floor . He looked under any small chair on the floor .
There was a hurricane headed towards each small doctor . There was a hurricane headed towards every small doctor .
Taylor hated every silly bee . Taylor went to each empty bee .
Taylor was sad about every small building . Taylor was excited about every small building .
She had everything taken care of except every small chair . She had everything taken care of except each large apartment

.
Taylor visited each silly boyfriend on the floor . Taylor found every silly boyfriend on the floor .
Taylor lost another small girl on the floor . Taylor lost another small clown on the floor .
Taylor watched every dirty girl he liked . Taylor saw every silly clown he liked .
Taylor chose each small girl he liked . Taylor caught each large child he liked .
Taylor woke each large clown for school . Taylor woke every small clown for school .
Taylor visited the small child he liked . Taylor heard the large girl he liked .
Taylor caught any large car on the floor . Taylor took any small boyfriend on the floor .
Taylor found every large child on the floor . Taylor heard each small clown on the floor .
Taylor watched each dirty clown on the floor . Taylor heard every dirty clown on the floor .
He smiled and gave each car a free popcorn . He smiled and gave every boyfriend a free popcorn .
She invited all the girls except any small building on the
floor .

She invited all the girls except any small farm on the floor .

Taylor hated every silly bee he liked . Taylor hated each dirty bee he liked .
Taylor hated any large bee on the floor . Taylor hated any small bee on the floor .
I woke the silly child on the floor up to give him a sandwich
.

I woke the dirty clown on the floor up to give him a sandwich
.

Another smart doctor he liked got so bad that she could n’t
stand it .

Another smart doctor he liked got so bad that she could n’t
stand it .

Except each empty apartment he liked , she took it out to
show to a friend .

Except every empty airplane he liked , she took it out to
show to a friend .

When i got home , i did all my homework except each empty
apartment he liked .

When i got home , i did all my homework except every empty
airplane he liked .

When i got home , i did all my homework except the quiet
farm he liked .

When i got home , i did all my homework except the empty
building he liked .

Taylor stayed inside the small building on the floor , even
though a storm was coming .

Taylor stayed inside the large farm on the floor , even though
a storm was coming .

As soon as i was about to take a bath , i saw a light inside
any empty car he liked .

As soon as i was about to take a bath , i saw a light inside
any quiet car he liked .

Table 6: Source sentences collected from the CoGnition (Li et al., 2021) compositional generalization test set. The
sentences within each pair are quantized into the same sequence of clusters by our SQ-Transformer.

this to future work. We hope the promising results
of SQ-Transformer can inspire more researchers to
experiment with it on web-scale data.

Scaling up SQ-Transformer. In this work, we
investigate SQ-Transformer up to 6 layers, 8 heads,
and 512 hidden dim, same as the model size
in Vaswani et al. (2017). To further scale the model
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up, there are two main challenges. First, we use two
separate Transformer decoders as the cluster pre-
diction prior p(z|ẑ) (Eqn. 4), which brings memory
overhead. However, the cluster predictors can be
much smaller than the main Transformer network
because the structure-oriented latent code space (16
for WMT En-De) is much smaller than the main
network’s semantic-enriched word space (40356
for WMT En-De). It is also possible to share the
parameters between the main network and the clus-
ter predictors. Second, most LLMs use some types
of byte pair encoding (BPE) tokenization to build
a universal, sub-word level vocabulary. As a result,
the structural role of a sub-word (e.g., ‘token-’)
could depend on its suffix: “token-ize” is a verb
while “token-ization” is a noun. This is similar to
the polysemy problem at the word level (discussed
in Appendix D.1), but is much more frequent at
the sub-word level. So far, our proposed Structure-
oriented Vector Quantization (SoVQ) is only per-
formed on the sub-word embeddings. Therefore,
without any context information, SoVQ cannot ac-
curately quantize ‘token’ to either the verb class
or the noun class. Nonetheless, we still showed
SoVQ’s effectiveness in WMT machine translation
datasets (tokenized with BPE). This suggests that
the SoVQ is robust to some ambiguous sub-words
like the prefix ‘token’. However, further scaling
SoVQ to web-scale data with a much larger sub-
word vocabulary could potentially be challenging,
since some of the special sub-words are not mean-
ingful by themselves.17 To address this challenge,
we believe future works can experiment with quan-
tizing the contextualized representation (e.g., the
output representations of the first k layers) rather
than quantizing the sub-word embeddings.

D.3 How does Transformer Generalize
Compositionally?

It has long been argued that neural networks are
associative devices that cannot capture systematic
compositionality (Fodor and Pylyshyn, 1988; Mar-
cus, 1998; Fodor and Lepore, 2002; Marcus, 2003;
Calvo and Symons, 2014). Specifically, Fodor and
Pylyshyn (1988) claimed that “in traditional Asso-
ciationism, the probability that one Idea will elicit
another is sensitive to the strength of the associa-
tion between them. ... Associative strength was not,
however, presumed to be sensitive to features of the

17For example, “<0xF0><0x9F><0xA6><0x99>” forms a
“llama” emoji but each sub-word itself does not have a fixed
role in linguistics.

content or the structure of representations per se.
Similarly, in Connectionist models, the selection of
an output corresponding to a given input is a func-
tion of properties of the paths that connect them.”
As a result, they further stated that “The syntac-
tic/semantic structure of the representation of an
input is not presumed to be a factor in determining
the selection of a corresponding output since, as
we have seen, syntactic/semantic structure is not
defined for the sorts of representations that Con-
nectionist models acknowledge.” After we show-
case the systematic behavior of SQ-Transformer,
readers might ask “how does our method overcome
the inherent limitation of Connectionist models
elicited in Fodor and Pylyshyn (1988)?”

First, the statement above made an important
assumption about neural networks (i.e., Connec-
tionist models) that syntactic/semantic structure
does not determine the strength of association be-
tween neurons (through the form of attention or
full connection). We agree that the strength of the
association is decided by the correlations a neural
model observed in data. Thus, models like Trans-
formers and RNNs fail to execute “jump twice”
because where “jump” and “twice” are never seen
together in training and models are insensitive to
the syntactic structure.

However, we argue that with the proper regular-
ization (e.g., SoVQ and SRL) to the intermediate
representations (incl. embeddings and layer out-
puts), neural models can take the sentence struc-
ture into account when determining the strength of
inter-neuron association via attention weights or
MLP connection. This is because neural models
are not inherently limited to capturing shallow,
word-level correlations. As is shown in Hewitt
and Manning (2019), the attention maps can also
be sensitive to the common, although latent, depen-
dency between words, which is simply a kind of
statistical correlation between multiple latent and
explicit factors (word, position, order, etc). There-
fore, the resulting representations also encode rich
structural information. The extent to which the
model can be sensitive to the structure depends
on the data complexity (Zhou et al., 2023), model
architecture (Murty et al., 2023b), and regulariza-
tion (Jiang and Bansal, 2021; Yin et al., 2023). For
example, there is a statistical correlation between
the input word “twice” and the latent output struc-
ture (always repeating the action preceding “twice”
2 times). We showed that SQ-Transformer can very
well capture this association systematically in its

8382



attention maps.
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