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Abstract

Despite the notable success of language mod-
els (LMs) in various natural language process-
ing (NLP) tasks, the reliability of LMs is sus-
ceptible to backdoor attacks. Prior research
attempts to mitigate backdoor learning while
training the LMs on the poisoned dataset, yet
struggles against complex backdoor attacks in
real-world scenarios. In this paper, we inves-
tigate the learning mechanisms of backdoor
LMs in the frequency space by Fourier anal-
ysis. Our findings indicate that the backdoor
mapping presented on the poisoned datasets ex-
hibits a more discernible inclination towards
lower frequency compared to clean mapping,
resulting in the faster convergence of back-
door mapping. To alleviate this dilemma, we
propose Multi-Scale Low-Rank Adaptation
(MuScleLoRA), which deploys multiple ra-
dial scalings in the frequency space with low-
rank adaptation to the target model and further
aligns the gradients when updating parame-
ters. Through downscaling in the frequency
space, MuScleLoRA encourages the model
to prioritize the learning of relatively high-
frequency clean mapping, consequently miti-
gating backdoor learning. Experimental results
demonstrate that MuScleLoRA outperforms
baselines significantly. Notably, MuScleLoRA
reduces the average success rate of diverse
backdoor attacks to below 15% across multiple
datasets and generalizes to various backbone
LMs, including BERT, RoBERTa, GPT2-XL,
and Llama2. The codes are publicly available at
https://github.com/ZrW00/MuScleLoRA.

1 Introduction

Despite the remarkable achievements of language
models (LMs) in various natural language pro-
cessing (NLP) tasks (Devlin et al., 2019; Touvron
et al., 2023), concerns arise due to the lack of in-
terpretability in the internal mechanisms of LMs,
impacting their reliability and trustworthiness. A
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particular security threat to LMs is backdoor at-
tack (Liu et al., 2018; Chen et al., 2017). Backdoor
attack poisons a small portion of the training data
by implanting specific text patterns (known as trig-
gers). Trained on the poisoned dataset, the target
LM performs maliciously when processing samples
containing the triggers, while behaving normally
when processing clean text.

Prior works attempt to mitigate backdoor learn-
ing during training the target LM on the poisoned
dataset (Zhu et al., 2022; Zhai et al., 2023). How-
ever, due to the stealthy nature of complex triggers
in real-world scenarios, most existing defense meth-
ods fail to mitigate backdoor learning from such
triggers, like specific text style (Qi et al., 2021b)
or syntax (Qi et al., 2021c). Furthermore, most
existing defense methods rely on empirical ob-
servations (Chen and Dai, 2021; Cui et al., 2022;
Zhang et al., 2022) and lack thorough exploration
of backdoor learning. To better understand back-
door learning, we investigate the learning mecha-
nisms of LMs in the frequency space on the poi-
soned datasets through Fourier analysis.1 The find-
ings indicate that the backdoor mapping presented
on the poisoned datasets exhibits a stronger incli-
nation towards lower frequency compared to clean
mapping. According to the extensively studied F-
Principle (Xu et al., 2020; Xu and Zhou, 2021;
Rahaman et al., 2019), which suggests that deep
neural networks (DNNs) tend to fit the mapping
from low to high frequency during training, these
results explain why backdoor mapping is notably
easier to discern and converges faster for LMs.

Inspired by the observation and thought above,
we propose a general backdoor defense method
named Multi-Scale Low-Rank Adaptation (MuS-
cleLoRA) to further mitigate backdoor learning.
MuScleLoRA integrates multiple radial scalings

1Details are provided in Section 3. In this paper, frequency
denotes the frequency of input-output mapping, rather than
input frequency (Xu et al., 2020; Zeng et al., 2021).
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in the frequency space with low-rank adaptation
to the target LM and aligns gradients during pa-
rameter updates. By downscaling in the frequency
space, MuScleLoRA encourages LMs to prioritize
relatively high-frequency clean mapping, thereby
mitigating learning the backdoor on the poisoned
dataset while enhancing clean learning. Experi-
mental results across multiple datasets and model
architectures demonstrate the efficacy and general-
ity of MuScleLoRA in defending against diverse
backdoor attacks compared to baselines.

Specifically, we concentrate on the scenario
where (1) the attacker poisons and releases the
dataset on open third-party platforms, without gain-
ing control of the downstream training; (2) the de-
fender downloads the poisoned dataset and deploys
the defense method to train the target LM, main-
taining complete control of the training process.
Our contributions are summarized as follows:

(1) We conduct Fourier analyses to investigate
the mechanisms of backdoor learning, revealing
why backdoor mapping is notably easier to discern
for LMs compared to clean mapping. To the best
of our knowledge, this is the first work that ex-
plores the mechanisms of backdoor learning from
the perspective of Fourier analysis and transfers
these insights into backdoor defense strategies.

(2) Inspired by our findings in the frequency
space, we propose a general backdoor defense
method named MuScleLoRA, which integrates
multiple radial scalings in the frequency space with
low-rank adaptation to the target LM, and further
aligns the gradient when updating parameters.

(3) We conduct experiments across several
datasets and model architectures, including BERT,
RoBERTa, GPT2-XL, and Llama2, to validate the
efficacy and generality of MuScleLoRA in back-
door mitigation. Compared to baselines, MuScle-
LoRA consistently demonstrates its capability to
effectively defend against diverse backdoor attacks.

2 Related Works

In this section, we cover related works that form the
basis of this work from four perspectives: backdoor
attack, backdoor defense, learning mechanisms of
DNNs, and parameter-efficient tuning (PET).
Backdoor Attack. Backdoor learning (Wu et al.,
2022; Cheng et al., 2023) exploits the extra capac-
ity (Zhu et al., 2023) of over-parameterized (Han
et al., 2016) LMs to establish a robust mapping
between predefined triggers and the target output.

One typical way to conduct backdoor attacks is
dataset poisoning (Chen et al., 2017). Recent stud-
ies for trigger implantation include inserting spe-
cific words (Kurita et al., 2020; Huang et al., 2023)
or sentences (Dai et al., 2019) that use shallow se-
mantic features. Besides, high-level semantics, like
specific syntax (Qi et al., 2021c) and text style (Qi
et al., 2021b), are utilized as complex triggers.
Backdoor Defense. Backdoor defense aims to
mitigate potential backdoors in victim LMs and
is categorized into training-stage and post-training
defense. During training, the defender can per-
form poisoned weight removal (Zhang et al., 2022,
2023c; Liu et al., 2023), regularized training (Zhu
et al., 2022; Zhai et al., 2023), and dataset purify-
ing (Chen and Dai, 2021; Cui et al., 2022; Jin et al.,
2022) to mitigate backdoor learning. After training,
the defender can employ trigger inversion (Azizi
et al., 2021; Shen et al., 2022; Liu et al., 2022), trig-
ger detection (Qi et al., 2021a; Shao et al., 2021),
and poisoned input detection (Gao et al., 2021;
Yang et al., 2021; Zhao et al., 2024) to discriminate
potential backdoors. Our proposed MuScleLoRA
falls under regularized training, mitigating back-
door learning without detailed data inspection. Pre-
vious work (Zhu et al., 2022) reduces model capac-
ity by PET methods to mitigate backdoor learning.
However, straightforward model capacity reduction
with PET methods requires meticulously designed
hyperparameters against different attacks and still
struggles against complex stealthy triggers, like
specific syntax (Qi et al., 2021c).
Learning Mechanisms of DNNs and Backdoor
LMs. Extensive research focuses on revealing the
learning mechanisms of DNNs (Burns et al., 2022;
Lamparth and Reuel, 2023). Recent studies shed
light on these mechanisms through Fourier analy-
sis (Rahaman et al., 2019). By transforming the
input-output mapping into the frequency space, the
findings suggest that, owing to the decay of acti-
vation functions in the frequency space (Xu et al.,
2020), DNNs tend to fit the mapping from low to
high frequency during training. Besides, deeper
DNNs exhibit a stronger low-frequency bias (Xu
and Zhou, 2021). Empirical studies also confirm
that backdoor learning converges notably faster
than clean mapping (Li et al., 2021; Gu et al., 2023;
Zhang et al., 2023b), hinting at a low-frequency
bias of the backdoor in the frequency space.
Parameter-Efficient Tuning. Recently, PET
emerges as a novel training paradigm for LMs. PET
achieves comparable performance to fine-tuning by
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freezing the original parameters and introducing
tunable modules with fewer parameters, such as
parallel low-rank decompositions (Hu et al., 2022),
sequential linear layers (Houlsby et al., 2019), and
a sequence of continuous task-specific vectors (Li
and Liang, 2021). Consequently, PET can reduce
the extra capacity of LMs, thereby partially miti-
gating backdoor learning (Zhu et al., 2022).

3 Pilot Experiments

In this section, we conduct pilot experiments on the
poisoned dataset, investigating the learning mech-
anisms of LMs in the frequency space from the
perspective of Fourier analysis.

Generally, a backdoor model should satisfy: (1)
maintaining performance on clean tasks, defined
as clean mapping, which maps clean inputs to
their corresponding clean labels, Fc : {xi}Nc

i=1 →
{yi}Nc

i=1, where xi denotes clean input and yi de-
notes its corresponding clean label; (2) outputting
the attacker-specified target label when processing
samples containing the triggers, defined as back-
door mapping, which maps inputs implanted with
triggers to the attacker-specified target label, Fb :
{xi ⊕∆}Nb

i=1 → {y∆}, where ∆ denotes the trig-
ger, y∆ denotes the attacker-specified target label,
and ⊕ denotes the implanting operation of trigger.
Therefore, we can decompose the overall mapping
of the backdoor LM into clean and backdoor map-
pings by utilizing clean data Dc = {(xi, yi)}Nc

i=1

and poisoned data Db = {(xi ⊕ ∆, y∆)}Nb
i=1 and

analyze their learning mechanisms, respectively.
Intuitively, the implanted trigger ∆ on the poi-

soned dataset represents a straightforward recurring
feature that LMs can easily discern. A recent empir-
ical study observes that the loss of backdoor map-
ping converges faster than that of clean mapping
when training an LM on a poisoned dataset (Gu
et al., 2023). To explain this observed convergence
difference, we conduct Fourier analyses on the
training process of the backdoor LM.

Following the settings of Kurita et al. (2020)
and Dai et al. (2019), we select specific words,
i.e., cf, mn, bb, tq, and a sentence, i.e., I watch
this 3D movie, as respective triggers to poison
SST-2 (Socher et al., 2013). We choose BERTBase
as the target LM and train it on the poisoned
datasets. Concurrently, we decompose the over-
all mapping of the backdoor LM into clean map-
ping Fc and backdoor mapping Fb by utilizing Dc

and Db, respectively. Then, we conduct filtering-
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Figure 1: Frequency ratios of clean and backdoor map-
ping during training BERTBase on poisoned SST-2.

based Fourier transformation (Xu et al., 2020) (de-
tails are provided in Appendix A) to Fc and Fb :
RL×d → RC ,F(e) = y, extracting their respec-
tive low-frequency part ylow

clean, y
low
backdoor ∈ RC and

high-frequency part yhigh
clean, y

high
backdoor ∈ RC . Here

e ∈ RL×d, y ∈ RC , L, d, and C denote input
embedding, output logits, input text length, em-
bedding dimension, and the number of categories,
respectively.

First, we calculate the low-frequency ratio (LFR)
and high-frequency ratio (HFR) of both clean and
backdoor mappings during training by Equation 1.

LFR =
∥ylow∥
∥y∥ , HFR =

∥yhigh∥
∥y∥ . (1)

As shown in Figure 1, both clean and backdoor
mappings exhibit significantly larger LFR com-
pared to HFR, consistent with the low-frequency
bias suggested by F-Principle (Xu et al., 2020).
Specifically, the LFR of backdoor mapping consis-
tently remains near 1.0, surpassing that of clean
mapping. Conversely, the HFR of clean mapping
gradually increases, whereas the HFR of backdoor
mapping is typically two orders of magnitude lower
than that of clean mapping. These phenomena indi-
cate that (1) backdoor mapping exhibits a stronger
bias towards low frequency than clean mapping;
(2) the high-frequency composition of backdoor
mapping is negligible compared to clean map-
ping, which gradually acquires high-frequency in-
formation during training.

To compare the convergence of clean and back-
door mappings in frequency space, we compute
the relative errors relow, rehigh between output log-
its and ground-truth labels by Equation 2. Here,
tlow, thigh ∈ Rd denote the low and the high fre-
quency part of ground-truth mapping, respectively.

relow =
∥ylow − tlow∥

∥tlow∥ ,

rehigh =
∥yhigh − thigh∥

∥thigh∥ .

(2)
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Figure 2: Relative errors of clean and backdoor mapping
during training BERTBase on poisoned SST-2.

The results of relative errors are shown in Fig-
ure 2, where the red color indicates small relative
errors. In both cases, relow decreases more rapidly
than the corresponding rehigh, signifying faster con-
vergence. This convergence difference aligns with
the Frequency Principle, suggesting that LMs tend
to fit the mapping from low to high frequency.
Furthermore, relow of low-frequency-dominated
backdoor mapping fluctuates initially and then
rapidly decreases to a small value. Compared to
the gradual decrease of relow of clean mapping,
backdoor mapping converges significantly faster.
As mentioned above, (1) the lower-frequency in-
clination of backdoor mapping results in faster
convergence of backdoor mapping, (2) the rela-
tively high-frequency inclination of clean mapping
leads to slower convergence of clean mapping.

4 Methodology

Findings in Section 3 indicate that clean mapping
exhibits a relatively high-frequency bias, leading to
its slower learning compared to backdoor mapping.
Hence, an intuition to mitigate backdoor learning
is to encourage LMs to prioritize relatively high-
frequency clean mapping. To this end, we propose
MuScleLoRA, which utilizes multiple radial scal-
ings with low-rank adaptation to the target LM and
aligns gradients when updating parameters. The
overview of MuScleLoRA is shown in Figure 3.

Inspired by Zhu et al. (2022) that PET methods
can reduce the capability of LM and thus mitigate
backdoor learning, we incorporate multiple radial
scalings (Liu et al., 2020) with low-rank adaptation
to reduce the model capacity and downscale clean
mapping in the frequency space.

For simplicity, we assume the Fourier trans-
form F̂ℓ(ξ), ξ ∈ Rd corresponding to the mapping
Fℓ(x), x ∈ Rd fitted by the ℓ-th layer of LM has a
compact support. Subsequently, the compact sup-
port of F̂ℓ(ξ) can be partitioned into s mutually
disjointed concentric rings {Ai}si=1, ∀i ̸= j, Ai ∩
Aj = ∅. Therefore, F̂ℓ(ξ) can be decomposed with

indicators I(ξ ∈ Ai), as illustrated in Equation 3.

F̂ℓ(ξ) =

s∑

i=1

I(ξ ∈ Ai)F̂ℓ(ξ) ≜
s∑

i=1

F̂ i
ℓ(ξ). (3)

For each F̂ i
ℓ(ξ), we apply radial scalings with

appropriate scaling factor si to downscale high fre-
quency in Ai, as illustrated in Equation 4.

F̂ scale,i
ℓ (ξ) = F̂ i

ℓ(siξ). (4)

Hence, in the corresponding physical space, the
radial scalings are illustrated in Equation 5.

F scale,i
ℓ (x) = F i

ℓ(
1

si
x),

or F i
ℓ(x) = F scale,i

ℓ (six).

(5)

Consequently, Fℓ(x) can also be decomposed
into: Fℓ(x) =

∑s
i=1F

scale,i
ℓ (six). To approximate

F scale,i
ℓ with low-rank adaptation, we first freeze

the target LM and insert LoRA modules into each
attention Layer. Given that deeper layers tend to
exhibit stronger low-frequency bias (Xu and Zhou,
2021), larger scaling factors are required in the
shallow layers to appropriately downscale clean
tasks. However, in practice, excessive scaling fac-
tors could potentially lead to underfitting.

Therefore, we conduct multiple radial scalings
with appropriate scaling factors to the low-rank
projected input Lx within the LoRA module at
the penultimate linear layer, as illustrated in Equa-
tion 6. Here, W0 ∈ Rd×d denotes the original
frozen weight, R ∈ Rd×sr and L ∈ Rsr×d denote
the tunable low-rank decompositions with sr ≪ d,
S ∈ Rsr denotes the vector of scaling factors with
bandwidth r for each Ai, and ⊙ denotes Hadamard
product. Like vanilla LoRA, the magnitude of pa-
rameter updates can be represented as R (L⊙ S),
which can be directly added to the original weights
to mitigate the inference latency.

h = W0x+∆Wx

= W0x+R (Lx⊙ S)

= W0x+R (L⊙ S)x.

(6)

As the relatively high-frequency clean mapping
is downscaled by multiple radial scalings in the
frequency space, the inclination towards the low-
frequency-dominated backdoor mapping is miti-
gated. Therefore, with the low-rank adaptation that
reduces the model capacity, the target LM is likely
to prioritize the more general clean mapping on the
poisoned dataset.
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Figure 3: Overview of MuScleLoRA. MuScleLoRA is deployed while training the LM on the attacker-released
poisoned dataset. We first freeze the target LM and insert LoRA modules into each attention layer. Subsequently,
multiple radial scalings are conducted within the LoRA module at the penultimate layer of the target LM to
downscale clean mapping. Additionally, we align gradients to the clean auxiliary data. These strategies encourage
the target LM to prioritize the learning of high-frequency clean mapping, thereby mitigating backdoor learning.

However, with the burgeoning scale of LMs, the
accompanying increase in extra capacity of LMs
poses challenges to effectively mitigate backdoor
learning through straightforward model capacity
reduction with PET methods. Motivated by the
notable phenomenon that the gradient directions
derived from poisoned data and clean data often
conflict with each other (Kurita et al., 2020; Gu
et al., 2023), we assume the defender can access
a small amount of clean auxiliary data, usually
comprising a few dozen instances and readily ob-
tainable through manual labeling. Consequently,
we align the gradient of the target LM with clean
auxiliary data to further mitigate the influence of
the poisoned gradient.

Specifically, when obtaining the original gradi-
ent g from a batch of untrustworthy training data,
we simultaneously calculate the clean gradient gc
from a batch of clean auxiliary data. Subsequently,
we align g to the direction of gc to obtain the
aligned gradient ga, as illustrated in Equation 7:

ga =
|g · gc|
∥gc∥2

gc. (7)

Nonetheless, aligning gradients to a restricted set
of clean auxiliary data, as indicated by Chen et al.
(2020), may lead to suboptimal learning. Therefore,
we incorporate a fraction of the original gradient g
to mitigate suboptimal learning on clean tasks, as
illustrated in Equation 8. Here, the hyperparameter
µ denotes the ratio of the original gradient accepted.

Subsequently, parameter updates are performed
based on the modified gradient ĝ:

ĝ = (1− µ)ga + µg. (8)

Practically, we linearly increase µ from 0 to
the maximum value µmax throughout the training
epochs. Consequently, the target LM primarily
learns from backdoor-mitigated gradients during
the early training phase, where µ approaches 0, and
gradually incorporates more information with in-
creasing µ to alleviate suboptimal learning in the
later stages of training.

5 Experiments

In this section, we extensively evaluate MuScle-
LoRA. We first outline the setup in Section 5.1.
Subsequently, in Section 5.2, we demonstrate that
MuScleLoRA outperforms baselines significantly
in backdoor mitigation across several datasets. Ad-
ditionally, we analyze the contributions of various
strategies employed in MuScleLoRA in Section 5.3,
conduct Fourier analyses to explain the mecha-
nisms of MuScleLoRA in the frequency space in
Section 5.4, and extend MuScleLoRA to large lan-
guage models (LLMs) in Section 5.5.

5.1 Experiment Setup
Datasets. We conduct experiments on three
sentence-level datasets: SST-2 (Socher et al.,
2013), HSOL (Davidson et al., 2017), and Ag-
news (AG) (Zhang et al., 2015), and one paragraph-
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level dataset: Lingspam (LS) (Sakkis et al., 2003).
Dataset statistics are provided in Appendix B.1.
The Target LMs. We choose BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) as the target
LMs with million-level parameters. Additionally,
we select GPT2-XL (1.5B) (Radford et al., 2019)
and Llama27B (Touvron et al., 2023), both with
billion-level parameters, as the target LLMs for
classification tasks.2

Defense Baselines. Following the settings of Zhu
et al. (2022), we choose three PET methods as the
baselines of model capacity reduction: LoRA (Hu
et al., 2022), Adapter (Houlsby et al., 2019), and
Prefix-Tuning (Prefix) (Li and Liang, 2021). Ad-
ditionally, we choose three post-training defense
methods: ONION (Qi et al., 2021a), STRIP (Gao
et al., 2021), and RAP (Yang et al., 2021), and two
training-stage defense methods: BKI (Chen and
Dai, 2021) and CUBE (Cui et al., 2022), as end-
to-end defense baselines. Detailed descriptions of
defense baselines are provided in Appendix B.2.
Attack Methods. We adopt Badnets, which in-
serts specific words as triggers (Kurita et al., 2020),
Addsent, which inserts a specific sentence as trig-
gers (Dai et al., 2019), HiddenKiller, which para-
phrases the original text into specific syntax as trig-
gers (Qi et al., 2021c), and SytleBkd, which para-
phrases the original text into specific text styles as
triggers (Qi et al., 2021b). Notably, we paraphrase
each sentence in the sample paragraph to implant
triggers into the paragraph-level Lingspam dataset.
All target labels are set to 1. Detailed trigger set-
tings are provided in Appendix B.3.
Implementation Details. To obtain clean auxiliary
data, we randomly select a subset from the valida-
tion dataset. Additionally, following the observa-
tion that reducing the training epochs can mitigate
backdoor learning (Zhu et al., 2022), we set train-
ing epochs to 10 for BERT and RoBERTa, and 5 for
LLMs. The default poison ratio is set to 0.1. Hy-
perparameters are unified across diverse attacks
for each specific LM. More detailed hyperparame-
ter settings are provided in Appendix B.4.
Metrics. We adopt clean accuracy (CACC) to eval-
uate the impact of the defense method on the clean
dataset, where higher CACC indicates less negative
impact. Additionally, we adopt attack success rate
(ASR) to evaluate the defense performance on the

2We adopt the HuggingFace Implementation https://
github.com/huggingface/transformers for LLMs, ap-
pending dual-layer linear layers with a hidden size of 16 to
the decoder as the classification layer.

poisoned dataset, where lower ASR signifies better
performance in backdoor mitigation.

5.2 Performance in Backdoor Mitigation
The backdoor mitigation performances of Muscle-
LoRA and PET baselines on BERTBase are pre-
sented in Table 1.

Without any defense, four attack methods con-
sistently achieve high CACC and ASR across sev-
eral datasets, except for Badnets on Lingspam and
Agnews. This discrepancy may be due to the ex-
cessive text length in Lingspam and the multi-class
mapping in Agnews, which potentially hinder the
establishment of backdoor mapping between spe-
cific words and the target label. Besides, StyleBkd
exhibits relatively lower ASR compared to Addsent
and HiddenKiller, likely due to the highly stealthy
nature of the specific text style, making the estab-
lishment of backdoor mapping more challenging.

For PET baselines, the ASR for word-level Bad-
nets drops by more than 30% in some datasets.
However, PET baselines struggle against complex
and stealthy triggers due to the absence of a strong
constraint on clean mapping. Adapter can reduce
ASR for all attack methods to less than 10% on
Lingspam, but at the cost of unacceptable CACC.
Since Lingspam consists of long texts, this phe-
nomenon may be attributed to underfitting resulting
from the limited number of training epochs and the
small bottleneck dimension of PET modules.

Notably, compared to PET baselines, MuScle-
LoRA generally achieves the lowest ASR for
all attack methods while maintaining accept-
able CACCs across four datasets, especially on
Lingspam, where the ASR drops to less than 5%
while consistently preserving CACC above 90%.
These results confirm that MuScleLoRA is highly
effective in defending against complex triggers and
significantly outperforms PET baselines.

We further compare the backdoor mitigation per-
formance of MuScleLoRA with several end-to-end
defense baselines mentioned in Section 5.1. The ex-
perimental results presented in Table 2 indicate that
despite end-to-end baselines notably reducing ASR
for Addsent, they struggle against complex trig-
gers. MuScleLoRA generally achieves the low-
est ASR for various attack methods. However,
for StyleBkd, CUBE reduces the ASR to nearly
20%, whereas MuScleLoRA achieves 33.2%. This
may be also attributed to the stealthy nature of the
specific text style, resulting in a higher frequency
of corresponding backdoor mapping compared to
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Dataset Attack
Vanilla LoRA Adapter Prefix MuscleLoRA

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

SST-2

Badnets 91.27 94.63 89.07 65.57 87.26 55.26 90.17 86.73 86.54 12.94
Addsent 90.99 99.89 88.96 96.16 86.88 87.83 89.46 99.89 86.77 18.97

HiddenKiller 91.10 93.53 88.58 52.96 86.60 45.39 88.52 68.64 87.64 25.11
StyleBkd 91.71 77.19 88.91 57.24 87.10 60.96 90.06 63.60 87.81 33.22

HSOL

Badnets 93.24 98.39 91.99 54.18 85.80 49.60 94.45 73.67 86.00 24.31
Addsent 92.27 100 90.82 93.16 83.62 67.31 93.80 100 85.47 2.74

HiddenKiller 92.13 97.66 89.58 72.22 84.55 49.92 93.80 88.16 86.84 13.45
StyleBkd 94.81 68.92 90.06 49.85 84.71 46.70 93.24 43.72 86.64 10.63

LS

Badnets 99.65 3.31 85.17 0 86.55 2.69 96.03 2.27 91.89 0
Addsent 99.65 86.11 90.34 1.24 85.69 7.45 90.51 4.35 90.68 1.24

HiddenKiller 99.31 98.97 92.93 27.69 83.79 1.05 96.21 86.92 95.52 0.20
StyleBkd 98.96 92.24 95.17 37.10 84.66 2.10 93.79 8.59 93.96 4.28

AG

Badnets 92.80 51.25 89.59 3.28 89.64 2.56 90.85 50.37 87.74 2.35
Addsent 92.75 100 89.05 100 89.21 100 90.58 100 87.72 3.90

HiddenKiller 92.78 99.47 89.01 98.16 88.86 93.75 90.62 98.75 86.05 17.02
StyleBkd 92.06 87.59 88.39 77.76 89.03 50.18 90.00 78.69 87.97 2.67

Table 1: Backdoor mitigation performance of MuScleLoRA and PET baselines when adopting BERTBase as the
target LM on SST-2, HSOL, Lingspam, and Agnews. Vanilla denotes no defense deployment, and bold values
indicate optimal ASRs.

Defense
Addsent HiddenKiller StyleBkd

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓
Vanilla 90.99 99.89 91.10 93.53 91.71 77.19
ONION 87.04 49.78 85.23 96.05 85.45 81.76

BKI 90.72 33.05 88.41 94.85 90.34 82.46
CUBE 87.70 37.94 85.50 45.61 90.83 22.43
STRIP 91.39 28.62 90.39 90.57 89.89 78.62
RAP 91.71 27.19 88.25 89.14 90.17 79.38

MuScleLoRA 86.77 18.97 87.64 25.11 87.81 33.22

Table 2: Backdoor mitigation performance of MuS-
cleLoRA and end-to-end baselines when adopting
BERTBase as the target LM on SST-2. Bold values indi-
cate optimal ASRs.

other attack methods. The increased frequency may
enable radial scalings to downscale the backdoor
mapping, thus facilitating its learning to obtain a
relatively higher ASR. Nonetheless, MuScleLoRA
achieves an acceptable ASR without requiring the
high-computational retraining of CUBE.

Additionally, we conduct experiments to inves-
tigate the impact of the poison ratio on backdoor
mitigation performance. As shown in Figure 4, the
ASR gradually rises as the poison ratio increases,
yet it remains within an acceptable range for all
attacks. Meanwhile, the CACC fluctuates within a
small range with the increasing poison ratio. These
results indicate that MuScleLoRA can maintain
satisfactory backdoor mitigation performance
under varying poison ratios.
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Figure 4: CACC and ASR of MuScleLoRA when adopt-
ing BERTBase as the target LM on poisoned SST-2 under
diverse poison ratios.

More results and analysis of backdoor mitiga-
tion performance on BERTLarge and RoBERTa are
provided in Appendix C.1, where MuScleLoRA
consistently achieves the optimal ASRs, surpassing
other baselines significantly.

5.3 Ablation Study
We examine the contributions of three strategies
in MuScleLoRA to the results, i.e., multiple ra-
dial scalings (MS), low-rank adaptation (LR), and
gradient alignment (GA). The ablation results on
BERTBase shown in Table 3 indicate that when only
deploying low-rank adaptation, i.e., the LoRA base-
line, the ASR drops nearly 20% on SST-2 but nearly
remains unchanged on Agnews. Similarly, utiliz-
ing solely gradient alignment yields nearly minimal
changes in ASR across both datasets. This suggests
that aligning the gradient to clean auxiliary data,
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Dataset Method
Strategies Badnets Addsent HiddenKiller StyleBkd

MS LR GA CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

SST-2

Vanilla × × × 91.27 94.63 90.99 99.89 91.10 93.53 91.71 77.19
MuscleLoRA ✓ ✓ ✓ 86.54 12.94 86.77 18.97 87.64 25.11 87.81 33.22
w/o MS, GA × ✓ × 89.07 65.57 88.96 96.16 88.58 52.96 88.91 57.24
w/o MS, LR × × ✓ 91.37 90.13 90.06 100 90.39 86.40 91.21 70.61

w/o GA ✓ ✓ × 87.64 42.76 87.75 75.22 86.88 37.39 87.26 54.17
w/o MS × ✓ ✓ 83.20 24.89 82.81 20.06 81.77 38.92 80.62 45.83

AG

Vanilla × × × 92.80 51.25 92.75 100 92.78 99.47 92.06 87.59
MuscleLoRA ✓ ✓ ✓ 87.74 2.35 87.72 3.90 86.05 17.02 87.97 2.67
w/o MS, GA × ✓ × 89.59 3.28 89.05 100 89.01 98.16 88.39 77.76
w/o MS, LR × × ✓ 92.24 63.13 92.65 100 93.10 99.98 93.01 92.19

w/o GA ✓ ✓ × 89.92 2.63 89.55 99.94 89.55 97.54 89.13 71.78
w/o MS × ✓ ✓ 84.32 2.39 84.85 4.07 84.26 8.18 86.38 2.79

Table 3: The results of ablation experiments when adopting BERTBase as the target LM on SST-2 and Agnews. Bold
values indicate optimal ASRs and underlined values indicate suboptimal ASRs.
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Figure 5: Relative errors of MuScleLoRA and its ablation methods when adopting BERTBase as the target LM on
Badnets poisoned SST-2 during training.

without additional defense strategies, fails to miti-
gate the impact of the poisoned gradient.

Compared to employing a single strategy, in-
tegrating multiple radial scalings with low-rank
adaptation results in a lower ASR than the LoRA
baseline, potentially achieving suboptimal ASR.
Additionally, utilizing gradient alignment to low-
rank adaptation can reduce ASR for several attacks
to suboptimal levels, while achieving the optimal
ASR on AGnews. Yet, without multiple radial
scalings to enhance learning by downscaling
clean mapping, CACC drops to an unacceptable
level in this scenario. Consequently, MuScleLoRA
combines three strategies, generally achieving the
lowest ASR while maintaining acceptable CACC.

More ablation results on other LMs are provided
in Appendix C.2, demonstrating that combining
three strategies can achieve optimal performance.

5.4 Fourier Analyses
To explain the mechanisms of MuScleLoRA in the
frequency space, Fourier analyses are conducted on
MuScleLoRA and its ablation methods. The results
on BERTBase are shown in Figure 5. More results
on other LMs are provided in Appendix C.3.

Compared to no defense deployment shown in
Figure 2a, MuScleLoRA and its ablation meth-

ods impede the convergence of low-frequency-
dominated backdoor mapping. However, as shown
in Figure 5b, despite multiple radial scalings ex-
pediting the convergence of clean mapping and
further hindering the learning process of backdoor
mapping compared to LoRA baseline, backdoor
mapping still exhibits partial convergence. These
phenomena indicate that straightforward model
capacity reduction with PET methods fails to
effectively defend against complex triggers. Con-
versely, as shown in Figure 5c, when aligning gradi-
ents to clean auxiliary data in the absence of radial
scalings, the convergence of backdoor mapping is
effectively hindered, but at the expense of under-
fitting clean mapping. Therefore, as shown in Fig-
ure 5d, MuScleLoRA integrates multiple scalings
to enhance the learning of clean mapping, facilitat-
ing the balance between backdoor mitigation and
satisfactory performance in downstream tasks.

5.5 Performance on LLMs
Since PET emerges as a novel fine-tuning paradigm
for LLMs, we extend MuScleLoRA to GPT2-XL
and Llama27B for classification tasks, which fo-
cuses specifically on the vertical sentiment analysis
task on SST-2. Training-stage end-to-end base-
lines, such as CUBE, BKI, and RAP, require high-
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Model Defense
Badnets Addsent HiddenKiller StyleBkd

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

GPT2-XL

Vanilla 94.45 81.91 94.45 100 93.57 93.42 94.23 99.67
LoRA 90.28 66.56 86.33 96.82 85.01 66.02 89.62 88.82
Prefix 84.24 83.33 83.36 74.78 82.10 65.13 84.90 96.16

ONION 88.80 42.21 89.07 85.42 83.53 92.00 85.67 99.56
STRIP 93.90 49.12 92.81 96.71 91.54 92.10 92.59 97.37

MuscleLoRA 90.94 17.98 91.10 9.32 90.17 18.42 90.94 34.10

Llama27B

Vanilla 95.39 98.13 94.72 100 96.05 96.05 96.43 98.58
LoRA 96.21 16.56 59.39 93.53 94.45 78.07 95.61 93.86
Prefix 93.79 48.58 92.52 56.91 92.42 60.20 93.52 96.05

ONION 90.66 40.78 91.65 85.74 86.27 96.05 88.91 97.80
STRIP 95.99 57.24 95.66 97.48 91.71 94.29 95.44 95.18

MuscleLoRA 94.62 10.64 94.07 13.92 94.62 26.86 94.73 39.03

Table 4: Backdoor mitigation performance of MuScleLoRA, PET baselines, and post-training end-to-end baselines
when adopting GPT2-XL and Llama27B on SST-2. Bold values indicate optimal ASRs.

computational retraining, rendering such strategies
impractical for the backdoor defense of LLMs.
Therefore, we only compare the backdoor mitiga-
tion performance of MuScleLoRA, PET baselines,
and post-training end-to-end baselines on GPT2-
XL and Llama27B, as presented in Table 4.

As model capacity increases, StyleBkd achieves
comparable ASRs to other attack methods, bridg-
ing the performance gap presented in Table 3. Be-
sides, due to the significant capacity increase of
LLMs, PET baselines and end-to-end baselines
struggle to effectively counter four attack meth-
ods. Notably, MuScleLoRA consistently achieves
the lowest ASR for all attacks. Although MuScle-
LoRA reduces the ASR against StyleBkd to 34.10%
for GPT2-XL and to 39.03% for Llama27B, which
may be attributed to the higher frequency lead-
ing by stealthy nature of StyleBkd mentioned in
Section 5.2, it still significantly outperforms other
baselines. Additionally, given the extensive model
capacity of Llama27B, the decrease in CACC at-
tributed to low-rank adaptation and gradient align-
ment can be deemed negligible. These findings
indicate the potential for deploying MuScleLoRA
in instruction-based fine-tuning of LLMs (Zhang
et al., 2023a).

5.6 More Comprehensive Analysis

We are interested in analyzing the impact of dif-
ferent hyperparameters of MuScleLoRA and the
influence of out-of-distribution (OOD) data as the
clean auxiliary data. Experimental results indicate
that MuScleLoRA is relatively insensitive to some

hyperparameters. Additionally, OOD data have a
subtle impact on the performance of MuScleLoRA.
Due to the page limit, we present the detailed anal-
ysis in Appendix C.4 and Appendix C.5.

6 Conclusions

In this paper, we conduct Fourier analyses to inves-
tigate the mechanisms of backdoor learning, reveal-
ing a notable inclination towards lower frequencies
in backdoor mapping compared to clean mapping.
Inspired by this observation, we proposed MuS-
cleLoRA, a general backdoor defense method. By
downscaling in the frequency space, MuScleLoRA
encourages LMs to prioritize the learning of rela-
tively high-frequency clean mapping, consequently
mitigating the learning backdoor mapping. Experi-
mental results show the efficacy of MuScleLoRA
in defending against diverse backdoor attacks. No-
tably, MuScleLoRA exhibits generality across var-
ious backbone LMs, including BERT, RoBERTa,
GPT2-XL, and Llama2.

Limitations

Our approach has limitations in two main aspects.
First, our method only focuses on the scenario
where the defender trains the target LM on the
attacker-released poisoned dataset. Other scenar-
ios, such as fine-tuning the poisoned LM on the
clean dataset or, more rigorously, fine-tuning the
poisoned LM on the poisoned dataset, need fur-
ther exploration. Second, the scaling factor vector
S is relative to the model structure and capacity,
requiring pre-training to determine the suitable S.
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A Filtering-based Fourier
Transformation

In this section, we provide the detailed processes
of filtering-based Fourier transformation used to
extract the low-frequency and high-frequency parts
of the target-LM-fitted and ground-truth mappings.

We denote the training dataset of the target
LM as {xi, ti}Ni=1 = (X,T ), where xi =
{x1i , · · · , xLi }, L, ti ∈ RC , X = {x1; · · · ;xN} ∈
RN×L, and T = {t1; · · · ; tN} ∈ RN×C denote
the input ids of the input text with length L, the
ground-truth one-hot label, the input matrix, and
the label matrix, respectively. Notably, LMs often
convert discrete input ids into continuous embed-
dings, i.e., e = E(x), e ∈ RL×d, where E denotes
the embedding layer of the target LM and d de-
notes the embedding dimension. Besides, embed-
ding updates during training typically exhibit small
magnitudes. For simplicity, we assume that the
embedding of each input id remains unchanged
throughout training. Consequently, the mapping
fitted by the target LM can be illustrated as Equa-
tion 9, where y ∈ RC , Y = {y1; · · · ; yN} ∈
RN×C , and E = {e1; · · · ; eN} ∈ RN×L×d de-
note the output logits, the matrix of output logits,
and the tensor of input embeddings, respectively.

F : RL×d → RC ,

F(e) = y,

F(E) = Y.

(9)

Similarly, the ground-truth mapping utilizing the
same embedding layer is illustrated as Equation 10.

T : RL×d → RC ,

T (e) = t,

T (E) = T.

(10)

Practically, when C > 1, F represents the high-
dimensional mapping. In such scenarios, employ-
ing the high-dimensional discrete Fourier trans-
formation incurs significant computational over-
head, posing challenges for real dataset analysis.
Therefore, we opt for a pragmatic approach by par-
titioning the frequency space into two segments,
i.e., the low-frequency part with |ξ| ≤ ξ0 and the
high-frequency part with |ξ| > ξ0, to decompose

the mapping into the low-frequency part and high-
frequency part, respectively. Specifically, we de-
note the Fourier transformation of F as F̂ and then
decompose F̂ by the indicator I(|ξ| ≤ ξ0) that
indicate the low-frequency part in the frequency
space, which is illustrated as Equation 11.

F̂ low = F̂ · I(|ξ| ≤ ξ0),

F̂high = F̂ − F̂ low.
(11)

To further alleviate the computational cost of the
high-dimensional indicator, we alternatively apply
Gaussian filter Ĝ

1
δ (ξ) to approximate the indica-

tor I(|ξ| ≤ ξ0), i.e., F̂ low ≈ F̂ · Ĝ 1
δ , where 1

δ
denotes the variance of the Gaussian filter in the
frequency space. Consequently, in the correspond-
ing physical space, the low-frequency part ylow,δ

i

and high-frequency part yhigh,δ
i of the output log-

its yi for the entire dataset are obtained through
Gaussian convolution, as illustrated in Equation 12.

Here, Gδ(e′i − e′j) = e
−∥e′i−e′j∥

2

2δ denotes the corre-
sponding Gaussian filter in the physical space with
variance δ, e′i ∈ RLd denotes the flattened vector of
the embedding ei, Ci =

∑N
j=1G

δ(e′i−e′j) denotes
the normalization factor, and G ∈ RN×N , Gij =
Gδ(e′i − e′j) denotes the matrix of Gaussian filters,
respectively. Practically, we set δ to 4.0 to obtain
frequency components.

ylow,δ
i =

1

Ci

N∑

j=1

yjG
δ(e′i − e′j)

=
1

Ci
(GY )i,

y
high,δ
i = yi − ylow,δ

i

=

(
Y − 1

Ci
(GY )

)

i

.

(12)

Same as the analysis of output logits, for ground-
truth labels, we can derive their respective fre-
quency components, i.e., tlow,δ

i and t
high,δ
i , by Gaus-

sian convolution, as illustrated in Equation 13.

tlow,δ
i =

1

Ci

N∑

j=1

tjG
δ(e′i − e′j)

=
1

Ci
(GT )i,

t
high,δ
i = ti − tlow,δ

i

=

(
T − 1

Ci
(GT )

)

i

.

(13)
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Dataset Categories
Number of Samples Average

LengthTrain Test Validation

SST-2 2 6,920 1,821 872 19.2
HSOL 2 5,823 2,485 2,485 13.2

Lingspam 2 2,604 582 289 695.3
Agnews 4 108,000 7,600 12,000 38.0

Table 5: Detailed statistics of datasets.

B Detailed Experiment Setup

In this section, we provide additional setup infor-
mation for experiments. In Section B.1, we provide
the detailed statistics of datasets. Subsequently, in
Section B.2, we provide comprehensive descrip-
tions of defense baselines. Additionally, we outline
detailed trigger settings in Section B.3. Besides,
Section B.4 elaborates on hyperparameter settings.
Furthermore, Section B.5 provides the usage of
existing artifacts.

B.1 Datasets

The statistics of datasets are presented in Table 5.
Considering the excessive number of samples in
Agnews, which could potentially prolong the train-
ing process, we decided to randomly extract
5,000 samples from each class in the original
training dataset. Consequently, a new training
dataset comprising 20,000 samples is synthesized.

B.2 Defense Baselines

PET baselines. PET baselines reduce model
capacity by freezing the original weights of the LM
and inserting tunable PET modules with a small
number of parameters, constraining the model to
focus on clean tasks (Zhu et al., 2022). LoRA (Hu
et al., 2022) inserts parallel low-rank decompo-
sitions as the tunable module. Adapter (Houlsby
et al., 2019) inserts a sequential linear layer
as the tunable module. Prefix-Tuning (Li and
Liang, 2021) inserts a sequence of continuous
task-specific vectors as the tunable module.

ONION. Based on the observation that inserting
trigger words into original text results in a notable
increase in perplexity, ONION (Qi et al., 2021a)
utilizes GPT-2 to quantify the contribution of each
word in the original text to the perplexity and detect
high-contributing words as the trigger words.

STRIP. Based on the observation that clean text
is more sensitive to perturbations than poisoned
text, STRIP (Gao et al., 2021) employs random

word replacement to perturb input text, subse-
quently identifying poisoned text by analyzing dis-
crepancy in the entropy of output logits.

RAP. Similar to STRIP, RAP (Yang et al., 2021)
discerns poisoned input texts based on their sensi-
tivity to perturbations. RAP reconfigures the em-
bedding layer to incorporate a robust-aware per-
turbation to be introduced into input texts, which
significantly alters the logits of clean texts while
minimally affecting poisoned samples.

BKI. Similar to ONION, BKI (Chen and Dai,
2021) quantifies the contribution of each word in
the original text of the training dataset to the out-
put logits to detect high-contributing words as the
trigger words.

CUBE. Based on the observation that poisoned
samples frequently manifest as outliers in the fea-
ture space, CUBE (Cui et al., 2022) clusters sam-
ples in the training dataset to identify outliers as
the poisoned samples.

B.3 Trigger Settings

For Badnets, following the settings of Kurita et al.
(2020), we insert 4 rare words, i.e., cf, mn, bb,
and tq, into random positions within the original
text. For Addsent, following the settings of Dai
et al. (2019), we insert a predefined sentence, i.e., I
watch this 3D movie, into a random position within
the original text. For HiddenKiller, following the
settings of Qi et al. (2021c), we adopt ( ROOT ( S
( SBAR ) ( , ) ( NP ) ( VP ) ( . ) ) ) EOP as the
trigger syntax. We then paraphrase the entire orig-
inal text into trigger syntax for the sentence-level
datasets: SST-2, HSOL, and Agnews. Addition-
ally, for the paragraph-level dataset Lingspam, each
sentence in the original text is paraphrased into trig-
ger syntax. For StyleBkd, following the settings
of Qi et al. (2021b), we choose bible text style
as the trigger style. Similar to HiddenKiller, we
paraphrase the entire original text into trigger style
for the sentence-level datasets: SST-2, HSOL, and
Agnews, while every sentence in the original text
is paraphrased into trigger style for the paragraph-
level dataset Lingspam.

B.4 Hyperparameters

Notably, compared to the meticulous hyperparame-
ter design by Zhu et al. (2022) tailored for different
attacks, we unify hyperparameters against di-
verse attacks for each specific LM. Specifically,
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Model S

BERTBase [1, 4, 8, 12, 16, 20, 24, 28]
BERTLarge [1, 2, 3, 4, 5, 6, 7, 8, 9]

RoBERTaBase [1, 2, 4, 6, 8, 10, 12, 14, 16]
RoBERTaLarge [1, 2, 3, 4, 5, 6, 7, 8, 9]

Llama27B [1, 2, 3, 4]

Table 6: Detailed settings of scaling factor vector S.

following the observation that reducing the train-
ing epochs can mitigate backdoor learning (Zhu
et al., 2022), we set training epochs to 10 for BERT
and RoBERTa, and 5 for LLMs. Similarly, we set
learning rate to 2× 10−5 for BERT and RoBERTa,
and 10−5 for LLMs. Additionally, considering the
extensive model capability of LLMs, the number of
clean auxiliary data for LLMs is set to 128 whereas
it is set to 96 for BERT and RoBERTa. Further-
more, µmax is configured to 0 for LLMs and 0.1
for BERT and RoBERTa. The batch size is defined
as 16 for LLMs and 32 for BERT and RoBERTa.
For PET baselines, the bottleneck dimensions are
uniformly set to 8 for BERT and RoBERTa and 2
for LLMs. Finally, detailed settings of the scaling
factor vector S are presented in Table 6, and the
bandwidth r of each Ai in radial scalings is spec-
ified as only 1. All experiments are conducted on
NVIDIA GeForce RTX 3090 with 24GB memory.

B.5 Usage of Existing Artifacts
For conducting backdoor attacks and end-to-end
defense baselines, we employ OpenBackdoor (Cui
et al., 2022), an open-source framework for textual
backdoor learning. The detailed process of MuS-
cleLoRA is implemented within the framework
of PyTorch (Paszke et al., 2019), an open-source
library for deploying deep learning. For imple-
menting PET algorithms, we utilize Huggingface-
PEFT (Mangrulkar et al., 2022), an open-source
library for HuggingFace-transformers-based PET
methods of LMs, and Opendelta (Hu et al., 2023),
another open-source library dedicated to PET meth-
ods of LMs. For LMs, we adopt BERT, RoBERTa,
and Llama27B from Huggingface transformers3.
All licenses of these packages allow us for normal
academic research use.

C Additional Experimental Results and
Analyses

In this section, we provide additional experimen-
tal results and analyses. Section C.1 provides the

3https://github.com/huggingface/transformers

backdoor mitigation performance on BERTLarge,
RoBERTaBase, and RoBERTaLarge. Subsequently,
we conduct the ablation studies on the three strate-
gies in MuScleLoRA when adopting BERTLarge,
RoBERTaBase, or RoBERTaLarge as the target LM
in Section C.2, conduct Fourier analyses on
BERTLarge and Llama27B to explain the mecha-
nisms of MuScleLoRA in Section C.3, analyze the
sensitivity on hyperparameters in Section C.4, and
analyze the impact of out-of-distribution (OOD)
data in gradient alignment in Section C.5.

C.1 Performance of Backdoor Mitigation
We further evaluate the backdoor mitigation
performance on BERTLarge, RoBERTaBase, and
RoBERTaLarge. As presented in Table 7, similar to
the results presented in Table 1, although PET base-
lines manage to reduce the ASR for Badnets to a
relatively low level, they still encounter challenges
in effectively defending against other complex trig-
gers. Conversely, MuScleLoRA consistently re-
duces the ASR to the lowest level, surpassing
the performance of the three PET baselines sig-
nificantly. Moreover, in comparison to the about
4-5% decrease in CACC when implementing MuS-
cleLoRA on BERTBase, the decrease in CACC for
BERTLarge and RoBERTaLarge is negligible. This
suggests that a larger model capacity can allevi-
ate the reduction in CACC while preserving low
ASR when deploying MuScleLoRA.

Also, we evaluate the backdoor mitigation per-
formance of MuScleLoRA with end-to-end defense
baselines on BERTLarge. As presented in Table 9,
MuScleLoRA achieves the optimal ASRs, sur-
passing all end-to-end baselines.

Furthermore, experiments are performed to ex-
plore the impact of poison ratio on ASR and CACC
when adopting BERTLarge as the target LM. As
shown in Figure 6, as the poison ratio increases,
CACC exhibits a slight decrease, while ASR fluc-
tuates within an acceptable range.

C.2 Ablation Study
Additionally, we examine the contribution of three
strategies in MuScleLoRA to the performance on
SST-2 when adopting BERTLarge, RoBERTaBase, or
RoBERTaLarge as the target LM, respectively. The
results of the ablation analyses are presented in Ta-
ble 8. Similar to the ablation of BERTBase, solely
employing low-rank adaptation or gradient align-
ment encounters challenges in effectively defend-
ing against diverse backdoor attacks. Moreover,
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Dataset Model Defense Badnets Addsent HiddenKiller StyleBkd
CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

SST-2

BERTLarge

Vanilla 92.91 93.64 92.97 100 92.64 90.24 93.30 78.51
LoRA 91.98 31.14 91.27 84.87 91.54 42.21 90.50 66.67

Adapter 89.73 40.57 88.85 70.17 89.51 42.98 89.07 64.14
Prefix 92.42 37.06 92.04 99.56 92.59 67.98 91.93 57.90

MuscleLoRA 91.21 14.80 90.71 27.30 90.99 17.54 89.62 21.16

RoBERTaBase

Vanilla 94.39 95.61 94.17 99.89 93.13 93.86 94.67 99.34
LoRA 92.09 26.54 91.87 63.05 90.99 38.60 91.54 67.33

Adapter 91.43 57.46 88.69 62.39 91.49 33.77 90.45 69.96
Prefix 91.98 85.19 91.98 100 90.94 62.94 92.36 94.96

MuscleLoRA 88.08 13.26 88.91 21.16 89.07 20.28 88.41 20.61

RoBERTaLarge

Vanilla 94.29 100 95.44 100 93.52 90.24 94.45 99.12
LoRA 95.55 11.73 94.95 92.21 95.94 57.24 95.39 73.03

Adapter 70.01 99.78 58.81 35.52 58.10 52.19 62.55 96.05
Prefix 94.89 76.54 94.56 78.73 93.96 62.50 94.62 89.14

MuscleLoRA 93.30 5.81 93.19 14.47 92.59 10.96 92.48 12.39

AG

BERTLarge

Vanilla 93.71 63.86 93.56 100 93.53 99.32 93.18 88.21
LoRA 90.67 1.68 90.55 99.81 90.32 97.21 90.21 82.99

Adapter 90.16 3.68 89.45 66.53 89.74 91.00 88.97 36.72
Prefix 92.39 54.81 92.54 100 91.75 99.10 91.76 82.99

MuscleLoRA 89.58 1.67 89.10 1.70 87.33 28.04 88.97 12.15

RoBERTaBase

Vanilla 93.29 86.19 93.68 100 93.32 99.98 93.56 91.56
LoRA 90.54 1.86 90.22 99.96 90.53 99.93 89.93 81.28

Adapter 90.60 3.40 89.85 99.98 90.39 99.70 88.96 78.77
Prefix 91.05 39.51 91.12 99.95 90.87 99.96 90.33 84.63

MuscleLoRA 86.89 1.42 86.30 1.35 87.01 19.46 86.78 5.70

RoBERTaLarge

Vanilla 93.79 96.42 93.14 100 93.66 100 93.59 94.40
LoRA 92.14 2.21 92.24 99.96 91.96 99.90 91.63 88.44

Adapter 91.10 2.39 91.10 99.95 90.83 99.23 90.75 72.75
Prefix 92.34 18.60 92.18 99.96 92.21 99.98 91.82 91.12

MuscleLoRA 90.21 1.85 90.10 4.26 89.64 7.34 90.05 2.30

Table 7: Backdoor mitigation performance of MuScleLoRA and PET baselines when adopting BERTLarge,
RoBERTaBase, or RoBERTaLarge as the target LM on SST-2 and Agnews. Bold values indicate optimal ASRs.

Model Method
Strategies Badnets Addsent HiddenKiller StyleBkd

MS LR GA CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

BERTLarge

Vanilla × × × 92.91 93.64 92.97 100 92.64 90.24 93.30 78.51
MuscleLoRA ✓ ✓ ✓ 91.21 14.80 90.72 27.30 90.99 17.54 89.62 21.16
w/o MS, GA × ✓ × 91.98 31.14 91.27 84.87 91.54 42.21 90.50 66.67
w/o MS, LR × × ✓ 93.68 89.91 92.53 100 91.98 86.62 92.58 74.67

w/o GA ✓ ✓ × 91.54 29.71 90.28 75.22 90.94 44.71 89.62 54.47
w/o MS × ✓ ✓ 86.54 29.82 86.16 36.84 87.37 27.85 85.94 28.29

RoBERTaBase

Vanilla × × × 94.39 95.61 94.17 99.89 93.13 93.86 94.67 99.34
MuscleLoRA ✓ ✓ ✓ 88.08 13.26 88.91 21.16 89.07 20.28 88.41 20.61
w/o MS, GA × ✓ × 92.09 26.54 91.87 63.05 90.99 38.60 91.54 67.33
w/o MS, LR × × ✓ 92.86 94.30 93.46 100 90.06 87.61 94.12 96.71

w/o GA ✓ ✓ × 93.30 24.45 92.53 65.57 92.31 48.68 92.81 40.46
w/o MS × ✓ ✓ 80.72 25.22 80.45 22.92 82.87 22.81 84.57 23.13

RoBERTaLarge

Vanilla × × × 94.29 100 95.44 100 93.52 90.24 94.45 99.12
MuscleLoRA ✓ ✓ ✓ 93.30 5.81 93.19 14.47 92.59 10.96 92.48 12.39
w/o MS, GA × ✓ × 95.55 11.73 94.95 92.21 95.94 57.24 95.39 73.03
w/o MS, LR × × ✓ 94.95 67.21 95.44 100 95.28 90.24 95.39 92.21

w/o GA ✓ ✓ × 94.84 13.05 94.40 70.83 95.28 44.74 95.72 71.49
w/o MS × ✓ ✓ 89.79 10.31 90.39 18.75 91.05 16.45 91.43 16.67

Table 8: The results of ablation experiments on SST-2 when adopting BERTLarge, RoBERTaBase, or RoBERTaLarge
as the respective target LM. Bold values indicate optimal ASRs and underlined values indicate suboptimal ASRs.
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Defense
Addsent HiddenKiller StyleBkd

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓
Vanilla 92.97 100 92.64 90.24 93.30 78.51
ONION 88.14 93.09 86.27 96.16 87.48 79.56

BKI 92.20 100 91.16 92.65 92.31 81.58
CUBE 93.24 100 92.53 21.93 91.65 31.47
STRIP 72.43 60.64 92.09 91.67 89.17 75.76
RAP 92.04 100 90.94 92.98 87.66 69.08

MuScleLoRA 90.71 27.30 90.99 17.54 89.62 21.16

Table 9: Backdoor mitigation performance of MuS-
cleLoRA and end-to-end baselines when adopting
BERTLarge as the target LM on SST-2. Bold values
indicate optimal ASRs.
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Figure 6: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse poison ratios.

the absence of radial scalings leads to a significant
drop in CACC. Optimal performance is achieved
only when all three strategies are combined.

C.3 Fourier analyses

We further conduct Fourier analyses on MuScle-
LoRA and its ablation methods on BERTLarge and
Llama27B. The results are shown in Figure 11,
Figure 12, and Figure 13, respectively. Compared
to the relatively underfitting of BERTBase, larger-
scale BERTLarge and Llama27B obtain better con-
vergence in clean mapping. Furthermore, given
that deeper models tend to exhibit stronger low-
frequency bias (Xu and Zhou, 2021), Llama27B ex-
hibits rapid convergence in the low-frequency part.

Moreover, as shown in Figure 11b, Figure 11d,
Figure 12b, Figure 12d, Figure 13b, and Figure 13d,
multiple radial scalings expedite the convergence of
clean mapping significantly. Besides, as shown in
Figure 12b and Figure 13b, only adopting multiple
radial scalings with low-rank adaptation hinders
the early-stage convergence of backdoor mapping.

However, due to the excessive model capacity
of Llama27B, the backdoor mapping demonstrates
rapid convergence in the later stages of training.
This observation suggests that straightforward

Notation S

S1 [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]
S2 [1, 2, 3, 4, 5, 6, 7, 8, 9]
S3 [1, 2, 4, 6, 8, 10, 12, 14, 16]
S4 [1, 4, 8, 12, 16, 20, 24, 28, 32]

Table 10: Detailed notation for scaling factor vector S
when adopting BERTLarge as the target LM.
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Figure 7: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse amounts of clean auxiliary samples.
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Figure 8: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse learning rates.
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Figure 9: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse µmax.
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Model Distribution Badnets Addsent HiddenKiller StyleBkd
CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

BERTBase
ID 86.54 12.94 86.77 18.97 87.64 25.11 87.81 33.22

OOD 86.22 14.81 86.38 20.61 86.88 27.19 87.04 34.43

RoBERTaBase
ID 89.02 13.16 88.91 21.16 89.07 20.28 88.41 20.61

OOD 89.24 18.75 88.14 17.87 90.95 26.54 89.40 24.12

BERTLarge
ID 91.21 14.80 90.71 27.30 90.99 17.54 89.62 21.16

OOD 91.05 19.08 90.66 20.72 90.77 30.15 90.39 33.88

Table 11: The impact of adopting ID data and OOD data as the clean subset in gradient alignment on SST-2 when
adopting BERTBase, RoBERTaBase, or BERTLarge as the respective target LM. Bold values indicate optimal ASRs.
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Figure 10: CACC and ASR of MuScleLoRA when
adopting BERTLarge as the target LM on poisoned SST-
2 dataset under diverse vectors of radial scaling factors.

model capacity reduction with PET methods is
ineffective in defending against complex trig-
gers, particularly on LLMs.

C.4 Hyperparameter Sensitivity Analyses

We conduct experiments to investigate the impact
of different hyperparameters of MuScleLoRA on
BERTLarge, including the number of clean auxil-
iary samples, learning rate, µmax, and the vector
of radial scaling factors. The results are shown in
Figure 7, Figure 8, Figure 9, and Figure 10, respec-
tively. Detailed notation for the vector of radial
scaling factors is presented in Table 10.

Figure 7 illustrates that increasing the number
of clean auxiliary samples yields higher CACC
and lower ASR. Figure 8 demonstrates that a small
learning rate induces underfitting in clean tasks,
whereas a large one results in high ASR. Moderate
learning rates enable a tradeoff between CACC and
ASR.Figure 9 reveals that a small µmax, indicating
a lower proportion of the original gradient accepted,
results in underfitting in clean tasks, while a large
µmax can lead to low defense performance. Fig-
ure 10 illustrates that altering the vector of radial
scaling factors causes fluctuations in both CACC
and ASR. Therefore, selecting the appropriate vec-

tor of radial scaling factors is essential to achieve
optimal backdoor mitigation performance.

C.5 Impact of OOD Data
We obtain the clean auxiliary data by randomly se-
lecting a subset from the validation dataset, which
is in-distribution (ID) data. To explore the gener-
ality of MuScleLoRA, we replace the clean subset
with OOD data. Specifically, we choose SST-2 as
the target dataset and randomly select data from
the IMDB (Maas et al., 2011) dataset, a paragraph-
level dataset focusing on a similar sentiment anal-
ysis task, as the OOD clean auxiliary data. The
impact of adopting ID and OOD data as the clean
subset in the gradient alignment of MuScleLoRA
is presented in Table 11.

Notably, when adopting OOD data as the clean
subset, MuscleLoRA achieves comparable CACC
and acceptable ASR compared to ID data. Be-
sides, MuScleLoRA even achieves lower ASRs
against Addsent when adopting RoBERTaBase and
BERTLarge as the target LM. This phenomenon in-
dicates that ID and OOD have little impact on de-
fense performance, demonstrating the generality of
MuScleLoRA.
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Figure 11: Relative errors of MuScleLoRA and its ablation methods when adopting BERTLarge as the target LM on
Badnets poisoned SST-2 during training.
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Figure 12: Relative errors of MuScleLoRA and its ablation methods when adopting Llama27B as the target LM on
Addsent poisoned SST-2 during training.
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Figure 13: Relative errors of MuScleLoRA and its ablation methods when adopting Llama27B as the target LM on
HiddenKiller poisoned SST-2 during training.
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