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Abstract

Many users consult digital archives daily, but
the information they can access is unrepre-
sentative of the diversity of documentary his-
tory. The sequence-to-sequence architecture
typically used for optical character recogni-
tion (OCR) – which jointly learns a vision and
language model – is poorly extensible to low-
resource document collections, as learning a
language-vision model requires extensive la-
beled sequences and compute. This study mod-
els OCR as a character level image retrieval
problem, using a contrastively trained vision
encoder. Because the model only learns charac-
ters’ visual features, it is more sample efficient
and extensible than existing architectures, en-
abling accurate OCR in settings where existing
solutions fail. Crucially, it opens new avenues
for community engagement in making digital
history more representative of documentary his-
tory.

1 Introduction

Digital texts are central to the study, dissemination,
and preservation of human knowledge. Tens of
thousands of users consult digital archives daily in
Europe alone (Chiron et al., 2017), yet billions of
documents remain trapped in hard copy in libraries
and archives around the world. These documents
contain extremely diverse character sets, languages,
fonts or handwriting, printing technologies, and ar-
tifacts from scanning and aging. Converting them
into machine-readable data that can power index-
ing and search, computational textual analyses, and
statistical analyses - and be more easily consumed
by the public - requires highly extensible, accu-
rate, efficient tools for optical character recognition
(OCR).

Current predominant OCR technology – devel-
oped largely for small-scale commercial applica-
tions in high resource languages – falls short of
these requirements. OCR is typically modeled as

a sequence-to-sequence (seq2seq) problem, with
learned embeddings from a neural vision model
taken as inputs to a learned neural language model.
The seq2seq architecture is challenging to extend
and customize to novel, lower resource settings
(Hedderich et al., 2021), because training a vision-
language model requires a vast collection of labeled
image-text pairs and significant compute. This
study shows that on printed Japanese documents
from the 1950s, the best performing existing OCR
mis-predicts over half of characters. Poor perfor-
mance is widespread, spurring a large post-OCR
error correction literature (Lyu et al., 2021; Nguyen
et al., 2021; van Strien. et al., 2020) and skewing
digital history towards limited settings that are not
representative of the diversity of documentary his-
tory.

This study develops a novel, open source OCR
architecture, EffOCR (EfficientOCR), designed
for researchers and archives seeking a sample-
efficient, customizable, scalable OCR solution for
diverse documents. EffOCR combines the sim-
plicity of early OCR systems, such as Tauschek’s
1920s reading machine, with deep learning, bring-
ing OCR back to its roots: the optical recogni-
tion of characters. Deep learning-based object
detection methods are used to localize individ-
ual characters or words in the document image.
Character (word) recognition is modeled as an im-
age retrieval problem, using a vision encoder con-
trastively trained on character (word) crops.

EffOCR performs accurately, even when using
lightweight models designed for mobile phones
that are cheap to train and deploy. Using docu-
ments that are fundamental to studying Japan’s
remarkable 20th century economic growth, the
study shows EffOCR can provide a sample effi-
cient, highly accurate OCR architecture for con-
texts where all current solutions fail. EffOCR’s
blend of accuracy and efficient runtime also makes
it attractive for digitizing massive-scale collections
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Figure 1: EffOCR and Seq2Seq Model Architectures. This figure represents the EffOCR architecture, as compared
to a typical sequence-to-sequence OCR architecture.

in high resource languages, which the study il-
lustrates with Library of Congress’s collection of
historical U.S. newspapers (Library of Congress,
2022). EffOCR has been used to cheaply and ac-
curately digitize the over 20 million page scans in
this collection (Dell et al., 2023).

In principle, contextual understanding could be
extremely valuable to OCR, but in practice state-of-
the-art transformer seq2seq models are extremely
costly to train, expensive to deploy, and do not
exist for lower resource languages, with advances
concentrated in a handful of languages. This study
shows that taking a step back from seq2seq models
unlocks massive gains in sample efficiency. Re-
searchers, with a modest number of annotations
and modest compute, can train their own OCR for
settings where all existing solutions fail, using our
user-friendly EffOCR open-source package. New
characters specific to a setting can also be added
at inference time – since they don’t need to be
seen in sequence during training – important for
contexts such as archaeology and certain historical
applications where new characters are regularly en-
countered. These features facilitate making digital
history more representative of documentary history.

2 Methods

Modern OCR overwhelmingly uses deep neural
networks – either a convolutional neural network
(CNN) or vision transformer (ViT) – to encode

images. The representations created by passing
an input image through a neural encoder are then
decoded to the associated text.

Figure 1 underscores two fundamental dif-
ferences between EffOCR and seq2seq. First,
sequence-to-sequence architectures typically re-
quire line level inputs, and individual characters
or words are not localized; rather, images or their
representations are divided into fixed size patches.
In contrast, EffOCR localizes characters and words
using modern object detection methods (Cai and
Vasconcelos, 2018; Jocher, 2020) via the “localizer”
module. Second, seq2seq sequentially decodes
the learned image representations into text using a
learned language model that takes the image rep-
resentations as inputs. In contrast, EffOCR rec-
ognizes text by using contrastive training (Khosla
et al., 2020) to learn a meaningful metric space for
character or word-level OCR. A vision encoder, the
“recognizer” module, projects crops of the same
character (word) – regardless of style – nearby,
whereas crops of different characters (words) are
projected further apart.

EffOCR thus generates full lines of text in the
following way: (1) the localizer produces bounding
boxes for characters (words) in the input image; (2)
these localized character (word) images are embed-
ded with the recognizer; (3) the character (word)
embeddings are decoded to machine-readable text
in parallel by retrieving the label of their nearest
neighbor in an offline index of exemplar character
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(word) embeddings, created by rendering labeled
character (word) images with a digital font; and (4)
the bounding boxes from the localizer are re-used
to robustly infer the order of the machine-readable
characters (words) and the presence of white spaces.
Embedding distances are computed using cosine
similarity with a Facebook Artificial Intelligence
Similarly Search (FAISS) backend (Johnson et al.,
2019). The vision embeddings alone are suffi-
cient to infer text since they represent characters
– not text lines like in seq2seq – and hence decod-
ing them does not require a language model with
learned parameters.

This study develops both character and word
level OCR models, with the former being more suit-
able for character-based languages and the latter
more suitable for alphabet-based languages. When
modeling OCR as a word level problem, EffOCR
defaults to character level recognition if the dis-
tance between a word crop embedding and the
nearest embedding in the offline dictionary of word
embeddings is below a threshold cosine similarity.
This is important, as hyphenated words at the end
of lines, acronyms, proper nouns, and antiquated
terms often make it infeasible to construct a com-
prehensive word dictionary.

EffOCR is trained on digital font renders, along
with a modest number of labeled crops from tar-
get datasets. The recognizer is trained using the
Supervised Contrastive (“SupCon”) loss function
(Khosla et al., 2020), a generalization of the In-
foNCE loss (Oord et al., 2018) that allows for mul-
tiple positive and negative pairs for a given anchor.
We use the “outside” SupCon loss formulation,

Lsup
out =

∑

i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)

as implemented in PyTorch Metric Learning (Mus-
grave et al., 2020), where τ is the temperature, i
indexes a sample in a “multiviewed" batch (in this
case multiple fonts/augmentations of characters
with the same identity), P (i) is the set of indices of
all positives in the multiviewed batch that are dis-
tinct from i, A(i) is the set of all indices excluding
i, and z is an embedding of a sample in the batch.

To create training batches for the recognizer, Ef-
fOCR uses a custom m per class sampling algo-
rithm without replacement. This metric learning
batch sampling algorithm also implements batch-
ing and training with hard negatives, where the
negative samples in a batch are selected to be se-

mantically close to one another, and thus contrasts
made between anchors and hard negatives may be
especially informative.

Different vision encoders can be used inter-
changeably for the EffOCR character localizer -
which locates the character/word crops – and recog-
nizer – which learns a metric space for these crops.
Three models are considered for character level
EffOCR: a vision transformer model (EffOCR-T
Base) with XCiT (Small) (Ali et al., 2021) for
both the localizer and recognizer, a convolutional
base model (EffOCR-C Base) with ConvNeXt
(Tiny) (Liu et al., 2022) for both the localizer
and recognizer, and a convolutional small model
(EffOCR-C Small), which uses lightweight archi-
tectures designed for mobile phones – YOLOv5
(Small) (Jocher, 2020) for the localizer and Mo-
bileNetV3 (Small) for the recognizer. For word
level OCR, we develop EffOCR-Word (Small),
which uses the same lightweight architectures as
EffOCR-C (Small). EffOCR-Word (Small) de-
faults to EffOCR-C (Small) when the cosine sim-
ilarity between a word crop embedding and the
nearest embedding in the offline word embedding
dictionary is below 0.82, a hyperparameter that
is (like all model hyperparameters) tuned on the
validation set. The base models use a two-stage
object detector for character localization, specif-
ically a Cascade R-CNN (Cai and Vasconcelos,
2019), whereas the small models use one-stage ob-
ject detection for faster speed (Jocher, 2020). The
supplementary materials describe the EffOCR ar-
chitecture and training recipes with no detail spared
and evaluate models using alternative vision trans-
former encoders.

3 Related Literature

EffOCR’s architecture draws inspiration from met-
ric learning methods for efficient image retrieval
(El-Nouby et al., 2021), joining a recent literature
on self-supervision through simple data augmenta-
tion for image encoders (Grill et al., 2020; Chen
et al., 2021; Chen and He, 2021). The closest frame-
works to EffOCR in their overall design are the orig-
inal OCR conceptualizations, such as Tauschek’s
1920s reading machine, which used human engi-
neered features to recognize localized characters.
More recently, CharNet (Xing et al., 2019), devel-
oped for scene text (not documents), uses separate
convolutional networks for dense classification and
regression at a single scale, outputting a character
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class and bounding box at every spatial location,
and then aggregates this information with confi-
dence scores to make final predictions. EffOCR
in contrast deploys widely used, highly optimized
object detection methods to localize characters and
then feeds character crops to a contrastively trained
recognizer.1 Other OCR frameworks - that are
widely used, have state-of-the-art performance, or
provide an instructive architectural contrast with
EffOCR - are described in Section 5, which intro-
duces the comparisons that we will make.

4 Training and Evaluation datasets

Evaluating EffOCR requires benchmark datasets
that are representative of the diversity of documen-
tary history. Traditional OCR benchmarks focus on
commercial applications like receipts (Huang et al.,
2019) - and SOTA OCR systems evaluate on these
data - which are not relevant to digital history.

Instead, the study draws on the literature on his-
torical image datasets (Nikolaidou et al., 2022).
First, it uses documents from historical Japan that
can elucidate fundamental questions that have been
understudied due to a lack of digital data, such as
the drivers of Japan’s rapid transformation from a
poor agrarian economy to a wealthy industrialized
nation. Horizontally and vertically written tabu-
lar data – providing rich information on Japanese
firms and their personnel – are drawn from two
1950s publications (Jinji Koshinjo, 1954; Teikoku
Koshinjo, 1957). A 1930s prose publication pro-
viding detailed biographies of tens of thousands of
individuals (Jinji Koshinjo, 1939) is also examined.
These texts could use over 13,000 kanji characters.

The second context is Library of Congress’s
Chronicling America (LoCCA) collection, which
contains over 19 million historical public domain
newspaper page scans. This collection is highly
diverse, as shown in Figure 2.

Library of Congress provides an OCR, but the
quality is low (Smith et al., 2015). There is a large
literature studying historical newspapers at scale,
which overwhelmingly uses keyword search and
does not unlock the power of large language mod-
els due to poor quality digitization (Hanlon and
Beach, 2022). LoCCA elucidates how EffOCR: 1)
performs in the highest resource setting, English;
2) extensibility across Latin and kanji characters,

1Others have also used contrastive learning for OCR,
in particular (Aberdam et al., 2021) use a self-supervised,
sequence-to-sequence contrastive learning approach.

which differ significantly in their aspect ratios and
complexity; 3) extensibility to the many Unicode
renderable languages that use the Latin script.

Layout datasets exist for Chronicling America
and some of the Japanese publications (Shen et al.,
2020; Lee et al., 2020). Adding word/character
bounding boxes and transcription annotations
builds upon the existing work of the historical im-
age dataset literature (Nikolaidou et al., 2022).

Because seq2seq requires lines as inputs, to build
the Japanese and Chronicling America datasets
we draw lines at random from the Japanese vol-
umes and from 10 randomly selected newspapers
in LoCCA. Lines correspond to cells in tables and
single lines within columns/rows in prose. The
baseline training sets range from 291 lines for
Chronicling America to 1309 cells for horizontal
Japanese, highly feasible for researchers to label in
an afternoon, and also includes validation and test
splits. The annotations were double-entered by the
study authors, with all discrepancies hand-resolved.
While the randomly selected lines/table cells in
the labeled data can contain names, the underlying
images are already public.

For the newspapers, we also provide an addi-
tional evaluation-only dataset that consists of a
sample of 225 textlines, randomly drawn from all
scans in the Chronicling America collection pub-
lished on March 1st of years ending in “6,” from
1856-1926. This sample is balanced across these
decades, with 25 textlines sampled randomly from
each of the days. A selection of textlines from this
set is shown in Figure 2. The day-per-decade set
is designed to be challenging, by weighting older,
much harder to read scans from the mid-19th cen-
tury equally despite their relative scarcity in the
Chronicling America collection.

In addition to this gold quality data, we create sil-
ver quality training data for training EffOCR-Word
(Small) by applying the EffOCR-C (Small) model
to a random sample of newspapers. We limited the
number of crops with model-generated labels to 20
– so each word can have 0-20 silver-quality crops
depending upon its frequency of occurrence in our
random sample. This limit is binding for common
words, e.g., “the.” We also use the gold word crops
from the 291 line training set, which cover only
a small share of words. Using silver quality data
leads to high performance, achieved essentially for
free. The study’s datasets are publicly released.

Finally, we examine EffOCR on an existing Poly-
tonic Greek benchmark (Gatos et al., 2015), se-
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Figure 2: Diversity in the Chronicling America Dataset. This figure shows examples sampled from the Chronicling
America (LoCCA) dataset, along with EffOCR predicted transcriptions.

lected because it contains both line-level and word
transcriptions. Polytonic Greek uses five diacritics
to notate older Greek texts. It is challenging be-
cause the diacritics have a similar appearance. The
supplemental materials show example documents
from all benchmarks.

5 Measurement and comparisons

OCR accuracy is measured using the character er-
ror rate (CER), the Levenshtein distance between
the OCR’ed string and the ground truth, normalized
by the length of the ground truth. A CER of 0.5, for
instance, translates to mispredicting approximately
half of characters.

The most widely used OCR engines are commer-
cial products that do not currently support fine-
tuning and have proprietary architectures. The
study compares EffOCR to Google Cloud Vision
(GCV) and Baidu OCR (popular for Asian lan-
guages). We include these comparisons because
they are relevant to practitioners.

We also consider four open source architec-
tures: EasyOCR’s convolutional recurrent neural
network (CRNN) framework (Shi et al., 2016),
TrOCR’s sequence-to-sequence encoder-decoder
transformer (base and small) (Li et al., 2021),
Tesseract’s bi-directional LSTM, and PaddleOCR’s
Single Vision Text Recognition (SVTR), which
also abandons seq2seq, dividing text images into
small (non-character) patches, using mixing blocks
to perceive inter- and intra-character patterns, and
recognizing text by linear prediction (Du et al.,
2022). A large literature has examined a variety of
custom-designed OCR systems. We focus on those
that either (1) make similar architectural choices
(SVTR), (2) are considered SOTA, regardless of

architectural choices (TrOCR), or (3) are very pop-
ular (Tesseract and EasyOCR).

The pre-trained EasyOCR, PaddleOCR, and
TrOCR models are fine-tuned on the same target
data as EffOCR. Considerable resources have been
devoted to pre-training these models. For exam-
ple, TrOCR was pre-trained on 684 million English
synthetic text lines. Hence, these comparisons elu-
cidate performance when these pre-trained mod-
els are further tuned on the target datasets. For a
more apples-to-apples comparison, the study ex-
amines the accuracy of these architectures when
trained from scratch (using a pre-trained check-
point not trained for OCR, when supported by the
architecture) on 8,000 synthetic text lines (like Ef-
fOCR) and the same target crops. EasyOCR and
PaddleOCR do not support vertical Japanese, and
TrOCR does not support any Japanese. Tesseract
offered little support for fine-tuning until recently
and hence most of its applications have been off-
the-shelf, which is this study’s focus. All results
come from a single model run, with training details
provided in the supplemental materials.

6 Results

EffOCR provides a highly accurate OCR with min-
imal training data, in contexts where current so-
lutions fail. For vertical Japanese tables, the best
EffOCR CER is 0.7% (Table 1). The next best
alternative, Baidu OCR, has a CER of 55.6%, mak-
ing nearly 80 times more errors. The best EffOCR
CER is modestly higher for the Japanese prose
(2.7%); these scans are low resolution and some
characters are illegible, to provide a context where
OCR with language modeling could offer a clear
advantage. Yet EffOCR makes 5 times fewer er-
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Character Error Rate Lines/second
Horiz. Vertical Vertical Chron. Amer. Anci. Horiz. Chron.

Model/Engine Seq2Seq? Transformer? Pretraining Parameters Jap. Jap. (tables) Jap. (prose) Eval Day/Decade Greek Jap. Amer.

EffOCR-C (Base) × × from scratch 112.5 M 0.006 0.007 0.030 0.023 0.062 0.049 0.79 0.49

EffOCR-C (Small) × × from scratch 9.3 M 0.010 0.009 0.036 0.028 0.080 0.052 19.46 13.40

EffOCR-T (Base) × from scratch 101.8 M 0.009 0.007 0.027 0.022 0.059 0.047 0.19 0.31

EffOCR-Word (Small) × × from scratch 10.6 M - - - 0.015 0.043 - - 21.36

Google Cloud Vision OCR ? ? off-the-shelf ? 0.173 0.695 0.135 0.005 0.019 0.065 ? ?

Baidu OCR ? ? off-the-shelf ? 0.060 0.556 0.177 - - - ? ?

Tesseract OCR (Best) × off-the-shelf 1.4 M 1.021 0.996 0.744 0.106 0.170 0.251 4.90 4.47

EasyOCR CRNN × off-the-shelf 3.8 M 0.191 - - 0.170 0.274 - 33.55 19.80
fine-tuned 0.082 - - 0.036 0.157

from scratch 0.132 - - 0.131 0.204

PaddleOCR SVTR × × off-the-shelf 11 M 0.085 - - 0.304 0.314 - 13.34 13.56
fine-tuned 0.032 - - 0.103 0.129

from scratch 0.097 - - 0.104 0.138

TrOCR (Base) off-the-shelf 334 M - - - 0.015 0.038 - - 0.43
fine-tuned - - - 0.013 0.027

from scratch - - - 0.809 0.831

TrOCR (Small) off-the-shelf 62 M - - - 0.039 0.121 - - 0.97
fine-tuned - - - 0.075 0.091

from scratch - - - 0.773 0.820

Table 1: Baseline Results and Comparisons. This table reports the performance of different OCR architectures,
off-the-shelf (without fine-tuning on target data), fine-tuned on the target publication training set from a pre-trained
OCR checkpoint, and trained from scratch on synthetic text lines and the target publication training set. “?” indicates
that the field is unknown due to the proprietary nature of the architecture.

rors than the next best alternative (GCV), whose
CER of 13.5% will not support applications that
require high accuracy. For horizontal Japanese – a
higher resource setting – the EffOCR CER is 0.6%,
whereas the next-best-alternative (Paddle OCR fine-
tuned on target crops) makes more than five times
more errors. The different EffOCR models produce
strikingly similar results, despite the significant
differences in architecture (convolutional versus
transformer) and model size (9.3M to 112.5M pa-
rameters). By making an accurate digitization of
such collections feasible - with minimal training
data requirements - EffOCR can contribute to the
diversity of digital texts available to researchers.

The CER (uncased) for the LoCCA newspa-
pers is 1.5%. GCV has the best performance
(0.5%), followed by fine-tuned TrOCR (Base)
(1.3% CER). The advantage of EffOCR on English -
the quintessential high resource setting - is its open-
source codebase and fast runtime. GCV makes sig-
nificant layout errors when fed full newspaper page
scans, which have complex layouts (Shen et al.,
2021), and hence the performance in Table 1 can-
not be replicated when it is fed scans. GCV charges
per image, and the supplementary materials esti-
mate a cost at current prices of $23 million USD

to digitize LoCCA at the line image level, versus
$60K for EffOCR-Word (Small), which researchers
have used to cheaply and accurately digitize this
collection (Dell et al., 2023).

Table 1 examines CPU runtime for open source
architectures, measured by lines processed per sec-
ond on identical dedicated hardware (four 2200
MHz CPU cores, selected to represent a plau-
sible and relatively affordable research compute
setup). GPUs are prohibitively costly for mass
digitization. EffOCR-Word (Small) is 50 times
faster than TrOCR (Base), which is likely to be
cost prohibitive for larger scale applications. Ef-
fOCR supports inference parallelization across
characters – promoting faster inference – whereas
seq2seq requires autoregressive decoding. On En-
glish, the most plausible scalable alternative is fine-
tuned EasyOCR. With a third of the parameters
of EffOCR-Word (Small), it is slightly slower and
the CER is around 29% higher. For horizontal
Japanese, EffOCR-C (Small) is three times more
accurate and faster than PaddleOCR SVTR (fine-
tuned), the next best alternative.

Figure 3 provides representative examples of er-
rors, showing the target crop, the localized crop,
and its five nearest neighbors, with the correct pre-
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Figure 3: Error Analysis. Representative examples of EffOCR errors, showing the target crop, the EffOCR
localized crop, and the five nearest characters in the embedding index, with the correct character highlighted in
green.

diction highlighted in green. Errors tend to occur
when the character is illegible or homoglyphic to
another character (e.g., O and 0). For example,
a 0 in one font can occasionally be indistinguish-
able from an O in another, an error that would be
straightforward to correct in post-processing.

The supplementary materials report results from
additional encoders, and examine how different
architecture and design choices for EffOCR con-
tribute to its performance. In particular, we notice
little difference between the best performing CNN
encoders and vision transformer encoders in terms
of CER, regardless of language, when holding ap-
proximately constant the number of model parame-
ters. This is consistent with an existing literature
on the convergent performances of (appropriately
modernized) CNNs and vision transformers (Liu
et al., 2022).

EffOCR outperforms all other architectures that
support Polytonic Greek, including Google Cloud
Vision. This illustrates the versatility of the archi-
tecture.

EffOCR’s parsimonious architecture allows it to
learn efficiently. To quantify this, we train different
OCR models from scratch using varying amounts
of annotated data. All architectures are pre-trained
from scratch on 8,000 synthetic text lines, starting
from pre-trained checkpoints not customized for
OCR when supported by the framework. They are
then fine-tuned on the study’s benchmark datasets,
with varying train splits: 70%, 50%, 20%, 5%, and
0% (using only synthetic data). These exercises are
performed for Chronicling America and horizontal
Japanese, as vertical Japanese is not supported by

the comparison architectures.
Figure 4 plots the percentage of the benchmark

dataset used in training on the x-axis and the CER
on the y-axis. On just 99 labeled table cells for
Japanese and 21 labeled rows for LoCCA (the 5%
train split), EffOCR’s CER is around 4%, showing
viable few shot performance. The other architec-
tures remain unusable. EffOCR performs nearly
as well using 20% of the training data as using
70%, where it continues to outperform all other
alternatives.

Here, our focus is on the design of bespoke, effi-
cient models for low-resource contexts. One might
wish to assess how EffOCR performs on com-
pletely out-of-domain texts. Elsewhere, researchers
have used the EffOCR package and EffOCR-Word
(Small) model trained only on newspapers to pro-
cess randomly selected, highly diverse documents
from the U.S. National Archives (Bryan et al.,
2023). EffOCR performs similarly to other open-
source OCR engines, achieving a CER of 11.2%
as compared with a 11.8% CER from Tesseract
(Best), a 12.1% CER from EasyOCR, and a 51%
CER from TrOCR (Small). The sample efficiency
of EffOCR suggests it could be trained to perform
well off-the-shelf on diverse archival documents by
labeling a small number of samples across a wide
range of common historical document types, an
effort that could be crowd-sourced.

7 Discussion

Indexing, analyzing, disseminating, and preserv-
ing diverse documentary history requires commu-
nity engagement of stakeholders with the requi-
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Figure 4: Sample Efficiency. This figure plots the percentage of the benchmark dataset used in training against the
character error rate, for different OCR model architectures.

site fine-grained knowledge of the relevant settings.
EffOCR facilitates this engagement because it is
highly extensible to low-resource settings, sample-
efficient to customize, and simple and cheap to train
and deploy. In contrast, seq2seq is more aligned
with the commercial objective of designing a prod-
uct that is difficult for competitors to imitate. For
example, EffOCR can be trained in the cloud with
free student compute credits, whereas TrOCR re-
quired training on a multi-million dollar cluster
with 32 32GB V100 cards. Lower resource lan-
guages may lack the pre-trained language models
required to initialize a transformer seq2seq model,
and sufficient compute resources are also unlikely
to be available. EffOCR encourages community
engagement by integrating the follow features:

Character/word level: EffOCR creates seman-
tically rich visual embeddings of individual charac-
ters (words), a parsimonious problem. Annotators
can select which of the most probable predictions
from the pre-trained recognizer are correct, poten-
tially using a simple mobile interface, or line level
labels can be mapped to the character (word) level
once a localizer has been developed.

Language Extensibility: Language modeling
advances have concentrated around less than two
dozen modern languages, out of many thousands
(Joshi et al., 2020). Omitting the language model
makes EffOCR extensible and easy-to-train. To
extend EffOCR to a new language, all one needs
are renders for the appropriate character set. Ad-
ditionally, characters do not need to be seen in

sequence during training, so new characters can be
added at inference time, valuable for archaeolog-
ical contexts where new characters are regularly
discovered. Omitting the language model makes it
easy to mix scripts, necessary for some languages.
The recognizer can also be exposed to characters in
training using any desired sequencing. This is not
true of multilingual seq2seq training, which leads
to many OCR errors with endangered languages
(Rijhwani et al., 2020).

Decoupling localization and recognition: The-
oretically, localization and recognition (akin to
classification) may rely on different features of
the image, suggesting modularity (Song et al.,
2020). Practically, decoupling allows localization
and recognition to use different training sets, econ-
omizing on annotation costs since these tasks can
require very different numbers of labels depend-
ing on the script. It also encourages community
innovation and future-proofness, because it simpli-
fies training recipes and makes it straightforward to
swap in new localizers or recognizers - including
zero-shot models such as Kirillov et al. (2023) - as
the literature advances.

Scalable: The small EffOCR models achieve
fast CPU inference that can scale cheaply to hun-
dreds of millions of documents.

Open-Source: The open-source EffOCR python
package (Bryan et al., 2023) makes it straightfor-
ward to use existing EffOCR models off-the-shelf
with just a few lines of code, including for those
who lack familiarity with deep learning frame-
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works. It also includes functionality to train custom
models and guides users with tutorials.

8 Reproducibility

We release all code and training data used to create
EffOCR. Scripts in the public repository exactly re-
produce the figures cited above. All other material
needed to reproduce these results is detailed in the
supplemental materials, including training hyper-
parmeters. The models in this paper can also be
deployed through the open-source EffOCR python
package (CC-BY 4.0 license).

9 Limitations

This study does not focus on handwriting due to
space constraints, but the approach would be analo-
gous. Synthetic handwriting generators, e.g., Bhu-
nia et al. (2021), could provide extensive data for
pre-training, analogous to this study’s use of digital
fonts.

There are some settings where EffOCR’s frame-
work is not suitable. If large portions of a docu-
ment are illegible, context is necessary. Moreover,
the heavy use of ligatures and/or slanting in some
character sets and handwriting could lead to more
challenging character localization. This challenge
is mitigated with the word-level EffOCR model.

10 Ethical Considerations

EffOCR presents no major ethical concerns. Its
methods are entirely open source, and its training
data are entirely in the public domain. Its core
functionality, accurately transcribing texts in low-
resource settings, is ethically sound. By making it
easier to digitize scanned document texts in low-
resource settings, it can promote the inclusion of
more diverse groups in NLP, social science, and
humanities research. Its sample and computational
efficiency minimizes environmental harm by reduc-
ing compute requirements at training and inference
time.

Some applications of EffOCR could raise ethical
flags. We discourage users from applying EffOCR
to copyrighted documents unless the application is
protected by fair use. While EffOCR is a poten-
tially useful tool for studying bias, e.g., through
analyses of historical documents, potentially harm-
ful or offensive content transcribed by EffOCR
should not be shared without proper context.
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