
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7957–7977
August 11-16, 2024 ©2024 Association for Computational Linguistics

Dataflow-Guided Retrieval Augmentation for Repository-Level
Code Completion

Wei Cheng† Yuhan Wu† Wei Hu†, ‡, ∗
† State Key Laboratory for Novel Software Technology, Nanjing University, China

‡ National Institute of Healthcare Data Science, Nanjing University, China
wchengcs.nju@gmail.com, yhwu.nju@gmail.com, whu@nju.edu.cn

Abstract

Recent years have witnessed the deployment of
code language models (LMs) in various code
intelligence tasks such as code completion. Yet,
it is challenging for pre-trained LMs to generate
correct completions in private repositories. Pre-
vious studies retrieve cross-file context based
on import relations or text similarity, which is
insufficiently relevant to completion targets. In
this paper, we propose a dataflow-guided re-
trieval augmentation approach, called DRACO,
for repository-level code completion. DRACO
parses a private repository into code entities and
establishes their relations through an extended
dataflow analysis, forming a repo-specific con-
text graph. Whenever triggering code comple-
tion, DRACO precisely retrieves relevant back-
ground knowledge from the repo-specific con-
text graph and generates well-formed prompts
to query code LMs. Furthermore, we construct
a large Python dataset, ReccEval, with more
diverse completion targets. Our experiments
demonstrate the superior accuracy and appli-
cable efficiency of DRACO, improving code
exact match by 3.43% and identifier F1-score
by 3.27% on average compared to the state-of-
the-art approach.

1 Introduction

Pre-trained language models (LMs) of code (Chen
et al., 2021; Nijkamp et al., 2023a,b; Allal et al.,
2023; Li et al., 2023b) have shown remarkable per-
formance in improving programming productivity
(Kazemitabaar et al., 2023; Dakhel et al., 2023).
Instead of using a single code file, well-designed
programs emphasize separating complicated func-
tionality into independent modules (Barnett and
Constantine, 1968). While facilitating collabora-
tive development and software maintenance, it in-
troduces the real-world problem of repository-level
code completion: given an unfinished code file in

∗ Corresponding author

from RecordSignal import RecordSignal

def combine(signal: RecordSignal, …):

newSignal = signal.getSignalByName(newChannelName)

newSignal.

channel = newChannelName
setSignalTypeFromTypeStr()

pyPhasesRecordloader/Signal.py

class Signal:

def setSignalTypeFromTypeStr(self):

pyPhasesRecordloader/RecordSignal.py

class RecordSignal:

def getSignalByName(self, name) -> Signal:

Background
knowledge

Zero-Shot:

Unfinished code

Predictions

Dataflow-guided:

Figure 1: A real-world example of repository-level code
completion. The code LM CodeGen25-7B-mono fails
to complete the last code line correctly when entering
only the unfinished code (Zero-Shot). The model needs
background knowledge relevant to newSignal, and the
retrieval of this knowledge can be guided by dataflow.

a private repository, complete the following pieces
of code at the cursor position.

Despite pre-training on large-scale corpora, code
LMs are still blind to unique naming conventions
and programming styles in private repositories (Pei
et al., 2023; Liu et al., 2024b; Ding et al., 2023).
Previous works finetune LMs to leverage cross-
file context (Ding et al., 2024; Shrivastava et al.,
2023a,b), which requires additional training data
and is difficult to work with larger LMs. Re-
cently, retrieval-augmented generation (RAG) is
widely used to aid pre-trained LMs with external
knowledge and maintain their parameters intact
(Lewis et al., 2020; Mallen et al., 2023; Trivedi
et al., 2023). For repository-level code completion,
the retrieval database is the current private repos-
itory. The state-of-the-art approach, RepoCoder
(Zhang et al., 2023), iteratively incorporates a text
similarity-based retriever and a code LM.

As shown in Figure 1, the CodeGen25 Python
model (Nijkamp et al., 2023a) with 7 billion pa-
rameters assigns a value to the attribute channel
of the object newSignal, which seems rational in

7957

the unfinished code but is actually outside the list
of valid attributes. Due to the lack of similar code
snippets in the repository, the text similarity-based
approach (Zhang et al., 2023) also fails to com-
plete the correct code line. From a programmer’s
perspective, one would explore the data origin of
the variable newSignal in the last line. It comes
from the call signal.getSignalByName, where
the variable type of signal is RecordSignal im-
ported from the module RecordSignal. After pro-
viding relevant background knowledge in the pri-
vate repository, the model would know that the
variable type of newSignal is the class Signal
and thus call the correct function.

Inspired by this programming behavior in pri-
vate repositories, we propose DRACO, a novel
dataflow-guided retrieval augmentation approach
for repository-level code completion, which steers
code LMs with relevant background knowledge
rather than similar code snippets. Dataflow analy-
sis is a static program analysis reacting to data de-
pendency relations between variables in a program.
In this work, we extend traditional dataflow analy-
sis by setting type-sensitive dependency relations.
We employ the standard RAG framework (Lewis
et al., 2020): (i) Indexing, which parses a private
repository into code entities and establishes their
relations through dataflow analysis, forming a repo-
specific context graph for retrieval. (ii) Retrieval,
which uses dataflow analysis to obtain fine-grained
import information in the unfinished code and re-
trieves relevant code entities from the pre-built con-
text graph. (iii) Generation, which organizes the
relevant background knowledge as natural code and
concatenates it with the unfinished code to generate
well-formed prompts for querying code LMs.

In addition to the existing dataset CrossCodeE-
val (Ding et al., 2023) for repository-level code
completion, we construct a new dataset, ReccE-
val, with diverse completion targets collected from
Python Package Index (PyPI).1 We conduct exper-
iments with popular LMs including adapted code
LMs (Rozière et al., 2023), specialized code LMs
(Nijkamp et al., 2023a,b; Allal et al., 2023; Li
et al., 2023b), and GPT models (Ouyang et al.,
2022; OpenAI, 2023). Our experiments demon-
strate that DRACO achieves generally superior ac-
curacy across all settings. Furthermore, DRACO is
plug-and-play for various code LMs and efficient
to real-time code completion.

1https://pypi.org/

Our main contributions are outlined as follows:
• We design an extended dataflow analysis by

setting type-sensitive data dependency rela-
tions, which supports more precise retrieval.

• We propose DRACO, a dataflow-guided re-
trieval augmentation approach for repository-
level code completion. DRACO builds a repo-
specific context graph for retrieval and gener-
ates well-formed prompts with relevant back-
ground knowledge in real-time completion.

• We construct a Python dataset ReccEval with
diverse completion targets. The experimen-
tal results show that DRACO improves code
exact match by 3.43%, identifier F1-score by
3.27%, and prompt generation time by 100×
on average compared to the second-best ap-
proach RepoCoder (Zhang et al., 2023). Our
source code and data are available at https:
//github.com/nju-websoft/DraCo.

2 Related Work

Code completion. Early studies adopt statistical
LMs (Raychev et al., 2014; Proksch et al., 2015;
Raychev et al., 2016; He et al., 2021) and neural
models (Li et al., 2018; Svyatkovskiy et al., 2019;
Kim et al., 2021; Izadi et al., 2022; Tufano et al.,
2023) for code completion. After pre-training on
large-scale code corpora, code LMs are familiar
with frequent code patterns and achieve superior
performance (Chen et al., 2021; Lu et al., 2021;
Wang et al., 2021; Le et al., 2022; Allal et al., 2023;
Li et al., 2023b; Nijkamp et al., 2023a,b; Shen
et al., 2023; Zheng et al., 2023). Unlike single-
file code completion, repository-level code comple-
tion draws much attention to practical development.
Ding et al. (2024) learn in-file and cross-file context
jointly on top of pre-trained LMs. Lu et al. (2022)
present ReACC to train a code-to-code search re-
triever and a code completion generator with an
external source code database. Shrivastava et al.
(2023b) generate example-specific prompts using
a prompt proposal classifier and further propose
RepoFusion (Shrivastava et al., 2023a) to incorpo-
rate relevant repository context by training code
LMs. RepoCoder (Zhang et al., 2023) is an itera-
tive retrieval-generation framework to approximate
the intended completion target. Despite their good
performance, these methods are limited by the high
overhead of extra training or iterative generation.

Retrieval-augmented generation. For the sce-
narios where required knowledge is missing or out-

7958

https://pypi.org/
https://github.com/nju-websoft/DraCo
https://github.com/nju-websoft/DraCo

Module: RecordSignal
Name: RecordSignal.

getSignalByName

Repo-specific context graph

Repository Dataflow
analysis

Unfinished
code

Index
pyPhasesRecordloader/Signal.py

class Signal:

def setSignalTypeFromTypeStr(self):

pyPhasesRecordloader/RecordSignal.py
from .Signal import Signal

class RecordSignal:

def getSignalByName(self, name)->Signal

xxx/Signal.py
class Signal:

...
xxx/RecordSignal.py
class RecordSignal:

...

Unfinished code

Prompt

Retrieve

LM
generation

Extract

depends

Fine-grained
import information

Locate

Figure 2: Overview of our approach, where dataflow analysis is crucial for both indexing and retrieval. The details
of the unfinished code have been shown in Figure 1. The rectangular boxes visualize contains relations between the
code entities in the repo-specific context graph, and the solid arrows indicate depends relations.

dated in pre-trained LMs, RAG has achieved state-
of-the-art performance in many NLP tasks (Cai
et al., 2022; Feng et al., 2023; Mallen et al., 2023).
Usually, RAG integrates the retrieved knowledge
with frozen pre-trained LMs (Ram et al., 2023;
Levine et al., 2022; Shi et al., 2023). There exist
different types of retrievals including term-based
sparse retriever (Robertson and Zaragoza, 2009;
Trivedi et al., 2023), embedding-based dense re-
triever (Karpukhin et al., 2020; Lewis et al., 2020),
commercial search engines (Nakano et al., 2021;
Liu et al., 2023), and LMs themself (Yu et al., 2023;
Sun et al., 2023). RAG is also broadly applied to
code intelligence tasks such as code summariza-
tion (Liu et al., 2021; Zhang et al., 2020; Zhou
et al., 2023) and code generation (Hashimoto et al.,
2018; Parvez et al., 2021; Li et al., 2023a). In this
work, we leverage dataflow analysis to guide re-
trieval, which mines more precise data dependency
information for repository-level code completion.

3 Methodology

As shown in Figure 2, DRACO employs the stan-
dard RAG framework (Lewis et al., 2020) includ-
ing indexing (§3.2), retrieval (§3.3), and genera-
tion (§3.4). Because both indexing and retrieval in
DRACO rely on the extended dataflow analysis, we
first introduce it in §3.1. In this work, we focus on
Python and the code completion of currently edited
line, which simulates real-world scenarios where
users are programming in integrated development
environments (IDEs) and only the context before
the cursor is visible.

3.1 Dataflow Analysis

Dataflow analysis is a static program analysis that
reacts to the data dependency relations between
variables in a program, producing a dataflow graph
(DFG), in which nodes represent the variables and
edges indicate where the variables come from and
where they go. It provides code semantic informa-
tion that is not affected by personal naming con-
ventions and programming styles.

We assume that the background knowledge rele-
vant to variable types is crucial for code completion.
Take the statement v = f(p) as an example, the
parameter p has far less influence on the variable
v than the call f does. Therefore, we extend tra-
ditional dataflow analysis by setting dependency
relation types. We focus on five type-sensitive re-
lations, which indicate what the variable type is or
where it derives from:

• Assigns relation is a one-to-one correspon-
dence in an assignment statement, which con-
trols variable creation and mutation.

• As relation is from with or except statements
and similar with the assigns relation.

• Refers relation represents a reference to an
existing variable or its attribute.

• Typeof relation is from the explicit type hints
(van Rossum and Lehtosalo, 2022) written by
programmers, indicating the data type of the
(return) value of a variable or function.

• Inherits relation is an implicit data depen-
dency relation since a subclass inherits all the
class members of its base classes.

Our DFG is a heterogeneous directed acyclic
graph G = {(h, r, t) | h, t ∈ E, r ∈ R}, where E

7959

denotes the entity set, R denotes the type-sensitive
relation set, and a triplet (h, r, t) represents the
head entity h pointing to the tail entity t with the
relation r. The details of our DFG construction are
shown in Appendix A.

3.2 Repo-specific Context Graph
Offline preprocessing is often used in RAG to index
a retrieval database. Instead of treating source code
as text (Lu et al., 2022; Zhang et al., 2023), we
parse a private repository into code entities and es-
tablish their relations through our dataflow analysis,
forming a repo-specific context graph.

For each code file in a repository, we traverse its
abstract syntax tree (AST) to collect code entities
including modules, classes, functions, and vari-
ables. A module entity stores its file path and doc-
string as properties. A class entity stores its name,
signature, docstring, and starting line number. A
function entity stores its name, signature, docstring,
body, and starting line number. A variable entity
stores its name, statement, and starting line number.
There are natural contains relations between these
entities, e.g., the class RecordSignal contains its
member function getSignalByName. Based on the
type-sensitive relations in DFG, we establish de-
pends relations between the entity pairs in indi-
vidual modules, e.g., Signal is the return type of
the function getSignalByName. Eventually, we es-
tablish depends relations between the variables in
local import statements and the pointing entities
in other modules, e.g., the imported Signal points
to the class Signal in another module.

3.3 Dataflow-Guided Retrieval
Given an unfinished code, we identify fine-grained
import information by dataflow analysis and re-
trieve relevant entities from the repo-specific con-
text graph. We do not intend to perform precise
type inference (Peng et al., 2022) for a dynamically
typed language like Python, but rather provide rele-
vant background knowledge to code LMs, which
provides the definitions of code entities such as
class members and function arguments.

All cross-file context is indicated by local
import statements in Python. However, only using
such coarse-grained import information may over-
look the knowledge of its specific usages (Ding
et al., 2024). We denote import information by
(module, name), where module indicates another
code file in the repository and name indicates the
specific code entity. Particularly, name can be ex-

panded by its refers relations in the extracted DFG.
For example, we would obtain the fine-grained im-
port information (module, name.attr) if there is
a code statement containing name.attr.

For each local import statement, we collect
a set of fine-grained import information. Im-
port information points to code entities in the
repo-specific context graph, which is achieved
through directory structure and string matching.
Let us see Figure 2 for example. Given the
fine-grained import information (RecordSignal,
RecordSignal.getSignalByName), we first iden-
tify the corresponding module entity pyPhases-
Recordloader/RecordSignal.py through directory
structure. Then, the code entity getSignalByName
in class RecordSignal contained in the module
is located by string matching. Finally, the rele-
vant entities are retrieved along depends relations
using a depth-first search. The retrieved entities
provide comprehensive type-related background
knowledge for both cross-file imports and usages
in the unfinished code.

3.4 Prompt Generation
Before querying LMs, we restore the retrieved enti-
ties to the source code and concatenate it with the
unfinished code to generate well-formed prompts.

As the maximum input lengths of LMs are finite
and fixed, we employ the dynamic context allo-
cation strategy in (Shrivastava et al., 2023b). It
pre-allocates half of the total input lengths for the
relevant background knowledge and the other half
for the unfinished code. If either is shorter than the
allocated length, the remaining tokens are allocated
to the other. For the overlong unfinished code, we
just truncate it to obtain the last tokens. Given
the number n of tokens allocated to the relevant
background knowledge, we next describe the gen-
eration process of background knowledge. Refer
to Algorithms 1 and 2 in Appendix B for details.

Algorithm 1 describes the center control of the
generation process. We consider the entities that
have data relations with the line to be completed
as the most relevant entities, which are denoted by
Er and form the primary background knowledge.
The entities from other local import statements are
denoted by Eo and are incrementally added to the
background knowledge until the length exceeds the
allocated tokens n. This design helps LMs further
understand the context while prevents the primary
background knowledge from being truncated.

Our mission is to organize the prompts like the

7960

original code to maintain the nature of programs
(Hindle et al., 2012), as described in Algorithm 2.
We group the relevant entities in modules and
merge those with contains relations to avoid redun-
dancy, e.g., class members would not be duplicated
if the class already exists. The code entities in the
same module are sorted by their starting line num-
bers. Therefore, we construct a module graph Gm,
where an edge m1 → m2 indicates that there exists
an entity in m1 that depends on an entity in m2.
The modules in prompts are ranked by a pseudo-
topological sort with two priorities: (i) Dependent
modules come first. The content of m2 should be
placed in front of that of m1, which is consistent
with programming conventions (Lines 10–15 in Al-
gorithm 2). (ii) Once there are multiple options for
topological sort in a directed cyclic graph, the rele-
vant modules are placed ahead (Liu et al., 2024a).
We prefer the modules that are reachable from the
entities in Er than those in Eo (i.e., relevant or not).
The entities within both Er and Eo are sorted in
ascending order by their starting line numbers, re-
sulting in an ordered list Ec of the import entities
(Lines 3–9, 13). Note that a comment “# file path
of the module” is put ahead of each module to in-
dicate the relative directory structure. Finally, we
place the relevant background knowledge inside
a multi-line string, which precedes the unfinished
code to generate the prompts for querying LMs.

Benefiting from the design of our repo-specific
context graph, there are two prompt scopes, named
definition and complete, to control the details of
code entities. Compared with only definitions,
prompts under the complete scope contain specific
function bodies and variable statements.

4 Experiment Setup

4.1 Datasets

The widely-used datasets (Raychev et al., 2016; Lu
et al., 2021; Peng et al., 2023) for code completion
only provide a single unfinished code file as input.
Several recent benchmarks (Zhang et al., 2023; Liu
et al., 2024b) evaluate next-line prediction, which
is different from our concern with the currently
edited line. CrossCodeEval (Ding et al., 2023) is a
multilingual benchmark for repository-level code
completion, where the statement to be completed
has at least one use of cross-file API. Since we
focus on Python, we evaluate our DRACO on the
Python subset of CrossCodeEval.

We further build a new Python dataset ReccE-

Features CrossCodeEval ReccEval

Repositories 471 2,635
Examples 2,665 6,461
Avg. # files in repository 30.5 24.6
Avg. # lines in input 73.9 113.1
Avg. # tokens in input 938.9 1,296.2
Last char of input dot any
Avg. # tokens in reference 13.2 8.6

Table 1: Statistics of the Python subset of CrossCodeE-
val and the ReccEval dataset that we construct.

val with more diverse completion targets. See Ap-
pendix C.1 for details. The statistics of ReccEval
and the Python subset of CrossCodeEval are shown
in Table 1, where the number of tokens is calculated
using the StarCoder tokenizer (Li et al., 2023b).

4.2 Implementation Details

We evaluate the retrieval-augmented methods that
do not involve training, which excludes several
works (Shrivastava et al., 2023a,b; Lu et al., 2022).
See Appendix C.2 for more details:

• Zero-Shot directly feeds the unfinished code
to code LMs, which evaluates their perfor-
mance without any cross-file information.

• CCFinder (Ding et al., 2024) is a cross-
file context finder tool retrieving the relevant
cross-file context from the pre-built project
context graph by import statements. We con-
duct experiments for CCFinder-k (k = 1, 2),
which indicates that CCFinder retrieves k-hop
neighbors of cross-file code entities.

• RG-1 and RepoCoder (Zhang et al., 2023)
construct a retrieval database through a slid-
ing window and retrieve similar code snip-
pets using text similarity-based retrievers. Re-
poCoder is an iterative retrieval-generation
framework, which retrieves the database with
the results generated in the previous iteration.
RG-1 represents the standard RAG and is the
first iteration of RepoCoder.

As shown in Table 2, we conduct comprehensive
experiments on seven popular LMs. For a method,
we first preprocess all repositories in the datasets.
Then, we generate prompts for the unfinished code
and record the time used. Finally, we acquire the
completion results by feeding the prompts to LMs.
A prediction is the first line of a completion result.

7961

Models Parameter sizes

Specialized
models

CodeGen 350M, 2.7B, 6.1B, 16.1B
CodeGen2.5 7B
SantaCoder 1.1B
StarCoder 15.5B

Adapted model Code Llama 7B

GPT models GPT-3.5, GPT-4 -

Table 2: The LMs used in our experiments. See Ap-
pendix C.3 for more details.

4.3 Evaluation Metrics

We evaluate the accuracy of each method by code
match and identifier match scores (Ding et al.,
2023), as well as the efficiency by prompt gen-
eration time. We report the average of each metric.
See Appendix C.4 for more details:

• Code match. We directly compare the pre-
diction with the reference, which is measured
using exact match (EM) and edit similarity
(ES) (Lu et al., 2021; Zhang et al., 2023).

• Identifier match. We evaluate the predicted
APIs by identifier exact match (ID.EM) and
F1-score (Ding et al., 2023).

• Prompt generation time. We record the
prompt generation time to evaluate the effi-
ciency of each method, which is a new and
significant metric for real-time completion.

5 Experimental Results and Analysis

5.1 Performance Comparison

The performance comparison on the CrossCodeE-
val and ReccEval datasets is listed in Tables 3 and 4,
respectively. Additional results on other CodeGen
models are supplemented in Appendix D.1. Over-
all, DRACO significantly improves the accuracy
of various code LMs. Particularly, the CodeGen-
350M model integrated with DRACO even outper-
forms the zero-shot StarCoder-15.5B model.

In comparison to other retrieval-augmented
methods, DRACO also shows generally superior
accuracy across all settings. The average absolute
improvement on EM, ES, ID.EM, and F1 versus
RepoCoder is 3.43%, 1.00%, 3.62%, and 3.27%,
respectively. RepoCoder retrieves similar code
demonstrations that help increase the ES metric
of completion results. But RepoCoder ignores the
validity of its generated identifiers in private repos-
itories, which decreases the metrics for code exact
match and identifier match. Such almost correct
completion results may introduce unconscious bugs

to the programmers who are unfamiliar with the
repository. In contrast, DRACO presents the defi-
nitions of relevant code entities, providing better
control over code LMs to generate valid identifiers.
Moreover, the background knowledge can be used
as a reference to help the programmers understand
and review the completion results in IDEs. DRACO

using the CodeGen-350M model is slightly worse
than RepoCoder in terms of code match metrics
on the ReccEval dataset, as the model may not be
powerful enough to capture the data relations in
our provided background knowledge.

CCFinder retrieves cross-file code entities by
plain import relations. The entities retrieved by
CCFinder were originally designed to be encoded
for training code LMs. When used as a retrieval-
augmented method, CCFinder retrieves too many
code entities based on coarse-grained import in-
formation, resulting in truncation of truly relevant
context. As a result, CCFinder-2 with more re-
trieved entities only exceeds CCFinder-1 slightly
on the StarCoder model that supports longer in-
puts. Therefore, the subsequent analysis experi-
ments are conducted with CCFinder-1. Guiding
by our dataflow analysis, DRACO retrieves rele-
vant code entities more precisely, leading to signifi-
cantly superior accuracy.

The performance of code completion varies on
the two datasets. First, according to the statistics in
Table 1, the average reference length of ReccEval
is significantly shorter than that of CrossCodeE-
val, leading to the higher EM metrics of both code
and identifier on ReccEval. Moreover, all inputs
of CrossCodeEval end with a dot where a correct
API is required in the first place, which is more
suitable for CCFinder and DRACO that retrieve
code definitions. Many inputs of ReccEval end
with partial names of the target APIs, which facili-
tates text similarity-based retrievals including RG-1
and RepoCoder. Therefore, the lead of DRACO on
CrossCodeEval is more significant.

5.2 Efficiency Evaluation
The time spent on prompt generation is perceived
by users whenever code completion is triggered.
Table 5 shows the prompt generation time of
each method using the CodeGen-350M model,
and additional results are shown in Appendix D.2.
CCFinder and DRACO require parsing the unfin-
ished code into an AST or a DFG, which is slightly
slower than RG-1 with text similarity-based re-
trieval but still comparable. RepoCoder relies on

7962

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 2.81 55.01 8.22 38.02 3.79 57.92 10.43 41.98 7.77 60.52 14.45 45.40 8.71 62.08 16.02 47.58
CCFinder-1 9.64 59.05 16.36 45.33 14.37 63.86 22.89 52.26 18.84 66.67 27.35 56.05 27.99 72.59 38.24 64.46
CCFinder-2 8.22 58.17 14.52 44.15 11.41 62.47 19.74 49.90 15.50 65.27 24.05 53.56 28.67 73.25 39.10 65.59
RG-1 9.19 60.10 16.89 46.45 12.35 64.09 22.10 51.79 17.34 67.36 27.28 56.22 26.27 72.70 37.00 64.04
RepoCoder 10.13 61.25 18.65 48.29 13.62 65.53 23.94 54.06 19.51 68.98 29.57 58.51 29.12 74.56 40.83 66.81
DRACO 13.02 61.30 20.53 49.04 20.64 67.04 29.83 57.37 24.99 70.10 34.63 61.14 34.67 75.83 45.63 69.93

Table 3: Performance comparison on the CrossCodeEval dataset. Numbers are shown in percentage (%).

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 4.01 49.41 9.75 25.98 5.54 52.95 11.93 29.94 11.10 57.25 17.37 35.55 12.77 58.84 20.03 38.12
CCFinder-1 14.15 55.75 21.24 37.74 21.36 61.90 29.31 46.18 26.87 65.76 34.55 51.00 39.33 73.05 48.18 63.49
CCFinder-2 11.64 53.70 17.94 34.15 17.12 59.57 24.58 41.93 22.49 63.42 29.72 46.81 39.92 73.29 48.91 64.08
RG-1 19.44 59.08 26.02 40.92 23.62 63.23 30.58 46.24 29.33 66.94 36.06 51.36 42.67 74.64 51.11 64.64
RepoCoder 22.46 60.59 29.05 43.91 27.29 65.06 34.56 49.68 32.84 68.73 40.07 54.73 46.26 76.44 54.47 67.59
DRACO 22.12 60.41 29.73 46.09 30.26 66.90 39.08 55.43 36.46 70.76 44.67 60.40 46.49 76.80 55.98 70.32

Table 4: Performance comparison on the ReccEval dataset.

Methods CrossCodeEval ReccEval

CCFinder-1 32 49
CCFinder-2 52 82
RG-1 13 15
RepoCoder 4,062 4,413
DRACO 40 44

Table 5: Prompt generation time (in milliseconds) of
each method using the CodeGen-350M model.

RG-1 to generate sufficient content for the second
retrieval, which results in more than 4 seconds even
on the smallest CodeGen-350M model and may not
be feasible for real-time code completion.

In summary, DRACO is efficient for real-time
code completion in IDEs. Compared to the meth-
ods with comparable efficiency (i.e., excluding Re-
poCoder), DRACO is considerably ahead in the
accuracy of repository-level code completion.

5.3 Ablation Study

To analyze the effectiveness of dataflow analysis
in DRACO, we conduct an ablation study shown
in Tables 6 and 17. “w/o cross_df” disables de-
pends relations in the repo-specific context graph,
making DRACO unable to handle the data depen-
dency relations in other code files. “w/o intra_df”
disables the dataflow analysis for the unfinished
code, which only allows DRACO to retrieve coarse-
grained import information in the order of their
starting line numbers. “w/o dataflow” degenerates
DRACO into a naive method that simply takes the
imported cross-file entities in the unfinished code
as the relevant background knowledge.

59.45

65.95

69.90
72.78

61.30

67.04
70.10

75.83

52

56

60

64

68

72

76

80

CodeGen SantaCoder CodeGen25 StarCoder

ES

Definition
Complete

17.52

27.69

34.45

39.71

20.53

29.83

34.63

45.63

10

18

26

34

42

50

CodeGen SantaCoder CodeGen25 StarCoder

ID
.E

M

Definition
Complete

10.13

18.27

24.02

28.87

13.02

20.64

24.99

34.67

4
8

12
16
20
24
28
32
36
40

CodeGen SantaCoder CodeGen25 StarCoder

EM

Definition
Complete

46.73

56.31

61.38

65.79

49.04

57.37
61.14

69.93

40

48

56

64

72

CodeGen SantaCoder CodeGen25 StarCoder

F1

Definition
Complete

Figure 3: Performance comparison of two prompt
scopes on the CrossCodeEval dataset.

The ablation study demonstrates that the com-
plete DRACO achieves the best performance, and
all usages of dataflow analysis play a positive role
in repository-level code completion. It can be ob-
served that the enhancement of the “intra_df” com-
ponent on the StarCoder model is less than that on
other models. This component places the more rel-
evant background knowledge in front of the prompt
to prevent truncation, which is weakened to some
extent on the StarCoder model with a maximum
context length of 8K tokens.

The accuracy of DRACO without dataflow anal-
ysis is still comparable with CCFinder. CCFinder
groups the relevant context in code entities, which
is counter-intuitive for source code (see the exam-
ple shown in Appendix E.1). The results reveal that
the well-formed prompts generated by DRACO can
better steer code LMs, even if the depth-first search
for dependent code entities is absent.

7963

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

DRACO 13.02 61.30 20.53 49.04 20.64 67.04 29.83 57.37 24.99 70.10 34.63 61.14 34.67 75.83 45.63 69.93
w/o cross_df 12.12 60.93 19.51 48.32 18.42 66.05 27.62 55.64 22.59 69.15 31.89 59.36 30.73 73.85 41.05 66.31
w/o intra_df 10.88 59.74 17.56 46.25 15.95 64.11 24.09 52.72 19.59 67.08 28.33 56.14 32.35 74.60 43.00 67.98
w/o dataflow 10.13 59.55 17.00 45.88 14.90 63.57 23.11 51.88 18.57 66.85 27.13 55.53 28.82 72.80 38.87 64.65

Table 6: Ablation study for dataflow analysis on the CrossCodeEval dataset.

Methods
GPT-3.5 GPT-4 StarCoder-15.5B

EM ES ID.EM F1 WOF EM ES ID.EM F1 WOF EM ES ID.EM F1

Zero-Shot 10.00 57.20 10.00 44.39 0 16.00 67.20 20.00 56.82 0 12.00 65.44 18.00 53.18
CCFinder-1 20.00 66.32 30.00 57.12 0 38.00 74.80 46.00 69.36 4 34.00 76.24 46.00 72.31
RG-1 14.00 54.06 20.00 43.06 9 12.00 35.20 18.00 22.30 34 20.00 74.36 38.00 70.08
RepoCoder 18.00 63.44 22.00 57.13 1 34.00 73.18 40.00 65.07 7 26.00 72.48 42.00 68.99
DRACO 24.00 67.54 30.00 58.08 0 42.00 76.58 50.00 72.36 5 38.00 77.84 52.00 77.73

Table 7: Performance comparison on the sampled CrossCodeEval dataset. “WOF” is a manual count indicating the
number of predictions with wrong output format, such as “The last line of the code should be:”.

5.4 Analysis of Prompt Scopes

The prompts generated by DRACO consist of the
definitions of code entities, which provide options
for the definition and complete scopes, as described
in Section 3.4. We further conduct experiments to
evaluate the influence of the two prompt scopes.
The results on the CrossCodeEval and ReccEval
datasets are shown in Figures 3 and 6, respectively.

DRACO with the complete scope achieves the
best performance across all settings, which indi-
cates that code implementation can further enhance
LMs. Implementation details can provide a deeper
understanding of code entities, along with the pro-
gramming styles. Moreover, DRACO with the def-
inition scope outperforms CCFinder and RG-1 in
most settings (cf. Tables 3 and 4), suggesting that
the definitions without specific implementations
are also useful for code LMs. Since an implemen-
tation is usually much longer than its definitions,
both prompt scopes are optional in practical appli-
cations, in a trade-off between accuracy and cost.

5.5 Analysis of Adapted LM

We analyze the effect of different maximum input
lengths for different types of LMs. Specifically,
we evaluate Code Llama-7B and StarCoder-15.5B
with 2K, 4K, and 8K tokens. The performance
changes are shown in Figure 4, and the complete
results are presented in Tables 18–21.

With the increase of the maximum input length,
the accuracy of DRACO applied to Code Llama
decreases, which shows the opposite trend of the
StarCoder model. Code Llama is created by further
training Llama 2 on its code-specific datasets. It is

Zero-Shot CCFinder-1 RG-1 RepoCoder DraCo

45

50

55

60

65

2K 4K 8K

F1

Maximum input length

5

15

25

35

2K 4K 8K

EM

Maximum input length

45

55

65

75

2K 4K 8K

F1

Maximum input length

(a) Code Llama

(b) StarCoder

5

10

15

20

25

30

2K 4K 8K

EM

Maximum input length

Figure 4: Performance changes with different maximum
input lengths on the CrossCodeEval dataset.

different from specialized code LMs such as Star-
Coder which are mainly pre-trained on code cor-
pora. With similar background knowledge, Code
Llama-7B does not have enough capability to cap-
ture data dependency relations in long Python code,
leading to the degraded accuracy of DRACO. In
contrast, specialized code LMs can understand
longer code context and may be a better choice
for repository-level code completion.

5.6 Analysis of GPT Models

We randomly sample 50 examples from Cross-
CodeEval and evaluate them with GPT-3.5, GPT-
4, and StarCoder-15.5B. The results shown in Ta-
ble 7 reveal that: (i) DRACO can also significantly
enhance GPT models and achieve superior accu-
racy. (ii) Code completion with GPT models suf-
fers from the difficulties in output format and API

7964

cost. Given the long context of repository-level
code completion, there lacks sufficient length to
place the demonstrations required for in-context
learning (Brown et al., 2020). It is hard to control
the output format of GPT models through instruc-
tion, which may introduce bias into the evaluation,
especially for RG-1 with GPT-4. Moreover, the
API cost for this evaluation (only 50 examples) is
nearly 35 US dollars. (iii) Excluding the effect of
wrong output format, we may assume “GPT-4 >
StarCoder-15.5B > GPT-3.5” for this task.

6 Conclusions

This paper proposes DRACO, a dataflow-guided
retrieval augmentation approach for repository-
level code completion. To guide more precise re-
trieval, an extended dataflow analysis is designed
by setting type-sensitive data dependency relations.
DRACO indexes private repositories to form repo-
specific context graphs and retrieves relevant back-
ground knowledge from them, which is assembled
with the unfinished code to generate well-formed
prompts for querying code LMs. The experiments
on the CrossCodeEval dataset and our ReccEval
dataset demonstrate the superior accuracy and ap-
plicable efficiency of DRACO. In future work, we
will explore other structured code representations.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. This work was supported by the
National Natural Science Foundation of China (No.
62272219) and the Collaborative Innovation Center
of Novel Software Technology & Industrialization.

Ethical Considerations

The code generated by pre-trained LMs may con-
tain non-existent APIs or even introduce potential
bugs. The retrieval-augmented approaches includ-
ing ours mitigate this issue only to some extent. We
recommend presenting our retrieved background
knowledge to programmers for review and taking
appropriate care of these risks if deploying our ap-
proach in real-world applications.

All the datasets and code LMs used in this work
are publicly available with permissive licenses. The
CrossCodeEval dataset and CodeGen family are
licensed under the Apache-2.0 License. The San-
taCoder and StarCoder models are licensed under
the BigCode OpenRAIL-M v1 license agreement.

Code Llama is governed by the Meta license.2 The
repositories in our ReccEval dataset are all licensed
under permissive licenses including MIT, Apache,
and BSD licenses.

Limitations

DRACO relies on a code LM to support long in-
puts and capture data dependency relations in the
provided background knowledge. Thus, the perfor-
mance of DRACO may be limited by the capability
of the code LM. According to our experiments,
DRACO still has a considerable improvement on
the smallest CodeGen-350M model with 2K tokens,
which mitigates this limitation.

The effectiveness of DRACO may degrade when
the code intent is unclear. For new line or function
body completion, the guidance of dataflow analysis
is weakened since DRACO may not be able to set
priorities for import information. We focus on the
code completion of currently edited line and eval-
uate multi-line code completion in Appendix D.4.
Future work may explore the role of dataflow anal-
ysis in different completion scenarios.

DRACO requires changes to migrate to other pro-
gramming languages. Our idea of guiding retrieval
with dataflow analysis is not limited to Python.
However, due to the different characteristics of
programming languages, DRACO needs to extend
dataflow analysis for target languages. The variety
of static analysis tools for common programming
languages provides convenience for implementing
multilingual DRACO.

References

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023.
SantaCoder: don’t reach for the stars! CoRR,
2301.03988:1–35.

2https://github.com/facebookresearch/llama/
blob/main/LICENSE

7965

https://github.com/facebookresearch/llama/blob/main/LICENSE
https://github.com/facebookresearch/llama/blob/main/LICENSE

Shraddha Barke, Michael B. James, and Nadia Polikar-
pova. 2023. Grounded Copilot: How programmers
interact with code-generating models. Proc. ACM
Program. Lang., 7(OOPSLA1):85–111.

Tom O. Barnett and Larry L. Constantine. 1968. Mod-
ular Programming: Proceedings of a National Sym-
posium. Information & Systems Institute, Leipzig,
Germany.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS, pages 1877–1901, Virtual.

Deng Cai, Yan Wang, Lemao Liu, and Shuming Shi.
2022. Recent advances in retrieval-augmented text
generation. In SIGIR, pages 3417–3419, Madrid,
Spain. ACM.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
2107.03374:1–35.

Arghavan Moradi Dakhel, Vahid Majdinasab, Amin
Nikanjam, Foutse Khomh, Michel C. Desmarais, and
Zhen Ming (Jack) Jiang. 2023. GitHub Copilot AI
pair programmer: Asset or liability? J. Syst. Softw.,
203:111734.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han-
tian Ding, Ming Tan, Nihal Jain, Murali Krishna Ra-
manathan, Ramesh Nallapati, Parminder Bhatia, Dan
Roth, and Bing Xiang. 2023. CrossCodeEval: A di-
verse and multilingual benchmark for cross-file code
completion. In NeurIPS, pages 1–23, New Orleans,
LA, USA.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Parmin-
der Bhatia, Dan Roth, and Bing Xiang. 2024. Co-
CoMIC: Code completion by jointly modeling in-
file and cross-file context. In COLING, pages 3433–
3445, Torino, Italy. ELRA and ICCL.

Zhangyin Feng, Weitao Ma, Weijiang Yu, Lei Huang,
Haotian Wang, Qianglong Chen, Weihua Peng, Xi-
aocheng Feng, Bing Qin, and Ting Liu. 2023. Trends
in integration of knowledge and large language mod-
els: A survey and taxonomy of methods, benchmarks,
and applications. CoRR, 2311.05876:1–22.

Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and
Percy Liang. 2018. A retrieve-and-edit framework
for predicting structured outputs. In NeurIPS, pages
10073–10083, Montréal, Canada.

Xincheng He, Lei Xu, Xiangyu Zhang, Rui Hao, Yang
Feng, and Baowen Xu. 2021. PyART: Python API
recommendation in real-time. In ICSE, pages 1634–
1645, Madrid, Spain. IEEE.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel,
and Premkumar T. Devanbu. 2012. On the natural-
ness of software. In ICSE, pages 837–847, Zurich,
Switzerland. IEEE.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet challenge: Evaluating the state of seman-
tic code search. CoRR, 1909.09436:1–6.

Maliheh Izadi, Roberta Gismondi, and Georgios
Gousios. 2022. CodeFill: Multi-token code com-
pletion by jointly learning from structure and naming
sequences. In ICSE, pages 401–412, Pittsburgh, PA,
USA. ACM.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma,
Barbara J. Ericson, David Weintrop, and Tovi Gross-
man. 2023. Studying the effect of AI code generators
on supporting novice learners in introductory pro-
gramming. In CHI, pages 455:1–455:23, Hamburg,
Germany. ACM.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish
Chandra. 2021. Code prediction by feeding trees
to transformers. In ICSE, pages 150–162, Madrid,
Spain. IEEE.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI,
Chenghao Mou, Yacine Jernite, Margaret Mitchell,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro Von Werra, and Harm
de Vries. 2023. The Stack: 3 TB of permissively
licensed source code. TMLR.

7966

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu-Hong Hoi. 2022. CodeRL:
Mastering code generation through pretrained models
and deep reinforcement learning. In NeurIPS, pages
1–15, New Orleans, LA, USA. Curran Associates
Inc.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes,
Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher
Lieber, Barak Lenz, Shai Shalev-Shwartz, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2022. Standing on the shoulders of giant frozen lan-
guage models. CoRR, 2204.10019:1–19.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS, pages
9459–9474, Virtual.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and
Zhi Jin. 2024. EvoCodeBench: An evolving code
generation benchmark aligned with real-world code
repositories. CoRR, 2404.00599:1–15.

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin.
2023a. AceCoder: Utilizing existing code to enhance
code generation. CoRR, 2303.17780:1–12.

Jian Li, Yue Wang, Michael R. Lyu, and Irwin King.
2018. Code completion with neural attention and
pointer networks. In IJCAI, pages 4159–4165, Stock-
holm, Sweden. ijcai.org.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia LI, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier,
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-
son T Stillerman, Siva Sankalp Patel, Dmitry Ab-
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav
Timor, Jennifer Ding, Claire S Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha,
Leandro Von Werra, and Harm de Vries. 2023b. Star-
Coder: may the source be with you! TMLR.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. TACL, 12:157—-173.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2021. Retrieval-augmented generation
for code summarization via hybrid GNN. In ICLR,
Virtual. OpenReview.net.

Tianyang Liu, Canwen Xu, and Julian J. McAuley.
2024b. RepoBench: Benchmarking repository-level
code auto-completion systems. In ICLR, Vienna,
Austria. OpenReview.net.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng,
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and Jie
Tang. 2023. WebGLM: Towards an efficient web-
enhanced question answering system with human
preferences. In KDD, pages 4549–4560, Long Beach,
CA, USA. ACM.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won
Hwang, and Alexey Svyatkovskiy. 2022. ReACC:
A retrieval-augmented code completion framework.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6227–6240, Dublin, Ireland.
Association for Computational Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. CodeXGLUE: A machine learning benchmark
dataset for code understanding and generation. In
NeurIPS, pages 1–16, Virtual. Curran Associates, Inc.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802–9822, Toronto,
Canada. Association for Computational Linguistics.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff
Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William
Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight,
Benjamin Chess, and John Schulman. 2021. We-
bGPT: Browser-assisted question-answering with hu-
man feedback. CoRR, 2112.09332:1–32.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023a. CodeGen2:
Lessons for training LLMs on programming and nat-
ural languages. CoRR, 2305.02309:1–12.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023b. CodeGen: An open large language
model for code with multi-turn program synthesis.
In ICLR, Kigali, Rwanda. OpenReview.net.

OpenAI. 2023. GPT-4 technical report.
https://cdn.openai.com/papers/gpt-4.pdf.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke

7967

https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546

Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS, volume 35,
pages 27730–27744. Curran Associates, Inc.

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval
augmented code generation and summarization. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2719–2734, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Hengzhi Pei, Jinman Zhao, Leonard Lausen, Sheng Zha,
and George Karypis. 2023. Better context makes bet-
ter code language models: A case study on function
call argument completion. In AAAI, pages 5230–
5238, Washington, DC, USA. AAAI Press.

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David
Lo, Qirun Zhang, and Michael R. Lyu. 2022. Static
inference meets deep learning: A hybrid type infer-
ence approach for Python. In ICSE, pages 2019–
2030, Pittsburgh, PA, USA. ACM.

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenx-
uan Wang, Cuiyun Gao, and Michael R. Lyu. 2023.
Revisiting, benchmarking and exploring API recom-
mendation: How far are we? IEEE Trans. Softw.,
49(4):1876–1897.

Sebastian Proksch, Johannes Lerch, and Mira Mezini.
2015. Intelligent code completion with Bayesian net-
works. ACM Trans. Softw. Eng. Methodol., 25(1):3:1–
3:31.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. TACL, 11:1316–1331.

Veselin Raychev, Pavol Bielik, and Martin T. Vechev.
2016. Probabilistic model for code with decision
trees. In OOPSLA, pages 731–747, Amsterdam, The
Netherlands. ACM.

Veselin Raychev, Martin T. Vechev, and Eran Yahav.
2014. Code completion with statistical language
models. ACM SIGPLAN Notices, 49(6):419–428.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: BM25 and beyond.
Foundations and Trends® in Information Retrieval,
3(4):333–389.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code Llama: Open foundation models for
code. CoRR, 2308.12950:1–48.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang
Wang. 2023. PanGu-Coder2: Boosting large lan-
guage models for code with ranking feedback. CoRR,
2307.14936:1–15.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. REPLUG: Retrieval-augmented
black-box language models. CoRR, 2301.12652:1–
12.

Disha Shrivastava, Denis Kocetkov, Harm de Vries,
Dzmitry Bahdanau, and Torsten Scholak. 2023a. Re-
poFusion: Training code models to understand your
repository. CoRR, 2306.10998:1–15.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow.
2023b. Repository-level prompt generation for large
language models of code. In ICML, pages 31693–
31715, Honolulu, HI, USA. PMLR.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and
Denny Zhou. 2023. Recitation-augmented language
models. In ICLR, Kigali, Rwanda. OpenReview.net.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel
Sundaresan. 2019. Pythia: AI-assisted code comple-
tion system. In KDD, pages 2727–2735, Anchorage,
AK, USA. ACM.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, 2307.09288:1–77.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 10014–10037, Toronto, Canada. Association
for Computational Linguistics.

7968

https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557

Rosalia Tufano, Luca Pascarella, and Gabriele Bavota.
2023. Automating code-related tasks through trans-
formers: The impact of pre-training. In ICSE, pages
2425–2437, Melbourne, Australia. IEEE.

Łukasz Langa Guido van Rossum and Jukka
Lehtosalo. 2022. PEP 484 – type hints.
https://peps.python.org/pep-0484/.

Chaozheng Wang, Junhao Hu, Cuiyun Gao, Yu Jin, Tao
Xie, Hailiang Huang, Zhenyu Lei, and Yuetang Deng.
2023. How practitioners expect code completion?
In FSE, pages 1294–1306, San Francisco, CA, USA.
ACM.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2024. CoderEval: A benchmark of prag-
matic code generation with generative pre-trained
models. In ICSE, pages 37:1–37:12, Lisbon, Portu-
gal. ACM.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate
rather than retrieve: Large language models are
strong context generators. In ICLR, Kigali, Rwanda.
OpenReview.net.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. RepoCoder: Repository-level
code completion through iterative retrieval and gen-
eration. In EMNLP, pages 2471–2484, Singapore.
Association for Computational Linguistics.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and
Xudong Liu. 2020. Retrieval-based neural source
code summarization. In ICSE, pages 1385–1397,
Seoul, South Korea. ACM.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
CodeGeeX: A pre-trained model for code generation
with multilingual benchmarking on HumanEval-X.
In KDD, pages 5673–5684, Long Beach, CA, USA.
ACM.

Ziyi Zhou, Huiqun Yu, Guisheng Fan, Zijie Huang,
and Kang Yang. 2023. Towards retrieval-based neu-
ral code summarization: A meta-learning approach.
IEEE Trans. Software Eng., 49(4):3008–3031.

A Dataflow Graph Construction

We first parse the Python code into an AST by tree-
sitter,3 which is feasible to parse incomplete code
snippets. Based on the AST, we extract variables as
the entity set and identify type-sensitive relations
as triplets, forming our DFG. The implementation
involves specific Python syntax features and is pre-
sented in our published code.

The type-sensitive relations are listed in Table 8.
We also introduce an example to visualize our DFG
construction, as shown in Figure 5. The extracted
variables include identifiers (e.g., newSignal) and
attributes (e.g., signal.getSignalByName). The
type-sensitive relations are identified as described
in Section 3.1. For example, the parameter signal:
RecordSignal indicates a triplet (RecordSignal,
Typeof, signal). The assignment statement forms
a triplet (signal.getSignalByName, Assigns,
newSignal), and the parameter newChannelName
is a type-insensitive relation pruned in our DFG.

B Generation of Background Knowledge

Algorithms 1 and 2 describe the generation pro-
cess of the relevant background knowledge (Sec-
tion 3.4), where the time complexities areO(|Eo|×
(|M |+ |P |)) and O(|M |+ |P |), respectively.

C Details of Experiment Setup

C.1 Details of Dataset Construction
We collect the projects that are first released on
PyPI between 2023-01-01 to 2023-04-28, which
is after the releases of pre-training corpora (Hu-
sain et al., 2019; Chen et al., 2021; Kocetkov et al.,
2023). We pick the projects with permissive li-
censes (i.e., MIT, Apache, and BSD) and filter
out those that have fewer than 6 or more than 100
Python code files. We identify the usages of local
imported resources and randomly select a subse-
quent token as the cursor position. The context
before the cursor is the input, while the current line
after the cursor is the reference. For the diversity
of ReccEval, we limit the maximum number of
examples to one per code file and 10 per reposi-
tory. Moreover, we ensure that the reference is not
in the unfinished code and feed the examples to
StarCoderBase-1B model (Li et al., 2023b) to re-
move the exact matches (Ding et al., 2023), which
excludes strong clues in the unfinished code to
make ReccEval more challenging.

3https://github.com/tree-sitter/tree-sitter

7969

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://aclanthology.org/2023.emnlp-main.151
https://aclanthology.org/2023.emnlp-main.151
https://aclanthology.org/2023.emnlp-main.151
https://github.com/tree-sitter/tree-sitter

Relations Examples Triplets

assigns v = u (u, assigns, v)
as with f() as v (f, as, v)
refers u.v (u, refers, u.v)
typeof def f() -> v (v, typeof, f)
inherits class v(u) (u, inherits, v)

Table 8: Illustrations of type-sensitive relations.

T

(golemgpt.memory, BaseMemory)

self.memory 9

self.memory 6 memory 6

memory 5BaseMemory 5

BaseMemory 1

A

T
CF

CF

CF

newSignal 4

newSignal 3

signal.getSignalByName 3

signal 2 RecordSignal 2

RecordSignal 1

CF

RecordSignal
RecordSignal.getSignalByName
...

A

CF

CF

Figure 5: An example of our DFG, which corresponds to
the unfinished code in Figure 1. The numbers labeled in
the DFG correspond to the line numbers of the variables.
The labels on the edges are the initials of the relation
names defined in Section 3.1.

C.2 Implementation Details of Baselines

We describe more implementation details of
CCFinder, RG-1, and RepoCoder, which are in
line with the experiment setup in their papers:

• CCFinder. Because CCFinder is not open
source, we reproduce it according to its paper.
We do not limit the number of retrieved code
entities, as the cross-file context would be trun-
cated if it exceeds the maximum length. We
also re-order the retrieved entities, ensuring
the entities from the same source file follow
the original code order.

• RG-1 and RepoCoder. In our experiments,
we use a sparse bag-of-words model as their
retriever, which calculates text similarity us-
ing the Jaccard index and achieves equivalent
performance to the dense retriever. The line
length of the sliding window and the sliding
size are set to 20 and 10, respectively. Accord-
ing to the maximum input length of code LMs,
the maximum number of the retrieved code
snippets in prompts is set to 40 for the Star-
Coder model and 10 for other models. The
number of iterations of RepoCoder is set to 2.

C.3 Details of Used LMs

We categorize the used LMs into specialized code
LMs, adapted code LMs, and GPT models. The

Algorithm 1: Generate_BK(Er, Eo, n)

Input: the relevant import entities Er, other
import entities Eo, and the number
of allocated tokens n

Output: background knowledge bk
// the primary background knowledge

1 Ec ← Er;
2 bk ← Organize_BK(Ec);
3 foreach e ∈ Eo do
4 Append e to Ec;
5 temp← Organize_BK(Ec);
6 if Length(temp) ≤ n then

// as many entities as possible

7 bk ← temp;

8 else
// prevents the primary background

knowledge from being truncated

9 break;

10 if Length(bk) > n then
11 bk ← the first n tokens of bk;

12 return bk

details are listed as follows:
• CodeGen (Nijkamp et al., 2023a,b) is a family

of auto-regressive LMs for program synthesis.
We use the CodeGen2.5 model with 7B pa-
rameters and the CodeGen models with 350M,
2.7B, 6.1B, and 16.1B parameters, which sup-
port a maximum context length of 2,048 (2K)
tokens. We use their mono versions, which are
further trained on additional Python tokens.

• SantaCoder (Allal et al., 2023) is a code
model with 1.1B parameters, which supports
a maximum context length of 2K tokens.

• StarCoder (Li et al., 2023b) is a 15.5B model
trained on 80+ programming languages and
further trained on Python, which supports a
maximum context length of 8K tokens.

• Code Llama (Rozière et al., 2023) is created
by further training Llama 2 (Touvron et al.,
2023) on its code-specific datasets, which sup-
ports a maximum context length of 16k tokens.
Considering GPU member and efficiency, we
chose the 7B Python specialist version named
CodeLlama-7b-Python-hf and limit the maxi-
mum context length to 8K tokens.

• GPT models (Ouyang et al., 2022; OpenAI,
2023) are commercial black box models re-
leased by OpenAI. The used API of GPT-3.5

7970

Algorithm 2: Organize_BK(Ec)

Input: the ordered import entities Ec

Output: background knowledge bk
// let Gm = (M,P), where M is the

vertex set, and P is the edge set

1 Gm ← retrieve all dependent entities of Ec

and group them in modules;
2 Me ← the corresponding modules of Ec;
// set the priorities of modules M

3 Initialize an empty dictionary priorities;
4 rank ← 1;
5 foreach m ∈Me do

// priorities ii

6 priorities[m]← rank;
7 rank ← rank + 1;

8 Md ←M −Me;
// details omitted: pass priorities from

Me to the dependent modules Md

9 ∀m ∈Md, priorities[m]← the minimum
priority of the direct predecessors of m;

// priority i: pseudo-topological sort

10 Initialize an empty list Ms;
11 while M is not empty do
12 Mc ← the candidate modules with the

least direct predecessors in Gm;
// alphabetical order for equality

13 m← the module m ∈Mc with the
maximum priorities[m];

14 Pop m from M and append it to Ms;

15 bk ← combine all modules in the reverse
order of Ms;

16 return bk

is gpt-3.5-turbo-0613 with a maximum con-
text length of 4K tokens. The used API of
GPT-4 is gpt-4-0613 with a maximum context
length of 8K tokens.

The analysis experiments with Code LLama
and GPT models may suffer from data leakage
issues. As mentioned in Appendix C.1, both Cross-
CodeEval and our ReccEval devote effort to col-
lecting projects (e.g., released between 2023-01-01
to 2023-04-28 for ReccEval) that are not in pre-
training corpora. However, Code Llama is trained
on unknown datasets between January 2023 and
July 2023, and the training data of GPT models is
unknown and updated.

We set the temperature of these LMs as 0 to
obtain deterministic results. The maximum genera-
tion length is set to 48 tokens, which is long enough

to accomplish line completions. An exception is
RG-1, which asks LMs to generate 100 tokens since
RepoCoder requires sufficient content for further re-
trieval. We run StarCoder-15.5B, CodeGen-16.1B,
and Code Llama-7B on an NVIDIA A800 with
80GB memory and run other LMs on an NVIDIA
GeForce RTX 4090 with 24GB memory.

The instruction of GPT models is “You are a
Python expert. Please complete the last line of the
following Python code:”. For RG-1, the instruction
is “You are a Python expert. Please complete the
following Python code:”. We set line feed as the
stop token of LM generation, except for RG-1 (still
100 tokens).

C.4 Details of Evaluation Metrics

• Code match. Given a prediction y and the ref-
erence y∗, we assess y using the exact match
accuracy (EM) and the Levenshtein edit sim-
ilarity (ES) (Lu et al., 2021; Zhang et al.,
2023). EM is calculated by an indicator func-
tion whose value is 1 if y = y∗; otherwise, it
is 0. ES = 1− Lev(y,y∗)

max(||y||,||y∗||) , where || · || cal-
culates the string length and Lev() calculates
the Levenshtein distance.

• Identifier match. Identifier exact match
(ID.EM) and F1-score test the model’s ability
to predict the correct APIs (Ding et al., 2023).
We parse the code to extract the identifiers
from y and y∗ and get two ordered identifier
lists. ID.EM is calculated by an indicator func-
tion whose value is 1 if their elements are the
same and in the same order; otherwise, it is
0. Then, we transform the lists into two sets
(without repeated elements and unordered),
which can be used to calculate the precision,
recall, and F1-score, where F1-score is a com-
bination of precision and recall.

• Prompt generation time. To evaluate the ef-
ficiency of code completion, we record the
prompt generation time, which contains the
time to retrieve relevant context and the time
to assemble final prompts. Note that we ig-
nore the time spent by code LMs in generating
predictions, which is determined by the used
LMs rather than the methods.

D Additional Evaluation

D.1 More Performance Comparison Results

Beyond the experimental results of the main pa-
per, we show additional evaluation results of other

7971

Methods
CodeGen-2.7B CodeGen-6.1B CodeGen-16.1B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 5.44 57.85 11.71 42.22 6.57 59.01 13.13 44.11 7.05 59.88 13.88 45.27
CCFinder-1 14.30 63.18 22.51 51.28 16.21 65.00 24.58 53.70 17.19 65.57 26.19 55.36
CCFinder-2 11.41 61.74 19.47 48.92 13.21 63.23 21.39 51.17 14.15 63.89 22.59 52.17
RG-1 12.68 63.87 21.58 51.89 14.82 65.12 23.53 53.54 15.27 65.87 24.65 54.76
RepoCoder 14.07 65.12 23.90 53.33 15.87 66.74 26.15 55.80 17.04 67.69 27.62 57.36
DRACO 18.99 65.52 27.50 55.07 22.36 68.06 31.37 58.60 22.78 68.09 32.08 59.40

Table 9: Performance comparison on the CrossCodeEval dataset using other CodeGen models (cf. Table 3).

Methods
CodeGen-2.7B CodeGen-6.1B CodeGen-16.1B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 6.73 53.30 13.05 30.65 8.34 54.77 14.64 32.60 10.12 55.84 16.50 34.17
CCFinder-1 20.38 60.80 28.12 44.83 23.56 63.07 31.56 47.90 24.64 64.17 32.66 49.28
CCFinder-2 17.21 59.13 24.32 41.58 19.66 60.77 26.93 43.73 20.83 61.85 28.25 45.11
RG-1 24.49 63.12 31.34 46.51 25.86 64.75 32.66 48.37 27.97 66.18 35.07 50.37
RepoCoder 27.84 65.07 35.13 49.71 29.45 66.62 36.71 51.67 31.73 67.94 38.96 53.64
DRACO 29.42 65.91 37.63 53.69 32.05 67.93 40.83 56.80 33.76 69.20 42.38 58.38

Table 10: Performance comparison on the ReccEval dataset using other CodeGen models (cf. Table 4).

Methods Models CrossCodeEval ReccEval

CCFinder All 74 68

RG-1 &
RepoCoder

CodeGen 227 217
SantaCoder 245 221
CodeGen25 349 339
StarCoder 211 186

DRACO All 54 61

Table 11: Preprocessing time (in milliseconds) for the
repositories in CrossCodeEval and ReccEval.

CodeGen models in Tables 9 and 10. The addi-
tional results show consistent conclusions on per-
formance comparisons in the main paper. Under
the same architecture of the CodeGen-* models,
the performance of all methods improves as the
model parameters increase. Moreover, the improve-
ment of DRACO for zero-shot code LMs increases
as the model’s capability grows. It indicates that
stronger LMs can better utilize the relevant back-
ground knowledge retrieved by DRACO.

D.2 More Efficiency Evaluation Results

We also record the time spent on indexing the
repositories of CrossCodeEval and ReccEval, as
shown in Table 11. It is an offline preprocessing in
RAG, which indicates the time required to activate
a method. CCFinder and DRACO build retrieval
databases by statically parsing code files, which are
independent of the used code LMs. RG-1 and Re-

poCoder need to tokenize the code snippets within
a sliding window, which requires the tokenizers of
used LMs. Note that the tokenizers of CodeGen-*
models are the same. DRACO is 3–6 times faster
than RepoCoder in preprocessing time. As the size
of the repository increases, the preprocessing time
grows linearly. Therefore, RG-1 and RepoCoder
may suffer from scalability challenges.

The prompt generation time of each method us-
ing other code LMs is shown in Tables 12 and 13,
which show consistent conclusions with the main
paper. For the methods with one retrieval, only the
tokenizers have a subtle effect on efficiency when
different models are employed. As a result, the
prompt generation time using different CodeGen-*
models is the same for CCFinder, RG-1, as well as
DRACO. RepoCoder relies on RG-1 to generate
sufficient content for the second retrieval, where the
efficiency mainly depends on the generation time of
code LMs. In general, the generation efficiency of
RepoCoder decreases as the model parameters in-
crease. Its average prompt generation time is more
than 3 seconds on the most efficient SantaCoder
model, which far exceeds the time spent by other
retrieval-augmented methods. Note that the archi-
tectures of code LMs also matter in efficiency, e.g.,
SantaCoder-1.1B is faster than CodeGen-350M.
The A800 GPU used to run the StarCoder-15.5B
and CodeGen-16.1B models is superior to the RTX
4090 GPU used for the other models, so these are

7972

Methods
SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

CrossCodeEval ReccEval CrossCodeEval ReccEval CrossCodeEval ReccEval

CCFinder-1 30 52 23 34 26 45
CCFinder-2 47 72 37 51 42 66
RG-1 15 15 18 20 12 15
RepoCoder 3,075 3,184 5,249 4,772 4,746 4,675
DRACO 35 42 32 36 60 77

Table 12: Prompt generation time (in milliseconds) of each method using SantaCoder, CodeGen25, and StarCoder
models (cf. Table 5).

Methods
CodeGen-2.7B CodeGen-6.1B CodeGen-16.1B

CrossCodeEval ReccEval CrossCodeEval ReccEval CrossCodeEval ReccEval

CCFinder-1 32 49 32 49 32 49
CCFinder-2 52 82 52 82 52 82
RG-1 14 15 19 14 12 13
RepoCoder 6,933 5,779 7,543 6,236 7,289 7,137
DRACO 40 44 40 44 40 44

Table 13: Prompt generation time (in milliseconds) of each method using other CodeGen models (cf. Table 5).

not head-to-head comparisons for RepoCoder.

D.3 Effect of Other Import Statements
As described in Section 3.4, DRACO includes as
many other import statements that are not directly
relevant as possible. To analyze the effect of other
import statements, we implement a variant of
DRACO for comparison, which adds the entities
from other local import statements only when the
primary prompt is empty. The experimental re-
sults are shown in Table 14. DRACO consistently
outperforms this variant, especially on StarCoder-
15.5B, which has capability to understand longer
code context.

58.70

66.02

70.21

74.12

60.41

66.90

70.76

76.80

52

56

60

64

68

72

76

80

CodeGen SantaCoder CodeGen25 StarCoder

ES

Definition
Complete

26.37

37.97

43.68

51.11

29.73

39.08

44.67

55.98

20

28

36

44

52

60

CodeGen SantaCoder CodeGen25 StarCoder

ID
.E

M

Definition
Complete

19.10

29.39

35.26

41.59

22.12

30.26

36.46

46.49

14
18
22
26
30
34
38
42
46
50

CodeGen SantaCoder CodeGen25 StarCoder

EM

Definition
Complete

43.40

54.83

59.95

66.63

46.09

55.43

60.40

70.32

35

43

51

59

67

75

CodeGen SantaCoder CodeGen25 StarCoder

F1

Definition
Complete

Figure 6: Performance comparison of two prompt
scopes on the ReccEval dataset.

D.4 Evaluation of Multi-Line Completion
Although DRACO is designed for the code com-
pletion of currently edited line, it can help with

multi-line completion to some extent.

We begin by discussing the benchmarks with
multi-line completion targets in code repositories.
The input code of the function completion dataset
in RepoEval (Zhang et al., 2023) is truncated for
text similarity-based retrieval, which cannot be
parsed to get import information. Other bench-
marks (Yu et al., 2024; Li et al., 2024) are con-
structed for function-level code generation, which
aims to generate code based on natural language de-
scriptions, as distinct from code completion. Since
there is no available dataset for multi-line comple-
tion, we create a "multi-line" variant of the Cross-
CodeEval dataset (Ding et al., 2023) by expanding
the references to three non-empty lines. In ad-
dition to the baselines, we evaluate two variants
of DRACO including “w/o dataflow” as described
in Section 5.3 and “w/ steps”, which completes
the unfinished code line by line (i.e., three times
“retrieval-then-generation"). The maximum genera-
tion length of LMs is increased to 100 tokens.

The experimental results with SantaCoder and
CodeGen25 models shown in Table 15 reveal that:
(i) DRACO still delivers a significant improvement
to the zero-shot setting, and dataflow analysis plays
a positive role. As discussed in the Limitations sec-
tion, unclear code intent in multi-line completion
would hurt the accuracy and weaken the guidance
of dataflow analysis. (ii) RepoCoder iteratively re-
trieves similar code snippets in the repository to
narrow the gap with the intended completion target,
which is slightly better than DRACO but still strug-

7973

Settings
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

CrossCodeEval
DRACO 13.02 61.30 20.53 49.04 20.64 67.04 29.83 57.37 24.99 70.10 34.63 61.14 34.67 75.83 45.63 69.93
Variant 12.87 61.20 20.45 48.76 20.45 67.03 29.83 57.36 24.77 70.22 34.71 61.37 33.55 75.58 44.50 69.33

ReccEval
DRACO 22.12 60.41 29.73 46.09 30.26 66.90 39.08 55.43 36.46 70.76 44.67 60.40 46.49 76.80 55.98 70.32
Variant 21.34 60.01 29.05 45.57 29.36 66.36 38.04 54.67 35.51 70.18 43.82 59.52 44.47 75.67 53.92 68.89

Table 14: Performance comparison between DRACO and its variant (containing only the relevant import statements).

Methods
SantaCoder-1.1B CodeGen25-7B

EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 0.53 57.77 1.84 46.17 1.35 59.60 3.08 49.06
CCFinder-1 1.84 60.08 3.83 51.45 3.08 62.17 6.00 54.00
RG-1 2.59 61.49 5.03 52.11 3.79 63.67 6.94 55.45
RepoCoder 2.81 62.23 5.59 53.56 4.32 64.69 7.58 56.88
DRACO 3.23 61.26 5.85 53.56 4.13 63.62 7.54 56.47

w/o dataflow 2.40 60.23 4.69 51.40 3.41 62.46 6.15 54.19
w/ steps 0.34 48.29 1.28 36.05 3.94 62.37 7.02 55.70

Table 15: Performance comparison on the "multi-line"
variant of the CrossCodeEval dataset.

Methods Predictions ES

Zero-Shot channel = newChannelName 24
CCFinder-1 type = Signal.getType(channelType) 53
CCFinder-2 type = Signal.getType(channelType) 53
RG-1 type = channelType 36
RepoCoder signal = newSignal.signal.astype(channelType) 45
DRACO setSignalTypeFromTypeStr() 100

Ground truth setSignalTypeFromTypeStr() -

Table 16: The example prediction of each method using
the CodeGen25-7B model.

gles with multi-line code completion. (iii) Com-
pleting line by line is not as effective as complet-
ing it all at once. The intermediate generated line
may not point to cross-file imports in the dataflow,
which would weaken the relevance of the retrieved
content. In addition, progressive completion may
lead to error accumulation. Note that the abnormal
results of “w/ step” with SantaCoder are attributed
to the model itself, which usually generates a com-
ment or another function definition when complet-
ing a new line.

Recent empirical studies have shown that the
completion of currently edited statement is more
commonly used and more acceptable (Barke et al.,
2023; Wang et al., 2023). In contrast, long and
multi-line suggestions are usually at best dismissed
out of hand and at worst distract the programmer
away from their flow. Based on this practical ev-
idence, we believe that our focus on single-line
code completion is meaningful and sufficient. Fu-
ture work could explore taking into account the
dynamic changes of dataflow during the decoding
process, e.g., automatically determining when it is
necessary to re-retrieve to update the prompt.

E Case Study

E.1 Prompt Examples

We show the prompts generated by each method for
the example unfinished code (see Figure 1). The
prompts are excerpted for viewing the individual
format, as shown in Figure 7. It can be observed
that the prompts generated by DRACO look like
natural code, which is in line with the training cor-
pora of code LMs. The prediction result of each
method using the CodeGen25-7B model is shown
in Table 16, and only our DRACO generates the
correct code line.

E.2 Study on Failed Cases

Despite the superior performance achieved by
DRACO, there are still many failed cases. Based
on our observations, they are caused by three major
reasons: (i) The definitions of completion targets
may be truncated. Even though the correct defi-
nition is retrieved through dataflow analysis, the
completion target may be truncated due to the lim-
ited input length, e.g., target member function in
a long class definition. (ii) The used code LMs
may be not powerful enough, which has already
been demonstrated in Section 5.5. It is crucial for
code LMs to capture data dependency relations
in the provided background knowledge, where the
prompts are usually long Python code. (iii) Unclear
code intent may lead to wrong generation, which
is a common sore point of code completion. For
example, completing the first line of a new function
is uncertain even to a programmer.

In Listings 1, 2, and 3, we show an example
of reasons (i) and (iii) from CrossCodeEval. The
ground truth is gen_begin_reuse(input_ids),
while the prediction of DRACO with CodeGen25
is in_beam_search = False. Although the mem-
ber function gen_begin_reuse is in the retrieved
background knowledge, it is truncated to be invis-
ible to LMs. Moreover, the comment # Start
generation is not clear enough for completion,
where both gen_begin and gen_begin_reuse
look like rational choices.

7974

'''
pyPhasesRecordloader.RecordSignal.RecordSignal
@classLogger
class RecordSignal:

pyPhasesRecordloader.RecordSignal.RecordSignal.__init__
def __init__(self, targetFrequency=200, recordId=None):

self.recordId = recordId
self.signals: List[Signal] = []
self.labelSignals = []
self.signalNames = []
self.targetFrequency = targetFrequency

pyPhasesRecordloader.RecordSignal.RecordSignal.getSignalByName
def getSignalByName(self, name) -> Signal:

index = self.getSignalIndexByName(name)
return self.signals[index]

...
'''

(a) CCFinder-*.

Here are some relevant code fragments from other files
of the repo:

--
the below code fragment can be found in:
pyPhasesRecordloader-0.3.12/pyPhasesRecordloader/RecordLoader.py
--
signalTypeStr = self.signalTypeDict[signalName]
else:
self.logError("Signal '%s' had no type when

initilizing the RecordLoader" % str(signalName))
signalTypeStr = "unknown"
return signalTypeStr

...
--
the below code fragment can be found in:
pyPhasesRecordloader-0.3.12/pyPhasesRecordloader/RecordSignal.py
...

(b) RepoCoder, same as RG-1.

'''
pyPhasesRecordloader/Signal.py
class Signal:

def __init__(
self, name="Unknown", signal: np.ndarray = None,
frequency=100, type=SignalType.UNKNOWN, typeStr="unknown"

) -> None:
self.name = name
self.signal = signal
self.frequency = frequency
self.type = type
self.typeStr = typeStr

def setSignalTypeFromTypeStr(self):
if self.typeStr in signalTypeDict:

self.type = signalTypeDict[self.typeStr]
else:

self.type = SignalType.UNKNOWN
...

'''

(c) Our DRACO.

'''
pyPhasesRecordloader/Signal.py
class Signal:

def __init__(
self, name="Unknown", signal: np.ndarray = None,
frequency=100, type=SignalType.UNKNOWN, typeStr="unknown"

) -> None:
self.name
self.signal
self.frequency
self.type
self.typeStr

def setSignalTypeFromTypeStr(self):
def getFilterCoefficients(self, tansitionWidth=15.0,

cutOffHz=30.0, rippleDB=40.0):
def bandpass(self, low, high, order=10):
def lowpass(self, value, order=10):
...

'''

(d) DRACO with the definition scope.

Figure 7: Excerpts of example prompts generated by different methods.

from model import ExLlama , ExLlamaCache ,
ExLlamaConfig

from lora import ExLlamaLora
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator
import model_init

generator: ExLlamaGenerator

def cached_tokenize(text: str):
...

def begin_stream (...):
global model , cache , config ,

generator , tokenizer

Settings
max_stop_string = 2
for ss in stop_strings:

...
generator.settings = gen_settings

Start generation
generator.

Listing 1: The unfinished code to be completed.

'''
generator.py
class ExLlamaGenerator:

class Settings:
temperature = 0.95
top_k = 40
top_p = 0.65
min_p = 0.0
typical = 0.0
token_repetition_penalty_max =

1.15
token_repetition_penalty_sustain

= 256
token_repetition_penalty_decay =

128
beams = 1
beam_length = 1

sequence: torch.Tensor or None
sequence_actual: torch.Tensor or

None
settings: Settings
beams: int or None
max_beam_length: int
in_beam_search: True
disallowed_tokens: list[int] or None
lora: ExLlamaLora or None
def __init__(self , model , tokenizer ,

cache):
self.model = model
self.tokenizer = tokenizer
self.cache = cache
self.reset ()
self.model = model
self.tokenizer = tokenizer
self.cache = cache

def reset(self):
...

def make_rep_mask(self , penalty_max ,
sustain , decay):
...

def batched_sample(self , logits ,
temperature , top_k , top_p , min_p
, typical , num = 1):
...

def sample_current(self , logits , num
= 1):
...

def sample(self , logits , temperature

7975

, top_k , top_p , min_p , typical ,
num = 1):
...

'''

Listing 2: The truncated background knowledge
retrieved by DRACO.

'''
generator.py
class ExLlamaGenerator:

class Settings:
...

sequence: torch.Tensor or None
sequence_actual: torch.Tensor or

None
settings: Settings
beams: int or None
max_beam_length: int
in_beam_search: True
disallowed_tokens: list[int] or None
lora: ExLlamaLora or None
def __init__(self , model , tokenizer ,

cache):
...

def reset(self):
...

def make_rep_mask(self , penalty_max ,
sustain , decay):
...

def batched_sample(self , logits ,
temperature , top_k , top_p , min_p
, typical , num = 1):
...

def sample_current(self , logits , num
= 1):
...

def sample(self , logits , temperature
, top_k , top_p , min_p , typical ,
num = 1):
...

def disallow_tokens(self , tokens):
...

def gen_begin(self , in_tokens , mask
= None):
...

def gen_begin_empty(self):
...

def gen_begin_reuse(self , in_tokens ,
mask = None):
self.end_beam_search ()
...

def gen_feed_tokens(self , in_tokens ,
mask = None):
...

def gen_accept_token(self , token):
...

def gen_rewind(self , num_tokens):
...

def gen_prune_right(self , tokens ,
mask = None):
...

def gen_prune_to(self ,
min_tokens_to_keep , token_id ,
mask = None):
...

def gen_prune_left(self , num_tokens ,
mask = None):
...

def gen_num_tokens(self):

...
def generate_simple(self , prompt ,

max_new_tokens = 128):
...

def apply_rep_penalty(self , logits):
...

def gen_single_token(self ,
constraints = None , mask = None)
:
...

class Beam:
...

def begin_beam_search(self):
...

def beam_search(self):
...

def end_beam_search(self):
if not self.in_beam_search:

return
self.in_beam_search = False

def replace_last_token(self , token ,
seq = False):
...

def sequence_ends_with(self , tokens)
:
...

'''

Listing 3: The complete background knowledge
retrieved by DRACO.

7976

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

DRACO 22.12 60.41 29.73 46.09 30.26 66.90 39.08 55.43 36.46 70.76 44.67 60.40 46.49 76.80 55.98 70.32
w/o cross_df 19.75 58.95 27.19 43.52 27.05 65.12 35.61 52.23 32.95 68.97 40.89 56.97 42.01 74.40 51.21 65.89
w/o intra_df 16.67 57.28 23.62 40.11 23.03 62.87 31.09 47.89 27.83 66.42 35.66 52.25 43.88 75.39 53.07 67.62
w/o dataflow 15.45 56.40 22.33 38.73 21.58 62.01 29.62 46.44 26.42 65.65 34.14 50.67 40.46 73.63 49.45 64.37

Table 17: Ablation study for dataflow analysis on the ReccEval dataset.

Methods
2K 4K 8K

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 9.49 61.97 16.44 47.36 9.76 62.17 16.70 47.51 9.61 62.14 16.59 47.51
CCFinder-1 17.11 66.28 26.02 55.34 18.12 66.99 27.17 56.54 17.79 67.28 27.05 56.65
RG-1 17.82 67.46 27.43 56.51 21.88 69.60 31.44 59.65 25.10 71.84 36.06 63.27
RepoCoder 19.10 68.96 29.83 58.77 24.24 71.29 35.01 62.39 28.29 73.51 39.44 65.24
DRACO 21.35 68.78 30.66 59.08 20.94 68.65 30.09 58.68 20.08 68.42 29.12 58.32

Table 18: Performance comparison of the Code Llama-7B model (with 2K, 4K, 8K maximum input lengths) on the
CrossCodeEval dataset.

Methods
2K 4K 8K

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 13.85 58.82 20.60 38.01 13.93 58.96 20.74 38.14 13.93 59.04 20.74 38.26
CCFinder-1 26.51 65.92 34.62 51.08 28.06 66.95 36.33 52.68 28.01 67.21 36.12 52.74
RG-1 30.55 67.90 37.78 52.66 36.64 71.15 44.44 58.22 41.65 73.95 49.64 63.05
RepoCoder 34.10 69.65 41.50 56.17 40.55 72.97 48.38 61.49 44.76 75.31 52.28 65.43
DRACO 31.54 68.87 40.02 56.26 33.25 69.68 42.02 58.06 30.04 68.06 38.26 54.58

Table 19: Performance comparison of the Code Llama-7B model (with 2K, 4K, 8K maximum input lengths) on the
ReccEval dataset.

Methods
2K 4K 8K

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 8.71 61.95 16.02 47.51 8.74 62.07 16.06 47.63 8.71 62.08 16.02 47.58
CCFinder-1 22.51 69.15 31.82 59.77 26.08 71.29 35.83 62.80 27.99 72.59 38.24 64.46
RG-1 18.31 68.25 28.37 57.27 21.69 70.50 31.97 60.53 26.27 72.70 37.00 64.04
RepoCoder 20.26 69.84 30.51 59.31 24.77 72.69 36.25 63.57 29.12 74.56 40.83 66.81
DRACO 28.78 72.39 38.72 64.90 32.80 74.89 43.49 68.42 34.67 75.83 45.63 69.93

Table 20: Performance comparison of the StarCoder-15.5B model (with 2K, 4K, 8K maximum input lengths) on the
CrossCodeEval dataset.

Methods
2K 4K 8K

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 12.55 58.65 19.72 37.89 12.85 58.80 20.03 38.14 12.77 58.84 20.03 38.12
CCFinder-1 30.69 68.35 39.13 55.32 36.19 71.13 44.70 60.21 39.33 73.05 48.18 63.49
RG-1 30.78 68.33 38.23 53.34 36.88 71.64 44.78 59.06 42.67 74.64 51.11 64.64
RepoCoder 34.62 70.39 42.41 56.94 40.35 73.32 48.26 62.37 46.26 76.44 54.47 67.59
DRACO 39.61 73.32 48.85 64.44 44.03 75.42 53.34 68.26 46.49 76.80 55.98 70.32

Table 21: Performance comparison of the StarCoder-15.5B model (with 2K, 4K, 8K maximum input lengths) on the
ReccEval dataset.

7977

