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Abstract

Most language model pre-training frameworks
concatenate multiple documents into fixed-
length sequences and use causal masking to
compute the likelihood of each token given its
context; this strategy is widely adopted due
to its simplicity and efficiency. However, to
this day, the influence of the pre-training se-
quence composition strategy on the generali-
sation properties of the model remains under-
explored. In this work, we find that apply-
ing causal masking can lead to the inclusion
of distracting information from previous doc-
uments during pre-training, which negatively
impacts the performance of the models on lan-
guage modelling and downstream tasks. In
intra-document causal masking, the likelihood
of each token is only conditioned on the previ-
ous tokens in the same document, eliminating
potential distracting information from previous
documents and significantly improving perfor-
mance. Furthermore, we find that concatenat-
ing related documents can reduce some poten-
tial distractions during pre-training, and our
proposed efficient retrieval-based sequence con-
struction method, BM25Chunk, can improve in-
context learning (+11.6%), knowledge memori-
sation (+9.8%), and context utilisation (+7.2%)
abilities of language models without sacrificing
efficiency.

1 Introduction

Large Language Models (LLMs) are pre-trained
on large amounts of documents by optimising a
language modelling objective and show an intrigu-
ing ability to solve a variety of downstream NLP
tasks (Brown et al., 2020; Biderman et al., 2023;
Touvron et al., 2023; Jiang et al., 2023). Previous
works emphasise the importance of pre-training
data quality (e.g., Gunasekar et al., 2023; Lee et al.,
2022; Tirumala et al., 2023; Soboleva et al., 2023)
and diversity (e.g., Xie et al., 2023; Gao et al., 2021;
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Kaddour, 2023) to improve the generalisation prop-
erties of language models. However, the influence
of the pre-training sequence composition strategy
remains largely under-explored.

For most decoder-only language model pre-
training pipelines (e.g., Shoeybi et al., 2019; Ott
et al., 2019; Brown et al., 2020; Biderman et al.,
2023; Geng, 2023; Liu et al., 2023b; Zhang et al.,
2024), constructing a pre-training instance involves
packing, which refers to the process of combin-
ing randomly sampled documents into a chunk that
matches the size of the context window; and causal
masking, which refers to predicting the next to-
ken conditioned on all previous tokens, including
those from different documents in the chunk. An
alternative to causal masking is intra-document
causal masking, where the likelihood of each to-
ken is conditioned on the previous tokens from the
same document; intra-document causal masking
is not commonly used in existing open-source pre-
training frameworks as it is argued to adversely
impact pre-training efficiency (Brown et al., 2020;
Pagliardini et al., 2023). However, to the best of
our knowledge, there is no systematic analysis in
the literature on how causal masking affects the
generalisation properties of models despite its role
in improving efficiency.

To analyse the impact of the packing and mask-
ing strategies on pre-training, we pre-train language
models using intra-document causal masking (re-
ferred to as INTRADoc, Section 2.2) and compare
them with models pre-trained via causal masking
with several packing strategies by varying the relat-
edness of the documents in the pre-training chunks.
Specifically, we analyse the results produced by a
commonly used baseline method that randomly
samples and packs documents (MIXChunk); a
method that samples and packs documents from
the same source based on their meta-information
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(UNIChunk); and our proposed efficient retrieval-
based packing method, which retrieves and packs
related documents (BM25Chunk, Section 2.1).

Our experimental results indicate that using
causal masking without considering the boundaries
of documents can lead to the inclusion of distract-
ing information from previous documents during
pre-training (Section 3 and Section 5.1), negatively
impacting the performance of the models in down-
stream tasks (Section 4). We observe that intra-
document causal masking, which eliminates the po-
tential distractions from irrelevant documents dur-
ing pre-training, can significantly improve the per-
formance of the model while increasing its runtime
(+4% in our implementation, see Appendix A).

We also find that improving the relatedness of
the documents in pre-training chunks can reduce
some potential distractions from previous docu-
ments (e.g., UNIChunk avoids packing documents
from different distributions, such as code and news
text), which can improve the performance of causal
masking models on a wide array of downstream
tasks. Finally, we show that our proposed efficient
retrieval-based packing method, BM25Chunk, can
improve a model’s language modelling (+6.8%),
in-context learning (+11.6%), knowledge memo-
risation (+9.8%), and context utilisation (+7.2%)
abilities using causal masking and thus without
sacrificing pre-training efficiency.

Our main contributions and findings can be sum-
marised as follows:
• We systematically analyse and compare the mod-

els pre-trained using causal masking and intra-
document causal masking; our experimental re-
sults reveal that using causal masking without
considering the boundaries of documents can re-
sult in significant performance degradation (Sec-
tion 3 and Section 4).

• We find that improving the relatedness of the doc-
uments in each pre-training chunk benefits causal
masking models, and our proposed efficient
retrieval-based packing method (BM25Chunk,
Section 2.1) can improve the performance of lan-
guage models significantly.

• We quantitatively analyse the attention distribu-
tion of the models during language modelling
(Section 5.1), and investigate the burstiness prop-
erty of pre-training chunks (Section 5.2); our find-
ings indicate that models can be more robust to
irrelevant contexts and obtain better performance
when improving the relatedness of documents in
pre-training chunks.

2 Packing and Masking Strategies for
Pre-Training Sequence Composition

In this section, we formally introduce the pre-
training data packing strategies, causal masking,
and intra-document causal masking.

2.1 Packing Strategies
Let Di represent a corpus, such as Wikipedia, C4,
or GitHub, and let D =

⋃
sDs denote the dataset

resulting from the union of such corpora. Fur-
thermore, each corpus Ds is defined as a set of
documents Ds = {d1, . . . , d|Ds|} , where each
document di is defined as a sequence of tokens
di =

(
x1, . . . , x|di|

)
.

A packing strategy involves first selecting a set
of documents {di}ni=1 from D, and then packing
them into a chunk C with a fixed length |C| = L.
Following Brown et al. (2020), we concatenate the
documents {di}ni=1 by interleaving them with end-
of-sentence ([EOS]) tokens to construct a chunk. A
packed sequence (or chunk) C is denoted as:

C = (d1[EOS]d2[EOS] . . . SPLIT(dn)), (1)

where [EOS] is the end-of-sentence token, SPLIT()
truncates the last document such that |C| = L,
and the content of the chunk C will be removed
from the dataset D to avoid sampling the same
documents multiple times.

In the following, we introduce three strategies
to sample the documents {di}ni=1 from the dataset
D for composing each pre-training chunk, namely
MIXChunk, UNIChunk, and BM25Chunk.

MIXChunk In MIXChunk (baseline), docu-
ments di ∈ D are sampled uniformly at random
from the entire pre-training corpus D:

di ∼ Uniform(D).

As a result, in MIXChunk, a chunk can contain
documents from different source datasets, e.g.,
Wikipedia and GitHub, as shown in Figure 1(a).

UNIChunk In UNIChunk, each chunk is com-
posed of documents from a single source corpus
Ds:

di ∼ Uniform(Ds), with Ds ⊆ D.

This helps to avoid packing documents from dif-
ferent distributions (such as code and news text)
together. To construct a training batch, we sample
sequences from each corpus Ds in proportion to
the number of tokens in Ds.

2
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(a) MIXChunk randomly samples documents from all corpora
to construct pre-training sequences, which can pack docu-
ments from different sources. UNIChunk randomly samples
documents from a single source to construct a sequence.

Document Buffer

doc-2

doc-1

Step-1: start from doc-1

doc-3

doc-1 doc-2

Step-2:  retrieve from 
the buffer using doc-1

Step-3:  return doc-2

Step-4:  retrieve from 
the buffer using doc-2

Step-5: return doc-3

BM25Chunk

Step-6: return the remaining
part to the buffer

(b) The sequence construction process in BM25Chunk. The
left part represents a document buffer that caches a set of
documents randomly sampled from the corpus.

Figure 1: Packing strategies for pre-training chunks con-
struction. (a) illustrates the compositions of MIXChunk
and UNIChunk; (b) presents the sequence construction
process of BM25Chunk.

BM25Chunk To improve the relevance of docu-
ments in pre-training chunks, we employ a BM25-
based retriever to construct pre-training chunks,
referred to as BM25Chunk. Specifically, given
a document di ∈ Ds, we retrieve a sequence of
documents {di}ni=1 by di+1 = RETRIEVE(di,Ds);
here, RETRIEVE(di,Ds) retrieves the most similar
documents to di from Ds based on BM25 scoring.

However, this retrieval process can be compu-
tationally inefficient due to the size of the pre-
training corpus Ds. To improve the efficiency of
the retrieval step, we restrict the retrieval scope
to a subset Bs ⊆ Ds of the corpus Ds, reducing
the computational complexity of retrieval; the pro-
posed approach is outlined in Figure 1(b). More
formally, we introduce a document buffer Bs ⊆ Ds

that contains k documents uniformly sampled from

Ds, which serves as the retrieval source for con-
structing pre-training chunks:

d1 ∼ Uniform(Bs), di+1 = RETRIEVE(di,Bs).

After retrieving a sequence of documents {di}ni=1

from the buffer Bs for constructing a chunk, we
refill the buffer by sampling new documents from
Ds. The time complexity analysis and more details
are presented in Appendix C.

2.2 Masking Strategies
Another core element of LLM pre-training is the
masking strategy, which determines how next-
token prediction distributions are conditioned on
other tokens in the sequence.

Causal Masking In causal masking, each token
in a sequence is predicted solely based on all pre-
ceding tokens in the sequence. More formally,
given a chunk C = (x1, . . . , x|C|) defined as in
Equation (1), the likelihood of C is given by:

P (C) =

|C|∏

i=1

P (xi | x1, . . . , xi−1),

where P (xi | x1, . . . , xi−1) denotes the proba-
bility of the token xi given all preceding tokens
x1, . . . , xi−1 in the chunk. During pre-training,
causal masking implies that, given a chunk C, the
probability of each token in C will be conditioned
on all preceding tokens, including those belong-
ing to different documents. Causal masking is the
standard practice when pre-training decoder-only
LLMs (e.g., Shoeybi et al., 2019; Brown et al.,
2020; Zhang et al., 2022; Biderman et al., 2023;
Geng, 2023; Liu et al., 2023b; Zhang et al., 2024).

Intra-Document Causal Masking In intra-
document causal masking, on the other hand, the
probability of each token is conditioned on the pre-
vious tokens within the same document. More for-
mally, given a chunk C defined as in Equation (1),
the probability of each token dij belonging to docu-
ment di is only conditioned on the preceding tokens
within di:

P (C) =

n∏

i=1

|di|∏

j

P
(
dij | di1, . . . , di(j−1)

)
.

We refer to models trained using intra-document
causal masking as INTRADoc. The details of our ef-
ficient implementation using FlashAttention (Dao,
2023) are available in Appendix A.
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L Model CommonCrawl C4 Wikipedia GitHub StackExchange Book ArXiv Avg.

2K

MIXChunk 13.284 13.884 6.811 5.531 8.051 11.623 5.203 9.172
UNIChunk 11.805 13.650 6.546 5.518 7.839 11.353 5.106 8.831↓0.341
BM25Chunk 11.418 13.677 6.237 4.585 7.623 11.253 5.059 8.550↓0.622
INTRADoc 11.631 13.197 6.084 4.252 7.535 11.130 5.030 8.410↓0.883

8K

MIXChunk 9.645 14.424 7.010 7.496 8.634 11.337 4.911 9.065
UNIChunk 9.478 14.190 6.897 7.006 8.456 11.117 4.812 8.851↓0.214
BM25Chunk 9.144 13.579 6.287 5.463 8.022 10.810 4.715 8.289↓0.776
INTRADoc 8.994 13.173 6.073 5.010 7.894 10.701 4.705 8.079↓0.986

Table 1: Evaluation of perplexity on SlimPajama’s test set. The best score is highlighted in bold, and the second best
is highlighted with an underline. L is the maximum length of the sequence for pre-training. Subscript ↓ presents the
PPL improvement over the baseline method MIXChunk. We report the results of next-token accuracy in Appendix F.

3 Language Model Pre-Training

3.1 Settings

Pre-Training Corpora In this work, we use
SlimPajama (Soboleva et al., 2023) as the pre-
training corpus, which consists of seven sub-
corpora, including CommonCrawl, C4, Wikipedia,
GitHub, StackExchange, ArXiv, and Book. This al-
lows us to investigate packing strategies in a mixed
corpora setting. We sample documents with 150B
tokens from SlimPajama as the pre-training corpus
and ensure each subset maintains the same propor-
tion of tokens as in the original dataset.

Pre-Training Models The model implementa-
tion is based on the LLaMA (Touvron et al., 2023)
architecture with minor modifications to support
intra-document causal masking. We pre-train 1.3B
parameters models using context windows of 2,048
(referred to as 2K) and 8,192 (8K) tokens. We
use the same set of documents with the differ-
ence in pre-training sequence composition to pre-
train models, including causal masking models,
i.e., MIXChunk, UNIChunk, and BM25Chunk, and
intra-document causal masking models INTRADoc.
More details are available in Appendix B.

Previous works (Brown et al., 2020; Pagliardini
et al., 2023) argued that dynamic sequence-specific
sparse masking reduces training efficiency. Com-
pared to causal masking, we observe a 4.0% effi-
ciency degradation on intra-document causal mask-
ing in our implementation, and the discussion on
implementation is presented in Appendix A.

3.2 Results

For evaluating LLMs trained under different pack-
ing strategies, in this work, we compute the per-
plexity (PPL) of a held-out set of documents where
each document is treated independently. The re-
sults are summarised in Table 1.

We can see that BM25Chunk achieves the lowest
PPL among the three causal masking models, yield-
ing a lower average PPL compared to MIXChunk in
the 2K (−0.62) and 8K (−0.78) settings. Further-
more, UNIChunk also yields a lower average PPL
than the baseline MIXChunk (−0.34 and −0.21).
These results indicate that increasing the related-
ness of documents in a sequence can improve the
language modelling ability of models.

When considering models trained via intra-
document causal masking, we can see that IN-
TRADoc achieves the lowest PPL compared to
all models trained via causal masking. This in-
dicates eliminating the potential distracting in-
formation from irrelevant documents during pre-
training benefits the language modelling ability
of models. Specifically, we observe that both
BM25Chunk and INTRADoc obtain significantly
lower PPLs on GitHub, where INTRADoc improves
over UNIChunk in both the 2K (−1.3 PPL) and
8K (−2.0) models. For UNIChunk, though we
avoided packing web text and code, its improve-
ment over MIXChunk on GitHub is slight. This
phenomenon could imply that code pre-training is
more adversely affected by the distraction of un-
related context, and both intra-document causal
masking and retrieval-based sequence construction
strategy can alleviate this issue.

4 Experiments on Downstream Tasks

In the following, we evaluate the in-context learn-
ing, knowledge memorisation, and context utilisa-
tion abilities of the models.

4.1 In-Context Learning

Following Shi et al. (2023), we evaluate in-context
learning abilities of the models using seven text
classification datasets, namely SST2 (Socher et al.,
2013), Amazon (Zhang et al., 2015), Yelp (Zhang

4
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L Model SST2 Amazon DBpedia AGNews Yelp Hate Offensive Avg.

2K

MIXChunk 71.53±13.8 81.57±15.7 40.87±3.34 74.98±0.99 86.89±4.81 47.10±7.51 41.82±20.46 63.54
UNIChunk 77.61±10.05 90.88±1.13 36.61±2.15 70.39±2.23 91.16±0.35 46.20±5.67 42.30±14.92 65.02
BM25Chunk 83.73±8.17 90.90±3.20 50.16±2.61 75.98±2.73 91.67±3.68 48.58±5.26 55.36±15.10 70.91
INTRADoc 73.65±13.61 84.06±12.68 46.82±1.82 72.32±2.66 91.91±0.97 55.72±3.47 69.14±5.37 70.52

8K

MIXChunk 76.01±8.14 87.32±3.08 45.94±3.70 68.21±6.21 79.06±9.99 42.85±1.19 37.03±14.28 62.43
UNIChunk 81.61±8.63 88.30±2.68 52.84±2.36 63.16±9.25 83.45±6.41 45.50±3.00 46.84±16.78 65.96
BM25Chunk 80.87±6.16 91.39±1.30 56.57±2.33 74.79±2.89 85.19±6.93 49.12±5.17 48.33±15.88 69.47
INTRADoc 72.38±3.97 93.25±0.91 61.85±6.89 72.49±4.72 92.83±1.38 46.20±3.26 59.59±9.88 71.23

Table 2: In-context learning performance evaluated by text classification accuracy across seven datasets. Accuracy
and deviation (subscript) are calculated using different sets of demonstrations sampled by 16 random seeds.
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Figure 2: Average in-context learning accuracy using
different numbers of few-shot demonstrations – the left
and right figures show the results of 2K and 8K models.

et al., 2015), DBpedia (Lehmann et al., 2015), AG-
News (Zhang et al., 2015), and TweetEval hate/of-
fensive tweet detection tasks (Barbieri et al., 2020).

In Table 2, we report the in-context learning ac-
curacy values of the models in few-shots learning
settings, using 20 and 48 demonstrations for 2K
and 8K models, respectively. We truncate the input
sequences to fit within their respective context win-
dows. For models pre-trained using causal mask-
ing, we can see that UNIChunk produces more ac-
curate results than MIXChunk, while BM25Chunk
yields a higher average accuracy than MIXChunk
for 2K (+11.6%) and 8K (+11.3%) models. These
results indicate that increasing relatedness of the
documents in pre-training chunks can improve the
in-context learning abilities of the models.

In Figure 2, we present the average accuracy us-
ing different numbers of few-shot demonstrations.
We observe that BM25Chunk has an on-par accu-
racy with INTRADoc on the 2K setting; however,
INTRADoc obtains a significantly higher accuracy
compared to BM25Chunk on the 8K setting. It
may imply that using a longer context window size
can result in increased distractions for causal mask-
ing pre-training; meanwhile, constrained by the
performance of the retrieval method, BM25Chunk

L Model NQ TQA Avg.

2K

MixChunk 6.19±0.24 14.47±0.75 10.33
UNIChunk 6.70±0.26 15.53±0.74 11.12
BM25Chunk 7.10±0.27 15.57±0.65 11.34
INTRADoc 7.17±0.33 16.04±0.35 11.60

8K

MixChunk 5.08±0.14 10.90±1.34 7.99
UNIChunk 5.25±0.37 10.59±1.10 7.92
BM25Chunk 5.37±0.43 11.09±0.67 8.23
INTRADoc 6.89±0.08 15.09±0.79 10.99

Table 3: Exact Match scores on closed-book closed-
book QA tasks.

decreases the accuracy on the 8K setting. For 8K
models, MIXChunk and UNIChunk obtain simi-
lar results to their corresponding 2K models, and
they do not improve the accuracy when increasing
the number of demonstrations. It might be due to
the similar levels of distraction in both 2K and 8K
settings using random packing strategies.

4.2 Knowledge Memorisation
We use two open-domain question-answering
(ODQA) datasets, namely NaturalQuestions (NQ,
Kwiatkowski et al., 2019) and TriviaQA (TQA,
Joshi et al., 2017), to evaluate the knowledge mem-
orisation properties of the models. We use 12
demonstrations for the 2K models and 48 demon-
strations for the 8K models. In Table 3, we show
the mean Exact Match (EM) scores calculated
based on 5 different sets of demonstrations.

For models trained with causal masking, we can
see that increasing the relatedness of documents
in pre-training chunks can improve the knowledge
memorisation ability of models. Compared to the
baseline MIXChunk, BM25Chunk obtains +9.8%
and +3.0% EM improvements on 2K and 8K mod-
els, respectively. We also note that intra-document
causal masking significantly improves the knowl-
edge memorisation ability, especially for 8K mod-
els, where INTRADoc improves EM by +12.3%

5
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L Model RACE-h RACE-m SQuAD HotpotQA NQ-open TQA-open Avg.

2K

MIXChunk 32.34±0.43 42.77±0.69 36.70±1.79 7.32±1.31 20.00±0.46 42.72±1.37 30.31
UNIChunk 34.01±0.52 43.52±0.44 37.33±2.31 7.12±1.35 21.16±0.96 42.32±1.10 30.91
BM25Chunk 33.17±0.36 44.92±0.46 37.91±1.84 10.30±0.42 22.10±0.91 46.24±0.63 32.42
INTRADoc 34.49±0.56 44.96±0.59 39.91±1.48 8.29±1.27 21.66±0.85 45.67±1.02 32.49

8K

MIXChunk 31.66±0.47 41.57±0.44 32.79±1.56 10.53±0.70 20.53±0.58 40.53±1.03 29.60
UNIChunk 31.68±0.94 41.64±0.55 34.94±1.84 10.57±1.13 21.76±0.80 39.60±1.77 30.03
BM25Chunk 32.63±0.68 44.14±0.48 39.45±1.05 14.46±0.93 22.17±1.02 43.40±0.38 34.54
INTRADoc 33.17±0.37 45.56±0.38 41.32±2.28 12.60±1.49 22.25±0.13 44.19±0.60 33.18

Table 4: Evaluation results of machine reading comprehension and retrieval-augmented generation tasks.

and +37.5% over MIXChunk for 2K and 8K mod-
els, respectively. These results support our hypoth-
esis that reducing the distractions deriving from
concatenating multiple, potentially unrelated doc-
uments in pre-training chunks can improve the
knowledge memorisation ability of the models.

4.3 Reading Comprehension and
Retrieval-Augmented Generation

We evaluate the pre-trained models on a set of
reading comprehension tasks, namely RACE (Lai
et al., 2017), SQuAD (Rajpurkar et al., 2016),
HotpotQA (Yang et al., 2018), and the following
retrieval-augmented generation (RAG) tasks: NQ,
TQA, and Multi-Document Question-Answering
(MDQA, Liu et al., 2023a). For NQ and TQA, we
use the top two passages retrieved by the dense re-
triever (Karpukhin et al., 2020; Izacard and Grave,
2021), denoted as NQ-open and TQA-open. Our
results for RACE, SQuAD, and RAG tasks are sum-
marised in Table 4, while the results on MDQA are
available in Figure 3.

We can see that BM25Chunk produces more ac-
curate results than MIXChunk and UNIChunk in all
tasks and obtains the best average accuracy, show-
ing that increasing the relatedness of documents in
pre-training chunks can improve the context utili-
sation ability. Specifically, BM25Chunk obtains a
significantly better accuracy on multi-hop QA task
HotpotQA, showing it can better utilise multiple
relevant information from the context.

INTRADoc obtains the best average accuracy in
the 2K models and obtains the best scores in 5 of 6
tasks in the 8K models. It indicates that eliminat-
ing potential distractions from unrelated documents
and learning each document independently can im-
prove context utilisation ability. This finding is dif-
ferent from the ideas in previous works, which sug-
gested that pre-training with multiple documents in
one context (Shi et al., 2023) and adding distraction
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Figure 3: Accuracy on Multi-Document Question-
Answering (MDQA). The x-axis represents the position
of the document that contains the answer. The y-axis
presents the accuracy for a position.

in context during pre-training (Tworkowski et al.,
2023) benefit context utilisation ability.

In MDQA, for each question, there are 30 docu-
ments provided in the context, where only one of
them contains the answer to the question — MDQA
is used to evaluate the ability of models to filter
out irrelevant information and identify the relevant
parts of a long context. This task has been used
to analyse the lost-in-the-middle phenomenon in
LLMs where they struggle to retrieve information
stored in the middle of long contexts (Liu et al.,
2023a). In the following, we analyse how the ac-
curacy of models varies with the position of rel-
evant information in the context. In these exper-
iments, we focus on 8K models due to their abil-
ity to handle long contexts. The zero-shot results
on MDQA are outlined in Figure 3. We observe
that both BM25Chunk and INTRADoc tend to pro-
duce more accurate predictions than MIXChunk
and UNIChunk when the relevant passage is located
at the beginning or middle of the context. These
results show that BM25Chunk and INTRADoc can
better filter irrelevant context and locate relevant
information; these results are further corroborated
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Figure 4: Distracted attention proportions of models. The x-axis presents the token position of the second document;
the y-axis presents the distraction proportion calculated by Equation (2). Figures (a) and (b) show the distraction
proportion of the first and last layers. Figures (c) and (d) are the average distraction proportion over layers. In
Figure (d), we separate documents by a newline token ("\n") and present the distraction proportion of INTRADoc.
The results are averaged from 4096 examples. More analysis is presented in Appendix E.

by our experiments in Section 5.1 where we anal-
yse the attention distribution of the models during
the language modelling process.

5 Discussion and Analysis

5.1 Can Models Ignore Irrelevant Contexts
Before the End-of-Sequence Token?

In the following, we analyse whether models can
filter irrelevant context during language modelling
by examining the attention score distributions over
the context. Specifically, we concatenate two ran-
domly sampled documents from the SlimPajama
validation set, separate them by an end-of-sequence
token [EOS], and check to which extent the atten-
tion distributions of the model focus on the irrel-
evant document in the sequence. More formally,
we define the distraction proportion of the token in
position p in the current document at layer l as:

DISTRPROP(l, p) =

|Cd|∑

i=1

alp,i (2)

where |Cd| denotes the number of tokens in the
irrelevant document, alp,i is the average multi-head
attention scores to the i-th token in the irrelevant
document Cd at layer l, and

∑|Cd|+p
i=1 alp,i = 1. In

our experiments, we set |Cd| = 256, and the results
are outlined in Figure 4.

We can see that the latter positions have lower
distraction proportions but remain 45%-52% aver-
age distraction proportion until the 256th token of
the second document, as shown in Figure 4(c). We
find that models trained via BM25Chunk (green
line) tend to have lower distraction proportions than
other causal masking models, showing that they can
better recognise relevant information in the context,

matching the results in Figure 3. The above analy-
sis also demonstrates that during the pre-training,
causal masking models can be distracted by unre-
lated documents in context, and the models can be
more robust to irrelevant contexts when reducing
distractions in pre-training sequences.

Furthermore, in Figure 4(d), we compare IN-
TRADoc and causal masking models using "\n"
as the separator instead of [EOS], because [EOS]
can only appear at the end of sequences during
pre-training using intra-document causal masking.
The results indicate that INTRADoc has the lowest
distraction proportion compared to causal mask-
ing models; meanwhile, BM25Chunk consistently
has a lower distraction proportion than MIXChunk
and UNIChunk using "\n" as the separator. These
results match the finding in Section 4.3, where IN-
TRADoc and BM25Chunk can better recognise rel-
evant information in the context.

5.2 Burstiness Property of Sequences

Chan et al. (2022); Han et al. (2023) found a pos-
itive correlation between the model’s in-context
learning ability and burstiness property of the train-
ing sequences. Here, burstiness refers to the phe-
nomenon where certain types of tokens occur in
clusters or bursts rather than being uniformly dis-
tributed across all documents. Burstiness is an
inherent property of text; for example, a specific
medical term might be frequently used in medical
articles and rarely appear in general texts. Higher
burstiness results in a lower Zipf’s coefficient of to-
ken frequency within a sequence (Han et al., 2023).

Following Han et al. (2023), we use Zipf’s co-
efficient to measure the burstiness property of pre-
training sequences. Formally, let r denote the rank
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L Method
Zipf’s

Coeffeicient
(α)

In-Context
Learning

(Acc.)

Knowledge
Memorisation

(EM)

2K
MIXChunk 2.122 63.54 10.33
UNIChunk 2.119 65.02 11.12
BM25Chunk 2.107 70.91 11.34

8K
MIXChunk 1.976 62.43 7.99
UNIChunk 1.951 65.96 7.92
BM25Chunk 1.925 69.47 8.23

2K INTRADoc 2.119 70.52 11.60
8K INTRADoc 1.952 71.23 10.99

Table 5: Zipf’s coefficients of token frequency in differ-
ent data. In-context learning and knowledge memorisa-
tion abilities are evaluated in Section 4.

of a token in a sequence, and f is a frequency func-
tion that maps the rank r to the frequency of that
token in the sequence. Then, according to Zipf’s
law, we have that f(r;α) ∝ 1

rα , where α ∈ R+

is the Zipf’s coefficient; a lower α presents an in-
creased burstiness property within the sequence.

In Table 5, we show the Zipf’s coefficients α on
different pre-training sequences. Our results show
that, for causal masking approaches that use the
same chunk size, a lower Zipf’s coefficient, which
denotes increased burstiness property, often results
in more accurate results. However, INTRADoc can
obtain significantly better results than UNIChunk
with the same Zipf’s coefficient. The above results
indicate that, for causal masking approaches, the
correlation between higher burstiness and better
performance could derive from reduced distrac-
tions in pre-training chunks. We report additional
evidence for the burstiness property in Appendix D.

Note that duplication in pre-training sequences
can also result in increased burstiness property,
which may negatively impact the performance of
language models. We analyse the distinct n-gram
phrases of pre-training sequences in Appendix D
and will investigate the impact of duplication using
different pre-training corpora in future work.

6 Related Works

Instance-Level Pre-training Data Composition
GPT-3 (Brown et al., 2020) was pre-trained by
packed documents with causal masking, with the
idea that not adopting any dynamic masking can
improve pre-training efficiency. Current open-
source pre-training frameworks, such as Mega-
tronLM (Shoeybi et al., 2019), FAIRSEQ (Ott et al.,
2019), EasyLM (Geng, 2023), LLM360 (Liu et al.,
2023b), OLMo (Groeneveld et al., 2024) also fol-
low this strategy for pre-training. In Levine et al.
(2022), authors pair similar sentences within the

same sequence, while Gu et al. (2023) propose
packing documents that contain similar intrinsic
tasks for continual pre-training, improving the in-
context learning ability of models. Recently, Shi
et al. (2023) emphasise that packing relevant doc-
uments can enhance language models’ in-context
learning and context utilisation; however, our find-
ings indicate that packing documents can adversely
affect performance, and learning each document in-
dependently using intra-document causal masking
can reduce the distraction and improve the perfor-
mance.

Distribution Properties of Pre-Training Data
Chan et al. (2022) shows several data distribution
properties can drive in-context learning ability, e.g.,
large numbers of long-tail classes, dynamic mean-
ings of inputs, and Zipf’s distribution of class fre-
quency. Han et al. (2023) used a gradient-guided
method to select small-scale data for continual pre-
training, showing data exhibiting burstiness proper-
ties can enhance in-context learning performance.

de Vries (2023) observes that over 80% of pre-
training examples consist of fewer than 2K tokens,
which suggests that the token distribution of indi-
vidual documents is not well-suited for the long-
context window. To improve the long-context mod-
elling ability of models, Staniszewski et al. (2023)
retrieves related documents to construct fine-tuning
data with long-range dependency.

Pre-Training Data Quality Gunasekar et al.
(2023) selected high-quality data to pre-train a
small-size coding model, achieving comparable
performance with larger models. Shin et al. (2022);
Gao et al. (2021) emphasised the importance of
pre-training data diversity. Lee et al. (2022); Tiru-
mala et al. (2023); Soboleva et al. (2023); Abbas
et al. (2023) showed the importance of data de-
duplication on models’ generalisation. In our work,
we use a diverse and high-quality pre-training
dataset, namely SlimPajama (Soboleva et al., 2023),
to highlight the importance of the sequence compo-
sition strategy on language model pre-training.

7 Conclusion

In this work, we investigate the impact of pre-
training sequence composition by pre-training mod-
els from scratch. First, we find causal masking can
result in unrelated documents distracting language
modelling pre-training and hurting the performance
on downstream tasks; we show that intra-document
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causal masking can significantly improve the per-
formance while decreasing the pre-training effi-
ciency. Second, we find improving the related-
ness of documents in pre-training chunks for causal
masking pre-training can reduce some potential dis-
tractions in chunks; our proposed efficient retrieval-
based packing method BM25Chunk can signifi-
cantly improve the performance of language mod-
els without reducing pre-training efficiency.

Limitations

Efficiency of Intra-Document Causal Masking
We show that intra-document causal masking is
an effective method to improve the performance
while decreasing the pre-training efficiency. We use
FlashAttention2 (Dao, 2023) to implement intra-
document causal masking masking without sacrific-
ing too much efficiency (discussed in Appendix A).
Still, we do not propose a method to solve this
efficiency issue completely.

Objective of Sequences Construction. We dis-
cuss sequence construction methods, showing the
importance of sequence compositions on the per-
formance of models, but these methods lack an
objective during sequence construction. Since spe-
cific data distribution properties may be related to
models’ performance, we will explore using indica-
tors of distributional properties to guide sequence
construction in future works.

Scaling The Size of Language Models. Lim-
ited by the computation resources, we cannot con-
duct experiments on larger models with more pre-
training steps, and different results might be drawn
when increasing the models at a specific scale.
However, this work could be directly valuable for
investigating pre-training relatively small models
that aim at facilitating the use of language models
under resource-constrained conditions.
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A Implementation of Intra-Document
Masking

We use FlashAttention2 (Dao, 2023) to implement
intra-document causal masking. The pseudo-code
is presented as follows:

Pseudo-code for intra-document causal masking

# qkv_states: query , key and value
# max_seqlen: max length of documents
# cu_seqlens: boundaries of documents

qkv_states = qkv_project(hidden_states)

qkv_states = qkv_states.view(batch_size , seq_len , 3,
num_heads , head_dim)

qkv_states = rotary_embed(qkv_states)

qkv_states = qkv_states.view(batch_size * seq_len , 3,
num_heads , head_dim)

attn = flash_attn_var_len_qkvpacked_func(qkv_states ,
cu_seqlens , max_seqlen , causal=True)

attn = attn.view(batch_size , seq_len , num_heads *
head_dim)

attn = output_project(attn)

In this implementation of intra-document causal
masking, we first apply the rotary position embed-
ding to the hidden states, ensuring INTRADoc uses
the same position information that is used in causal
masking for each document.

We observe a 4% pre-training speed decrease in
our implementation compared to causal masking
pre-training, testing on 128 80G A100 GPUs. An-
other choice to implement intra-document causal
masking is using a binary attention bias matrix for
masking tokens that belong to other documents.
Compared to causal masking using FlashAtten-
tion2, we observe that it reduces efficiency by 32%
in xFormers (Lefaudeux et al., 2022) when apply-
ing the attention bias; besides, it reduces efficiency
by 52% using the standard PyTorch implementa-
tion.

B Pre-Training Details

Hyperparameters In our experiments, we use
the 1.3B model, which has 24 layers, a hidden
size of 2048, and 16 attention heads. We use a
batch size of 4 million tokens for both the models
with 2K and 8K context window sizes and pre-train
models using 150B tokens with 38400 steps, which
costs 40 hours to pre-training a causal masking
model using 128 80G A100 GPUs. We use Adam
optimiser with β1 = 0.90, β2 = 0.95, a weight
decay of 0.1, and a cosine learning rate scheduler.
The peak learning rate is 3× 10−4, decreasing to
3× 10−5 at the end.

Subset # documents Token proportion

CommonCrawl 42960927 52.2%
C4 76520211 26.7%

GitHub 5233374 5.2%
Books 47848 4.2%
ArXiv 383058 4.6%

Wikipedia 7044397 3.8%
StackExchange 7265708 3.3%

Table 6: Pre-training corpus.

Pre-Training Corpus We sample documents
with 150B tokens sampled from SlimPajama for
pre-training. All models are pre-trained using the
same set of documents. In Table 6, we present the
number of documents and the token proportions
for each subset.

C Analysis of BM25Chunk

C.1 Time Complexity Analysis

In BM25, the similarity score between a query
and a document is based on sparse representations,
where each query and document is represented by
the terms it contains; such sparse representations
are stored in inverted indices, which map terms to
the documents that contain them, along with neces-
sary statistics such as the term frequency and the
document frequency. The time complexity of com-
puting similarities between a query and documents
in BM25 using an inverted index is O(Q × K),
where Q denotes the number of tokens in the query,
and K represents the number of total documents.

To improve efficiency, we restrict BM25Chunk’s
retrieval process within a document buffer rather
than entire large-scale corpora. The buffer caches
k documents, which enables similarity calculations
between a term and documents to be at most k
times. Since each query is a document, it could
contain a large number of tokens; we remove the
stop words and randomly sample q tokens to re-
duce the length. Therefore, the time complexity of
sequence construction in BM25Chunk is reduced
to O(q × k). In Figure 5, we test the sequence
construction speed using different q and k.

C.2 Implementation Details

We randomly group documents in batches of 5000K
and build indexes within each group. The BM25
indexes of pre-training corpora with 150B tokens
require 244GB storage memory. For both 2K and
8K settings, the document buffer size k is 3072,
and the maximum length of query q is 500. The
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Figure 5: Pre-training sequence construction speeds us-
ing different buffer sizes k and maximum query lengths
q. Test on 16 CPU cores.

data construction speed is 50.0K tokens per second
using 16 CPU cores, and speeds using different
settings are presented in Figure 5.

C.3 Ablation Studies

Effectiveness of Document Buffer BM25Chunk
conducts retrieval within a document buffer, which
may result in retrieving less relevant documents,
so we conduct experiments on different document
buffer sizes to investigate its effectiveness. We
conduct ablation experiments using 0.3B models
with a context window of 2048, trained with 13B
tokens, the compute-optimal number of tokens ac-
cording to Hoffmann et al. (2022). We present the
PPL improvement over UNIChunk on the valida-
tion set of SlimPajama in Table 7. The results show
that retrieving from different sizes of document
buffers can improve PPL, indicating the effective-
ness of retrieving from a small-scale document set.
BM25Chunk with a buffer size of 4096 achieves
the best result, while increasing the size to 8192
does not improve the PPL.

Effectiveness of Retrieval BM25Chunk con-
ducts multi-hop retrieval to retrieve a sequence of
documents, which could potentially help models
learn long-distance relationships across documents,
and this benefit has been revealed by its high accu-
racy on HotpotQA, a multi-hop QA task, as shown
in Section 4.3. An alternative choice is retrieving
multiple documents at once to fill a pre-training
chunk, and we present such one-hop retrieval in Ta-
ble 7. The result indicates that BM25Chunk with
multi-hop retrieval can improve the PPL more effec-
tively. Besides, we experiment with random sam-
pling documents from the buffers without retrieval;
the result shows the effectiveness of retrieval.

Model (0.3B) Document
Buffer Size Valid. PPL

MIXChunk - 15.474
INTRADoc - 12.443↓3.031

BM25Chunk
2048 13.657↓1.817
4096 12.528↓2.946
8192 12.684↓2.790

BM25Chunk
w/o multi-hop retrieval 4096 13.497↓1.977
w/o retrieval 4096 14.241↓1.233

CONTRIEVERChunk - 13.720↓1.654

Table 7: PPL on the validation set of SlimPajama.
Subscript↓ is the PPL improvement over MIXChunk.
The label “w/o multi-hop retrieval” means retrieving
multiple documents at once to construct the sequence;
“w/o retrieval” represents random sampling from docu-
ment buffers, which is equivalent to UNIChunk.
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Figure 6: Chunk frequency. The x-axis indicates the
frequency rank of tokens; the y-axis presents the number
of chunks containing a specific token.

Dense Retrieval Method An alternative retrieval
method to BM25 is dense retrieval. We use Con-
treiver (Izacard et al., 2022) as the dense retriever
and compare it with BM25. Following Shi et al.
(2023), we embed pre-training documents to dense
vectors using Contriever and use FAISS (Johnson
et al., 2019) to accelerate the retrieval process in-
stead of using the document buffer. Then, we con-
struct pre-training chunks using the same process
introduced in BM25Chunk. We present the result
produced by the dense retrieval method in the last
line of Table 7. We observe that the improvement
of the dense retrieval method is less than BM25.

D Analysis of Data Distribution
Properties

Chunk Frequency In addition to Zipf’s coeffi-
cient, we analyse the burstiness property through
the chunk frequency of tokens. Specifically, chunk
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Figure 7: Average distraction proportions over layers. We compare results using different corpora (Wikipedia and
GitHub), distraction length (|Cd| = 256 and 512), and the separator [EOS] and \n). The first row, (a) (b) (c) and (d),
use [EOS] as the separator; the second row, (e) (f) (g) and (h), use \n. The first and the third columns, (a) (c) (e) and
(g), have an irrelevant context length |Cd| of 256, and the others are 512. The first two columns, (a) (b) (e) and (f),
present the results of Wikipedia, and the last two columns, (c) (d) (g) and (h), present the results of GitHub. We
present the baseline y = |Cd|/(|Cd|+x) whose attention scores are uniformly distributed over all preceding tokens.

frequency refers to the number of chunks where a
specific token appears. Given a corpus, if a specific
token appears in fewer chunks, it indicates more
concentrated occurrences in chunks containing the
token, demonstrating a higher burstiness property.
In Figure 6, we can see that low-frequency tokens
appear in fewer chunks in BM25Chunk compared
to MIXChunk and UNIChunk, indicating these low-
frequency tokens are gathered through the retrieval-
based construction method.

Distinct N-gram The burstiness property can cor-
relate to the duplication in a sequence, which may
negatively affect models, e.g., models may tend to
copy phrases from context. We use SlimPajama, a
high-quality and deduplicated dataset, as the pre-
training corpus, which can alleviate the duplication
issue in BM25Chunk. We use the percentage of
distinct n-grams within a sequence to analyse the
duplication issue, as shown in Table 10. The re-
sults show that, with BM25Chunk, pre-training
sequences contain a lower percentage of distinct
n-grams than MIXChunk and UNIChunk.

E Analysis of Distraction Proportions in
Different Settings

In Figure 7, we report the average distraction pro-
portion (defined in Equation (2)) over layers us-

Method ∆ PPL % ∆ DISTPROP %

MIXChunk 14.6% 3.4%
UNIChunk 15.3% 4.6%
BM25Chunk 13.5% 4.6%
INTRADoc −0.7% −0.6%

Table 8: The PPL and DISTPROP changes after replac-
ing the separator [EOS] by \n. A positive value means
PPL or DISTPROP increases (performance drops).

ing different settings. Specifically, we analyse dis-
traction proportions in different settings by vary-
ing the 1) modalities of corpus: text and code us-
ing Wikipedia and GitHub; 2) the separator token:
[EOS] and line break token \n; 3) the length of
distraction context, |Cd| = 256 and 512.

Comparing different separators [EOS] and \n,
(a) (e), (b) (f), (c) (g), and (d) (h), we observe
that causal masking models can obtain lower dis-
traction proportions using [EOS], indicating causal
masking models can benefit from [EOS] to ignore
irrelevant context during pre-training. We present
the impact of changing the separator from [EOS]
to \n on PPL and distraction proportion in Table 8.
The results show that PPL and DISTPROP increase
after the replacement for causal masking models,
while INTRADoc obtains better results using \n as
the separator since it does not train on sequences
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L Model CommonCrawl C4 Wikipedia GitHub StackExchange Book ArXiv Avg.

2K

MIXChunk 0.5429 0.4950 0.6238 0.7665 0.5974 0.5001 0.6406 0.5952
UNIChunk 0.5468 0.4984 0.6298 0.7709 0.6011 0.5033 0.6436 0.5991
BM25Chunk 0.5496 0.5021 0.6394 0.7782 0.6041 0.5050 0.6452 0.6034
INTRADoc 0.5507 0.5048 0.6426 0.7793 0.6050 0.5062 0.6458 0.6049

8K

MIXChunk 0.5402 0.4867 0.6219 0.7443 0.5820 0.5042 0.6531 0.5903
UNIChunk 0.5429 0.4888 0.6235 0.7483 0.5859 0.5065 0.6564 0.5932
BM25Chunk 0.5489 0.4952 0.6391 0.7621 0.5919 0.5108 0.6599 0.6011
INTRADoc 0.5506 0.4988 0.6443 0.7643 0.5936 0.5119 0.6597 0.6033

Table 9: Evaluation of next token accuracy on SlimPajama’s test set.

L Method Distinct
2-gram %

Distinct
3-gram %

Distinct
4-gram %

2K

MIXChunk 71.84±14.68 84.06±14.47 89.02±13.16

UNIChunk 71.84±15.07 84.17±14.74 89.16±13.26

BM25Chunk 71.49±15.21 84.00±14.91 89.07±13.41

INTRADoc 80.35±15.26 89.01±13.07 92.61±11.34

8K

MIXChunk 64.81±12.84 80.61±13.69 86.76±12.76

UNIChunk 64.57±14.09 80.61±14.92 86.88±13.64

BM25Chunk 63.49±14.63 80.06±15.64 86.56±14.31

INTRADoc 79.88±14.86 88.90±12.63 92.61±10.96

Table 10: The percentages of the distinct n-grams in
different pre-training sequences.

where documents are separated by [EOS] using
intra-document causal masking.

Comparing Wikipedia (a) (b) (e) (f) and GitHub
(c) (d) (g) (h), MIXChunk is more distracted by the
irrelevant context in code generation.

Comparing different length distraction contexts,
(a) (b), (c) (d), (e) (f) and (g) (h), models are
more distracted when |Cd| increases, while much
better than the baseline of uniform distribution
y = |Cd|/(|Cd|+ x).

Comparing INTRADoc (red line) and causal
masking models, we observe that intra-document
causal masking results in significantly lower dis-
traction proportions in all cases. This phenomenon
may imply that using causal masking without con-
sidering the boundaries of documents negatively
impacts language modelling performance, and the
models can be more robust to irrelevant contexts
when increasing the relatedness of documents in
pre-training chunks.

F Next Token Accuracy of Pre-Trained
Language Models

In addition to PPL, we report the next token accu-
racy of pre-trained language models in Table 9.
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