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Abstract

Data augmentation (DA) methods have been
proven to be effective for pre-trained language
models (PLMs) in low-resource settings, in-
cluding few-shot named entity recognition
(NER). However, existing NER DA techniques
either perform rule-based manipulations on
words that break the semantic coherence of
the sentence, or exploit generative models for
entity or context substitution, which requires a
substantial amount of labeled data and contra-
dicts the objective of operating in low-resource
settings. In this work, we propose order-
agnostic data augmentation (OADA), an al-
ternative solution that exploits the often over-
looked order-agnostic property in the train-
ing data construction phase of sequence-to-
sequence NER methods for data augmenta-
tion. To effectively utilize the augmented
data without suffering from the one-to-many
issue, where multiple augmented target se-
quences exist for one single sentence, we fur-
ther propose the use of ordering instructions
and an innovative OADA-XE loss. Specifi-
cally, by treating each permutation of entity
types as an ordering instruction, we rearrange
the entity set accordingly, ensuring a distinct
input-output pair, while OADA-XE assigns
loss based on the best match between the tar-
get sequence and model predictions. We con-
duct comprehensive experiments and analyses
across three major NER benchmarks and can
significantly enhance the few-shot capabilities
of PLMs with OADA. Our code is available at
https://github.com/Circle-Ming/OADA-NER.

1 Introduction

Named entity recognition (NER) (Tjong Kim Sang
and De Meulder, 2003; Doddington et al., 2004)
has been one of the most long-standing and funda-
mental tasks. However, the effectiveness of NER
systems is often constrained by the need for sub-
stantial high-quality, annotated datasets, which are

∗Work done during the internship at DAMO Academy.

Sentence:                 CNN  ’s  David  Ensor  is  reporting  for   us
ORG PER

Position Index:           1      2        3          4       5             6          7      8

[[1, ORG], [1, 4, PER]]

[[1, 4, PER], [1, ORG]]

Entity Sequences:

Order-Agnostic

w/  or  w/o

Figure 1: An example sentence from ACE-2005. In a
fixed order setting (Yan et al., 2021), only one entity
sequence (“[1, ORG], [1, 4, PER]”) is deemed correct.
However, employing the order-agnostic property en-
courages both entity sequences (“[1, ORG], [1, 4, PER]”
and “[1, 4, PER], [1, ORG]”) to be acceptable.

costly and labor-intensive to acquire, necessitating
innovative approaches to data scarcity (Rijhwani
et al., 2020; Yang and Katiyar, 2020).

By introducing more reasonable samples, data
augmentation (DA) methods have been proven
to be effective solutions in scenarios where la-
beled data is scarce (Şahin and Steedman, 2018;
Kobayashi, 2018; Wei and Zou, 2019). Existing
DA approaches for NER can be roughly divided
into two categories: (1) rule-based manipulations
and (2) text-to-text generations. Among them, rule-
based manipulations utilize predefined rules for
automatic modifications in texts, including word
deletion, reordering, and substitution (Min et al.,
2020). However, due to the discrete nature of natu-
ral language, these techniques struggle to maintain
the semantic coherence. Conversely, text-to-text
DA techniques such as DAGA (Ding et al., 2020),
MELM (Zhou et al., 2022), and ENTDA (Hu et al.,
2023) augment texts by substituting entities or their
contextual elements using predictions from pre-
trained language models (PLMs). Nevertheless, to
execute effective augmentations, these approaches
require a substantial amount of labeled data to train
the augmentation model for generating synthetic
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text, which poses a challenge in scenarios with
scarcer labeled data, such as few-shot NER tasks,
and violates the fundamental goal of operating in
low-resource settings.

In this work, we propose an innovative Order-
Agnostic Data Augmentation framework OADA
as an alternative solution, and demonstrate that uti-
lizing a fundamental yet often overlooked aspect
(i.e., the inherent unordered nature of target entities,
which we refer to as the “order-agnostic property”)
of NER tasks can be extremely effective for data
augmentation. To exploit this property for DA, we
firstly notice the gap between the training data con-
struction phase and prediction evaluation phase of
traditional sequence-to-sequence (seq2seq) NER
systems. As shown in Figure 1, given a source
sentence “CNN’s David Ensor is reporting for us”,
conventional seq2seq NER methods (Yan et al.,
2021) will perceive entities with a fixed order and
utilize only “[1, ORG], [1, 4, PER]” as the target
sequence during training, while its equivalent “[1,
4, PER], [1, ORG]” is disregarded. However, when
“[1, ORG], [1, 4, PER]” and “[1, 4, PER], [1, ORG]”
are treated as the model predictions for evaluation,
both of them will be recognized as correct gener-
ations. This fixed order assumption and the gap
between training and evaluation phases cause the
loss of many viable samples. Thus, in OADA, we
seek to recognize the entities within a sentence as
an unordered set, and treat different entity arrange-
ments all as equivalent and also accurate genera-
tions. This perspective significantly broadens the
range of acceptable target sequences for a given
sentence, thereby introducing a novel and effective
DA method. As shown in Figure 1, when incorpo-
rating the order-agnostic property into training data
construction, both entity sequences are taken into
consideration as reasonable target sequences.

In OADA, it is hypothesized that different en-
tity arrangements provide equivalent information.
Therefore, we further propose the use of ordering
instructions and an innovative cross entropy (XE)
loss OADA-XE to jointly fine-tune PLMs on these
sequences together, without suffering from the one-
to-many issue (Gu et al., 2018), where multiple pos-
sible entity sequences exist for the same sentence.
For example, in Figure 1, if we make no distinction
between “[1, ORG], [1, 4, PER]” and “[1, 4, PER],
[1, ORG]” and pair them directly with the same
input sentence, a PLM will have trouble deciding
whether to generate “4” or “ORG” after “1”. To
address this issue, we show that our proposed strate-

Categories Methods Coher. Sub. No-Train.

Text-to-text
DAGA ✓ ✗ ✗

MELM ✓ ✗ ✗

ENTDA ✓ ✓ ✗

Rule-based
Token Manipulation ✗ ✓ ✓

Entity Replacement ✗ ✗ ✓

OADA ✓ ✓ ✓

Table 1: Comparison of different DA methods. “Coher.”
means “Semantic Coherence”, “Sub.” means “Various
NER Subtasks” and “No-Train.” represents whether a
method requires training additional models.

gies can effectively discriminate between different
entity arrangements in two different aspects (i.e.,
inter-type and intra-type) as illustrated in Figure 2.
Concretely, we first prioritize entity types as our
primary factor of arranging entities. By treating
each permutation of entity types like “LOC, ORG,
MISC, PER” as an ordering instruction, we con-
catenate it with the input sentence and arrange the
entity sequence following this instruction, ensuring
a unique input-output pair. Second, within individ-
ual entity types, OADA-XE will align loss based
on the best match between the target sequence and
the model predictions. For example, in Figure 2,
the first two predictions are both acceptable since it
is possible to assign a match between them and the
gold sequence, while the third prediction is wrong
as it contradicts the ordering instruction and unruly
rearranges the entities.

In summary, our work presents several key con-
tributions, including: (1) To the best of our knowl-
edge, we for the first time investigate to perform
DA from the order-agnostic perspective. (2) We
propose a novel DA framework OADA for few-
shot NER, which enables jointly fine-tuning PLMs
on various entity arrangements together by utilizing
the ordering instructions and an innovative OADA-
XE loss. (3) To demonstrate the effectiveness and
generalization ability of OADA, we conduct com-
prehensive experiments and extensive analysis on
three datasets, including one for nested NER, with
five representative PLMs (e.g., BERT (Devlin et al.,
2019), BART (Lewis et al., 2020), Flan-T5 (Chung
et al., 2022), LLaMA2 (Touvron et al., 2023) and
ChatGPT (OpenAI, 2022)), and show notable im-
provements over established baselines.

2 Related Work

2.1 Data Augmentation for NER
As shown in Table 1, we compare OADA with two
main categories of existing DA methods for NER.
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Rule-based Manipulation Rule-based DA meth-
ods are primarily performing token-level manip-
ulations, including synonym substitution (Wei
and Zou, 2019; Cai et al., 2020), word dele-
tion (Kobayashi, 2018) and reordering (Min et al.,
2020). By utilizing their predefined rules, these
methods can generate large amounts of synthetic
texts efficiently. However, they might suffer
seriously from the token-label misalignment is-
sue (Zhou et al., 2022), where an entity token might
be replaced with alternatives that mismatch its orig-
inal label. In addition, due to the discrete nature
of natural language, token-level manipulations will
introduce incoherent replacement to the text.

To avoid the token-label misalignment issue, Dai
and Adel (2020) proposed to randomly replace the
whole entity mentions with alternative entities of
the same type. Despite the effectiveness on flat
NER tasks, its application to complex NER sub-
tasks like nested NER remains challenging and
they still inevitably introduce incoherent substitu-
tion (Hu et al., 2023). In this work, we make aug-
mentations to only target entity sequences while
preserving the input sentences intact, ensuring the
semantic coherence of the texts.

Text-to-Text Generation Text-to-text generation
based augmentations in NER tasks are mostly in-
spired by back-translation (Sennrich et al., 2016;
Fadaee et al., 2017; Dong et al., 2017; Hou et al.,
2018; Xia et al., 2019), which aims to transfer texts
between languages while preserving their original
meaning. When applied to token-level NER tasks,
approaches like DAGA (Ding et al., 2020) and
MELM (Zhou et al., 2022) explored to fine-tune
PLMs using linearized sequences that merge token
labels with tokens, and create augmented texts on
corrupted sentences. However, these methods face
challenges in handling nested entities, limiting their
applicability across varied NER tasks. The more
recent ENTDA (Hu et al., 2023) offers a context re-
placement strategy that adapts well to various NER
tasks. Nevertheless, a common limitation among
all these text-to-text generation methods is their
reliance on a substantial amount of labeled data for
training augmentation models, which contradicts
the objective of low-resource settings.

On the contrary, by leveraging the order-agnostic
property shared across NER tasks, our approach
OADA possesses the strengths of both rule-based
and text-to-text DA methods and can effectively
augment data without the need for additional model

training, while introducing no change to the sen-
tence thereby maintaining the semantic coherence.

2.2 Few-Shot NER

Few-shot NER is a challenging task of identify-
ing entities using only a small number of labeled
examples (Wiseman and Stratos, 2019; Yang and
Katiyar, 2020; Ding et al., 2021). Recent advance-
ments in this field fall into mainly two categories:
metric-based and prompt-based methods. This cate-
gorization also aligns with the two diverse few-shot
NER settings. Metric-based methods aim to iden-
tify entities by learning a feature space and classi-
fying test samples using nearest class prototypes or
neighbor samples (Snell et al., 2017; Fritzler et al.,
2018; Yang and Katiyar, 2020; Das et al., 2022;
Zhang et al., 2023). However, most of these studies
assume a rich-resource source domain, which is in
contrast to the real world application scenarios that
only very limited labeled data is available.

Following Gao et al. (2021), the more practi-
cal few-shot setting makes minimal assumptions
about available resources and only provides few
samples each class for training. By leveraging
linguistic prompts to adapt PLMs to NER tasks,
prompt-based methods (Cui et al., 2021; Ma et al.,
2022; Lee et al., 2022; Shen et al., 2023; Xu et al.,
2023) demonstrate impressive performance in few-
shot scenarios, which can be further enhanced with
more substantial data. In this work, we follow the
more challenging few-shot setting where only few
samples are provided for each entity type, and im-
plement OADA over prompt-based methods, with
a comprehensive comparison in Section 4.3.

Additionally, there has recently been a remark-
able development in large language models (LLMs)
such as GPT series (Brown et al., 2020; Ope-
nAI, 2022), which show impressive capabilities
in few-shot prompting and in-context learning
(ICL) (Jimenez Gutierrez et al., 2022; Chen et al.,
2023). Thus, in this work, we specifically exam-
ine OADA’s generalization ability on LLMs and
include the results in Table 4.

3 Order-Agnostic Data Augmentation

3.1 Formulation

The NER tasks aim at detecting all the spans that
can represent entities within a given sentence X .
The N entities in sentence X form the correspond-
ing entity set E = {y1, y2, ..., yN}. In OADA,
we view the entities as the basic units and only
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He ’s a professor of physics at MIT 

[He]PER

[a professor of physics at MIT]PER

[MIT]ORG

LOC
ORG
MISC
PER

ORGPER PER

Entity Set:

[MIT]ORG [He]PER [a professor of physics at MIT]PER

[MIT]ORG[He]PER [a professor of physics at MIT]PER

Entity Rearrangements:Rearranging

[MIT]ORG[He]PER [a professor of physics at MIT]PER

[MIT]ORG[He]PER [a professor of physics at MIT]PER

Predictions:

[MIT]ORG[He]PER[a professor of physics at MIT]PER

……

Input Sentence w/ Ordering Instruction:
Predicting

1. Entity Rearranging & 2. Constructing Input-Output Pairs  & 3. Calibrating

Step 1 Step 2

Step 3

Figure 2: Overview of our proposed OADA. Step 1: Entity Rearranging. For each specific permutation of entity
types, the entities in the entity set will be grouped by their types and be arranged into a unique rearrangement
accordingly. Step 2: Constructing Input-Output Pairs. We view each permutation of entity types as an ordering
instruction and concatenate it with the input sentence. The entity rearrangement following this permutation will be
uniquely paired with the input sequence, as the input-output pair. Step 3: Calibrating. We utilize OADA-XE and
measure each prediction based on its best alignment with the target entity sequence.

perform entity-level rearrangement, preserving the
integrity of individual entities. An entity yi can be
represented as a tuple yi = (si, ti), where si, ti
represent the entity span and type of yi respectively.
The generation procedure can be formulated as:

L1 = −
N∑

i=1

logP (yi|X,Y<i). (1)

3.2 Augmenting Data via Entity Rearranging
In OADA, we define that two entity sequences
are equivalent if and only if they possess same
entity sets, thus two equivalent sequences can
vary greatly in how they arrange sequence com-
ponents (i.e., entities). For the given sentence
X , a target sequence Y i is defined as a specific
arrangement of entities from the set E, such as
Y i = [yN−1, yN , ..., y1]. We further define the
arrangement space as O = {O1, ..., OI}, which
encompasses all possible arrangements of entities
from E. According to our definition, Y i can be
uniquely determined when provided with the cor-
responding Oi. This implies that the cardinality of
the set O, denoted as I = |O|, directly controls the
size of our augmented texts on E.

By randomly shuffling and rearranging the entity
set E, we will acquire N ! different arrangements
in O, which are computationally infeasible to be
included into training. Moreover, it is hard to simul-
taneously model the relations between X and a set
of target sequences like Y i via standard XE (Shao
et al., 2019). To tackle this one-to-many issue, we

introduce the ordering instructions, which comple-
ments the construction of input-output pairs and
precisely controls the quantity of O.

3.3 Constructing Unique Input-Output Pairs

In OADA, we firstly separate the one-to-many map-
ping into multiple one-to-one mappings in the inter-
type aspect, and ensures unique input-output pairs.

Instead of augmenting data with all possible N !
arrangements, we propose an alternative strategy:
prioritizing entity types as the primary factor of
arranging entities.1 Concretely, consider a certain
dataset with a set of entity types T = {t1, t2, ..., tl}
such as {LOC, ORG, MISC, PER}. By arranging
entities based on their types, we can define Oi ∈ O
as a random permutation p of entity types from T
(e.g., [PER, LOC, ORG, MISC]). In accordance
with the entity type arrangement p, entities in E are
firstly grouped by their types and be subsequently
arranged into Yp by different groups. For exam-
ple, in Figure 2, entities in type PER and entity
“(MIT, ORG)” are firstly organized into two differ-
ent groups. And these two groups are then arranged
into different entity rearrangements following dis-
tinct ordering instructions.

To maintain unique one-to-one mappings be-
tween X and a set of its corresponding target se-
quences like Yp, we view p as the unique ordering
instruction and concatenate X with p as [p;X]. In
the real generation procedure of a PLM, p will indi-

1We discuss alternative rearranging factors in Appendix A.
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[He] [a professor at MIT]PERTarget

Prediction PER[a professor at MIT] [He]

PER

PER

[He] [a professor at MIT]PER

PER[a professor at MIT] [He]

PER

PER

(a) Standard XE (b) OADA-XE

Figure 3: Illustration of OADA-XE: (a) standard XE performing a per-position penalty, (b) OADA-XE which
calculating the loss based on the best alignment between the predictions and the target sequence.

cate to the model which entity type to focus on at a
certain generation step. In this way, we address the
one-to-many issue in the inter-type aspect, and the
complexity of arrangement space O experiences a
significant reduction from O(N !) to at most O(l!).

For example, in Figure 2, when paired with the
ordering instruction “[PER, LOC, ORG, MISC]”,
the entity set can be uniquely rearranged into the
target sequence “[(He, PER), (a professor of
physics at MIT, PER), (MIT, ORG)]”. Thus, the
third prediction “[(He, PER), (MIT, ORG), (a pro-
fessor of physics at MIT, PER)]” will be judged
as a wrong prediction.

3.4 Calibrating Predictions with OADA-XE

In this section, we introduce how to alleviate the
one-to-many issue within a certain entity type,
namely intra-type issue. This issue will be raised
since we can not discriminate the entities of a same
type with only ordering instructions and standard
XE. As an example, in Figure 2, the entities in the
first prediction “[(a professor of physics at MIT,
PER), (He, PER), (MIT, ORG)]” are precisely
following the given ordering instruction, but will be
penalized when performing standard XE, since the
first two PER entities are not positionally aligned
with those in the target entity sequence. Unlike
inter-type mapping where entities possess different
types and can be divided by their types, the only
difference between these intra-type entities is their
absolute position. Thus, the one-to-many mapping
between these intra-type entities arises.

To mitigate this issue, we utilize a novel XE loss
for OADA as inspired by Du et al. (2021). For
example, in Figure 3, standard XE loss requires
a strict per-position match between target entities
and model predictions, thus will heavily penalize
the predicted sequence “[(a professor of physics at
MIT, PER), (He, PER)]”, although it is equivalent
to the target entity sequence from our perspective.

We define the OADA-XE objective as finding the
best ordering Oi ∈ O to minimize the XE loss:

LOADA-XE = argmin
Oi∈O

(
− logP (Oi|X)

)
. (2)

It is important to note that, unlike the token-level
comparison in Du et al. (2021), our work will cal-
ibrate at the entity-level (i.e., span and type) as
shown in Figure 3. If a best match can be found
between the model prediction and the target en-
tity sequence, this prediction will be regarded as
a correct prediction. Furthermore, since a large
portion of rearrangements in O are invalid and log
loss is sensitive to invalid or noisy sequences which
can cause large changes in model behavior (Kang
and Hashimoto, 2020), we start the training with
XE loss to make sure the model can effectively
deal with the large search space of orderings O,
and apply OADA-XE loss during training with an
annealing schedule (Ma et al., 2018; Clark et al.,
2019; Du et al., 2021) to gradually teach the model
to alleviate the per-position penalty:

L = (1− τ) ∗ L1 + τ ∗ LOADA-XE, (3)

where τ is linearly increased from 0 to 1 through-
out training. After equipped with OADA-XE, we
can successfully prevent the intra-type issue during
calibrating the predictions.

4 Experiments

Datasets We conduct comprehensive experi-
ments on two flat NER datasets and one nested
NER dataset in several few-shot settings. For flat
NER datasets, we choose CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) and MIT-
Movie (Liu et al., 2013) from two different do-
mains. For MIT-Movie, we randomly select 15%
samples from its training set as the development set.
For nested NER, we conduct experiments on ACE-
2005 (Doddington et al., 2004), using the same
data split as Lu and Roth (2015).
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Datasets Models F1 (∆)

CoNLL-2003

BART-NER 77.63

+Token Manipulation 78.38 ↑ 0.75
+Entity Replacement 78.55 ↑ 0.92
+DAGA 78.64 ↑ 1.01
+MELM 78.96 ↑ 1.33
+ENTDA 80.37 ↑ 2.74
+OADA 80.84 ↑ 3.19
+ENTDA+OADA 81.47 ↑ 3.84

ACE-2005

BART-NER 63.27

+Token Manipulation 63.69 ↑ 0.42
+Entity Replacement 63.81 ↑ 0.54
+ENTDA 65.33 ↑ 2.06
+OADA 66.10 ↑ 2.83
+ENTDA+OADA 67.08 ↑ 3.81

Table 2: Performance comparison between different
NER DA methods with 10% training data.

4.1 Comparison with Different DA Methods

We firstly compare OADA with other NER DA
methods introduced in Section 2.1. To make fair
comparison, we follow the low-resource setting in
ENTDA where 10% training data is available, and
the results are reported in Table 2. Among them,
DAGA and MELM can not address nested enti-
ties and we only include their results on CoNLL-
2003. For these text-to-text methods, we follow
their settings and augment the training set by 3x.
Since our method does not contribute directly to
the diversity of the data, we study the impact of the
number of permutations used for each entity set in
Section 5.2 and utilize 20 random rearrangements
for ACE-2005 and all (4! = 24) for CoNLL-2003
throughout our paper. From the results, we can
observe that OADA can be applied to various NER
subtasks and achieves the greatest improvement
compared with other NER DA methods. Besides,
our approach also eliminates the need for training
any additional models unlike text-to-text methods.
In addition, it is important to note that the entities
in ENTDA are still maintaining a fixed order. This
implies that their augmented data can be further
enhanced with OADA as demonstrated by the re-
sults of “+ENTDA+OADA”, which also shows the
generalization ability of our method.

4.2 Experimental Settings

As introduced in Section 2.2, in this work, we fol-
low Ma et al. (2022) where only K samples of each
entity type are provided. We conduct experiments
in K = {5, 10, 20, 50} settings for supervised fine-

tuning, and K = {1, 2, 3} for ICL with LLMs.
For all the settings, we adopt the same sampling
strategy as Yang and Katiyar (2020) and report the
mean performance over three splits. To demon-
strate that OADA can be uniformly applied to dif-
ferent models and even other few-shot methods, we
implement OADA over BERT, PromptNER (Shen
et al., 2023), BART, BART-NER (Yan et al., 2021))
for supervised fine-tuning, and perform ICL over
Flan-T5-XXL, LLaMA2-13B-Chat and ChatGPT.2

We compare OADA with several strong and com-
petitive few-shot methods: Template-NER (Cui
et al., 2021), BART-NER, SEE-Few (Yang et al.,
2022), Ent-LM (Ma et al., 2022), FIT (Xu et al.,
2023) and PromptNER. Please refer to Appendix
B for a detailed introduction.

4.3 Main Results

Table 3 shows the results of our proposed OADA
compared with these baselines. Based on the re-
sults, we have the following observations: (1)
OADA consistently improves the performance
of both discriminative and generative PLMs. De-
spite the varying baseline performances of mod-
els like BERT and BART, OADA achieves no-
table improvements across all few-shot settings.
Particularly in 5-shot settings, OADA enhances
BERT’s F1 score by 15.29 and 14.07 on CoNLL-
2003 and ACE-2005, and those of BART by 11.88
and 15.36, respectively. (2) OADA can be gener-
ally applied to various tagging schemes, further
advancing the capabilities of existing few-shot
NER methods. To further demonstrate the gen-
eralization ability of our approach, we also apply
OADA to previous SOTA few-shot NER methods
with different tagging schemes. For instance, while
BART-NER utilizes start and end indexes to repre-
sent entity spans which differs significantly from
its pretraining corpus, OADA effectively adapts to
this scheme. The enhanced performance of meth-
ods like PromptNER and BART-NER with OADA
underscores its generalization potential across di-
verse NER applications. (3) Among the prompt-
based methods, OADA shows to be the most effi-
cient and effective. Typical prompt-based methods
Template-NER and FIT suffer from slow inference
due to span enumeration, while our inference speed
is 20.17x and 15.90x faster compared to them.
PromptNER, while efficient in inference, requires

2We implement OADA over BERT based on the seq2seq
LM architecture of UNILM (Dong et al., 2019) and also com-
pare with BERT of sequence-tagging.
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Models / Datasets CoNLL-2003 MIT-Movie ACE-2005

K=5 K=10 K=20 K=50 K=5 K=10 K=20 K=50 K=5 K=10 K=20 K=50

BERT 36.79 43.25 60.57 70.15 42.17 51.96 57.14 70.49 24.17 26.87 32.74 40.10
+BERT-tagger 41.87 59.91 68.66 73.20 39.57 50.60 59.34 71.33 – – – –
+SEE-FEW 55.21 61.99 68.21 72.59 50.35 56.19 61.07 69.58 25.58 36.36 51.31 56.28
+Ent-LM 49.59 64.79 69.52 73.66 46.62 57.31 62.36 71.93 – – – –
+Ent-LM+Struct 51.32 66.86 71.23 74.80 49.15 59.21 63.85 72.99 – – – –
+FIT 45.02 59.24 63.85 68.84 52.21 58.78 63.46 71.43 37.74 42.25 52.71 56.11
+PromptNER 46.36 62.17 70.16 73.35 48.31 56.70 62.29 72.09 27.79 41.33 51.82 55.29
+OADA 52.08 66.47 71.29 75.31 52.77 60.27 64.95 73.92 38.24 42.94 51.71 57.36
+PromptNER+OADA 56.76 68.38 72.64 76.49 54.23 62.29 66.18 74.75 40.89 43.46 53.15 58.01

BART 36.08 42.67 54.61 59.16 43.64 48.75 58.96 69.64 18.06 25.23 28.53 31.40
+Template-NER 43.04 57.86 66.38 72.71 45.97 49.30 59.09 65.13 21.09 28.61 37.25 39.08
+BART-NER 28.37 35.92 57.01 69.09 47.35 51.46 62.65 70.99 18.87 31.04 41.54 51.81
+OADA 47.96 58.06 65.20 73.04 50.45 57.42 64.04 72.19 33.42 38.73 47.67 54.29
+BAER-NER+OADA 48.89 57.65 68.32 75.51 53.10 62.51 67.23 73.08 35.94 41.78 51.26 60.42

Table 3: Performance of fine-tuning on three datasets in different few-shot settings (K = 5, 10, 20, 50). We report
the mean results over 3 different splits for each cell.

5 10 20 50
20

30

40

50

60

(a) ACE-2005
5 10 20 50

40

50

60

70

80

BART
w/ A
w/ A&I
w/ A&I&X

(b) CoNLL-2003

Figure 4: Ablation studies of different components in
OADA(BART) with F1 scores on the valid sets of two
datasets in K = 5, 10, 20, 50 settings reported. A: aug-
menting entity sequences (Section 3.2); I: using order-
ing instructions (Section 3.3); X: asigning loss with
OADA-XE (Section 3.4).

lengthy sequences combining multiple templates
with the input sentence, leading to increased mem-
ory demand. Our approach OADA, by leveraging
the order-agnostic property, not only streamlines
this process but also achieves superior performance
across different PLMs compared to these existing
methods. A more detailed analysis to the computa-
tional efficiency is included in Appendix C.

5 Analysis

5.1 Ablation Study

We conduct ablation experiments on fine-tuning
BART to analyze the contributions of individual
components of OADA. Results in Figure 4 show
that, while directly incorporating augmented data
can already improve the performance, addressing
one-to-many issue with ordering instructions and
OADA-XE can further boost the effect by a large
margin, which demonstrates the effectiveness of

0 10 20 30 40

30

40

50

60

5-shot
10-shot
20-shot
50-shot

Figure 5: Performance of OADA(BART) on the valid
set of ACE-2005 with different number of permutations.

each component of OADA. Results of ablation ex-
periments to BERT are included in Appendix B.

5.2 Analysis of Permutations on T

As introduced in Section 3.3, we choose to rear-
range the entity sequences given the permutations
of the entity types and reduce the arrangement
space to at most l!, where l is the number of entity
types. However, for the datasets like ACE-2005
and MIT-Movie with 7 and 12 entity types sepa-
rately, acquiring l! entity rearrangements is still
impractical. Thus, we conduct experiments to in-
vestigate the effect of the number of permutations.
From Figure 5, we can observe that most improve-
ment comes from the first 20 permutations, and
subsequent improvement is marginal with a great
increase in training time. In real practice, we ran-
domly select 20 rearrangements for ACE-2005 and
MIT-Movie and all (4! = 24) for CoNLL-2003.
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LLMs / Datasets CoNLL-2003 MIT-Movie ACE-2005

K=1 K=2 K=3 K=1 K=2 K=3 K=1 K=2 K=3

Flan-T5-XXL 52.33 56.30 61.74 47.87 53.50 56.41 20.34 24.79 26.25
+OADA 55.09 59.47 62.85 50.13 55.54 57.00 23.70 26.55 28.38

LLaMA2-13B 54.40 56.28 61.07 50.27 55.46 57.66 26.74 26.97 27.49
+OADA 56.55 60.06 62.29 52.32 56.79 59.74 28.95 29.42 31.08

ChatGPT 65.96 80.27 81.33 72.65 76.78 77.85 40.43 44.28 44.61
+OADA 67.63 80.96 81.72 73.71 77.23 78.31 43.49 45.75 46.52

Table 4: Performance of ICL with LLMs in (K = 1, 2, 3)-shot settings.

1(2.3) 2(1.6) 3(0.8) 4(0.4) 5+(0.5)
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(a) CoNLL-2003
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50

BART 5-shot
OADA 5-shot

(b) ACE-2005

Figure 6: The recall of entities at different positions with
the number of entities in that position in the bracket,
over two development sets (the unit is 1000).

5.3 Entity Recall in Different Positions

We examine the recall performances of entities at
different positions within a sentence. The detailed
results are illustrated in Figure 6. For vanilla BART
on flat CoNLL-2003 5-shot, entities appearing later
are more likely to be recalled. Conversely, in nested
ACE-2005, entities in the middle exhibit notably
lower recall probabilities. We hypothesize that this
pattern arises because, for flat NER, the dependen-
cies among entities are less pronounced. While for
nested NER, where latter entities may encompass
the former entities, leading to a cascading effect
where errors in earlier entities adversely impact the
recall of subsequent ones. With OADA, we disrupt
the arrangement of entities, so that subsequent en-
tities are possible to appear before their preceding
entities, thereby reducing the dependency of an en-
tity’s recall on previous entities. We further include
some related case studies in Appendix D.

5.4 ICL of LLMs with OADA

Recently, there has been a remarkable development
of LLMs. However, the huge number of parame-
ters, coupled with their significant demand for com-
putational resources, make ICL a more practical
approach. To verify our applicability, we conduct
experiments over distinct LLMs: Flan-T5-XXL,

7B 13B 70B

50

55

60

(a) CoNLL-2003
7B 13B 70B

20

25

30

LLaMA
OADA

(b) ACE-2005

Figure 7: Performance comparison of LLaMA with
different model scales, in the 1-shot setting.

LLaMA2-13B-Chat and ChatGPT (i.e., gpt-3.5-
turbo). The results are shown in Table 4. From
the table, we can see that, although the results of
LLMs are relatively higher than fine-tuning small-
scale PLMs, OADA can be still valid and improve
their performance further, which demonstrates the
efficacy of OADA in utilizing ICL with LLMs. We
include the details of how we perform ICL with
LLMs in Appendix E.

5.5 The Impact of Model Scales

We study how sensitive ICL with OADA is to
the model scales as shown in Figure 7. Although
we can observe significant performance improve-
ments as the scale of LLaMA model increases,
our method is consistently effective on these mod-
els with different scales. As shown in the results
of LLaMA-70B, OADA can still be valid even
when its model scale is much larger than other
versions, and improves its base performance on
CoNLL-2003 by more than 2.00 F1 scores. Be-
sides, we can also observe from the results on
CoNLL-2003 that, the larger base LLaMA mod-
els we use, the improvement coming from OADA
appears to be slowly declining. We assume that
this trend comes from the saturation of the demon-
stration used by ICL. Since the instruction tuning
process of LLMs will incorporate data from NER
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tasks (Longpre et al., 2023), they show superior-
ity performance on CoNLL-2003. To demonstrate
this, we further employing OADA over LLaMA
on ACE-2005 which LLMs will be less familiar
with (Zhang et al., 2024). And the results indi-
cate that our method shows good robustness in this
scenario where more demonstrations can be help-
ful for LLMs to understand the tasks, rather than
including extra but redundant demonstrations.

6 Conclusions

In this paper, we propose a novel data augmentation
method OADA by leveraging the often-overlooked
order-agnostic property of NER. Furthermore, to
jointly utilize the augmented data together without
suffering from the one-to-many issue, we introduce
the use of ordering instructions and an innovative
OADA-XE loss, tackling the issue in inter-type and
intra-type aspects separately. Experiments on three
major NER benchmarks, and extensive analyses
demonstrate the effectiveness of OADA.
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Limitations

Despite the effectiveness of OADA, there are still
some potential directions worth exploring and we
leave as future work.

Reordering Factors In our work, to reduce the
huge search space of O and provide a clear dis-
tinguishing criteria, we choose entity types as the
basic reordering factor, and also discuss other po-
tential candidates in Appendix A. From our anal-
yses, we know that the original “left-to-right” or-
der achieves the worst performance among them,
which also demonstrates our claim that the strict
order assumption does not need to be maintained.
There are still other reordering factors worth dis-
covering, which may further improve the effect.
Maybe our current choice (i.e., entity types) is not
the optimal solution, but our work also provides
enough clues for subsequent work based on this,
and the design we proposed to solve the one-to-
many mapping problem will still have enough ap-
plication scenarios in future work.

More Diverse Inference Strategies and Best Or-
der During the training stage of OADA, we un-

lock the capability of generative models to perform
diverse inference. As introduced in Section 3.3,
we will construct a unique ordering instruction for
each specific permutation of entity types to tackle
inter-type mapping problem. Thus, for each input
sentence, we will use |O| different ordering instruc-
tions, each indicating a specific generation priority.
Besides, there are already some works (Mitchell
et al., 2022; Wang et al., 2023) demonstrating that
performing consistency-check will largely improve
the performance of ICL with LLMs. Thus, we
also conduct experiments on majority-voting based
inference strategy and the results are shown in Ap-
pendix F. From the results, we found that the per-
formance of applying majority-voting is not signif-
icantly better than the inference guided by the best
ordering instruction. Furthermore, we also conduct
some studies to select the best order and include
them in Appendix G. From the results, we also can
not observe significant improvement by selecting
the “top-k” order. In our work, we consistently
adopt all entity arrangements for fine-tuning and
the original order for decoding, as reported in the
main results of OADA. We believe that if there is a
proper algorithm that can select entities inside all
target sequences generated with different instruc-
tions, the performance will be further improved.
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Appendix

A Analysis of Rearranging Factors

In this paper, we propose to leverage the order-
agnostic property for data augmentation. Un-
like traditional NER systems that perceive en-
tities as sequences with a fixed left-to-right
order, we rearrange the entity set following a
certain permutation of entity types. Another
natural choice for rearrangement is based on
the positions of entities, for example, speci-
fying the 3rd entity in a left-to-right order to
be generated at the beginning. Besides, some
research (Jie and Lu, 2019; Yu et al., 2020)
has demonstrate the effectiveness of depen-
dency relationships in modeling the relations
between the entities. Thus, we compare these
four rearranging factors as shown in Figure
8. Since there is only one unique target se-
quence following a specific order (i.e., left-to-
right or dependency relation), we only aug-
ment data with factors as positional informa-
tion and entity types. Our findings indicate that
rearranging entities based on types provides
a clearer distinction among them, leading to
enhanced performance. Furthermore, the pro-
posed OADA-XE, addresses the one-to-many
issue prevalent in both augmenting scenarios,
resulting in improved effect. This evidence
strongly supports our claim that adopting an
order-agnostic approach, especially when com-
bined with entity type-based rearrangement,
significantly benefits NER systems.

B Supplementary Results of Fine-Tuning

We compare OADA with several strong and
competitive few-shot methods: Template-
NER (Cui et al., 2021), the very first prompt-
based method for few-shot NER, enumerates
all spans within a sentence for entity typing,
with extremely high time complexity. BART-
NER formulates the NER task as an entity
span sequence generation task, which can
be directly applied to various NER subtasks.
SEE-Few (Yang et al., 2022) reformulates
span classification as a textual entailment task
and leverages both the contextual clues and
entity type information. Ent-LM (Ma et al.,
2022) proposes a template-free prompt tun-
ing method and induces the language mod-
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Figure 8: Comparison between different rearranging fac-
tors on CoNLL-2003 in 5-shot. We only apply OADA-
XE on factors that can guide the augmentation.
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Figure 9: Ablation studies of different components in
OADA(BERT) with F1 scores on the development sets
of CoNLL-2003 in K = 5, 10, 20, 50 settings reported.
A: augmenting entity sequences (Section 3.2); I: using
ordering instructions (Section 3.3); X: asigning loss
with OADA-XE (Section 3.4).

els to predict label words at entity positions,
while Ent-LM+struct leverages the viterbi
algorithm to further boost the performance.
FIT (Xu et al., 2023) is a focusing, bridging
and prompting framework specially for few-
shot nested NER, which also suffers from the
huge time complexity because of enumeration.
PromptNER unifies entity locating and en-
tity typing in one prompt and reduplicates this
prompt for many times in the input sequence,
which represent different entities.

In Section 5.1, we provide the results of ab-
lation study on fine-tuning BART. We also con-
duct ablation study over BERT and show the
effectiveness of each component and the re-
sults are illustrated in Figure 9.
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Text: staff sergeant tom ridge opened fire .
Entity: [staff sergeant, PER], [staff sergeant tom ridge, PER]
Model: BART
Prediction: [staff, ORG]
Model: OADA(BART)
Prediction: [staff sergeant tom ridge, PER]

Text: here is cnn ’ s candy crowley with some war stories .
Entity: [cnn, ORG], [cnn ’ s candy crowley, PER]
Model: BART
Prediction: [cnn, GPE], [candy crowley, PER], [some war stories, ORG]
Model: OADA(BART)
Prediction: [cnn, ORG], [cnn ’ s candy crowley, PER], [war, WEA]

Text: he ’ s a professor of psychiatry at nyu , chairman of the forensic panel .
Entity: [he, PER], [a professor of psychiatry at nyu, PER], [nyu, ORG], [chairman of the forensic panel, PER]
Model: BART
Prediction: [chairman of the forensic panel, PER]
Model: OADA(BART)
Prediction: [he, PER], [a professor of psychiatry at nyu, PER], [nyu, ORG], [chairman of the forensic panel, PER]

Table 6: Texts generated by BART with and without our proposed OADA in 50-shot settings, where [PER, ORG,
GPE, WEA] represents entity types [person, organization, government, weapon] respectively.

Model Time (s) Memory (MB) Performance (∆)

BART-NER 3.4(1.00x) 14081(1.00x) 71.39
+OADA w/o X 32.5(9.56x) 14081(1.00x) 74.60(↑ 3.21)
+OADA 37.7(11.09x) 15179(1.08x) 77.17(↑ 5.78)

PromptNER 2.1(1.00x) 21572(1.00x) 73.41
+OADA w/o X 27.4(13.00x) 21572(1.00x) 75.39(↑ 1.98)
+OADA 33.1(15.76x) 23294(1.08x) 78.10(↑ 4.69)

Table 5: Computational cost of training on 50-shot sam-
ples from CoNLL-2003 and its performance on the de-
velopment set, where X means OADA-XE.

C Computational Efficiency

As we show in Section 4.3, OADA can be ap-
plied to different methods, including various
tagging schemes. In addition, as a DA method,
we introduce more reasonable data into train-
ing, resulting in the inevitable increase of train-
ing time. During inference, since we perform
standard decoding, we share the similar time
complexity with the backbones. Thus, to pro-
vide the detailed analyses to the computational
efficiency of OADA, we provide the perfor-
mance comparison in terms of training time,
memory against backbone models as shown in
Table 5 (with a single NVIDIA V100).

The increase in time is acceptable be-
cause the data size is enhanced by 24 times.
Meanwhile, with OADA-XE, training time
and memory have increased slightly, but it
also brings considerable performance improve-
ments. Moreover, as discussed in Section
4.3, PromptNER will combine the duplication
of a template with the input sentence, lead-
ing to increased memory demand as shown

in the table. By comparing the results of
BERT-NER+OADA w/o X and PromptNER,
our method can enhance the performance of
BART-NER by a large margin and even make
up for the gap in their performance, with an
acceptable time increase.

D Case Study

In this section, we delve into case studies, as
detailed in Table 6, and hope to provide some
clues for understanding why OADA can help
improve the performance of backbone PLMs.
As discussed in Section 5.3, we found that
without OADA, latter entities exhibit notably
lower recall probabilities than former entities,
leading to a cascading error effect.

In the first example sentence, vanilla BART
will make a mistake and predict “staff” as an
“ORG” entity, thus all the following entities
will be disregarded. Conversely, our OaDA-
enhanced approach, despite missing an internal
entity, does not perpetuate this error. It suc-
cessfully identifies the complete entity “staff
sergeant tom ridge”, demonstrating a more ro-
bust performance in nested NER scenarios. In
another example “here is cnn ’ s candy crowley
with some war stories .”, vanilla BART fails
to recognize “cnn ’ s candy crowley” as a sin-
gular entity due to its earlier misclassification
of “cnn”. Our approach, however, correctly
identifies this compound entity, showcasing
its superior entity recognition capabilities. Fi-
nally, in the sentence “he ’ s a professor of
psychiatry at nyu , chairman of the forensic
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CoNLL-2003 ACE-2005

Random-OrderBest 69.42 50.26

Random-OrderWorst 67.50 48.11

Original-Order 68.95 49.07

Majority-Voting 69.14 49.39

Table 7: The comparison between different inference
ordering on two datasets in 10-shot.

panel .”, vanilla BART even overlooks the en-
tity “nyu” due to its previous error, while our
method accurately identifies all entities within
the sentence. Table 6 summarizes these exam-
ples, providing a clear comparison between the
performance of vanilla BART and our OADA-
enhanced model.

E In-Context Learning with OADA

In this section, we discuss how we perform
ICL with OADA.

E.1 Input-Output Template for ICL

We provide the details of our prompts.

Instruction Prompt

Instruction: please extract entities and
their types from the input sentence, all
entity types are in options.

Option Prompt

Option: T .

Ordering Instruction Prompt

Following the order: p.

T and p are the set of entity types and a
permutation of T . One example is provided in
Figure 10.

F Majority-Voting Inference

In Table 7, we compare 3 different ordering
instructions for inference: 1. random, for this
setting, we run experiments with 10 differ-
ent random sampled instructions and report
the best and worst performance. 2. original-
order, we utilize “following the order: from

Instruction:
Instruction: Please extract entities and their types
from the input sentence, all entity types are in
options.
Options: PER, ORG, LOC, MISC.

Sentence: Marcelo Rios of Chile also advanced .
Following the order: LOC, PER, ORG, MISC
Entity: Chile is a LOC, Marcelo Rios is a PER.

Sentence: Marcelo Rios of Chile also advanced .
Following the order: PER, ORG, LOC, MISC
Entity: Marcelo Rios is a PER,Chile is a LOC.

Demonstrations:

Query:

Sentence: By stumps Kent reached 108 for three .
Following the order: LOC, PER, ORG, MISC
Entity: 

Figure 10: Overview of input-output template for con-
ducting ICL with OADA.

left to right”. 3. majority-voting, we per-
form majority-voting on the generated entity
sequences guided by 10 randomly sampled in-
structions. If an entity appears in more than
5 sequences, it will be considered in the final
entity set. From the result, we see that per-
forming majority-voting will not increase the
performance by a large margin, and is not effi-
cient. Thus, in our main results, we only adopt
the original order for inference, and leave this
as future work.

G Best Order Selection

In our work, we regard OADA as a data aug-
mentation method and propose the use of or-
dering instructions and OADA-XE to address
the one-to-many issue. The basic assumption
of utilizing all target sequences jointly is that
they are equivalent to each other. In this sec-
tion, we further discuss whether there could
be a standing-out order that improves the per-
formance of PLMs trained with the rearrange-
ments of its guidance. Given a specific per-
mutation of entity types, the output logits are
utilized to compute the entropy on the target
sequence arranged with this permutation.

7806



0 4 8 12 16 20 24
42

44

46

48

50

52

54

56

58

(a) CoNLL-2003
0 4 8 12 16 20 24

24

26

28

30

32

34

36

38

40

42

random-k
top-k

(b) ACE-2005

Figure 11: Performance of training BART 5-shot with top-k permutations selected with averaged entropy, compared
to training with k randomly selected permutations.

For each sentence, its target sequence can
be rearranged by l! times, where l represents
the number of entity types. Thus, we can se-
lect top-k different permutations based on the
average entropy of all instances constructed
by a certain permutation. We show the per-
formance of training PLMs on these selected
permutations in Figure 11. From the results,
we can see that top-k can outperform random-
k in nearly every setting. However, selecting
the top-k permutations can not get compara-
ble with utilizing more permutations, and they
already calculated all the entropy loss based
on the entity sequences in all orders, which
means selecting top-k permutations will not
bring a more efficient training or achieve better
performance. Thus, we still adopt all (4! = 24
for CoNLL-2003, 20 for MIT-Movie and ACE-
2005) permutations for training, rather than
selecting the best orders.
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