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Abstract

The successful adaptation of multilingual lan-
guage models (LMs) to a specific language-
task pair critically depends on the availabil-
ity of data tailored for that condition. While
cross-lingual transfer (XLT) methods have con-
tributed to addressing this data scarcity prob-
lem, there still exists ongoing debate about the
mechanisms behind their effectiveness. In this
work, we focus on one of the promising as-
sumptions about the inner workings of XLT,
that it encourages multilingual LMs to place
greater emphasis on language-agnostic or task-
specific features. We test this hypothesis by ex-
amining how the patterns of XLT change with
a varying number of source languages involved
in the process. Our experimental findings show
that the use of multiple source languages in
XLT—a technique we term Multi-Source Lan-
guage Training (MSLT)—leads to increased
mingling of embedding spaces for different lan-
guages, supporting the claim that XLT bene-
fits from making use of language-independent
information. On the other hand, we discover
that using an arbitrary combination of source
languages does not always guarantee better per-
formance. We suggest simple heuristics for
identifying effective language combinations for
MSLT and empirically prove its effectiveness.

1 Introduction

There has been recent interest in multilingual lan-
guage models (LMs), where multiple languages are
used in training an LM, due to its capability of ac-
cepting multilingual inputs and achieving similar or
even better performance compared to monolingual
LMs at natural language processing (NLP) tasks.
However, despite all these advantages, fine-tuning
multilingual LMs using a specific language and an
NLP task hinges on acquiring labeled data tailored
to a specific purpose, which is not always possible.
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Figure 1: Overview of the effectiveness of Multi-Source
Language Training (MSLT) in cross-lingual transfer. As
we adopt more sophisticated approaches for MSLT, we
can expect improved performance (from bottom to top).

To address this challenge amid linguistic re-
source disparities, cross-lingual transfer (XLT) ap-
proaches have been proposed. In the context of fine-
tuning multilingual LMs, XLT leverages resource-
rich source languages in fine-tuning to boost per-
formance on low-resource target languages.

Although there is still active debate regarding
the inner workings of XLT, a significant body of
previous research indicates that multilingual LMs
are capable of separating language-specific and
language-agnostic information from text (Muller
et al., 2021), and that XLT favors the enhancement
of language-agnostic features while reducing the
emphasis on language-specific ones (Qi et al., 2022;
Tu et al., 2022; Wang et al., 2022; inter alia).

While the standard practice in XLT is to em-
ploy only one language as a source for transfer,
there exist attempts that have investigated the use
of multiple source languages (Singh et al., 2019;
Roy et al., 2020; Kew et al., 2023; Chai et al., 2024;
Shaham et al., 2024). These studies reveal that em-
ploying multiple source languages in XLT—the
concept we refer to as Multi-Source Language

1
712



Training (MSLT)—leads to performance improve-
ment. However, despite it is evident that MSLT has
clear advantages, several research questions remain
unexplored, including: (1) the specific changes that
it induces in the internal states of LMs, (2) the
conditions under which it achieves its optimal per-
formance, and (3) the breadth of applications where
it can be effectively applied, among others.

In this work, we introduce a series of compre-
hensive analyses exploring the inner workings of
MSLT, along with offering guidance for its effec-
tive utilization. Specifically, we first attempt to
illustrate the utility of MSLT with a couple of in-
tuitive visualizations, to clarify the underlying rea-
sons for its effectiveness. In addition, our experi-
mental results discover various intriguing findings.
Regarding the number of languages involved in
MSLT, we observe its positive correlation with per-
formance in general, although the trend tends to
plateau as the number of languages exceeds a cer-
tain threshold.

Our empirical discovery also suggests that the
enhanced diversity of source languages in MSLT
does not invariably lead to improved performance.
This underscores the importance of carefully select-
ing an effective combination of source languages
(see Figure 1 for an intuitive illustration). There-
fore, we examine various heuristics that can iden-
tify a suitable selection of source languages from
an exponentially large pool of possible combina-
tions. Based on our tests, we propose several com-
petent strategies, some of which are derived from
the statistical properties of languages in terms of
pretraining, while others utilize linguistic charac-
teristics of languages. Lastly, we discuss intriguing
patterns evident in the group of languages selected
as sources for transfer, providing insights into the
interplay of languages in MSLT.

2 Related Work

Multilingual LMs (Conneau et al., 2019; Scao et al.,
2022; inter alia) are widely recognized for their
ability to process inputs from diverse languages
in an integrated manner. They have recently been
the subject of extensive research for uncovering
their working mechanisms, and this effort has con-
verged on the robust hypothesis that the internal
states of multilingual LMs can be categorized into
language-sensitive and language-agnostic compo-
nents (Choenni and Shutova, 2020; Chang et al.,
2022; Zhao et al., 2020; Muller et al., 2021).

Meanwhile, cross-lingual transfer (XLT) aims
to improve the performance of multilingual LMs
on specific tasks in languages with limited re-
sources (i.e., target languages), by utilizing the
support from resource-rich languages (i.e., source
languages). Previous research on XLT has explored
diverse implementations of the concept. For in-
stance, Yang et al. (2022) attempt to achieve XLT
by blending representations from source and target
languages, while Zheng et al. (2021) introduce data
augmentation techniques such as subword sam-
pling and code-switching. Wang et al. (2022) pro-
pose a contrastive learning framework aimed at
reducing the differences in sentence embeddings
between languages. Concurrently, Qi et al. (2022)
present a prompt-based approach that facilitates
information transfer from a source language to
prompts composed in the target language.

Note that the majority of existing methods for
XLT (Libovickỳ et al., 2020; Tiyajamorn et al.,
2021; Yang et al., 2022), including the aforemen-
tioned studies, adhere to a common theme: they are
crafted to facilitate XLT by prompting the enhance-
ment of language-agnostic or universal features
within multilingual LMs. In this work, we focus
on a simple strategy that yields a similar effect,
namely, introducing multiple source languages in
XLT instead of just one as is customary, deliber-
ately steering clear of complex algorithms.

In the literature, there is empirical acknowledg-
ment that increasing the diversity of source lan-
guages in XLT can boost its performance. Singh
et al. (2019) suggest that pairing sentences written
in different languages (for example, one sentence in
one language and another in a different language) is
beneficial for improving performance on the cross-
lingual natural language inference (XNLI; Con-
neau et al., 2018) task. They additionally observe
that the performance fluctuates based on the lan-
guages from which the sentences are sampled. Roy
et al. (2020) demonstrate a similar trend in question-
answering tasks. Further, Kew et al. (2023) and
Shaham et al. (2024) reveal that MSLT is also ad-
vantageous for instruction-tuned LMs.

Despite the recent surge in attention towards
MSLT, it is important to highlight the lack of a
comprehensive analysis or tailored strategies in this
area so far. For instance, Kew et al. (2023) consider
only pre-defined language sets in their experiments,
ignoring the potential of discovering the best com-
bination of source languages. On the other hand,
Singh et al. (2019) and Shaham et al. (2024) utilize

2
713



all available languages without specifically seeking
to determine the ideal number of languages for the
optimal performance of MSLT. Our work tackles
these limitations, by presenting a series of well-
supported illustrations that clarify how and why
MSLT operates, along with providing guidelines
for enhanced utilization of the MSLT framework.

3 Terminology

We first clarify the core concepts and their corre-
sponding acronyms in this section.

Cross-Lingual Transfer (XLT) XLT is a tech-
nique applicable to multilingual LMs, particularly
when obtaining a satisfactory amount of data for
the language-task pair of interest is challenging.
This is built on the assumption that fine-tuning a
multilingual model for a task T in a resource-rich
language A can lead to a synergistic improvement
in performance for another language B, especially
if B has limited data available for the task T .

In this work, we focus on the zero-shot XLT
setting, under the assumption that no suitable data
is available for the target language.

Single-Source Language Training (SSLT)
SSLT represents an environment for XLT where
multilingual LMs are trained on a single language.
From now on, we adopt the notation ‘SSLT(L)’
to signify the setting where the language L is
exclusively utilized as a source language in XLT.

Multi-Source Language Training (MSLT)
MSLT refers to an environment in which two or
more source languages are considered for XLT.
We use the notation ‘MSLT(L1, L2, . . . , Ln)’ to
denote the setting where MSLT is conducted with
languages L1, L2, . . . , Ln.

MSLT, when feasible, enables the possibility of
leveraging an exponentially higher number of data
points by allowing the use of instances from mul-
tiple languages. However, as the purpose of this
study is to analyze the impact of language diversity,
we decide to keep consistent the total number of
data points used in experiments. For example, if
SSLT(en) utilizes 1,000 data points in English, the
corresponding MSLT(en, es) incorporates 500 data
points each from English and Spanish, respectively.

4 Verifying the Effectiveness of MSLT

We present a thorough analysis to confirm the ef-
fectiveness of MSLT, and additionally provide in-
sights into its inner workings. We describe the

Today’s weather is sunny.
It’s raining today.

오늘 날씨가 화창합니다.
오늘은 비가 옵니다.

Hoy está soleado.
Hoy llueve mucho.

---SSLT(en)    ---MSLT(en, es)

Sunny

Rainy

en koes

Language 
Agnositic

Language 
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Decision 
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Figure 2: A conceptual illustration of the advantages of
MSLT over SSLT. The left illustrates the training pro-
cess of an LM using only English (en) (i.e., SSLT(en)),
while the right represents MSLT with English (en) and
Spanish (es) (i.e., MSLT(en, es)). Incorporating more
source languages enhances language-agnostic features
and blurs language-specific ones, potentially improving
effectiveness for unseen languages such as Korean (ko).

intuition behind how MSLT enhances XLT perfor-
mance (§4.2) and present visualizations related to
our intuition (§4.3). We also provide empirical
findings with respect to the ideal number of source
languages in MSLT (§4.4). Section 4.1 presents
the configurations used throughout the section.

4.1 Experimental Settings

To investigate the inner workings of MSLT, we con-
duct experiments using XLM-RoBERTaBase (XLM-
RBase; Conneau et al., 2019), a compact multilin-
gual encoder that covers around 100 languages. We
select three tasks from the XTREME benchmark
(Hu et al., 2020) as our testbed for analysis: named
entity recognition (WikiANN; Pan et al., 2017),
cross-lingual natural language inference (XNLI;
Conneau et al., 2018), and cross-lingual paraphrase
identification (PAWS-X; Yang et al., 2019). More
details on the datasets and training processes are
specified in Appendix A and B, respectively.

4.2 Advantages of MSLT over SSLT

Rooted in the widely accepted notion within the
literature that multilingual LMs can categorize
language-specific and language-agnostic concepts
(Muller et al., 2021), there is a prevalent belief that
XLT can be more effectively activated by encour-
aging the influence of language-agnostic features
while diminishing the role of language-specific
ones. We draw on this wisdom to intuitively ex-
plain why MSLT generally outperforms SSLT.

Figure 2 illustrates the potential advantages of
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Figure 3: Visualization of embeddings and corresponding CKA similarities (Kornblith et al., 2019) for 3 languages:
English (en), Arabic (ar), and Indonesian (id). Note that English is used in both SSLT & MSLT, whereas Arabic
and Indonesian are not. Therefore, we can observe the impact of SSLT & MSLT on both languages seen and
unseen during training. Left: the original XLM-R. Center: XLM-R after SSLT(en). Right: XLM-R after
MSLT(en, es, de). We find that while SSLT promotes language-agnostic alignment in the semantic space, MSLT
enhances this further, leading to a more integrated space for languages.

MSLT over SSLT. When data from a single lan-
guage is used in training for XLT, as in the case of
SSLT, it may be challenging to guide a model to es-
tablish a decision boundary for classification (indi-
cated by blue in Figure 2) that can robustly function
across different languages. Conversely, with MSLT,
the model is exposed to signals from a diverse range
of languages, encouraging more frequent exploita-
tion of language-agnostic features. This leads to
representations that are comparatively language-
independent, enabling the identification of a more
robust decision boundary applicable across differ-
ent languages (red in Figure 2). In summary, we
speculate that MSLT provides a more advantageous
environment for XLT compared to SSLT, by under-
scoring the utility of language-agnostic features.

4.3 Visualization of Embeddings after MSLT

To better understand the impact of MSLT and em-
pirically validate the hypothesis presented in §4.2,
we conduct a comparative study by visualizing
embeddings before and after applying SSLT and
MSLT. To be specific, we first train the XLM-RBase
model with data instances from the XNLI dataset,
resulting in three variants: (1) the original XLM-R,
(2) XLM-R with SSLT(en), and (3) XLM-R with
MSLT(en,es,de).2 We then visualize the embed-
dings computed by each model variant,3 using a
set of sentences from the Parallel Universal De-
pendencies (PUD) treebanks (De Marneffe et al.,
2021). This decision stems from our goal to eval-
uate the model’s general capabilities, not just its

2en: English, es: Spanish, de: German.
3Embeddings are derived by mean-pooling the hidden

states from the last layer of the language model.

performance on fine-tuning tasks, but also its ef-
fectiveness with out-of-domain data instances. We
make use of t-SNE (van der Maaten and Hinton,
2008) for dimension reduction.

In Figure 3, we observe that the XLM-R model
with MSLT (the rightmost) demonstrates signifi-
cantly better language-agnostic alignment for un-
seen languages (ar and id), compared to both
(1) the original XLM-R and (2) XLM-R after
SSLT. This implies that the diversification of
source languages prevents a model from learning
language-specific features and encourages it to be
more language-independent, which is beneficial for
achieving better performance in XLT.

4.4 On the Optimal Number of Languages

In the previous part, we qualitatively demonstrated
the effectiveness of MSLT through graphical il-
lustrations. Here, we present a supplementary
quantitative analysis on the impact of the num-
ber of source languages on XLT, addressing two
research questions: (1) Is MSLT consistently su-
perior to SSLT, at least in the evaluated environ-
ments? (2) What is the optimal number of lan-
guages for MSLT? We select English, Spanish,
German, Chinese, and French as candidates for
source languages and evaluate the performance of
different language groups on cross-lingual datasets,
calibrating their size from 1 (SSLT) to 5 (MSLT
with five languages).4

Figure 4 reveals that regardless of the task type
or data quantity, task performance remarkably im-
proves as the number of source languages increases
from 1 to 3, demonstrating the effectiveness of

4The scores of groups with the same size are averaged.
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Figure 4: Performance of XLT can vary depending on
the number of source languages. The solid lines corre-
spond to XLM-RBase and dotted lines to XLM-RLarge.

MSLT. However, when the size of the group ex-
ceeds 3, the performance exhibits minimal improve-
ment or even declines in some cases.5 Taking into
account the outcomes of our experiments and the
expenses involved in creating datasets across vari-
ous languages, we propose opting for three source
languages as a pragmatic and sensible selection
for MSLT. Consequently, we make use of three-
language groups in the forthcoming experiments.

5 Language Set Composition in MSLT

In the previous section, we demonstrated that
MSLT exhibits markedly superior performance on
XLT compared to SSLT. Assuming the selection
of k source languages from a total of n languages,
there exist (nk) possible combinations. Given that n
can be significantly larger than k, fine-tuning with
every possible combination of source languages to
identify the optimal mix is not time- and resource-
efficient. Therefore, it is necessary to select an
appropriate combination more efficiently. In this
section, we first establish the importance of select-
ing an effective set of source languages and then
proceed to examine various criteria for choosing
an optimal source language combination.

5.1 Experimental Settings

We perform experiments utilizing the BLOOM-7B
model (Scao et al., 2022), in conjunction with the
previously utilized XLM-R. We fix the size of the
source language set at 3, and its elements are cho-
sen from a pool of 7 language candidates,6 which
are commonly considered resource-rich languages.

5In the case of XLM-RLarge, performance shows a slight
improvement even with more than three languages.

6Arabic (ar), German (de), English (en), Spanish (es),
French (fr), Russian (ru), Chinese (zh).
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Figure 5: Relative performance gaps vary with source
language combinations, reaching as high as a 10-point
difference between the best and worst options. The
worst combinations of MSLT in XCOPA and XWino-
grad even harm performance compared to SSLT, high-
lighting the need for careful source language selection.

When applying MSLT to XLM-R, we reuse the
WikiAnn and XNLI datasets for fine-tuning and
evaluation, as was done in the previous section.7

For experiments with BLOOM-7B, we leverage
separate datasets for instruction-tuning and evalua-
tion, respectively. By introducing this instruction-
tuning setting, we aim to evaluate whether MSLT
is also effective in this new paradigm, which would
further extend the applicability of MSLT. BLOOM-
7B is instruction-tuned using the Bactrian-X dataset
(Li et al., 2023). For evaluation, we employ an-
other suite of datasets, which includes XCOPA
(Ponti et al., 2020), XWinograd (Muennighoff et al.,
2023), and XStoryCloze (Lin et al., 2022). Also
note that we fine-tune BLOOM-7B with QLoRA
(Dettmers et al., 2023) for computational efficiency
and to ascertain how well MSLT operates in a
parameter-efficient fine-tuning setup. Details on
the experimental settings can be again found in
Appendix A and B.

5.2 The Harmony of Languages Matters

We compare the performance of MSLT across vari-
ous source language combinations. According to
our experiments, the magnitude of performance
improvement varies greatly depending on the com-
bination used, and in some cases, a poor choice
may lead to performance deterioration. Figure 5
represents the upper and lower bounds of the perfor-
mance of MSLT, along with that of SSLT as a base-
line. A notable performance gap is observed be-
tween the optimal and worst combinations in most

7PAWS-X is omitted owing to its limited linguistic variety.
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Method
Encoder Decoder

WikiAnn XNLI XCOPA XWinograd XStoryCloze

MIN 76.30 (35) 70.97 (35) 48.87 (35) 48.15 (35) 51.05 (35)

Size of Pretraining Data 78.52 (31) 72.87 (16) 50.35 (17) 54.77 (12) 54.05 (26)
Vocab Coverage 78.52 (31) 72.46 (26) 50.32 (22) 58.21 (2) 54.05 (25)

Embedding 85.58 (4) 72.26 (31) 48.85 (34) 53.33 (19) 56.98 (7)
Lang2Vec → Syntax 85.69 (3) 73.76 (3) 51.57 (4) 55.92 (7) 57.42 (2)

→ Phonology 84.82 (8) 73.39 (7) 49.88 (27) 58.21 (1) 55.12 (18)
→ Inventory 86.07 (2) 73.77 (2) 50.50 (11) 58.20 (3) 56.45 (10)
→ Family 84.82 (8) 73.39 (7) 49.88 (27) 58.21 (1) 55.12 (18)
→ Geometry 85.58 (4) 73.24 (9) 51.72 (2) 58.12 (6) 56.62 (9)

MAX 87.05 (1) 73.86 (1) 51.76 (1) 58.21 (1) 57.98 (1)

Table 1: Results of the proposed criteria for source language selection, evaluated across five different test datasets.
The numbers in parentheses indicate the ranking of the specific language set chosen by each method among the
total of 35 possible combinations, with higher ranks (indicating better performance) closer to blue and lower ranks
(indicating inferior performance) closer to red. We confirm that Lang2Vec-based methods are proficient in proposing
useful source language sets.

experiments. In certain tasks, e.g., XCOPA and
XWinograd, MSLT with the least effective com-
bination fails to outperform SSLT. These findings
imply that the combination of source languages in
MSLT has a substantial impact on performance,
highlighting the need to establish criteria for select-
ing appropriate source languages.

5.3 Criteria for Source Language Selection

We further explore the criteria for selecting source
language combinations by empirically testing sev-
eral hypotheses related to them.

5.3.1 Size of Pretraining Data
We examine whether using a combination of the
most frequent languages in the pretraining data
leads to improved performance in MSLT. The un-
derlying motivation is that the proportion of a lan-
guage in the pretraining data might correlate with
how much a model acquires the knowledge specific
to that language during pretraining. Based on the
volume of pretraining data for each language, as re-
ported in the original papers (Conneau et al., 2019;
Scao et al., 2022), we select three languages from
the source language pool for fine-tuning: English,
Russian, and German for XLM-R, and English,
Simplified Chinese, and French for BLOOM-7B.

5.3.2 Vocabulary Coverage
Inspired by the findings of Pires et al. (2019),
which suggest that XLT depends on vocabulary
overlap between source and target languages, we
test a heuristic that chooses source languages with
extensive vocabulary coverage. Suppose there

are n source languages available, represented as
L = {L1, · · · , Ln}, and let the vocabulary set for
each language Li be denoted by VLi . The coverage
of a candidate set LC ⊆ L is then defined by

Coverage(LC) =

∣∣∣
⋃

Li∈LC
VLi

∣∣∣
∣∣⋃

Li∈L VLi

∣∣ .

We anticipate that language combinations possess-
ing extensive lexical breadth will encompass a
broader spectrum of the target language’s vocabu-
lary, ultimately leading to better XLT scores.

5.3.3 Linguistic Diversity
The last criterion we examine is the selection of
source languages that exhibit distinct linguistic
properties. This criterion shares a similar moti-
vation with the previous ones, aiming to use lan-
guages that can generalize to other unseen lan-
guages. However, it uniquely posits that utilizing
as diverse a range of source languages as possi-
ble will lead to a more stable and comprehensive
modification of the model’s internal mechanism.

To achieve this, we first represent each language
as language vectors and then identify a candidate
set whose language vectors have the least similar-
ity to each other. We introduce Lang2Vec (Littell
et al., 2017), a framework offering a suite of vec-
tors for each language that mirrors its linguistic
properties. In particular, we test five variants of
Lang2Vec, i.e., Syntax, Phonology, Inventory, Fam-
ily, and Geometry vectors. Formally, given a set of
languages L = {L1, . . . , Ln} and their language
vectors {v1, . . . , vn}, the diversity score of a com-
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Method WikiAnn XNLI XCOPA XW XSC

Min 15 15 15 15 15

PT Data Size 12 6 5 6 11
Vocab Coverage 12 9 10 2 10
Embedding 1 13 9 9 7
L2V-Syn 1 2 11 1 6
L2V-Pho 1 2 11 1 6
L2V-Inv 6 12 8 5 8
L2V-Fam 1 2 11 1 6
L2V-Geo 6 12 8 5 8

Max 1 1 1 1 1

Table 2: Ranking of the results from different methods
of selecting source languages in MSLT, especially in
scenarios where English is consistently incorporated
into the set. The patterns are similar; Lang2Vec-based
criteria demonstrate reasonable performance.

bination LC ⊆ L is defined by the sum of pairwise
cosine similarity of language vectors:

Diversity(LC) =
∑

{Li,Lj}⊆LC

(1− sim(vi, vj)) .

Since our objective is to find a combination LC

having the maximum diversity, i.e. the minimal uni-
formity, thus the desired combination is obtained
by argmaxLC

Diversity(LC).
On the other hand, we consider an extra baseline

called just ‘Language Embedding from LMs’ or
just ‘Embedding’. This process is similar to that
of Lang2Vec, but the vectors here are derived di-
rectly from pretrained LMs, specifically XLM-R or
BLOOM-7B, depending on the case. The language
vector for each language is calculated by averaging
the embeddings of sentences in that language.

5.4 Evaluation on Selection Criteria
Table 1 represents the results from experiments on
source language selection criteria presented in §5.3.
The scores presented in the table are the averages
of all scores for each task across target languages.
Target languages will have the same language set
when the selection criterion applied is identical.

The findings suggest that selection criteria based
on the statistical properties of language models,
referenced in Sections §5.3.1 and §5.3.2, do not
substantially improve the performance of XLT. In
contrast, selecting source languages based on lin-
guistic diversity demonstrates a significant perfor-
mance gain. This implies that in MSLT, prioritizing
diversity within the source language combination is
more important than relying on the characteristics
of corpora used in pretraining LMs.

Furthermore, although the ‘Embedding’ method,
which measures diversity directly based on embed-

Datasets Top1 Top2 Top3 Top4 Top5

WikiAnn
de de ar ar ar
fr es de es de
zh zh zh zh ru

XNLI
ar de ar ar ar
de es de ru fr
ru zh zh zh zh

XCOPA
de ar fr ar ar
en es ru de de
zh zh zh zh es

XWinograd
ar de de en es
en en es es fr
zh ru zh ru ru

XStoryCloze
ar ar ar es ar
de de de fr fr
ru zh es zh zh

Table 3: The five most effective combinations of source
languages for five specific tasks.

dings from LMs, led to a fairly reasonable perfor-
mance gain, measuring diversity using Lang2Vec
vectors demonstrated the best outcomes. This fur-
ther reinforces the importance of properly consid-
ering the inherent properties of languages in NLP.

5.5 Language Selection Sticking to English

This section features a case-study assuming that
one of the source languages is necessarily English,
a common scenario in practical applications. Table
2 reports that even in cases where English is always
included in combinations, selecting other source
languages based on diversity (or least similarity)
according to Lang2Vec still exhibits reasonable
performance.

6 Discussion

6.1 Which Language is Suitable for MSLT?

To identify the necessary conditions of the lan-
guages comprising the optimal set, we manually ex-
amine top-ranked language combinations for each
task in practice. Table 3 showcases the top five
language combinations that exhibit the best perfor-
mance for each task. The results reveal that, across
all tasks, Chinese (zh), Arabic (ar), and German
(de) are the most commonly used languages, with
frequencies of 17, 15, and 15, respectively. Further-
more, we find that each of the top 5 combinations
includes two or more distinct writing systems, such
as Arabic scripts for Arabic, Latin scripts for Eu-
ropean languages, Chinese characters for Chinese,
and Cyrillic scripts for Russian. This suggests that
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Least Similarity
L2V-Inv

Most Similarity
L2V-Inv

Least Similarity
L2V-Inv

Least Similarity
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Least Similarity
L2V-Syn

Most Similarity
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Figure 6: Visualization of performance for all (35) possible language sets. We observe that language combinations
with the least similarity (high diversity) yield better performance than those with the most similarity (low diversity).

Dataset
Case 1 Case 2 Case 3

a = b = c a = b ̸= c a ̸= b ̸= c

WikiAnn 72.26 72.69 73.07
XNLI 80.36 81.54 84.02
XCOPA 52.82 53.06 53.10
XWinograd 52.33 52.89 53.40
XStoryCloze 52.54 53.32 53.62

Table 4: Test accuracy results based on the diversity of
writing systems. Writing system diversity in language
combinations is categorized into three levels: Case 1,
with all three languages sharing the same system; Case
2, with two languages sharing a system; and Case 3,
with each language having a different system. The out-
comes show that combinations of language with distinct
writing systems always outperform other cases.

the diversity of writing systems can act as a key fac-
tor in constructing good language sets for MSLT.

To further investigate this perspective, we con-
duct an extra experiment whose outcomes are re-
ported in Table 4. In this experiment, we categorize
source language sets (in total, 35) into three types
based on the extent of diversity in their writing sys-
tems, and then compare the performance of each
group. The outcomes show that combinations of
language with distinct writing systems always out-
perform other cases, implying the importance of
diversity in writing systems among languages. We
believe that Lang2Vec-based criteria can properly
exploit similar linguistic information.

6.2 Is Increasing Diversity Really Helpful?

In §5.3.3, we follow the intuition that selecting
language combinations with elements exhibiting
distinct characteristics is beneficial. In fact, we

can also consider the opposite direction, grouping
languages with relatively high similarities rather
than low ones. To determine which direction is
more helpful for MSLT, we conduct an experiment
using the two contrastive approaches.

Experimental results in Figure 6 reveal that con-
structing combinations with maximum diversity (as
in §5.3.3) yields better performance than combina-
tions having minimum diversity (i.e., high similar-
ity) across the majority of tasks.8 Notably, there is
a significant performance gap between the two con-
trasting strategies for WikiAnn. We also observe
similar patterns for other datasets, confirming the
desirability of our decision to consider the diversity
of source languages in §5.3.3.

7 Conclusion

This work demonstrates the positive impact of
Multi-Source Language Training (MSLT) in cross-
lingual transfer (XLT). By leveraging multiple
source languages, MSLT facilitates the learning
of language-agnostic features in multilingual LMs.
We provide qualitative and quantitative evidence
suggesting that this approach promotes cross-
lingual semantic alignment, leading to better XLT
performance compared to using a single source lan-
guage. Furthermore, we identify the importance
of selecting the optimal size and composition of
source language sets for MSLT. To guide this selec-
tion efficiently, we propose diverse criteria based
on the statistical and linguistic properties of can-
didate languages, such as Lang2Vec. Importantly,

8Full experimental results are listed in Appendix, Table 6.
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MSLT demonstrates effectiveness across various
configurations, including different tasks, architec-
tures, and training paradigms. We hope this study
serves as a springboard for further exploration of
factors influencing the development of effective
cross-lingual transfer methodologies.

Limitations

Limited source language pools Given the prac-
tical availability of language-specific datasets and
the ease of experimentation, this paper designates
the top 7 languages that appeared most frequently
in various multilingual datasets as source language
candidates. By analyzing the permutations of se-
lecting three out of these 7 languages, we aim to
provide insights based on a wide range of scenarios
to establish relevance in a generalized setting. How-
ever, it is important to note that further experiments
with a greater number of languages as candidates
for source languages are left as future work.

Comparison with other source language selec-
tion methods Our study shares many similarities
with other research on source language selection
for cross-lingual transfer, aiming to find the optimal
source languages. However, many selection meth-
ods tend to focus on the correlation between the
source and target languages, making the selection
process target-specific and often favoring single-
language choices, which makes it challenging to
quantitatively compare them with our approach.

Ethics Statement

In this study, we utilize models and datasets pub-
licly available on Huggingface, ensuring that no
ethical issues are associated with their usage. Addi-
tionally, we endeavor to minimize content related
to social biases. However, we acknowledge the
possibility that some biases may have been infused
during the pretraining process of language models,
highlighting the need for sufficient consideration
in this regard.
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Appendix

A Dataset

WikiAnn is a named entity recognition dataset
sourced from Wikipedia, comprising 282 language
data segments. In our experimental setup, we uti-
lize 7 languages (Arabic (ar), German (de), En-
glish (en), Spanish (es), French (fr), Russian (ru),
Chinese (zh)) as the source language and 8 lan-
guages (Indonesian (id), Greek (el), Hebrew (he),
Finnish (fi), Thai (th), Turkish (tr), Japanese
(ja), Korean (ko)) as the target language for cross-
lingual transfer.

PAWS-X comprises 23,659 human-translated eval-
uation pairs and 296,406 machine-translated train-
ing pairs across six typologically distinct languages:
French (fr), Spanish (es), German (de), Chinese
(zh), Japanese (ja), and Korean (ko). These trans-
lated pairs originate from examples within PAWS-
Wiki. Two languages that are not included in the
source language are used as target languages.

XNLI is an evaluation corpus for language trans-
fer and cross-lingual sentence classification in 15
languages. XNLI cover 15 languages: Arabic (ar),
Bulgarian (bg), Chinese (zh), English (en), French
(fr), Greek (el), German (de), Hindi (hi), Russian
(ru), Spanish (es), Swahili (sw), Thai (th), Turkish
(tr), Urdu (ur), and Vietnamese (vi). Among the
aforementioned 15 languages, all except the one
employed as the source language in our experiment
serve as target languages.

XCOPA, known as Cross-lingual Choice of Plausi-
ble Alternatives, is a benchmark designed to eval-
uate machine learning models’ capability to trans-
fer commonsense reasoning across different lan-
guages. This dataset comprises translations and
re-annotations of the English COPA, encompassing
11 languages (Estonian (et), Haitian (ht), Indone-
sian (id), Italian (it), Quechua (qu), Swahili (sw),
Tamil (ta), Thai (th), Turkish (tr)) from diverse
language families and regions worldwide. All lan-
guages in XCOPA are evaluated as target languages
by instruction-tuned models.

XWinograd is a multilingual benchmark designed
for assessing commonsense reasoning, consist-
ing of Winograd Schema Challenge problems pre-
sented in six languages. The task entails selecting
the most plausible sentence from slightly varied

options. We used Japanese (ja) and Portuguese
(pt) as target languages for our experiments.

XStoryCloze comprises the English StoryCloze
dataset professionally translated into 10 non-
English languages. Out of these, we chose six
languages as target languages, ensuring they did
not overlap with the source language set. The se-
lected target languages are as follows: Basque(eu),
Hindi (hi), Indonesian (id), Burmese (my), Swahili
(sw), and Telugu (te).

B Training Details

We report the hyperparameters used for training
each model in Table 5. For XLM-RBase and XLM-
RLarge, we conducted a hyperparameter search to
find an appropriate learning rate for training. As for
BLOOM-7B, we attempted to follow the settings
from the original LoRA-tuned model,9 but due to
the lack of computation resources, we were unable
to replicate the original settings such as batch size
128. Instead, we adjusted the training steps the
same as the original LoRA-tuning setting. For the
BLOOM model, prompt strategies employed for
instruction-tuning and inference are listed in Table
7 and Table 8, respectively.

Model XLM-RB XLM-RL BLOOM7B

Common cutoff_length: 512 & weight decay: 0.01

Learning rate 2e-5 5e-6 3e-4
LoRAr - - 64
LoRAm - - q,k,v

Task WikiAnn XNLI PAWS-X Bactrian-X

Batch 16 16 16 4
Step 243K 12.5K 30K 5K
GA 1 1 1 3

Table 5: Best hyperparameters for each task and model.
LoRAr indicates the rank of LoRA, LoRAm represents
the position of LoRA’s module, and GA stands for Gra-
dient Accumulation.

9https://huggingface.co/MBZUAI/
bactrian-x-bloom-7b1-lora
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Method
WikiAnn XNLI XCOPA XWinograd XStoryCloze

Most Least Most Least Most Least Most Least Most Least

Embedding 77.93 85.58 72.88 72.26 48.85 48.85 52.61 53.33 55.12 56.98
L2V-Syn 78.52 85.69 72.87 73.76 50.32 51.57 58.21 55.92 54.05 57.42
L2V-Pho 76.68 84.82 72.88 73.39 49.88 49.88 58.20 58.21 51.05 55.12
L2V-Inv 78.71 86.07 73.13 73.77 50.85 50.50 52.98 58.20 56.92 56.45
L2V-Fam 82.95 84.82 71.90 73.39 50.75 49.88 58.20 58.21 53.62 55.12
L2V-Geo 78.71 85.58 73.13 73.24 50.85 51.72 52.98 58.12 56.92 56.62

AVG 78.92 85.43 72.80 73.30 50.25 50.40 55.53 57.00 54.61 56.29

Table 6: Performance comparison of language combinations with high and low inter-lingual similarity. Accuracy is
used as the evaluation metric for all tasks. The best results for each task are in bold.

Only Instruction: ### Input:
What is the capital of France?

### Output:
The capital city of France is Paris.

Instruction with input: ### Input:
Evaluate this sentence for spelling and grammar mistakes.
He finished his meal and left the restaurant.

### Output:
There are two spelling errors in the sentence. The corrected sentence
should be: "He finished his meal and left the restaurant."

Table 7: Prompting strategies for instruction tuning.
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XCOPA ### Input:
Answer the number of options which is more plausible for the effect of
the situation "Mees keeras kraani lahti."

1. Tualett täitus veega.
2. Tilast voolas vett.

### Output:

XWinograd ### Input:
Answer the number of option which is more plausible for the blank.
"チンパンジーはリナックスを使えなかった。_が動物だから
だ。"

1. チンパンジー
2. リナックス

### Output:

XStoryCloze ### Input:
Answer the number of option which is more natural for the end of story.
"Rick tumbuh di keluarga bermasalah. Dia tidak pernah menerima
dukungan dari keluarga, dan menjadi anggota geng. Tak butuh waktu
lama sampai Rick tertembak dalam sebuah perampokan. Peristiwa itu
membuatnya insaf."

1. Kini dia bahagia.
2. Dia menjadi anggota geng.

### Output:

Table 8: Prompting strategies for inference.
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