
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 700–711
August 11-16, 2024 ©2024 Association for Computational Linguistics

Hyper-CL: Conditioning Sentence Representations with Hypernetworks

Young Hyun Yoo†, Jii Cha†, Changhyeon Kim, Taeuk Kim∗

Hanyang University, Seoul, Republic of Korea
{somebodil,skchajie,livex,kimtaeuk}@hanyang.ac.kr

Abstract

While the introduction of contrastive learning
frameworks in sentence representation learning
has significantly contributed to advancements
in the field, it still remains unclear whether
state-of-the-art sentence embeddings can cap-
ture the fine-grained semantics of sentences,
particularly when conditioned on specific per-
spectives. In this paper, we introduce Hyper-
CL, an efficient methodology that integrates hy-
pernetworks with contrastive learning to com-
pute conditioned sentence representations. In
our proposed approach, the hypernetwork is re-
sponsible for transforming pre-computed condi-
tion embeddings into corresponding projection
layers. This enables the same sentence embed-
dings to be projected differently according to
various conditions. Evaluation of two represen-
tative conditioning benchmarks, namely condi-
tional semantic text similarity and knowledge
graph completion, demonstrates that Hyper-CL
is effective in flexibly conditioning sentence
representations, showcasing its computational
efficiency at the same time. We also provide a
comprehensive analysis of the inner workings
of our approach, leading to a better interpreta-
tion of its mechanisms. Our code is available at
https://github.com/HYU-NLP/Hyper-CL.

1 Introduction

Building upon the established correlation between
language model performance and computational
capacity (Kaplan et al., 2020), there has emerged
an undeniable trend towards the adoption of ever-
larger language models across a diverse range of
NLP applications. This trend is also evident in the
computation of sentence or text representations.
Despite the ongoing popularity of compact en-
coders such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), there is a growing
inclination to leverage the capabilities of recent,

†Equal contribution. ∗Corresponding author.

HyperNetwork

The perspective of
"The speed of travel"

The perspective of
"The mode of transportation"

Vector Space

Both depict individuals engaging in outdoor
activities, traversing natural landscapes.

Cycling generally entails a faster pace
than hiking.

The mode of transportation

𝐶!"#!
The speed of travel

𝐶$%&

Sentence 1:
A hiker navigates through a dense

Forest on a winding path.

Sentence 2:
A cyclist pedals along a scenic mountain

trail, surrounded by lush greenery.

similar

dissimilar

generate… generate…

Figure 1: Illustration of our approach dubbed Hyper-
CL. In the example, two sentences are provided along
with two distinct conditions, chigh and clow. Specifi-
cally, chigh (orange) denotes a condition that results in
the sentences being interpreted more similarly, whereas
clow (blue) leads to a perspective in which the two sen-
tences are understood as being relatively more distinct.
The identical pair of sentences are projected into differ-
ent subspaces that reflect the provided conditions.

larger language models, e.g., LLaMA-2 (Touvron
et al., 2023), even breaking from the conventional
roles of encoders and decoders. Consequently, the
enduring challenge of finding a balance between
performance and computational cost—a persistent
issue in sentence representation learning (Reimers
and Gurevych, 2019)—continues to be elusive.

In recent years, there has been a marked im-
provement in the quality of sentence embeddings,
a progress primarily driven by the advent of con-
trastive learning frameworks (Kim et al., 2021; Gao
et al., 2021; Chuang et al., 2022; inter alia). How-
ever, since the performance of these embeddings

700

https://github.com/HYU-NLP/Hyper-CL

Similarity
score

Encoder

Predictor

S2 CS1

 f

CLS

(a) Cross-Encoder

Encoder Encoder

S2

CLS CLS

Cosine-Similarity

Similarity
score

CS1 C

 f f

(b) Bi-Encoder

Encoder Encoder

CLS CLS

Cosine-Similarity

Similarity
score

Encoder

g g

S2CS1

CLS

 f f f

(c) Tri-Encoder

S1 C S2

Encoder Encoder

CLS CLS

Cosine-Similarity

Similarity
score

Encoder

MLP MLP
 g g

 f f f

Hypernetwork
q

(d) Hyper-CL (Ours)

Figure 2: Four different types of architectures applicable for conditioning tasks. They utilize the [CLS] token
embeddings from the encoder as representations of inputs. From left to right: the cross-encoder architecture encodes
a triplet containing two sentences (s1, s2) and a condition (c) as a whole. In the bi-encoder setting, two sentence-
condition pairs (s1, c) and (s2, c) are processed individually. The tri-encoder configuration regard s1, s2, and c as
independent and encode them separately, followed by extra merging operations (e.g., Hadamard product). Finally,
Hyper-CL resembles the tri-encoder, but innovatively incorporates a hypernetwork responsible for constructing
projection matrices to condition sentences s1 and s2, based on the embedding of the condition c.

is generally evaluated based on their ability to en-
capsulate the overall meaning of the corresponding
sentences—as measured by benchmarks like STS-
B (Agirre et al., 2012; Cer et al., 2017) and MTEB
(Muennighoff et al., 2023), it remains uncertain
whether they adequately capture information relat-
ing to the various aspects of the source sentences.

For instance, consider the sentences (1) “A cy-
clist pedals along a scenic mountain trail, sur-
rounded by lush greenery” and (2) “A hiker nav-
igates through a dense forest on a winding path,
enveloped by the tranquility of nature”. In terms
of “The mode of transportation”, these sentences
should be perceived as similar since both depict in-
dividuals engaging in outdoor activities, traversing
natural landscapes. However, regarding “The speed
of travel”, they should be differentiated, as cycling
generally entails a faster pace than hiking. Desh-
pande et al. (2023) reported that current models for
sentence embeddings face challenges in recogniz-
ing the fine-grained semantics within sentences. In
other words, the existing models struggle to accu-
rately detect the subtle shifts in sentence nuances
that occur when conditioned on specific criteria.

In the literature, three prevalent approaches have
been established for constructing conditioned repre-
sentations (Deshpande et al., 2023), particularly in
estimating their similarity (see Figure 2). The first
is the cross-encoder approach, which encodes the
concatenation of a pair of sentences (s1, s2) with a
condition (c), i.e., [s1; s2; c].1 The second method

1[·; ·] represents the concatenation operation.

is the bi-encoder architecture, computing separate
representations of sentences s1 and s2 with the con-
dition c—[s1; c] and [s2; c]. Despite their simplic-
ity, both approaches share a notable limitation: the
representation must be computed for every unique
combination of sentences plus a condition.

On the other hand, the tri-encoder architecture
utilizes pre-computed embeddings of sentences
s1 and s2 along with the condition c. It then em-
ploys a separate composition function responsi-
ble for merging the semantics of the sentence and
condition. Considering that the embeddings for
each component can be cached and reused, this ap-
proach offers enhanced long-term efficiency. The
tri-encoder architecture, despite its potential, falls
short in performance compared to the bi-encoder.
This is primarily due to its inherent limitation,
which is the inability to model explicit interactions
between sentences and conditions during the repre-
sentation construction process. Therefore, there is a
need to propose a revised version of the tri-encoder
architecture that improves its functionality without
substantially sacrificing its efficiency.

In this work, we present Hyper-CL, a method
that integrates Hypernetworks (Ha et al., 2017)
with Contrastive Learning to efficiently compute
conditioned sentence representations and their sim-
ilarity. As illustrated in Figure 2d, our proposed ap-
proach is derived from the tri-encoder architecture.
It introduces an additional hypernetwork tasked
with constructing a condition-sensitive network on
the fly. This network projects the original sentence
embeddings into a specific condition subspace. Fig-

701

ure 1 illustrates the effectiveness of Hyper-CL in
dynamically conditioning pre-computed sentence
representations according to different perspectives.

We demonstrate the effectiveness of Hyper-CL
by significantly reducing the performance gap with
the bi-encoder architecture in the Conditional Se-
mantic Textual Similarity (C-STS) and Knowledge
Graph Completion (KGC) tasks. In particular, for
C-STS, Hyper-CL demonstrates an improvement
of up to 7.25 points in Spearman correlation com-
pared to the original tri-encoder architecture. Fur-
thermore, compared to the bi-encoder approach,
our method shows superior efficiency by reducing
the running time by approximately 40% on the C-
STS dataset and 57% on the WN18RR dataset.

2 Background and Related Work

In this paper, conditioning refers to the presence of
two or more signals, each represented as a natural
language expression c. These signals impact the in-
terpretation of a sentence s, highlighting a specific
aspect of the sentence (Galanti and Wolf, 2020).
Here, we describe two representative tasks that in-
volve conditioning, along with an introduction to
the concept of hypernetworks.

Conditional Semantic Textual Similarity (C-
STS) (Deshpande et al., 2023) is a task composed
of four elements in one quadruplet: two sentences
s1 and s2, a condition c to consider when calculat-
ing the similarity between the two sentences, and
a similarity score y. Unlike the original Seman-
tic Textual Similarity (STS) dataset (Agirre et al.,
2012; Cer et al., 2017), C-STS computes similarity
scores for the same sentence pair s1 and s2 under
two distinct conditions chigh and clow. The similar-
ity scores of the conditioned sentences are expected
to be high for chigh and low for clow. Therefore, a
model for this task is required to compute distinct
representations for the same sentence under two dif-
ferent viewpoints. To this end, a few basic architec-
tures illustrated in Figure 2 have been proposed by
Deshpande et al. (2023). Our objective is to present
a revision to the previous methods, pursuing the
balance between performance and computational
efficiency.

Knowledge Graph Completion (KGC) is the
task focused on automatically inferring missing re-
lationships or entities in a knowledge graph. The
knowledge graph is represented as a set of triplets
(h, r, t), consisting of a head entity h, a relation
r, and a tail entity t. Link prediction, a subtask in

KGC,2 aims to uncover unestablished yet plausible
and novel relationships between entities (Bordes
et al., 2013; Toutanova and Chen, 2015). When
given a head entity and a relation, the task of iden-
tifying the most suitable tail entity is known as
head entity prediction. Conversely, the task of de-
termining the appropriate head entity when a tail
entity and relation are provided is termed tail entity
prediction.

While two types of methodologies are generally
available for KGC—embedding-based methods
and text-based methods—our primary focus is on
text-based methods that rely on the processing of
textual information by language models. We further
categorize them into three types: cross-encoder,
encoder-decoder, and bi-encoder architectures. Ap-
proaches such as KG-BERT (Yao et al., 2019) and
MTL-KGC (Kim et al., 2020), which concatenate
all triple elements (i.e., [h; r; t]), are classified as
cross-encoder. Methods like StAR (Wang et al.,
2021) and SimKGC (Wang et al., 2022), which sep-
arately embed [h; r] and t in tail prediction tasks,
are classified as bi-encoder. Lastly, GenKGC (Xie
et al., 2022) and KG-S2S (Chen et al., 2022), which
directly generate tail entity text based on the re-
maining [h; r], are classified as encoder-decoder.

On the other hand, hypernetworks refer to a
type of neural network that generates the weights
or parameters for another neural network, known
as the primary network (Ha et al., 2017; Chauhan
et al., 2023; Majumdar et al., 2023). In essence,
a hypernetwork enables the dynamic construction
of the primary network, allowing its function to
adapt flexibly based on the input or condition. For
instance, Galanti and Wolf (2020) demonstrate that,
even with a compact primary network, hypernet-
works can effectively learn and apply diverse func-
tions for various inputs, provided the hypernetwork
itself is sufficiently large. In our settings, we also
endeavor to harness the advantages of hypernet-
works, ensuring that conditioned sentence repre-
sentations are dynamically computed and adapted
in response to changing conditions.

3 Proposed Method: Hyper-CL

3.1 Motivation

As briefly mentioned in §1, current approaches to
sentence conditioning demonstrate a clear trade-off
between performance and computational efficiency.

2While this work focuses solely on link prediction, note
that other relevant tasks exist within the domain of KGC.

702

pull

Encoder Encoder

S1 S2

CLS CLS

Encoder

MLP MLP

CLS

Chigh or Clow

CLS

generate generate

Hypernetwork
Shared Weights

f

g

q

f f

g

CLS CLS
push

CLS CLS
push

Figure 3: Training procedure of Hyper-CL. It introduces
a hypernetwork q to construct the weights of multi-layer
perceptrons (MLPs), i.e., g, based on the condition. The
MLPs are then used to project sentence embeddings
onto subspaces, resulting in condition-aware sentence
embeddings. Hyper-CL is trained with a contrastive
objective, utilizing pairs of condition-aware sentence
embeddings, one with a high condition chigh and the
other with a low condition clow. Note that every embed-
ding is the output of the same encoder f .

Approaches that enable direct interaction between
a sentence and a condition within encoders—the
cross-encoder and bi-encoder architectures—gain
enhanced performance but at the cost of reduced
efficiency. In contrast, the tri-encoder architec-
ture, while enabling efficient conditioning with
pre-computed sentence and condition embeddings,
tends to have inferior performance compared to
its counterparts. Note that this trade-off becomes
more pronounced as the number of sentences and
conditions to be processed increases.

Formally, consider a computationally intensive
language model-based encoder f , and a less de-
manding composition network g, which is required
in the case of the tri-encoder architecture. In terms
of the bi-encoder, obtaining the set of every pos-
sible conditioned embedding H = {hsc|∀s∀c, s ∈
S, c ∈ C} necessitates |S| × |C| repetitions of the
heavy operation imposed by f , where |S| denotes
the total number of sentences and |C| represents the
total number of possible conditions. In contrast, the
tri-encoder architecture only requires heavy opera-
tions by f for each sentence s and condition c just
once. This implies that only |S|+ |C| heavy opera-
tions are needed, followed by |S| × |C| lightweight
operations by g to obtain the conditioned embed-
dings. As a result, the tri-encoder and its variants

become more efficient if the cost of computing g is
markedly lower than that of f , thereby amortizing
the cost for computing H.

In this work, we aim to develop a new architec-
ture for sentence conditioning that inherits the effi-
ciency merits of the tri-encoder architecture, while
simultaneously outperforming the original in terms
of performance. To achieve this, we propose the
use of hypernetworks to implement g, facilitating
the dynamic construction of conditioning networks
while maintaining reasonable cost-efficiency.

3.2 Framework and Training Procedure
The framework of Hyper-CL and its training proce-
dure are listed as follows (also see Figure 3):

1. First, it computes the embeddings of a sen-
tence s and a condition c using the same em-
bedding model f : hs = f(s) and hc = f(c).

2. Given the condition embedding hc, a hyper-
network q : RNh → RNh×Nh outputs a linear
transformation matrix Wc for conditioning:
Wc = q(hc).3

3. We encode the condition-aware sentence em-
bedding hsc based on the matrix Wc and the
sentence embedding hs: hsc = Wc · hs.

4. For training, we perform contrastive learning
with the conditional sentence embeddings hsc,
whose details are explained in the following.

3.3 Contrastive Learning in Subspaces
The conditioning network composed of Wc is a
linear neural network. In other words, it can be
interpreted as a linear transformation function g :
RNh → RNh , mapping from the original semantic
space of sentence embeddings to a specialized con-
dition subspace. We demonstrate that conducting
contrastive learning within the subspace of specific
viewpoints yields greater effectiveness compared to
performing the same process in the general space.
We apply separate task-oriented contrastive learn-
ing objectives for the tasks, C-STS and KGC.

C-STS The C-STS task entails providing condi-
tions chigh and clow for two sentences, s1 and s2.
This setup induces different interpretations of the
relationship between the two sentences—one being
more similar under chigh and the other more dissim-
ilar under clow. In a given instance from the dataset,

3Nh: The dimensionality of sentence embeddings, which
is equal to the size of the hidden states of an encoder model.

703

Hyper-CL generates two pairs of conditioned sen-
tence embeddings, i.e., (hs1chigh , hs2chigh) and
(hs1clow , hs2clow). Since these pairs correspond to
positive and negative pairs in the contrastive objec-
tive, we directly utilize them for training.

Considering that the C-STS dataset already con-
tains gold-standard similarity values for the two
sentences under each condition, it seems reason-
able to employ the Mean Squared Error (MSE)
objective in conjunction with contrastive learning.
However, as training progresses, we can speculate
that MSE objectives that utilize labels will provide
relatively more fine-grained granularity compared
to contrastive objectives that do not. Therefore, to
mitigate the relatively strong impact of the con-
trastive objective, we apply the InfoNCE (Oord
et al., 2018) loss with high temperature, as follows:

LCL = − log e
ϕ(hs1chigh

,hs2chigh
)/τ

e
ϕ(hs1chigh

,hs2chigh
)/τ

+eϕ(hs1clow ,hs2clow
)/τ

,

where ϕ is the cosine similarity function and τ is a
temperature hyperparameter. The MSE objective is
as follows:

LMSE = ∥ϕ(hs1c, hs2c)− y∥22,

where c can be either chigh or clow. By combin-
ing the two above formulas, the final form of our
training objective for C-STS becomes:

L = LMSE + LCL.

Note that L is averaged over data instances in the
training set.

KGC We follow the setting of SimKGC (Wang
et al., 2022), except that we leverage Hyper-CL in-
stead of the bi-encoder architecture. For each triplet
of head entity, relation, and tail entity (h, r, t), we
treat entities as sentences and relations as condi-
tions, framing KGC as a conditioning task. Further-
more, given that Hyper-CL is simple and flexible
enough to adopt various techniques from SimKGC,
such as the use of self-negative, pre-batch nega-
tives, and in-batch negatives, we decide to apply
these tricks to our method as well. In conclusion,
the final training objective for KGC is as follows
(refer to Wang et al. (2022) for more details):

LCL = − log e(ϕ(hhr,ht)−γ)/τ

e(ϕ(hhr,ht)−γ)/τ+
∑N

j=1 e
ϕ(hhr,ht′)/τ

where hhr, ht and h′t are the relation-aware head
embedding, tail embedding, random embedding

(i.e., self-negative, pre-batch negative, and in-batch
negative), respectively. The relation-aware head
embedding corresponds to a conditional sentence
embedding. γ is an additive margin, ϕ is the cosine
similarity, and τ is a learnable parameter.

3.4 Optimization of Hypernetworks

In the original formulation presented in §3.2, the
number of parameters for the hypernetwork q :
RNh → RNh×Nh is the cube of Nh, which could
lead to cost inefficiency. To address this issue, we
propose decomposing the network into two low-
rank matrices, drawing inspiration from low-rank
approximation (Yu et al., 2017; Hu et al., 2021).
In particular, we introduce two smaller hypernet-
works of the same size: q1 : RNh → RNh×NK and
q2 : RNh → RNh×NK to generate two low-rank
matrices Wc1 = q1(hc) and Wc2 = q2(hc), where
Nk is much smaller than Nh. We then obtain the fi-
nal matrix through their product: Wc = Wc1W

T
c2.4

3.5 Caching Conditioning Networks

In the tri-encoder architecture, once computed, the
sentence and condition embeddings hs and hc can
be cached and subsequently reused whenever condi-
tioned embeddings related to them need to be com-
puted. Hyper-CL, building upon the tri-encoder
framework, not only inherits this advantage but
also further improves time efficiency by caching
the parameters of the entire conditioning networks
Wc = q(hc) generated by the hypernetwork. It is
important to note that this approach is viable be-
cause the computation of the matrix Wc depends
solely on hc, without requiring any other inputs.

4 Experiments

We apply Hyper-CL to various embedding models
(i.e., encoders) and fine-tune them on the target
task, denoting the resulting models with the sub-
script hyper-cl. If the rank of the hypernetwork
(Nk) is different from Nh, we denote this value as
hyperK-cl. We set K as 64 and 85, for the base
and large models respectively. A detailed expla-
nation for the selection of K can be found in the
appendix B. We show the effectiveness of Hyper-
CL by evaluating it on two downstream tasks.

4.1 Conditional Semantic Textual Similarity

We use DiffCSE (Chuang et al., 2022) and SimCSE
(Gao et al., 2021), adaptations of RoBERTa (Liu

4A similar method was proposed in Majumdar et al. (2023).

704

Method # Params Spearman Pearson

tri-encoder architectures

DiffCSE†
base 125M 28.90.8 27.81.2

∗DiffCSEbase+hyper64-cl 200M 33.100.2 31.680.6

∗DiffCSEbase+hyper-cl 578M 33.820.1 33.100.3

SimCSE†
base 125M 31.50.5 31.00.5

∗SimCSEbase+hyper64-cl 200M 38.360.1 37.530.04

∗SimCSEbase+hyper-cl 578M 38.750.3 38.380.3

SimCSE†
large 355M 35.31.0 35.60.9

∗SimCSElarge+hyper85-cl 534M 38.121.4 37.471.4

∗SimCSElarge+hyper-cl 1431M 39.600.2 39.960.3

bi-encoder architectures

DiffCSE†
base 125M 43.40.2 43.50.2

SimCSE†
base 125M 44.80.3 44.90.3

SimCSE†
large 355M 47.50.1 47.60.1

Table 1: Performance on C-STS measured by Spearman and Pearson correlation coefficients. The best results are in
bold for each section. *: indicates the results of Hyper-CL. †: denotes results from Deshpande et al. (2023).

et al., 2019), for the embedding model f . Note that
the key difference between the original tri-encoder
architecture and Hyper-CL lies in the composition
network, g. The original uses the simple Hadamard
product, while Hyper-CL employs hypernetworks
to learn linear layers for this composition.

Table 1 summarizes the results of Hyper-CL in
addition to baselines on C-STS. Compared to the
tri-encoder baselines, Hyper-CL demonstrates im-
provements with up to a 7.25-point increase in
Pearson correlation when based on SimCSEbase.
This reduces the performance gap between the bi-
encoder and tri-encoder from 13.3 to 6.05 points.

In addition, even when Hyper-CL is developed
with low-rank approximation (i.e., hyper64-cl,
hyper85-cl), its performance remains consistent.
This indicates that the memory usage of hyper-
networks can be effectively controlled, while both
performance and time efficiency are maintained.

4.2 Knowledge Graph Completion

In KGC, the link prediction task entails computing
relation-aware embeddings for head or tail entities
and subsequently retrieving the top-K embeddings
based on their similarity scores. We consider two
datasets for KGC: WN18RR (Bordes et al., 2013)
and FB15k-237 (Toutanova and Chen, 2015).

We employ text-based KGC models as baselines
for evaluation. Specifically, we use the SimKGC
model that leverages all negatives (i.e., in-batch
negative, pre-batch negative, and self-negative),
which is also true when applying Hyper-CL to

SimKGC. We consider an extra baseline of ap-
plying the tri-encoder architecture to SimKGC
with different g—(1) Hadamard: performs the
Hadamard product between the representations of a
condition c and a sentence s: g1(hc, hs) = hc⊙hs.
(2) Concatenation: merge the two vectors, apply a
dropout function, and halve the dimension using a
linear layer: g2(hc, hs) = W · d([hc;hs]).

Table 2 presents the outcomes of our method
and baselines on KGC, measured by MRR (Mean
Reciprocal Rank) and Hits@K. BERTbase is lever-
aged for the embedding model f . As a result,
SimKGChyper-cl, representing the application of
Hyper-CL to SimKGC, shows that there is no sig-
nificant difference in performance compared to the
original SimKGC, especially in terms of Hits@10.
Even for SimKGChyper64-cl, while there is a slight
decrease in performance, it still yields competi-
tive results and does not significantly trail behind
other baselines. Moreover, the performance of other
methods in the tri-encoder architecture falls sig-
nificantly short of Hyper-CL’s. It is worth noting
that our implementation is based on the tri-encoder
architecture, which guarantees significantly more
efficiency in running time compared to the original
SimKGC. The details of this analysis are in §5.1.

5 Analysis

5.1 Efficiency Comparison between
Bi-Encoder and Tri-Encoder

To assess the running time efficiency of Hyper-CL,
enabled by its caching capability, we compare the

705

Method WN18RR FB15K-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

cross-encoder architectures

KG-BERT† 0.216 0.041 0.302 0.524 - - - 0.420
MTL-KGC† 0.331 0.203 0.383 0.597 0.267 0.172 0.298 0.458

encoder-decoder architectures

GenKGC† - 0.287 0.403 0.535 - 0.192 0.355 0.439
KG-S2S† 0.574 0.531 0.595 0.661 0.336 0.257 0.373 0.498

bi-encoder architectures

StAR† 0.401 0.243 0.491 0.709 0.296 0.205 0.322 0.482
SimKGC‡ 0.666 0.587 0.717 0.800 0.336 0.249 0.362 0.511

tri-encoder architectures

SimKGChadamard-product 0.164 0.004 0.243 0.481 0.153 0.092 0.162 0.274
SimKGCconcatenation 0.335 0.226 0.382 0.550 0.271 0.193 0.292 0.430
*SimKGChyper-cl 0.616 0.506 0.690 0.810 0.318 0.231 0.344 0.496
*SimKGChyper64-cl 0.548 0.427 0.626 0.770 0.305 0.219 0.331 0.479

Table 2: Results on the WN18RR and FB15K-237 datasets for KGC, measured by MRR and Hits@K. The best
results are highlighted in bold, while the next best results are underlined for each column. *: indicates the results of
applying Hyper-CL. †: denotes results from Chen et al. (2022). ‡: denotes results from Wang et al. (2022). Other
results are implemented and evaluated by the authors.

execution time of our method with that of the bi-
encoder and tri-encoder architectures. We measure
execution time, cache hit rate, and memory usage in
scenarios with caching enabled. Initially, the cache
is empty, and embeddings are added to the cache
upon each cache miss.

Specifically, we estimate the inference time re-
quired for the C-STS and WN18RR datasets. To
simulate a realistic scenario where the number of
data samples to be processed is substantial, we uti-
lize all dataset splits (training, validation, and test)
from the datasets. For the C-STS dataset, we also
evaluate the results of SimCSEhyper64-cl as a solu-
tion for cases with large cache sizes. For Hyper-CL,
the transformation matrix Wc is saved instead of
embeddings. We set the batch size as 1 to minimize
the overhead of cache storage and retrieval.

As observed in Table 3 and 4, Hyper-CL reduces
the running time by approximately 40% on the
C-STS dataset and 57% on the WN18RR dataset
than the bi-encoder architecture. Compared to the
naïve tri-encoder architecture, Hyper-CL requires
slightly more time, but we believe this is acceptable
given its significantly improved performance.

In terms of cache hit rate, the tri-encoder ar-
chitecture, including Hyper-CL, achieves a much
higher rate as it embeds each input separately,
whereas the bi-encoder architecture has a lower
rate because both the sentence and condition com-

bination must match to result in a cache hit. Consid-
ering the significant gap in cache hit ratio between
the bi-encoder and tri-encoder architectures, we ex-
pect that the efficiency of Hyper-CL will be more
pronounced when deployed to process real-time
streaming data from a large pool of users. In such
scenarios, the diversity of input sentences and their
conditions (relations) would be much higher than
in our experimental settings, implying that the effi-
ciency gap between the bi-encoder and tri-encoder
architectures will be more severe.5

5.2 Analysis of Embedding Clusters

In this subsection, we explore the impact of Hyper-
CL on generating conditioned sentence representa-
tions by visualizing the computed embeddings and
analyzing them using clustering tools.

We visualize the vector space of sentence embed-
dings before and after transformation by Wc, which
is the weight of a linear layer from the Hyper-CL’s
hypernetwork. This helps us observe if embeddings
based on the same condition cluster after transfor-
mation, indicating proper differentiation based on
conditions. For this analysis, we choose three sets

5The ratio of the number of unique items required to be
cached by the tri- and bi-encoder architectures, i.e., (|C| +
|S|)/(|C|×|S|), will approach close to 0 if |C| and |S| become
very large. This implies that in practice, it is infeasible to
utilize caching techniques for the bi-encoder architecture if
the sentences and conditions of interest are sufficiently diverse.

706

Method Time HitRate Cache

bi-encoder architectures

SimCSEbase 791.71s 1.46% 110.87MB
SimCSElarge 1498.65s 1.46% 147.26MB

tri-encoder architectures

SimCSEbase 441.17s 64.11% 60.57MB
SimCSEbase+hyper64-cl 525.62s 64.11% 2.17GB
SimCSEbase+hyper-cl 541.55s 64.11% 12.81GB

SimCSElarge 832.19s 64.11% 80.45MB
SimCSElarge+hyper64-cl 990.94s 64.11% 3.82GB
SimCSElarge+hyper-cl 960.84s 64.11% 22.75GB

Table 3: Analysis of inference time, cache hit rate, and
memory usage for different architectures and methods
on the entire C-STS dataset.

Method Time HitRate Cache

bi-encoder architectures

SimKGCbase 994.41s 46.65% 295.29MB
SimKGClarge 1806.18s 46.65% 392.2MB

tri-encoder architectures

SimKGCbase+hadamard 435.571s 85.32% 121.86MB
SimKGCbase+concatenation 449.46s 85.32% 121.86MB
SimKGCbase+hyper-cl 448.955s 85.32% 146.57MB

SimKGClarge+hadamard 781.45s 85.32% 161.85MB
SimKGClarge+concatenation 783.228s 85.32% 161.85MB
SimKGClarge+hyper-cl 774.41s 85.32% 205.81MB

Table 4: Analysis of inference time, cache hit rate, and
memory usage for different architectures and methods
on the entire WN18RR dataset.

of 20 random sentences from the C-STS validation
dataset, with sentences within each group sharing
the same conditions. The three conditions we se-
lect are: ‘The number of people’, ‘The sport’, and
‘The name of the object’. As expected, Figure 4
shows that sentence embeddings transformed with
the same Wci form clusters, meaning each embed-
ding has projected to respective subspaces.

We complement the visual analysis with a quan-
titative evaluation. We perform K-means clustering
on the sentence embeddings before and after trans-
formation.6 Following the clustering, we compute
the average impurity (entropy) of each sentence
group, where a lower value suggests better con-
ditioning of sentence embeddings. Formally, the
impurity I based on the entropy of each (condi-
tional) sentence group E(i) is given by:

I =
∑

i
|Ci|
|S| E(i) = −∑

i
|Ci|
|S|

∑
j
|Lij |
|Ci| log

|Lij |
|Ci| ,

6K is set to 3, same as the number of chosen conditions.

Figure 4: Visualization of the clusters of sentence em-
beddings before (top) and after (bottom) projection onto
condition subspaces by Hyper-CL.

where |S| is the total number of sentences, |Ci| is
the number of sentences that should be labeled as
condition i, and |Lij | represents the number of ex-
amples clustered as j by K-means clustering within
the ith (conditional) sentence group. We discover
that after projection done by Hyper-CL, I changes
from 0.739 to 0.270, indicating that Hyper-CL ef-
fectively projects sentence embeddings into distinct
subspaces based on different conditions.

5.3 Generalization Capabilities of Hyper-CL

We examine the generalization capabilities of
Hyper-CL, focusing on its ability to generalize to
unseen conditions during training. This enables a
fine-grained evaluation of the conditioning ability
and confirms its feasibility in realistic settings.

For the targeted study, we define two separate
subsets of the C-STS validation set.7 The first cat-
egory is referred to as the ‘unseen’ dataset, which
consists only of data instances with conditions not
present during training. The second is named the
‘seen’ dataset, which comprises data instances with

7Due to the absence of publicly available gold-standard
labels for the C-STS test set, we use the validation set for
evaluation purposes. Additionally, we partition the C-STS
training data in a 9:1 ratio to establish a new validation set.
Note also that we concentrate on C-STS in this section, as
WN18RR and FB15K-237 do not provide ‘unseen’ conditions.

707

Method (Metric: Spearman) Overall Unseen Seen

SimCSElarge 32.13 13.93 25.02
SimCSElarge+hyper-cl 38.59 36.25 41.14

Table 5: Generalization capabilities of Hyper-CL on the
C-STS validation set. We compare the tri-encoder base-
line and Hyper-CL in both ‘unseen’ and ‘seen’ settings,
using Spearman’s correlation as the evaluation metric.

conditions already seen in the training phase. Statis-
tically, the number of data instances for the ‘unseen’
portion is 731 (25.79% of the overall dataset), and
for the ‘seen’ portion, it is 2,103.

Experimental results on the ‘overall’, ‘unseen’,
and ‘seen’ datasets are listed in Table 5. For the
embedding model f , we employed SimCSElarge.
Compared to the original tri-encoder (the first row),
Hyper-CL shows a clear performance improvement
of 16-22 points in both ‘seen’ and ‘unseen’ settings,
with particularly superior performance in the ‘un-
seen’ setting. These findings highlight the superior
generalization capabilities of Hyper-CL, enabling
it to excel at handling unseen data.

5.4 Ablation Study on Contrastive Learning
In §3.3, we argued that the joint utilization of hy-
pernetworks and contrastive learning yields the
best performance among the available options.
To verify this, we evaluate four different varia-
tions of the tri-encoder architecture on C-STS,
whose details are as follows: (1) SimCSEbase:
the tri-encoder architecture trained only with
LMSE ; (2) SimCSEbase+cl: the tri-encoder trained
with both LMSE and LCL but hypernetworks
excluded; (3) SimCSEbase+hyper64: a variant of
Hyper-CL (K=64) but trained only with LMSE ; (4)
SimCSEbase+hyper64−cl: a normal Hyper-CL with
low-rank approximation (K=64). For a fair compar-
ison, we ensure that the total number of parameters
for each variant remains consistent, guaranteeing
equal expressive power.

Table 6 shows that the contrastive learning ob-
jective (LCL) is more effective when combined
with hypernetworks. This trend is clearly observed
when comparing the performance increase from
SimCSEbase+hyper64 to SimCSEbase+hyper64-cl
and that from SimCSEbase to SimCSEbase+cl.

5.4.1 Why is Contrastive Learning More
Effective with Hypernetworks?

The weight matrix Wc = q(hc), generated by the
hypernetworks of Hyper-CL, is responsible for a

Method Spearman

SimCSEbase+hyper64-cl 37.96
SimCSEbase+hyper64 35.38
SimCSEbase+cl 36.13
SimCSEbase 35.47

Table 6: Ablation study on the effectiveness of con-
trastive learning in condition subspaces. The results are
from the C-STS validation set.

linear transformation of a sentence embedding. On
the other hand, the Hadamard product of a sentence
embedding and a condition embedding, which is
computed in the original tri-encoder architecture,
can also be considered as a linear transformation,
formulating the condition embedding hc as a diag-
onal matrix Wc′ = diag(hc).

To gauge the expressiveness of the two differ-
ent transformations induced by Wc and Wc′ , we
calculate the variance of the Frobenius norm of
these matrices during inference on a subset of the
C-STS validation set. For matrices with varying
valid element counts (i.e., Wc and Wc′), we nor-
malize their Frobenius norm by dividing by the
square root of the number of valid elements. Ex-
perimental results show that the variance of the
Frobenius norm, a measure of the matrices’ ex-
pressive power, is significantly higher (0.0248) for
Hyper-CL’s transformations (Wc) compared to the
Hadamard product (0.001; Wc′). These findings im-
ply that hypernetworks endow the transformation
with enhanced expressive power. Consequently, it
is reasonable to expect that the contrastive learning
process that leverages hypernetworks would also
exhibit greater effectiveness.

6 Conclusion

We propose Hyper-CL, a method that combines hy-
pernetworks with contrastive learning to generate
conditioned sentence representations. In two repre-
sentative tasks requiring conditioning on specific
perspectives, our approach successfully narrows
the performance gap with the bi-encoder architec-
ture while maintaining the time efficiency charac-
teristic of the tri-encoder approach. We further vali-
date the inner workings of Hyper-CL by presenting
intuitive analyses, such as visualizations of the em-
beddings projected by Hyper-CL. In future work,
we plan to explore a broader range of applications
for Hyper-CL and to investigate its refinement.

708

Limitations

We have only explored applying our approach to
encoder models, leaving room for applications on
decoder models. Additionally, despite the variety of
existing contrastive learning methodologies, we ad-
here to utilizing the contrastive learning objectives
provided by the tasks.

Ethics Statement

In this study, we utilized models and datasets
publicly available from Huggingface. All datasets
for evaluation are open-source and comply with
data usage policies. However, some datasets (e.g.,
FB15k-237) are derived from Freebase, a large col-
laborative online collection that may contain inher-
ently unethical information. We conducted a thor-
ough inspection to check if our dataset contained
any unethical content. No harmful information or
offensive topics were identified during the human
inspection process.

Acknowledgements

This work was supported by Institute of Informa-
tion & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea gov-
ernment(MSIT) (No.RS-2020-II201373, Artificial
Intelligence Graduate School Program(Hanyang
University)). This work was supported by Insti-
tute of Information & communications Technol-
ogy Planning & Evaluation (IITP) under the arti-
ficial intelligence semiconductor support program
to nurture the best talents (IITP-2024-RS-2023-
00253914) grant funded by the Korea govern-
ment(MSIT). This work was supported by the
National Research Foundation of Korea(NRF)
grant funded by the Korea government(*MSIT)
(No.2018R1A5A7059549). *Ministry of Science
and ICT.

References

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Computa-
tional Semantics – Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation (SemEval 2012), pages 385–393,
Montréal, Canada. Association for Computational
Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, So-
heila Molaei, and David A Clifton. 2023. A brief
review of hypernetworks in deep learning. arXiv
preprint arXiv:2306.06955.

Chen Chen, Yufei Wang, Bing Li, and Kwok-Yan Lam.
2022. Knowledge is flat: A Seq2Seq generative
framework for various knowledge graph comple-
tion. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 4005–
4017, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.
DiffCSE: Difference-based contrastive learning for
sentence embeddings. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4207–4218, Seattle,
United States. Association for Computational Lin-
guistics.

Ameet Deshpande, Carlos Jimenez, Howard Chen,
Vishvak Murahari, Victoria Graf, Tanmay Rajpuro-
hit, Ashwin Kalyan, Danqi Chen, and Karthik
Narasimhan. 2023. C-STS: Conditional semantic
textual similarity. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5669–5690, Singapore. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tomer Galanti and Lior Wolf. 2020. On the modularity
of hypernetworks. Advances in Neural Information
Processing Systems, 33:10409–10419.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference

709

https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/2022.coling-1.352
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2023.emnlp-main.345
https://doi.org/10.18653/v1/2023.emnlp-main.345
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552

on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017. Hy-
pernetworks. In International Conference on Learn-
ing Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Bosung Kim, Taesuk Hong, Youngjoong Ko, and
Jungyun Seo. 2020. Multi-task learning for knowl-
edge graph completion with pre-trained language
models. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
1737–1743, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for BERT sentence
representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2528–2540, Online. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar,
Shirish Karande, Lovekesh Vig, and Venkataramana
Runkana. 2023. Hyperlora for pdes. arXiv preprint
arXiv:2308.09290.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014–2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages

3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on
continuous vector space models and their composi-
tionality, pages 57–66.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021. Structure-augmented text
representation learning for efficient knowledge graph
completion. In Proceedings of the Web Conference
2021, pages 1737–1748.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022. SimKGC: Simple contrastive knowledge
graph completion with pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4281–4294, Dublin, Ireland.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Xin Xie, Ningyu Zhang, Zhoubo Li, Shumin Deng, Hui
Chen, Feiyu Xiong, Mosha Chen, and Huajun Chen.
2022. From discrimination to generation: Knowledge
graph completion with generative transformer. In
Companion Proceedings of the Web Conference 2022,
pages 162–165.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng
Tao. 2017. On compressing deep models by low
rank and sparse decomposition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 7370–7379.

710

https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://doi.org/10.18653/v1/2020.coling-main.153
https://doi.org/10.18653/v1/2020.coling-main.153
https://doi.org/10.18653/v1/2020.coling-main.153
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A Training Details

In this section, we describe the hyperparameters
used for training Hyper-CL on the two evaluation
tasks employed in this paper. We implemented
Hyper-CL using the Transformers package (Wolf
et al., 2020). For both tasks, Hyper-CL utilized the
[CLS] token embedding computed by an encoder
model as a sentence representation.

Conditional Semantic Textual Similarity (C-
STS): We conducted a hyperparameter search
over learning rates ∈ {1e-5, 2e-5, 3e-5}, weight
decays ∈ {0.0, 0.1}, and temperatures ∈
{1.0, 1.5, 1.7, 1.9}. The hyperparameter set yield-
ing the best scores on the C-STS validation set with
three random seeds was used for the final evalua-
tion of the test set. As a result, we adopted the
hyperparameters as shown in Table 7.

Method LR WD Temp

DiffCSEbase+hyper-cl 3e-5 0.1 1.5
DiffCSEbase+hyper64-cl 1e-5 0.0 1.5
SimCSEbase+hyper-cl 3e-5 0.1 1.9
SimCSEbase+hyper64-cl 2e-5 0.1 1.7
SimCSElarge+hyper-cl 2e-5 0.1 1.5
SimCSElarge+hyper85-cl 1e-5 0.1 1.9

Table 7: Hyperparameters determined for the C-STS
task. The abbreviations LR, WD, Temp stands for learn-
ing rate, weight decay, and temperature, respectively.

Knowledge Graph Completion (KGC): We
utilized the same set of hyperparameters proposed
in SimKGC (Wang et al., 2022).

Method Rank (K) Spearman

DiffCSEbase+hyperK-cl

768 (=768/1) 33.82
192 (=768/4) 34.73
96 (=768/8) 34.16

64 (=768/12) 33.10
48 (=768/16) 33.31
32 (=768/24) 31.68

SimCSEbase+hyperK-cl

768 (=768/1) 38.75
192 (=768/4) 38.66
96 (=768/8) 35.69

64 (=768/12) 38.36
48 (=768/16) 37.02
32 (=768/24) 36.92

SimCSElarge+hyperK-cl

1024 (1024/1) 39.60
256 (=1024/4) 38.76
128 (=1024/8) 38.19
85 (=1024/12) 38.12
64 (=1024/16) 37.83
42 (=1024/24) 37.44

Table 8: Ablation study of different ranks (K).

B Ablation Study on the Selection of K

The selection of K for constructing lightweight
hypernetworks is closely related to the size of sen-
tence embeddings. We empirically evaluated the
validation set to determine suitable values for K by
dividing the embedding sizes of the base (768) and
large (1024) encoder embeddings with various divi-
sors (1, 4, 8, 12, 16, 24). According to Table 8, we
observed that for SimCSElarge, the performance
difference between K=128 and K=85 is just 0.07
points, while trainable parameters increase 1.5x.
In conclusion, we found that setting the divisor to
12 (resulting in K values of 64 and 85 for the base
and large models, respectively) achieves an optimal
balance between performance and efficiency.

711

