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Abstract

Entity Alignment (EA) is vital for integrating
diverse knowledge graph (KG) data, playing a
crucial role in data-driven AI applications. Tra-
ditional EA methods primarily rely on compar-
ing entity embeddings, but their effectiveness
is constrained by the limited input KG data and
the capabilities of the representation learning
techniques. Against this backdrop, we intro-
duce ChatEA, an innovative framework that
incorporates large language models (LLMs)
to improve EA. To address the constraints
of limited input KG data, ChatEA introduces
a KG-code translation module that translates
KG structures into a format understandable by
LLMs, thereby allowing LLMs to utilize their
extensive background knowledge to improve
EA accuracy. To overcome the over-reliance on
entity embedding comparisons, ChatEA imple-
ments a two-stage EA strategy that capitalizes
on LLMs’ capability for multi-step reasoning
in a dialogue format, thereby enhancing accu-
racy while preserving efficiency. Our experi-
mental results verify ChatEA’s superior perfor-
mance, highlighting LLMs’ potential in facili-
tating EA tasks. The source code is available
at https://github.com/jxh4945777/ChatEA/.

1 Introduction

Entity alignment (EA) aims at aligning entities
from diverse knowledge graphs (KGs). It is a
pivotal step in unifying data from heterogeneous
sources and plays a crucial role in data-driven AI.
Current EA methods predominantly rely on mea-
suring the similarity of entity embeddings derived
from knowledge representation learning (KRL)
techniques. These techniques learn from the topol-
ogy and semantics of KGs to derive entity embed-
dings (Zhang et al., 2022). However, these meth-
ods fail to incorporate the external knowledge of
entities, which is essential for the alignment pro-
cess. Moreover, the KRL-based alignment meth-
ods merely calculate the similarity between two

Figure 1: A comparison of previous EA and ChatEA.

entity embeddings in a black-box manner, which
lacks a detailed and explicit reasoning process for
alignment. Such limitations significantly affect the
performance of EA methods, especially in aligning
highly heterogeneous KG pairs where KRL-based
methods struggle to capture the complex correla-
tions among KGs (Jiang et al., 2023a).

Recently, large language models (LLMs) have
showcased their effectiveness across a range of nat-
ural language processing tasks, revealing a vast but
under-explored potential in EA. These LLMs are
trained on extensive corpora to encapsulate exter-
nal knowledge, offering a rich source of contextual
information for entities in KGs (Jiang et al., 2023b).
Furthermore, the recent studies of adopting LLMs
in knowledge extraction and reasoning also demon-
strated their strong reasoning abilities on KGs (Gui
et al., 2023; Wei et al., 2023). These features of
LLMs offer a promising path to overcome the con-
straints faced by current EA methods.

In this paper, we propose ChatEA, a novel frame-
work designed to enhance KRL-based EA methods
by utilizing the extensive background knowledge
and reasoning abilities of LLMs. As shown in Fig-
ure 1, ChatEA integrates KRL-based EA methods
in the feature pre-processing phase to assist LLMs
in the subsequent selection of candidate entities. To
overcome the constraints of limited input KG data,
ChatEA firstly features a KG-Code translation mod-
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ule. The module initially converts KGs into a code
format, explicitly accounting for entity definition
toward LLMs’ comprehension of graph-structured
KG data (Yang et al., 2024; Li et al., 2024). Then
it facilitates the generation of entity descriptions
leveraging LLMs’ background knowledge. To over-
come the over-reliance on comparing entity embed-
dings for EA and improve transparency, ChatEA
employs a two-stage EA strategy, leveraging LLMs’
multi-step reasoning in dialogue form to enhance
accuracy and maintain efficiency. During the can-
didate collecting stage, ChatEA identifies potential
entities by comparing embeddings derived from
the earlier feature pre-processing phase. In the
reasoning and rethinking stage, it evaluates the
likelihood of alignment between entity pairs by
comprehensively considering the name, structure,
entity description, and temporal information, and
then decides whether to broaden the search scope
and continue subsequent iterations.

We validated our method on two conventional
EA datasets: DBP15K(EN-FR) and DBP-WIKI,
along with two more challenging but practical
datasets: ICEWS-WIKI and ICEWS-YAGO, char-
acterized by their highly heterogeneous KGs and
the complexity of capturing inter-KG correla-
tions (Jiang et al., 2023a). The extensive exper-
iments reveal ChatEA’s superiority over existing
state-of-the-art EA methods and underscore the
potential of LLMs in enhancing EA performance.
Notably, ChatEA significantly improves Hits@1
by 9%-16% compared to previous state-of-the-art
methods on the two challenging datasets.

In general, our main contributions are as follows:
(1) To solve the limitations of the existing KRL-

based EA methods, we explore the potential of
adopting LLMs for better EA performance.

(2) We design ChatEA, a novel framework that
integrates LLMs with KRL-based EA methods for
enhanced EA performance.

(3) We conduct extensive experiments to eval-
uate the effectiveness of ChatEA, and discuss the
value and limitations of LLMs in EA tasks.

2 Preliminaries and Related Works

This section first delineates the relevant definitions,
followed by an overview of related works.

2.1 Preliminaries

Knowledge graph (KG) KG = (E ,R,F) stores
the real-world knowledge in the form of facts

F , given a set of entities E and relations R, the
(ehead, r, etail) ∈ E × R × E denotes the set of
facts F , where ehead, etail ∈ E respectively denote
the head entity and tail entity, r ∈ R denotes the re-
lation. For the temporal information in KGs, given
timestamps T , we denote t ∈ T as the temporal in-
formation of the facts, and each fact is represented
in the form of (ehead, r, etail, t).

Entity alignment (EA) is a crucial task in KG re-
search. Given two KGs, KG1 = (E1,R1,F1) and
KG2 = (E2,R2,F2), the goal is to determine the
identical entity set S = (ei, ej)|ei ∈ E1, ej ∈ E2.
In this set, each pair (ei, ej) represents the same
real-world entity but exists in different KGs.

2.2 Related Works
Within the EA domain, various knowledge rep-
resentation learning methods have been mainly
adopted, generally categorized into three types:
translation-based, GNN-based, and other methods.

Translation-based methods, like MTransE (Chen
et al., 2017), BootEA (Sun et al., 2018), and
AlignE (Sun et al., 2018), founded on TransE’s
framework (Bordes et al., 2013), excel in knowl-
edge representations. Graph Neural Networks
(GNNs), exemplified by GCN (Kipf and Welling,
2016), mark a notable advance in EA by aggre-
gating neighborhood information to generate en-
tity embeddings. GCN-Align (Wang et al., 2018),
RDGCN (Chen et al., 2022), AttrGNN (Liu et al.,
2020), and Dual-AMN (Mao et al., 2021) exem-
plify GNN-based EA methods, utilizing GCN for
modeling structure information and learn entity
embedding. Recent GNN-based methodologies,
e.g., TEA-GNN (Xu et al., 2021), TREA (Xu et al.,
2022), and STEA (Cai et al., 2022), have integrated
temporal data, underscoring its significance in EA.
Other approaches, such as BERT-INT (Tang et al.,
2020) and TEA (Zhao et al., 2023) employ lan-
guage models to improve the expressiveness of
entity embeddings for EA. Fualign (Wang et al.,
2023), SDEA (Zhong et al., 2022), and Simple-
HHEA (Jiang et al., 2023a) address the heterogene-
ity in KGs by utilizing side information.

The above three types of EA methods, while
widely adopted, exhibit significant limitations.
They often heavily rely on the quality of input KG
data, and most of their successes are dependent
on the quality of entity embeddings. This depen-
dence poses challenges in scenarios where KGs are
highly heterogeneous or when the quality of the
embeddings is suboptimal (Jiang et al., 2023a).
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Figure 2: The overview framework of our proposed ChatEA, which consists of three main components: (1) entity
feature pre-processing, (2) KG-code translation, and (3) two-stage EA strategy.

In light of these limitations, there emerges an
urgent need to explore new paradigms for EA tasks.
LLMs, with their extensive parametric knowledge,
offer a compelling alternative. Their ability to pro-
cess KGs without the sole reliance on representa-
tion learning positions them as a promising solution
to the limitation of previous methods.

3 Method

In this section, we present ChatEA, a novel frame-
work that unlocks the power of LLMs for EA tasks.
We meticulously design the architecture of ChatEA
around three pivotal objectives:

• O1: Leveraging the capabilities of KRL-based
EA methods as a foundation: This objective
aims to utilize the strengths of KRL-based EA
methods while circumventing its over-reliance
on entity embedding similarity comparisons.

• O2: Understanding KGs and enhancing with
the external knowledge in LLM: This objective
aims to enable LLMs to comprehend KGs effec-
tively, and activate LLMs’ extensive background
knowledge to enrich KGs, thus providing a more
nuanced foundation for EA tasks.
O3: Leveraging LLMs’ reasoning abilities for
enhanced EA: It aims to utilize the reasoning
prowess of LLMs in EA, improving accuracy and
transparency while balancing efficiency.

3.1 Overview of the ChatEA Framework
As illustrated in Figure 2, the architecture of
ChatEA is designed to enhance EA by integrating
the background knowledge and reasoning capabili-
ties of LLMs with the basic strengths of KRL.

In response to the objective O1, ChatEA ini-
tially leverages KRL-based EA techniques to as-
similate entity features, such as names, structural,
and temporal attributes, into embeddings, which
assist LLMs in the candidate entity selection.

In response to the objective O2, ChatEA’s KG-
Code translation module plays a critical role. This
module transforms the KG into a coded format
through class initialization and function, then
adopts LLMs for description generation, thus bridg-
ing the KGs with LLM’s background knowledge.

In response to the objective O3, ChatEA intro-
duces a two-stage EA strategy. This involves pre-
processed entity embeddings to swiftly collect can-
didate entities, then engages LLMs for iterative
reasoning and rethinking alignment probabilities of
the target and candidate entities in a dialogue form.

3.2 Entity Feature Pre-processing

In response to objective O1, we leverage the ca-
pabilities of knowledge representation learning to
model entity information for EA by adopting the
Simple-HHEA (Jiang et al., 2023a), noted for its
simplicity and effectiveness in generating entity
representations. Initially, we employ BERT (De-
vlin et al., 2018) to derive semantic embeddings
of entity names, followed by dimension reduction
via feature whitening transformation (Su et al.,
2021). Temporal attributes are represented using
Time2Vec (Goel et al., 2020), converting time into
a learnable vector. Additionally, we incorporate
structural information through a biased random
walk method (Wang et al., 2023), which optimally
balances BFS and DFS techniques for precise one-
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hop and multi-hop relational analysis. The cul-
mination of these processes results in final em-
beddings that merge name, temporal, and struc-
tural features into a unified multi-view representa-
tion for each entity. This multi-view preprocess-
ing strategy is refined by Margin Ranking loss for
training and Cross-domain Similarity Local Scal-
ing (CSLS) (Conneau et al., 2017) for similarity
measurement, aiding LLMs in the subsequent selec-
tion of candidate entities. The detailed feature pre-
processing pipeline can be found in Appendix A.1.

Additionally, ChatEA’s plug-and-play character-
istic enables it to integrate with various KRL-based
EA methods as a foundation, which influences the
quality of embeddings used for entity similarity
comparison. We also conduct additional ablation
experiments in Section 4.3.3 to assess their impact
on ChatEA’s performance.

3.3 KG Input and Understanding in LLMs

In the ChatEA framework, the KG-Code translation
module stands as a pivotal solution for the second
objective O2. The module inputs and understands
KGs in LLMs and activates the LLMs’ extensive
background knowledge for EA.

3.3.1 Understanding Knowledge Graphs
The efficacy of the code format in aiding the
LLMs to process graph-structured KG data has
been demonstrated in prior research (Yang et al.,
2024). In light of this, we propose the KG-Code
translation module to describe entity information,
which is defined with a Python-style class, and
comprised of five member functions. These func-
tions are specifically designed to convert entity at-
tributes into a distinct data structure and subsequent
visitation, thereby facilitating a more comprehen-
sive understanding by the LLM. Specifically, as
shown in Figure 2, The __init__() function en-
ables LLMs to process entity attribute information
initially. Given an entity, the get_neighbors(),
get_relations(), and get_temporal() member
functions enable LLMs to understand neighbor-
hoods, relations, and temporal information about
entities contained in KGs’ tuples.

3.3.2 Activating LLM’s Inherent Knowledge
The get_description() function of the KG-
Code translation module also addresses the activa-
tion of LLM’s inherent knowledge in the context of
EA. The prompt is designed to encourage the LLM
to autonomously produce concise descriptions of

entities. These descriptions are subsequently uti-
lized in the EA procedure. Subsequently, the sys-
tem prompt, along with few-shot examples and
prompts, emphasizes the use of the LLM’s back-
ground knowledge in reasoning procedure.

By employing these strategies, the KG-Code
translation module integrated into ChatEA not only
facilitates the processing and comprehension of KG
data by LLMs but also leverages their background
knowledge for effective EA.

3.4 Two-Stage EA Strategy in ChatEA

In enhancing the accuracy while balancing effi-
ciency in objective O3, we propose a two-stage
EA strategy. The candidate collecting stage se-
lects candidate entities via similarity comparison
grounded in pre-processed entity representation.
Subsequently, it reevaluates whether these results
necessitate an expansion of the search parameters
for subsequent iterations.

3.4.1 Stage 1: Candidate Collecting
This stage leverages entity embeddings obtained
from pre-processing to filter out candidate entities.
The process begins with identifying the most prob-
able candidates, for a given target entity, ChatEA
utilizes the entity embeddings derived from feature
pre-processing phase 3.2. The Cross-Domain Lo-
cal Scaling (CSLS) metric is employed to measure
the similarity and identify the most similar enti-
ties as candidates. In the first iteration, the process
only selects the top entity as the candidate. Subse-
quently, the process gradually increases the number
of potential entities (e.g., 1 to 10, then 20) in further
iterations. This iterative expansion approach aims
to reduce the number of entities for comparison,
enhancing the process’s efficiency.

3.4.2 Stage 2: Reasoning and Rethinking
Utilizing the KG-Code translation module, this
stage involves a detailed, multi-dimensional assess-
ment of each candidate entity’s alignment with the
target entity in a dialogue form.

For reasoning, through the in-context learning
along with few-shot cases, the model computes
alignment scores based on name, structure, tempo-
ral, and generated entity description step by step.
The detailed prompt can be found in Appendix A.4.

It then rethinks these collected results: if the top
candidate’s score significantly exceeds others and
meets the confidence threshold, the alignment is
considered satisfactory. Otherwise, the model re-
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Algorithm 1 Two-Stage EA Strategy in ChatEA
1: Input: The KG pair to be aligned {KG1, KG2}
2: Output: Aligned entity pairs C
3: features← FEATURE PRE-PROCESSING(KG1,KG2)
4: for scope← {1, 10, 20} do
5: // Stage 1: Candidate Collecting
6: cand← COLLECT CANDIDATES(features, scope)
7: // Stage 2: Reasoning and Rethinking
8: align pair← REASONING(cand, features)
9: isSatisfied← RETHINKING(align pair)

10: if isSatisfied then
11: Aligned entity pairs C ← align pair
12: break
13: end if
14: end for
15: return Aligned entity pairs C

visits the candidate collecting results, expanding its
search scope to reassess alignments with a broader
candidate list. This iterative refinement ensures
comprehensive evaluation, significantly enhancing
the final EA results’ accuracy.

The two-stage EA strategy optimizes both the
transparency of the EA process and performance
while maintaining efficiency, in line with objective
O3. The detailed pseudo-code of this two-stage
strategy is illustrated in Algorithm 1.

4 Experiments

In this section, we evaluate the ChatEA to ascertain
its effectiveness in EA tasks. Our investigation is
guided by three pivotal research questions:

• RQ1: Whether ChatEA overcomes the cur-
rent EA limitations? It delves into how ChatEA
addresses the shortcomings of existing EA meth-
ods, aiming to validate its advancements.

• RQ2: What is the effectiveness of ChatEA’s
each component? This analysis focuses on eval-
uating the individual contributions and efficacy
of ChatEA’s components.

• RQ3: Does the ChatEA framework success-
fully balance accuracy and efficiency in EA?
This examination assesses whether ChatEA man-
ages to strike an optimal balance between high
accuracy and computational efficiency, a crucial
aspect of its practical application.

4.1 Experiment Settings
Here, we introduce the datasets, baselines, model
settings, and evaluation metrics in experiments.

4.1.1 Datasets
We conduct experiments on four entity alignment
datasets. The statistics of these selected datasets
are summarized in Table1.

DBP15K(EN-FR) and DBP-WIKI (Sun et al.,
2020) are two simple EA datasets, which share a
similar structure for their KG pairs, with an equiva-
lent number of entities. Furthermore, the structural
features, such as the number of facts and density,
of these two datasets closely align. ICEWS-WIKI
and ICEWS-YAGO (Jiang et al., 2023a) are two
complex EA datasets 1. Here, the KG pairs exhibit
significant heterogeneity, differing not only in the
number of entities but also in structural features.
Notably, the quantity of anchors does not equal the
number of entities. Consequently, aligning these
complex datasets poses greater challenges.

4.1.2 Baselines
After carefully reviewing existing studies. We
selected 11 state-of-the-art EA methods, which
cover different input features, and KRL techniques.
These include translation-based methods such as
MTransE (Chen et al., 2017) AlignE (Sun et al.,
2018), and BootEA (Sun et al., 2018), GNN-
based methods like GCN-Align (Wang et al., 2018),
RDGCN (Chen et al., 2022), TREA (Xu et al.,
2022), TEA-GNN (Xu et al., 2021), STEA (Cai
et al., 2022), Dual-AMN (Mao et al., 2021), and
other methods like BERT-INT (Devlin et al., 2018)
and FuAlign (Wang et al., 2023). Additionally, it is
pertinent to note the impracticality of directly em-
ploying LLMs for EA due to the input length con-
straints. For instance, fully inputting the ICEWS-
WIKI and ICEWS-YAGO requires around 67,642k
and 78,257k tokens, respectively. Such amounts
surpass the usual LLM input limit (e.g., 128k to-
kens), making direct comparisons impractical.

4.1.3 Model Configuration
For LLM selection, we adopt the llama2-70b-
chat (Touvron et al., 2023) as our backbone, which
is open-source and widely adopted. We also vali-
date other representative LLMs in Section 4.3.2.

For consistency in the evaluation, the baseline
models in the experiments adhere to the hyper-
parameter specifications given in their original pub-
lications, except standardizing hidden dimensions
to d = 64 to ensure a fair comparison.

We followed the 3:7 splitting ratio in training/
testing data. All models underwent identical pre-
processing to prepare initial features for input. Our
development environment was PyTorch, and the
experiments were conducted on a Ubuntu machine
equipped with four 40GB NVIDIA A100 GPUs.

1https://github.com/IDEA-FinAI/Simple-HHEA
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Dataset #Entities #Relations #Facts Density #Anchors Temporal

DBP15K(EN-FR) EN 15,000 193 96,318 6.421
15,000

No
FR 15,000 166 80,112 5.341 No

DBP-WIKI DBP 100,000 413 293,990 2.940
100,000

No
WIKI 100,000 261 251,708 2.517 No

ICEWS-WIKI ICEWS 11,047 272 3,527,881 319.352
5,058

Yes
WIKI 15,896 226 198,257 12.472 Yes

ICEWS-YAGO ICEWS 26,863 272 4,192,555 156.072
18,824

Yes
YAGO 22,734 41 107,118 4.712 Yes

Table 1: The detailed statistics of the datasets. Temporal denotes whether the dataset contains temporal information.

Models DBP15K(EN-FR) DBP-WIKI ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.247 0.577 0.360 0.281 0.520 0.363 0.021 0.158 0.068 0.012 0.084 0.040
AlignE 0.481 0.824 0.599 0.566 0.827 0.655 0.057 0.261 0.122 0.019 0.118 0.055
BootEA 0.653 0.874 0.731 0.748 0.898 0.801 0.072 0.275 0.139 0.020 0.120 0.056

GCN-Align 0.411 0.772 0.530 0.494 0.756 0.590 0.046 0.184 0.093 0.017 0.085 0.038
RDGCN 0.873 0.950 0.901 0.974 0.994 0.980 0.064 0.202 0.096 0.029 0.097 0.042

Dual-AMN 0.954 0.994 0.970 0.983 0.996 0.991 0.083 0.281 0.145 0.031 0.144 0.068
TEA-GNN - - - - - - 0.063 0.253 0.126 0.025 0.135 0.064

TREA - - - - - - 0.081 0.302 0.155 0.033 0.150 0.072
STEA - - - - - - 0.079 0.292 0.152 0.033 0.147 0.073
BERT 0.937 0.985 0.956 0.941 0.980 0.963 0.546 0.687 0.596 0.749 0.845 0.784

FuAlign 0.936 0.988 0.955 0.980 0.991 0.986 0.257 0.570 0.361 0.326 0.604 0.423
BERT-INT 0.990 0.997 0.993 0.996 0.997 0.996 0.561 0.700 0.607 0.756 0.859 0.793

Simple-HHEA 0.959 0.995 0.972 0.975 0.991 0.988 0.720 0.872 0.754 0.847 0.915 0.870

ChatEA 0.990 1.000 0.995 0.995 1.000 0.998 0.880 0.945 0.912 0.935 0.955 0.944

Table 2: Main experiment results on the four datasets. Bold: the best result; Underline: the runner-up result.

4.1.4 Initial Feature Setup
In our study, all EA models utilizing entity name
information share the same entity name embed-
dings. Specifically, for DBP15K(EN-FR), we ob-
tain entity names using machine translation. For
DBP-WIKI, we map QIDs into entity names. For
ICEWS-WIKI and ICEWS-YAGO, we use the orig-
inal entity names. After text feature extraction,
we employ BERT with a whitening strategy (Su
et al., 2021) to obtain the initial name embeddings.
Structure-based EA methods that do not utilize en-
tity name information are initialized random initial-
ization of embeddings according to their original
method-specific configurations.

4.1.5 Evaluation Metrics
In line with widely adopted evaluation methods in
EA research, we use two metrics for evaluation:
(1) Hits@k, measuring the percentage of correct
alignments within the top k (k = 1, 10) matches.
(2) Mean Reciprocal Rank (MRR), reflecting the
average inverse ranking of correct results. Higher
values in Hits@k and MRR indicate superior per-
formance in the EA task.

4.2 Main Experiment Results

The comprehensive comparison conducted to ad-
dress RQ1 underscores ChatEA’s consistent superi-
ority or equivalence to state-of-the-art EA methods
across various datasets, as highlighted in Table 2.

Specifically, ChatEA showcases remarkable per-
formance, achieving a Hits@1 score of 0.990 on
the DBP15K(EN-FR) dataset, equalling the perfor-
mance of BERT-INT. On the DBP-WIKI dataset, it
records a Hits@1 score of 0.995, slightly surpassed
by BERT-INT’s score of 0.996. The distinction be-
comes more pronounced on the ICEWS-WIKI and
ICEWS-YAGO datasets, where ChatEA’s Hits@1
scores of 0.880 and 0.935 respectively, which out-
performs the best SOTA result (Simple-HHEA) by
16% and 8.8%, respectively.

This evidence leads to a critical examination of
traditional EA methods. Especially GNN-based
approaches reveal their limitations when faced with
the highly heterogeneous KGs. The fundamental
issue lies in their sole reliance on input KG data,
which lacks the breadth of contextual information,
and the constraints of KRL methods that are not
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equipped to handle such complexity.
As a comparison, our proposed ChatEA not only

enriches entity descriptions with extensive back-
ground knowledge but also introduces an innova-
tive two-stage EA strategy. This approach signifi-
cantly reduces dependency on input KG data and
addresses the over-reliance on entity embedding
comparisons. By utilizing LLMs’ advanced rea-
soning capabilities, ChatEA refines alignment ac-
curacy and effectively navigates the shortcomings
of traditional KRL-based methods.

4.3 Ablation Study

To address RQ2, and assess the contribution of
each component in ChatEA, we conducted ablation
studies on the ICEWS-WIKI and ICEWS-YAGO.
These studies aim to determine the individual bene-
fits of components of ChatEA and investigate their
influence on the base LLM’s performance. The
results are presented in Table 3 and Table 4.

4.3.1 Effectiveness of Each Component
To assess the impact of LLM, ChatEA (w/o llm)
excludes the two-stage EA strategy, relying solely
on entity embeddings. In comparison, the origi-
nal ChatEA achieves significant performance gains
(18.5% and 12.5% in Hits@1), highlighting the
importance of both background knowledge and the
reasoning ability of LLM in boosting EA accuracy.

ChatEA (w/o name), ChatEA (w/o structure),
and ChatEA (w/o temporal) respectively omit both
the input data and relevant functions of name, struc-
ture, and temporal in the KG-Code translation mod-
ule. The results prove that the name, structure, and
temporal information play a significant role in EA.

ChatEA (w/o code) replaces the KG-code trans-
lation module by directly giving the entity name
and tuples as LLM’s input, resulting in a marked
decrease in performance, which validates the effec-
tiveness of the KG-Code translation in facilitating
an understanding of KGs by the LLM.

ChatEA (w/o desc) excludes entity descriptions
in the two-stage EA strategy, leading to a perfor-
mance decline. It reveals that generating entity de-
scriptions based on the LLM’s background knowl-
edge effectively activates contextual about entities
stored in LLMs, which is crucial for accurate EA.

4.3.2 Performance with Different LLMs
Given ChatEA’s flexibility of plug-and-play for dif-
ferent LLMs, we evaluate how different backbone
LLMs affect its performance on ICEWS-WIKI and

Settings ICEWS-WIKI ICEWS-YAGO

Hits@1 MRR Hits@1 MRR

ChatEA 0.880 0.912 0.935 0.944
- w/o llm 0.695 0.767 0.810 0.866
- w/o name 0.640 0.709 0.685 0.747
- w/o structure 0.860 0.891 0.925 0.937
- w/o temporal 0.870 0.879 0.925 0.939
- w/o code 0.810 0.831 0.870 0.883
- w/o description 0.805 0.826 0.855 0.872

Table 3: Ablation study of ChatEA.

Settings ICEWS-WIKI ICEWS-YAGO

Hits@1 MRR Hits@1 MRR

ChatEA
- w/ llama2-70b 0.880 0.912 0.935 0.944
- w/ llama2-13b 0.455 0.553 0.520 0.595
- w/ gpt-3.5 0.860 0.895 0.875 0.913
- w/ gpt-4 0.955 0.956 0.965 0.965

Table 4: ChatEA’s performance with different LLMs.

ICEWS-YAGO, as shown in Table 4. The results
show the enhanced capability of GPT-4 in boosting
the performance of ChatEA rather than three other
LLMs. Experiments with LLAMA2 at different
scales (13b and 70b) highlight positive relation-
ships between model size and ChatEA’s efficacy.
As the capabilities of LLMs continue evolving, it
is anticipated that ChatEA’s proficiency in the EA
task will correspondingly enhance.

4.3.3 Influence of Entity Embeddings
We conduct entity embedding influence experi-

ments in response to RQ1 and RQ2. This exper-
iment injects random noise into the dimensions
of entity embeddings learned by KRL-based EA
methods (i.e., Simple-HHEA) at ratios from 0% to
80%, simulating different qualities of entity embed-
dings. Subsequently, we contrast the performance
of ChatEA with Simple-HHEA, which solely uti-
lizes entity embedding comparison for EA.

The results, as shown in Figure 3, indicate that
when the noise ratio ranges from 0% to 40%, for
KRL that achieves EA by directly comparing em-
beddings, the hits@1 results on ICEWS-WIKI and
ICEWS-YAGO drop from 0.70 and 0.81 to 0.61
and 0.64, decreasing by 0.19 and 0.17, respectively.
In contrast, the performance decrease for ChatEA
is only 0.01 and 0.09, ensuring stable performance
and robustness in EA. Remarkably, at 60% noise,
ChatEA still outperforms the single-embedding ap-
proach with 40% noise, validating its efficacy. This
experiment demonstrates that even when the KRL
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Figure 3: Performance influence of entity embeddings
comparing ChatEA and Simple-HHEA for EA.

is not good enough, ChatEA can also achieve stable
performance.

Additionally, The candidate collection phase in-
volves three rounds, considering up to 20 top can-
didates. A performance decline is observed when
the embedding noise ratio exceeds 80%, primarily
because correct answers often do not appear among
the top 20 candidates. As shown in the results, in
the ICEWS-WIKI/YAGO datasets, with a noise
ratio above 80%, the ground truth entities fall out-
side the top 20 candidates in 62.9% and 74.2% of
cases, respectively. Therefore, expanding the can-
didate pool could potentially improve performance
in scenarios with low-quality entity embeddings.

4.4 Case Study

To intuitively study the superiority of ChatEA,
we illustrate a case chosen from the test sets of
ICEWS-WIKI. As shown in prompt case in Ta-
ble 11 and output case in Table 12 in Appendix,
ChatEA demonstrates its advanced capability by
accurately aligning the British Monarch entity with
Monarchy_of_the_United_Kingdom. This success
is achieved through an integrated approach that
ChatEA strongly comprehends and reasoning with
multiple attributes of entities across KGs, enhanced
by the analytical prowess of LLM in the ChatEA.
Thus, ChatEA can refine alignment results of entity
embedding comparison through an explicit reason-
ing process. Contrastingly, knowledge embedding
methods incorrectly aligned British Monarch with
British_Raj (an Indian historical period related, not
a political position), shows their limitations in ex-
ternal knowledge.

4.5 Efficiency Analysis

We conduct discussions about how ChatEA opti-
mizes efficiency while maintaining accuracy. In
the two-stage EA strategy, ChatEA implements a
three-round iteration rather than a single, intricately

Figure 4: Proportions of iteration rounds of ChatEA’s
two-stage reasoning on different datasets.

Settings ICEWS-WIKI ICEWS-YAGO

avg.tokens avg.time avg.tokens avg.time

ChatEA
- w/ llama2-70b 11,380 63.4 8,950 46.5
- w/ llama2-13b 47,007 150.1 44,907 135.8
- w/ gpt-3.5 19,145 23.7 16,067 18.9
- w/ gpt-4 9,803 131.8 6,593 90.8
- w/o two-stage 56,059 312.5 58,404 303.2

Table 5: Efficiency analysis of ChatEA. avg.tokens and
avg.time respectively denote the average tokens and
time (seconds) cost of ChatEA per target entity

tailored to reasoning in complex datasets.
As illustrated in Figure 4, with simpler datasets

(i.e., DBP15K(EN-FR) and DBP-WIKI) where
the entity feature preprocessing procedure is well-
performing, ChatEA tends to converge faster,
leading to better utilization of resources and
higher efficiency. Conversely, for more com-
plex datasets(ICEWS-WIKI and ICEWS-YAGO),
ChatEA inclines towards collecting more candi-
dates and conducting thorough reasoning across
extra iterations. This adaptive methodology guar-
antees the maintenance of accuracy while optimiz-
ing LLM resource utilization, achieving a balance
between accuracy and efficiency. Additionally, the
comparison between ChatEA and its variant(w/o
two-stage) in Table 5 also demonstrates the supe-
riority of the two-stage EA strategy in conserving
resources and reducing time consumption.

From the perspective of application scenarios,
ChatEA is designed for settings where high ac-
curacy in EA is crucial, often prioritizing relia-
bility over timeliness. This is evident in exper-
iments, where ChatEA shows superior accuracy,
even if it compromises some efficiency. Further-
more, ChatEA is adaptive to different LLMs, which
positions it to benefit from advancements in LLM
including not only accuracy but also efficiency.
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5 Conclusion

In this paper, we focus on harnessing the capabili-
ties of LLMs for EA, leading to the development
of ChatEA. This innovative framework is tailored
to address three pivotal challenges: (1) enhancing
LLMs’ ability to interpret and understand KGs, (2)
leveraging the inherent knowledge within LLMs for
more effective EA, and (3) improving the efficiency
of LLMs in EA contexts. Our comprehensive ex-
periments, conducted across four representative
datasets, underscore ChatEA’s superiority, particu-
larly in applications requiring high precision in EA.
These findings further illuminate the significant
potential of LLMs in EA tasks for explorations.

6 Limitations

Despite the impressive accuracy achieved by
ChatEA in EA with its innovative architecture and
integration of LLMs. It is essential to consider
the limitations associated with resource consump-
tion and efficiency of LLMs. Currently, ChatEA is
particularly suited for applications where high pre-
cision in entity alignment is a critical requirement.
However, in scenarios that prioritize efficiency and
can tolerate a certain degree of accuracy reduc-
tion, the current implementation of ChatEA faces
constraints due to the inherent limitations in the
inference speed of existing LLMs. This is a crucial
factor to consider, especially in time-sensitive or
resource-constrained environments.

In ChatEA, methodological enhancements
aimed at improving efficiency were integrated, and
a thorough discussion on this aspect is presented in
the Efficiency Analysis section of the paper. These
optimizations are crucial in striking a balance be-
tween accuracy and performance, yet there remains
room for improvement, such as model distillation.

Besides, the performance constraints in smaller-
scale models are also worth exploring in the future.
While ChatEA excels with larger LLMs, its perfor-
mance is notably constrained when applied to mod-
els with smaller parameter scales. Future iterations
of ChatEA may need to incorporate techniques like
sparse fine-tuning (SFT) to optimize performance
without relying on large-scale models.
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A Appendix

A.1 Detailed Feature Pre-processing
For entity name pre-processing, utilizing
BERT (Devlin et al., 2018), entity names are
transformed into initial embeddings, further refined
through a feature whitening transformation (Su
et al., 2021). This process, combining BERT and
whitening, effectively captures entity semantics. A
linear transformation WT finalizes the entity name
embeddings {hname

n }Nn=1.
For entity time pre-processing, incorporat-

ing temporal information, the encoder leverages
Time2Vec (Goel et al., 2020) for time representa-
tion. Entity times are encoded into binary vectors,
with Time2Vec providing a learnable representa-
tion capturing time continuity and periodicity. The
entity time embeddings htime are obtained via a
linear transformation WT .

For entity structure, employing a biased random
walk balancing BFS and DFS (Wang et al., 2023),
the encoder generates paths within KGs. The prob-
ability of selecting an entity is defined by its prox-
imity to other entities. The structure of KGs is cap-
tured through the Skip-gram model SkipGram(·)
and a linear transformation WD, generating entity
embeddings {dwn}Nn=1.

Finally, multi-view embeddings are computed
by concatenating the embeddings, expressed as:

{hmul
n }Nn=1 = {[hname

n ⊗ htime
n ⊗ hdw

n ]}Nn=1.

We adopt Margin Ranking Loss as the loss func-
tion for training, and Cross-domain Similarity Lo-
cal Scaling (CSLS) (Conneau et al., 2017) as the
distance metric to measure similarities between
entity embeddings.

A.2 Comparison with Other PLM-based EA
Methods

In response to your concern about the comparison
of ChatEA with other PLM methods: AttrGNN,
SDEA, and TEA, we have conducted experiments
and attached the experiment results as shown in
Table 6. The experimental results also validate the
superiority of ChatEA.

A.3 Comparison of ChatEA and the Baseline
on Other Classical EA Datasets

For the experiment result of ChatEA on other
classical datasets (i.e., datasets DBP15K(ZH-EN),
DBP15K(JA-EN), and DBP-YAGO), to ensure the
comprehensiveness of the methods compared in

Model ICEWS-WIKI ICEWS-YAGO

Hits@1 MRR Hits@1 MRR

AttrGNN 0.047 0.093 0.015 0.044
SDEA 0.122 0.205 0.049 0.138
TEA 0.610 0.718 0.657 0.740
ChatEA 0.880 0.912 0.935 0.944

Table 6: Comparison of ChatEA with other PLM-based
EA methods on ICEWS-WIKI/YAGO datasets.

Model DBP15K(ZH-EN) DBP15K(JA-EN) DBP-YAGO

Hits@1 MRR Hits@1 MRR Hits@1 MRR

BERT-INT 0.968 0.977 0.964 0.975 0.999 1.000
ChatEA 0.980 0.984 0.985 0.993 0.998 0.999

Table 7: Comparison of ChatEA and BERT-INT on
classical EA datasets: DBP15K(ZH-EN), DBP15K(JA-
EN), and DBP-YAGO.

our paper, we have also included additional experi-
ments here of ChatEA on above three datasets. The
results are shown in Table 7.

These experiments also confirm that ChatEA
demonstrates superior performance on the datasets
above compared to past embedding-based methods,
validating our framework’s effectiveness across var-
ious challenging scenarios.

A.4 Detailed Prompt of ChatEA

In this section, we illustrate the prompts of ChatEA
in Table 8, 9 and 10.

A.5 Detailed Output of ChatEA about the
Case Study-Input

The detailed prompt and output of ChatEA about
the Case Study are illustrated in Table 11 and 12.

A.6 Problematic Outputs of ChatEA with
llama2-13b

We illustrate two problematic outputs of ChatEA
with llama2-13b in Table 13 and 14. Due to space
limitations, we only provide the name and descrip-
tion information of entities in the table.

In the first problematic output in Table 13, based
on the names, descriptions, and other information
of entities "Myanmar" and "Burundi", llama2-13b
is able to make correct reasoning about the [NAME
SIMILARITY], [PROBABILITY OF DESCRIP-
TION POINTING SAME ENTITY] and so on.
However, llama2-13b does not correctly output
scores in the specified format, but instead repeats
the content of the prompt, for example, it outputs
"Step1. Think of [NAME SIMILARITY] = A out
of 5.", which is exactly the same as the prompt. As
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a result, ChatEA cannot extract similarity scores
from the output of llama2-13b to calculate the cor-
rect final alignment score.

In the first problematic output in Table 14,
llama2-13b cannot correctly identify entity infor-
mation, leading to a large number of errors in the
reasoning process. For example, llama2-13b think
that the names of the entity "United Nations" and
"Barack_Obama" both contain "United" and "Na-
tions", so it thinks that the name similarity is high
and output "[NAME SIMILARITY]= 4 out of 5".
But in fact the name of the entity "Barack_Obama"
does not contain "United" and "Nations". Another
example is that, llama2-13b output "Both entities
have similar descriptions, as they are both interna-
tional organizations", but in fact the description
of entity "Barack_Obama" indicates that entity
"Barack_Obama" is the President of the United
States. Such reasoning errors prevent ChatEA from
correctly calculating the alignment scores.

For LLMs with relatively small parameters such
as llama2-13b, problems including information
recognition errors, reasoning errors, output format
errors and so on still exist. In future work, super-
vised fine-tuning is needed to activate the potential
of these LLMs with relatively small parameters on
this entity alignment task.
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KG-Code Translation Prompt

A Knowledge Graph Entity is defined as follows:

Class Entity:
def __init__(self, name, id, tuples=[]):

self.entity_name = name
self.entity_id = id
self.tuples = tuples

def get_description(self, LLM):
description = LLM(self.entity_name, self.tuples)
return description

def get_neighbors(self):
neighbors = set()
for head_entity, _, tail_entity, _, _ in self.tuples:

if head_entity == self.entity_name:
neighbors.add(tail_entity)

else:
neighbors.add(head_entity)

return list(neighbors)
def get_relation_information(self):

relation_info = []
for _, relation, _, _, _ in self.tuples:

relation_info.append(relation)
return relation_info

def get_time_information(self):
time_info = []
for _, _, _, start_time, end_time in self.tuples:

time_info.append((start_time, end_time))
return time_info

You are a helpful assistant, helping me align or match entities of knowledge graphs according to name infor-
mation (self.entity_name), description information (get_description()), structure information (self.tuples,
get_neighbors(), get_relation_information()), time information (get_time_information()), YOUR OWN
KNOWLEDGE.

Your reasoning process for entity alignment should strictly follow this case step by step:

{{ reasoning case }}

[Output Format]: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIPTION POINTING
SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [TIME SIMILARITY] = D
out of 5. NOTICE, A,B,C,D are in range [1, 2, 3, 4, 5], which respectively means [VERY LOW], [LOW],
[MEDIUM], [HIGH], [VERY HIGH]. NOTICE, you MUST strictly output like [Output Format].

Table 8: KG-Code Translation Prompt, which is also the system prompt.
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Reasoning Prompt

Now given [Main Entity] l_e = Entity( {{ Name, ID and Tuples }} ), and [Candidate Entity] r_e = Entity(
{{ Name, ID and Tuples }} ),

- Do [Main Entity] and [Candidate Entity] align or match? Think of the answer STEP BY STEP with
name, description, structure, time, YOUR OWN KNOWLEDGE:

Step 1, think of [NAME SIMILARITY] = A out of 5, using self.entity_name.

Step 2, think of [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = B out of 5, using
get_description() and YOUR OWN KNOWLEDGE.

Step 3, think of [STRUCTURE SIMILARITY] = C out of 5, using self.tuples, get_neighbors() and
get_relation_information().

Step 4, think of [TIME SIMILARITY] = D out of 5, using get_time_information().

NOTICE, the information provided above is not sufficient, so use YOUR OWN KNOWLEDGE to
complete them.

Output answer strictly in format: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIP-
TION POINTING SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [TIME
SIMILARITY] = D out of 5.

Table 9: Reasoning Prompt

Rethinking Prompt

Now given the following entity alignments:
[Main Entity]: {{ Name }} -> {{ Align Pairs }}

Please answer the question: Do these entity alignments are satisfactory enough ([YES] or [NO])?

Answer [YES] if they are relatively satisfactory, which means the alignment score of the top-ranked
candidate meet the threshold, and is far higher than others; otherwise, answer [NO] which means we must
search other candidate entities to match with [Main Entity].

NOTICE, Just answer [YES] or [NO]. Your reasoning process should follow [EXAMPLE]s:

{{ Examples }}

Just directly answer [YES] or [NO], don’t give other text.

Table 10: Rethinking Prompt
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### PROMPT about case study

Now given [Main Entity] l_e = Entity(’British Monarch’, ’7497’, ’The British Monarch is the head of the
monarchy of the United Kingdom, currently held by Queen Elizabeth II, who has reigned since 1952 and
has made various visits to countries such as the United States, South Korea, and Lithuania, among others,
while also hosting visits from foreign leaders and dignitaries.’, [(Ireland, Host a visit, British Monarch,
2011-03, 2011-03), (British Monarch, Host a visit, Elizabeth II, 2011-05, 2011-05), (British Monarch,
Make a visit, United States, 2007-05, 2007-05), (British Monarch, Make a visit, South Korea, 1999-04,
1999-04), (Elizabeth II, Make a visit, British Monarch, 2011-05, 2011-05)]),

and [Candidate Entity] r_e = Entity(’Monarchy_of_the_United_Kingdom’, ’23393’, ’The Monar-
chy of the United Kingdom is the constitutional monarchy that serves as the head of state of the
United Kingdom, with the monarch appointed by the Governor of Hong Kong and holding vari-
ous roles such as the Lord Chancellor, Master of the Rolls, and Lord President of the Council.’,
[(Monarchy_of_the_United_Kingdom, country, United_Kingdom, ~, ~), (Governor_of_Hong_Kong,
appointed by, Monarchy_of_the_United_Kingdom, ~, ~), (Monarchy_of_the_United_Kingdom, instance
of, Constitutional_monarchy, ~, ~), (Chancellor_of_the_Duchy_of_Lancaster, appointed by, Monar-
chy_of_the_United_Kingdom, ~, ~), (Deputy_Prime_Minister_of_the_United_Kingdom, appointed by,
Monarchy_of_the_United_Kingdom, ~, ~)]),

- Compared with other Candidate Entities, do [Main Entity] and [Candidate Entity] align or match? Think
of the answer STEP BY STEP with name, description, structure, time, YOUR OWN KNOWLEDGE:
Step 1, think of [NAME SIMILARITY] = A out of 5, using self.entity_name.
Step 2, think of [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = B out of 5, using
self.entity_description.
Step 3, think of [STRUCTURE SIMILARITY] = C out of 5, using self.tuples, get_neighbors() and
get_relation_information().
Step 4, think of [TIME SIMILARITY] = D out of 5, using get_time_information().
NOTICE, the information provided above is not sufficient, so use YOUR OWN KNOWLEDGE to
complete them.
Output answer strictly in format: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIP-
TION POINTING SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [TIME
SIMILARITY] = D out of 5.

Table 11: The detailed prompt of ChatEA about the Case Study
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### OUTPUT about case study

[NAME SIMILARITY] = 5 out of 5,
[PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = 5 out of 5,
[STRUCTURE SIMILARITY] = 5 out of 5,
[TIME SIMILARITY] = 5 out of 5.

Explanation:

Step 1: [NAME SIMILARITY] = 5 out of 5
The names "British Monarch" and "Monarchy of the United Kingdom" are identical, indicating a high
name similarity.

Step 2: [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = 5 out of 5
The descriptions of both entities mention the same entity, "the United Kingdom," and describe similar
roles and responsibilities, indicating a high probability of pointing to the same entity.

Step 3: [STRUCTURE SIMILARITY] = 5 out of 5
Both entities have the same structure, as they are both instances of the Constitutional monarchy, with the
monarch appointed by the Governor of Hong Kong and holding various roles such as the Lord Chancellor,
Master of the Rolls, and Lord President of the Council.

Step 4: [TIME SIMILARITY] = 5 out of 5
Both entities have the same time information, as they both refer to the current monarch, Queen Elizabeth
II, who has reigned since 1952 and has made various visits to countries such as the United States, South
Korea, and Lithuania, among others, while also hosting visits from foreign leaders and dignitaries.

Therefore, the alignment score between the two entities is (5, 5, 5, 5), indicating a perfect match.

Table 12: The detailed output of ChatEA about the Case Study-Output

7581



### Entity 1:

Name = "Myanmar",
Description = "Myanmar is a country located in Southeast Asia, formerly known as Burma, with a diverse
culture and a complex history of political and economic changes, bordering several countries including
China, Laos, Thailand, and Bangladesh, and having diplomatic relations with many nations."

### Entity 2:

Name = "Burundi",
Description = "Burundi is a country located in the African Great Lakes region, bordered by the Democratic
Republic of the Congo, Rwanda, Tanzania, and Lake Tanganyika, with a diverse cultural heritage and a
history of political instability."

### OUTPUT

Sure, I can help you with that! Based on the information provided, here are my answers:

Step 1: Think of [NAME SIMILARITY] = A out of 5.
Myanmar and Burundi have similar names, but they are not exactly the same. Myanmar is a country
located in Southeast Asia, while Burundi is a country located in the African Great Lakes region.

Step 2: Think of [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = B out of 5.
The descriptions of Myanmar and Burundi are not identical, but they do share some similarities. Both
descriptions mention the country’s location and its diverse population. However, Myanmar’s description
also includes information about its complex history of political and social change, while Burundi’s
description focuses on its cultural heritage and history of political instability.

Step 3: Think of [STRUCTURE SIMILARITY] = C out of 5.
Myanmar and Burundi have different structures in terms of their tuples and relation information. Myanmar
has more tuples and a more complex structure, with information about its expressing intent to cooperate,
hosting visits, and accusing other entities. Burundi, on the other hand, has fewer tuples and a simpler
structure, with information about its membership in organizations and its part in a larger entity.

Step 4: Think of [TIME SIMILARITY] = D out of 5.
Myanmar and Burundi have different time information. Myanmar’s tuples include information about
events that took place in 2007 and 2013, while Burundi’s tuples include information about events that
took place in 1963 and 2018.

Therefore, based on the information provided, I would say that [Main Entity] Myanmar and [Candidate
Entity] Burundi do not align or match perfectly. The name similarity is moderate, the probability of
description pointing to the same entity is low, the structure similarity is low, and the time similarity is low.

Table 13: One problematic output of ChatEA with llama2-13b, where the reasoning process is correct but the output
format is incorrect.

7582



### Entity 1:

Name = "United Nations",
Description = "The United Nations is an international organization that aims to promote peace, security,
and cooperation among its member states, and to address global challenges such as poverty, inequality,
and climate change."

### Entity 2:

Name = "Barack_Obama",
Description = "Barack Obama was the 44th President of the United States, serving two terms from 2009
to 2017, and is the first African American to hold the office."

### OUTPUT

[NAME SIMILARITY] = 4 out of 5,
[PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = 3 out of 5,
[STRUCTURE SIMILARITY] = 4 out of 5,
[TIME SIMILARITY] = 2 out of 5.

Explanation:

1. Name similarity: Both entities have "United" in their names, and "Nations" in the second part of their
names. Therefore, the name similarity is high.

2. Probability of description pointing to same entity: Both entities have similar descriptions, as they are
both international organizations. However, the description of the United Nations is more detailed and
comprehensive, while the description of Barack Obama is more specific to his role as the 44th President
of the United States. Therefore, the probability of description pointing same entity is moderate.

3. Structure similarity: Both entities have a similar structure, with several tuples pointing to them.
However, the United Nations has more tuples pointing to it, and the tuples are more diverse, including
appeals, expressions of intent, consultations, and membership. Therefore, the structure similarity is high.

4. Time similarity: Both entities have a similar time dimension, as they are both contemporary entities.
However, the United Nations has a longer time dimension, as it was established in 1945, while Barack
Obama’s tenure as President was from 2009 to 2017. Therefore, the time similarity is moderate.

Overall, the United Nations and Barack Obama align moderately well in terms of name, description,
structure, and time, but not perfectly.

Table 14: One problematic output of ChatEA with llama2-13b, where the reasoning process is incorrect.
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