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Abstract

We introduce LANGBRIDGE, a zero-shot ap-
proach to adapt language models for multilin-
gual reasoning tasks without multilingual su-
pervision. LANGBRIDGE operates by “bridg-
ing” two models, each specialized in different
aspects: (1) one specialized in understanding
multiple languages (e.g., mT5 encoder) and
(2) one specialized in reasoning (e.g., Orca
2). LANGBRIDGE connects the two models
by introducing minimal trainable parameters
between them. Despite utilizing only English
data for training, LANGBRIDGE considerably
enhances the performance of language models
on low-resource languages across mathematical
reasoning, code completion, logical reasoning,
and commonsense reasoning. Our analysis sug-
gests that the efficacy of LANGBRIDGE stems
from the language-agnostic characteristics of
multilingual representations. We publicly re-
lease our code and models.1

1 Introduction

Language models (LMs) are known to exhibit in-
ferior performance in solving reasoning tasks such
as math or coding in low-resource languages (Shi
et al., 2023; Qin et al., 2023). This tendency pri-
marily stems from the fact that LMs are predomi-
nantly trained on corpora comprised of a few high-
resource languages (Touvron et al., 2023a,b). This
results in low-resource languages being represented
as long-tail knowledge (Lazaridou et al., 2021;
Kandpal et al., 2023).

Prior works have mainly approached this prob-
lem by adapting English-centric LMs to other lan-
guages through continual training on the target lan-
guage (Marchisio et al., 2023; Oba et al., 2023;
Zhu et al., 2023; Kew et al., 2023). However, scal-
ing this approach to a large number of languages
is challenging, as it requires targeted training cor-
pora for each language. This issue is particularly

1github.com/kaistAI/LangBridge
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Figure 1: MGSM accuracy (%) of MetaMath models
and models aligned with mT5-XL encoder (2B) via
LANGBRIDGE (LB). In addition to the average (AVG)
accuracy, we also report the average accuracy of high-
resource languages (HRL) and underrepresented lan-
guages (URL) classified by Shi et al. (2023).

pronounced for LMs such as MetaMath (Yu et al.,
2023) and Orca 2 (Mitra et al., 2023), which have
undergone continuous domain-specific adaptation
from Llama 2 (Touvron et al., 2023b). These spe-
cialized, domain-specific datasets are typically in
English, complicating multilingual support for the
underlying LM.

In this paper, we introduce LANGBRIDGE, a
novel approach that adapts LMs to solve multilin-
gual reasoning tasks without explicitly training on
multilingual data. Inspired from the multimodal lit-
erature that integrates two independently pretrained
modalities (Alayrac et al., 2022; Li et al., 2023a;
Merullo et al., 2023; Liu et al., 2023b; Bavishi
et al., 2023), we leverage the encoder from mT5
(Xue et al., 2021) and introduce a small number of
trainable parameters between the encoder and the
target LM. Most importantly, our approach does
not require multilingual supervision and solely re-
lies on English data while generalizing to multiple
languages during test time, resembling zero-shot
cross-lingual transfer (Pires et al., 2019; Conneau
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et al., 2020; Xue et al., 2021).
We demonstrate the effectiveness of LANG-

BRIDGE by applying our method to LMs special-
ized in diverse reasoning tasks of mathematical
reasoning, code completion, logical reasoning. Our
empirical results show LANGBRIDGE substantially
enhances the multilingual reasoning performance
of LMs. For example, LANGBRIDGE applied to
MetaMath-13B leveraging mT5-XL encoder (2.2B)
boosts the average accuracy on MGSM (Shi et al.,
2023) from 40.5% to 53.5%, matching the perfor-
mance of PaLM-540B (Chowdhery et al., 2023),
which stands at 51.3%. We observe LANGBRIDGE

also significantly boosts LM performance on rea-
soning datasets that require intrinsic linguistic un-
derstanding such as specific subtasks of Big-Bench
Hard (Suzgun et al., 2023) and XCOPA (Ponti et al.,
2020).

We hypothesize that the effectiveness of LANG-
BRIDGE is anchored in the language-agnostic char-
acteristics of multilingual representations (Pires
et al., 2019; Libovický et al., 2020). By mapping
these representations to the target LM’s input space,
we conjecture that the LM is able to grasp the se-
mantics of these representations. Since these rep-
resentations are language-neutral, understanding
them allows the LM to become less dependent on
the specific language of the input, thereby enabling
it to tackle tasks in languages it rarely encoun-
tered during pretraining. Our empirical analysis
of LANGBRIDGE, using principal component anal-
ysis (PCA) and qualitative methods, supports this
hypothesis.

2 Related Work

2.1 English-centric Language Models

Previous works have enhanced the reasoning ca-
pabilities of LMs in mathematical reasoning, code
generation, and logical reasoning (Mukherjee et al.,
2023; Azerbayev et al., 2023; Yu et al., 2023; Roz-
ière et al., 2023; Mitra et al., 2023). However, the
majority of these LMs are derived from English-
centric LMs (Touvron et al., 2023a,b) and adapted
with English domain-specific datasets. Conse-
quently, these LMs inherit limited proficiency in
low-resource languages, which results in a sig-
nificant performance discrepancy between high-
resource and low-resource languages. The motiva-
tion of our proposed method, LANGBRIDGE, is to
narrow this gap.

2.2 Zero-shot Cross-lingual Transfer

Multilingual models demonstrate remarkable zero-
shot cross-lingual transfer capability (Conneau
et al., 2020; Xue et al., 2021; FitzGerald et al.,
2023). This ability significantly aids the low-
resource language community, allowing multilin-
gual models to handle tasks across a wide range of
languages after being finetuned on high-resource
languages. Our method, which leverages multilin-
gual models, exhibits a similar ability, as it can
enhance the reasoning capabilities of LMs across
multiple languages while solely relying on English
data during adaptation.

2.3 Aligning Pretrained Representations

The concept of combining independently pre-
trained representations has been widely explored in
the realm of cross-modal alignment (Alayrac et al.,
2022; Li et al., 2023a; Merullo et al., 2023; Liu
et al., 2023b; Bavishi et al., 2023). These works
focus on aligning visual encoder models with LMs
to facilitate the visual comprehension abilities of
LMs. In a concurrent work, Bansal et al. (2024)
align two large language models to augment each
other’s capabilities. One of their experiments show-
cases that aligning a multilingual LM with another
LM can lead to improved performance in multi-
lingual tasks. However, in contrast to our method,
their approach employs multilingual supervision
for aligning.

3 LANGBRIDGE

3.1 Hypothesis

Previous works show that representations of multi-
lingual encoder models are moderately language-
agnostic (or language-neutral) out-of-the-box, fa-
cilitating zero-shot cross-lingual transfer (Pires
et al., 2019; Libovický et al., 2020). Based on this
premise, we hypothesize that by aligning a multi-
lingual encoder model to the space of an LM, the
LM will be able to understand the semantics of the
languages supported by the multilingual encoder
without training on a large set of languages.

To test this hypothesis, we align multilingual en-
coder models with LMs using only English corpora
(Left of Figure 2). Then, we evaluate the aligned
models using non-English inputs to determine if the
LMs exhibit enhanced capabilities in multilingual
tasks (Right of Figure 2).
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Figure 2: Overview of LANGBRIDGE. Left: A multilingual encoder with an added linear layer is aligned with the
target language model using English data. We keep the language model frozen, whereas the linear layer is trainable.
The multilingual encoder is trainable when adapting pretrained LMs and frozen when adapting finetuned LMs.
Right: In test time, a LANGBRIDGE model can effectively solve multilingual reasoning tasks.

3.2 Model Architecture

Building on the findings of previous works, where
effective cross-modal understanding has been
achieved by mapping representations from non-
linguistic modalities to the soft prompts (Lester
et al., 2021) of LMs (Merullo et al., 2023; Liu et al.,
2023b; Bavishi et al., 2023), LANGBRIDGE maps
the final hidden states of multilingual encoders to
the soft prompts of LMs to attain multilingual un-
derstanding of the target LM. Following the studies
above, we adopt the setting of using a single linear
layer as the mapping function and append one train-
able token to the end of the soft prompt as an [EOS]
(end of sequence) token. Therefore, given the in-
put tokens (padded if necessary) of the encoder
Xenc, the derived soft prompt Henc is equivalent
in sequence length to Xenc + 1, and has the same
dimensionality as the hidden state of the language
model. Any tokens in Henc that originate from
padding tokens of Xenc are masked for the target
LM. We ablate the effect of using more complex
architectures in Appendix D.

Language modeling objective of LANGBRIDGE

resembles that of the “prefix LM” explored by Raf-
fel et al. (2020), as the encoder input tokens Xenc

can be interpreted as prefix tokens upon which the
target tokens Xlm is conditioned. Formally, given
the encoder input tokens Xenc, the language mod-
eling likelihood of the target tokens Xlm is denoted
as:

p(Xlm|Xenc) =
L∏

i

p(xi|Xenc, x<i) (1)

where L is the sequence length of Xlm, and xi is
the ith token of Xlm.

4 Main Experiments

4.1 Overview

We select four task categories for our experiments:
(1) mathematical reasoning, (2) code completion,
(3) logical reasoning, and (4) commonsense rea-
soning.2 For each task category, we apply LANG-
BRIDGE to LMs specialized in reasoning derived
from Llama 2 (Touvron et al., 2023b), such as Meta-
Math or Orca 2.3 We evaluate the models on ex-
isting multilingual benchmarks (e.g., MGSM) or
translated English benchmarks (e.g., translations of
HumanEval (Chen et al., 2021)). As the evaluation
tasks necessitate both multilingual understanding
abilities and advanced reasoning capabilities, this
complexity poses a significant challenge for gen-
eral multilingual LMs and English-centric LMs
specialized in reasoning. On the contrary, models
aligned with LANGBRIDGE could take advantage
of both.

Since Touvron et al. (2023b) disclose the lan-
guage distribution of the pretraining data of
Llama 2, this enables us to identify which lan-
guages are underrepresented in LMs initialized
from Llama 2 weights. Throughout the paper, we
classify a language as underrepresented if it com-
prises less than 0.1% of Llama 2’s pretraining data.

In all of our experiments, we use the encoders
of mT5 (Xue et al., 2021) as the multilingual en-
coders due to their availability across a wide range
of parameters,4 and their support for longer input
sequences compared to other multilingual encoder

2Experiments on commonsense reasoning can be found in
Appendix A.1.

3We test LANGBRIDGE on general-domain LMs (Llama 2
and Mistral 7B (Jiang et al., 2023)) in Appendix C.

4270M (Small), 470M (Base), 820M (Large), 2.2B (XL)
and 6.7B (XXL).
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models.5 Specifically, we use the “LM adaptated”
checkpoints from Vu et al. (2022). We align target
LMs of 7B parameters with mT5-XL encoder to
adapt 9B-sized models and 13B-sized LMs with
mT5-XL encoder and mT5-XXL encoder to ob-
tain 15B and 20B models, respectively. As LANG-
BRIDGE adds a considerable amount of additional
parameters to the target LM, we conduct an infer-
ence throughput analysis in Appendix B. We also
ablate the effect of the encoder parameter size and
encoder model type in Appendix D.

We use the original continual training data of
the LM for LANGBRIDGE when accessible (e.g.,
MetaMathQA for MetaMath). If unavailable, we
opt for the closest publicly accessible dataset (e.g.,
OpenOrca (Lian et al., 2023) for Orca 2). In all
our experiments, we fix the size of the training
dataset to 200,000 instances. However, our abla-
tion study on the effect of the training dataset size
in Appendix D suggests LANGBRIDGE in prac-
tice may require much less data. We maintain the
language model frozen throughout the alignment
process for efficiency. We also freeze the encoder
(except the embedding layer) for aligning finetuned
LMs, whereas for pretrained LMs, we keep the
encoder trainable.6 In Appendix D, we provide
further explanations for these choices and ablate
the effects of freezing. We align the models by
training on the prefix LM objective described in
Section 3.2. In our preliminary experiments, we
find that training on various lengths of Xenc is nec-
essary to ensure robustness on inference time, as
the language model is exposed to diverse lengths
of Henc.

We use a maximum input length (Xenc) of 1,024
and a maximum target length (Xlm) of 128 for
training. For unlabeled data, we randomly vary
the input length within the 1,024 window to intro-
duce the LM to various lengths of Henc. For la-
beled data, the data naturally comes in diverse input
lengths. On a machine equipped with four A100
80GB GPUs, training a 9B model takes less than
four hours when the encoder layers are frozen, and
under five hours when the entire encoder is train-
able. In our main experiments, the setting where
the encoder is fully trainable in the 20B models
results in the maximum training time, which is ap-

5mT5 was trained on input size of 1024 tokens, but can take
longer sequences due to its use of relative position embeddings
(Shaw et al., 2018).

6We define finetuned LMs as LMs trained on labeled cor-
pora and pretrained LMs as LMs trained on unlabeled corpora.

proximately ten hours. Further training details are
available in Appendix F.

4.2 Mathematical Reasoning
4.2.1 Experimental Setup
Evaluation Datasets MGSM (Shi et al., 2023)
comprises grade school math word problems in 11
typologically diverse languages, human translated
from a sample of GSM8K (Cobbe et al., 2021).
For evaluating pretrained LMs, we adopt the cross-
lingual transfer chain-of-thought (CoT) reasoning
(Wei et al., 2022) setting (NATIVE-EXEMPLARS +
EN-COT) from Shi et al. (2023), where the few-shot
exemplars are given in the target language, but the
CoT rationales to solve the exemplars are provided
in English. For finetuned LMs, we evaluate in zero-
shot7 setting. Additional evaluation on MSVAMP
(Chen et al., 2023) is available in Appendix A.

Language Models Llemma (Azerbayev et al.,
2023) is a set of LMs for mathematics, continu-
ally pretrained from Code Llama (Rozière et al.,
2023) on Proof-Pile-2, a mixture of scientific pa-
pers, web data containing mathematics, and math-
ematical code. MetaMath (Yu et al., 2023) was
finetuned from Llama 2 (Touvron et al., 2023b)
on MetaMathQA, a mathematical dataset based on
GSM8K and MATH (Hendrycks et al., 2021b). As
both Proof-Pile-2 and MetaMathQA are publicly
available, we apply LANGBRIDGE using samples
of their respective training datasets.

Baselines Llama 2 (Touvron et al., 2023b) is an
English-centric LM in which 89.7% of the pretrain-
ing data consists of English but has shown consid-
erable performance on non-English languages (Lai
et al., 2023). mT58 (Xue et al., 2021), XGLM
(Lin et al., 2022), and BLOOM (Scao et al.,
2022) are massively multilingual LMs. Math-
Octopus (Chen et al., 2023) is an LM for mul-
tilingual mathematical reasoning. It was ini-
tialized from Llama 2 and finetuned on transla-
tions of the GSM8K dataset across ten languages.
The ten languages seen by MathOctopus overlap
with the 11 languages included in MGSM, ex-
cept Telugu. We use their best-performing check-
points, xRFT-MathOctopusP , which were further
enhanced by data augmentation through rejec-
tion sampling (Yuan et al., 2023). We also re-

7Here, the term zero-shot refers to the lack of few-shot
examples.

8We use the language model checkpoint from Vu et al.
(2022).
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AVG HRL URL EN DE FR ES RU ZH JA TH SW BN TE

Lang. Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

FEW-SHOT CROSS-LINGUAL COT

Llama 2-7B 9.1 12.1 3.9 15.2 11.6 13.2 11.2 11.6 11.2 10.8 7.2 5.2 3.2 0.0
XGLM-7.5B 1.5 1.6 1.2 0.4 1.6 1.2 1.6 2.0 2.8 1.6 2.0 0.4 1.2 1.2
mT5-XXL (13B) 2.9 3.5 2.0 3.6 2.4 4.0 3.6 2.8 3.6 4.4 2.8 1.2 3.2 0.8
BLOOM-7.1B 2.4 2.6 2.0 3.6 1.2 3.6 2.4 2.0 3.2 2.0 0.0 2.4 2.8 2.8
BLOOM-7.1B-PP2 2.3 2.5 1.9 4.8 1.2 2.0 2.0 1.6 4.0 1.6 0.8 2.8 2.0 2.0
PaLM-540B 51.3 52.3 46.8 62.4 53.6 51.2 58.0 55.6 46.0 49.6 49.6 44.4 46.4 46.8

Llemma-7B 21.6 29.9 7.2 44.8 27.2 33.2 29.2 26.0 26.4 22.4 14.0 8.4 6.4 0.0
Llemma-LB-9B 20.4 22.5 16.7 34.8 23.6 26.8 22.4 18.8 16.0 15.2 20.8 17.6 12.4 16.0

Llemma-34B 35.6 46.3 16.7 58.0 48.0 46.8 48.0 47.2 36.8 39.6 28.4 27.2 11.2 0.0

ZERO-SHOT COT

MathOctopus-7B 37.1 42.7 27.2 51.6 40.0 38.4 47.2 42.4 44.0 35.6 39.2 31.6 37.2 0.8
MathOctopus-13B 42.9 48.6 32.9 50.8 49.2 50.4 52.8 47.2 52.4 37.2 44.4 40.4 46.4 0.4
BLOOM-7.1B-MM 16.7 21.7 7.8 41.2 19.6 24.4 26.8 9.6 21.2 9.2 0.8 15.6 6.8 8.0

MetaMath-7B 34.4 51.8 3.9 64.8 57.6 55.6 56.4 50.4 42.4 35.6 4.0 6.4 4.4 0.8
MetaMath-LB-9B 48.8 52.3 42.8 63.2 50.8 52.4 58.0 56.4 45.2 40.0 50.4 43.2 42.8 34.8

MetaMath-13B 40.5 60.3 6.0 70.4 64.4 65.2 63.6 60.0 50.8 47.6 4.8 11.6 6.8 0.8
MetaMath-LB-15B 53.5 58.0 45.2 67.6 63.6 61.6 63.2 60.0 48.0 42.0 52.8 41.6 50.0 36.4
MetaMath-LB-20B 55.8 58.7 50.7 66.4 64.0 64.0 60.4 58.8 52.4 45.2 53.6 49.2 52.8 47.2

Table 1: Accuracy (%) on MGSM. Alongside average (AVG) accuracy, we also report average accuracy of high-
resource languages (HRL) and underrepresented languages (URL) classified by Shi et al. (2023). We include the
language distribution of Llama 2 for reference. For pretrained models (Top), we prompt with 8-shot cross-lingual
chain-of-thought (CoT) reasoning exemplars, except for PaLM-540B, for which we reference the 6-shot cross-lingual
CoT performance reported by Shi et al. (2023). For finetuned models (Bottom), we evaluate zero-shot. The PP2
and MM suffixes denote models trained on Proof-Pile-2 and MetaMath, respectively. We compare LANGBRIDGE
models (LB) to their original LMs and highlight the best-performing numbers in bold.

port the performance of BLOOM models further
trained on the training sets of LANGBRIDGE mod-
els: BLOOM-Proof-Pile-2 (PP2) and BLOOM-
MetaMath (MM). This is done to confirm that the
capabilities of LANGBRIDGE models are derived
from the LMs’ inherent strength rather than solely
from the training set utilized by LANGBRIDGE.
Detailed hyperparameters for training the BLOOM
models are available in Appendix F. We addition-
ally report the performance of PaLM (Chowdhery
et al., 2023) measured by Shi et al. (2023). Similar
to Llama 2, PaLM was pretrained on English-heavy
corpora.

4.2.2 Results

Table 1 shows the evaluation results of baselines
and LANGBRIDGE models on MGSM. We high-
light six main observations. (1) Llama 2, Llemma,
and MetaMath exhibit critical performance degra-
dation across languages that are underrepresented
in the training data of Llama 2. (2) Despite this,
massively multilingual LMs underperform Llama 2,

even in the context of underrepresented languages.9

This disparity underscores the robust mathemat-
ical reasoning capabilities inherent in Llama 2
and absent in BLOOM, XGLM, and mT5. (3)
LANGBRIDGE enhances the multilingual perfor-
mance of Llemma and MetaMath, especially in
underrepresented languages. Most notably, LANG-
BRIDGE is able to bring Llemma and MetaMath
performance on Telugu (TE) from zero or near
zero to a range comparable to other languages. (4)
LANGBRIDGE may degrade performance on high-
resource languages, with Llemma-LB-9B’s En-
glish (EN) performance drop being particularly pro-
nounced. We provide our speculations on the cause
of this phenomenon in Section 6.1. (5) Mathemati-
cal reasoning capabilities of LANGBRIDGE mod-
els come from their original LMs, not their train-
ing data. This is evident from BLOOM-7.1B-PP2
and BLOOM-7.1B-MM underperforming Llemma-
LB-9B and MetaMath-LB-9B, respectively, by a
large margin. (6) Surprisingly, despite only be-

9Note BLOOM models were not trained in German, Rus-
sian, Japanese, and Thai.
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ing trained on English math data, our MetaMath-
LB models are competitive against MathOctopus
models, which were finetuned on translations of
GSM8K on ten out of 11 languages supported by
MGSM. Most importantly, performance of Math-
Octopus models drop to near zero on Telugu (TE),
an unseen language by MathOctopus. On the other
hand, LANGBRIDGE models show robust perfor-
mance on all 11 languages, suggesting that even
without multilingual supervision LANGBRIDGE

generalizes to the large scale of languages included
in the multilingual pretraining of the encoders.

Overall, LANGBRIDGE models demonstrate out-
standing performance against baselines. LANG-
BRIDGE models vastly outperform similar-sized
multilingual models, establishing LANGBRIDGE

as a viable approach for developing mathematical
reasoning models for low-resource languages. We
provide an example of a CoT rationale generated
by MetaMath-LB in Appendix G.

4.3 Code Completion

4.3.1 Experimental Setup
Evaluation Datasets Leveraging the strong trans-
lation capabilities of GPT-4 (OpenAI, 2023), as
demonstrated in the study by Jiao et al. (2023),
we extend HumanEval (Chen et al., 2021), a
set of hand-written programming problems, into
five underrepresented languages: Swahili, Ben-
gali, Punjabi, Telugu, and Urdu. We name the
resulting dataset HumanEval-MT. We select the
five languages among those with reported MMLU
(Hendrycks et al., 2021a) performance in the tech-
nical report of GPT-4 while also being included in
the pretraining corpora of BLOOM. This choice
is made to acquire high-quality translations from
GPT-4, and provide BLOOM-based baselines a
level playing field. To guide GPT-4 to only translate
the embedded natural language instruction of the
docstring while not modifying the code segments,
we prompt GPT-4 with two human-annotated ex-
amples.10 Subsequently, the generated translations
are executed in a Python interpreter environment
to assert the absence of syntax errors. We provide
translation quality estimation of HumanEval-MT
in Appendix E.

The examples within the HumanEval dataset of-
ten feature self-explanatory function names. This
suggests that language models could potentially

10We provide entire functions as inputs to GPT-4 to give it
as much context as possible for accurate translation.

complete the associated code segments success-
fully, even without accurately comprehending the
natural language comments embedded within them.
Therefore, we evaluate the models on anonymized
versions of each language set, wherein the target
function names of the code segments are uniformly
altered to “func”. An example of the anonymiza-
tion and evaluation result on the original version is
available in Appendix A.

Language Models Code Llama (Rozière et al.,
2023) is a family of models initialized from
Llama 2 model weights and pretrained on a code-
heavy dataset. In our experiments, we use Code
Llama-Python models, which were further pre-
trained on a Python-heavy dataset. Since the
datasets used to pretrain the Code Llama mod-
els are not publicly available, we sample from the
Python subset of StarCoder data (Li et al., 2023b)
as the training dataset for LANGBRIDGE.

Baselines We use Llama 2 and BLOOM models
as the baselines. Both models contain code data
within their pretraining corpora. Additionally, we
report the performance of BLOOM-StarCoder, a
BLOOM model continually pretrained on the sam-
ple of StarCoder data used to train LANGBRIDGE

models.

4.3.2 Results
Table 2 presents the Pass@1 scores on HumanEval
and HumanEval-MT. Code Llama-LB models
show consistent improvements over Code Llama
across all underrepresented languages. Moreover,
LANGBRIDGE models can match their larger base-
lines in terms of average scores: the 9B model
slightly underperforms Code Llama-13B by 0.2%,
while both the 15B and 20B models surpass Code
Llama-34B. BLOOM trained on StarCoder data
did not demonstrate noticeable improvements, re-
emphasizing that the strengths of LANGBRIDGE

models predominantly stem from the capabilities
of original LMs.

4.4 Logical Reasoning
4.4.1 Experimental Setup
Evaluation Datasets We assess logical reason-
ing capabilities with Big-Bench Hard (BBH) (Suz-
gun et al., 2023) and Big-Bench Hard Bengali
(BBH-BN) (Shafayat et al., 2024). BBH is a col-
lection of challenging subtasks where the appli-
cation of chain-of-thought (CoT) reasoning has
the potential to enhance performance substantially.
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AVG EN SW BN PA TE UR

Llama 2-7B 4.6 9.8 3.7 3.0 3.0 3.0 4.9
BLOOM-7.1B 4.9 7.3 2.4 5.5 4.3 6.1 3.7
BLOOM-7.1B-StarCoder 4.5 6.7 3.0 4.3 4.3 3.7 4.9

Code Llama-7B 16.9 36.0 14.0 14.6 10.4 9.8 16.5
Code Llama-LB-9B 19.4 31.7 17.1 15.2 18.3 15.2 18.9

Code Llama-13B 19.6 40.2 15.2 17.7 12.2 12.8 19.5
Code Llama-LB-15B 23.6 41.5 20.1 20.1 19.5 19.5 20.7
Code Llama-LB-20B 23.5 36.0 24.4 20.1 20.7 18.9 20.7

Code Llama-34B 22.7 43.9 17.1 23.8 15.9 12.8 22.6

Table 2: Pass@1 scores on anonymized versions of HumanEval and HumanEval-MT. The models were evaluated
on zero-shot code completion using greedy decoding. We compare LANGBRIDGE (LB) models to their original
checkpoints and highlight the best-performing numbers in bold.

BBH-BN translates 14 of the 23 subtasks of BBH
into Bengali. To facilitate meaningful comparison,
we evaluate only on the 14 subtasks supported by
BBH-BN for BBH.11

Language Models Orca 2 (Mitra et al., 2023)
was finetuned on Llama 2 with a collection of
datasets augmented with reasoning traces of GPT-4
as well as fully synthetic datasets created with GPT-
4. Orca 2 effectively improved the reasoning abili-
ties of smaller LMs on complex tasks demanding
advanced reasoning in zero-shot settings. As the
training dataset of Orca 2 is not publicly available,
we sample the training data for LANGBRIDGE from
the OpenOrca dataset (Lian et al., 2023). OpenOrca
follows the data distribution of the first iteration of
Orca (Mukherjee et al., 2023). We employ CLD312

to filter any non-English data that mainly derives
from translation datasets to ensure the zero-shot set-
ting of our experiments. Examples were included
if their input text had a 99% or greater probabil-
ity of being English, while their target text also
had a 95% or greater chance of being English. A
slightly lower threshold was adopted for the tar-
get text to not falsely filter single-word responses,
which CLD3 exhibits lower confidence.

Baselines In our evaluation of BBH, we assess
whether Orca 2-LB models could acquire multilin-
gual comprehension while retaining the zero-shot
CoT capabilities of Orca 2. However, from our
limited testing, we found that no existing open
multilingual LMs could generate CoT reliably in a
zero-shot setting. Consequently, they were not in-
cluded as baselines. We do report the performance
of BLOOM-OpenOrca, a BLOOM model further

11List of the 14 subtasks is available in Appendix A.
12github.com/google/cld3

EN BN

BLOOM-7B-OpenOrca 35.8 31.2

Orca 2-7B 53.9 36.7
Orca 2-LB-9B 46.9 41.8

Orca 2-13B 57.9 41.7
Orca 2-LB-15B 55.2 45.4
Orca 2-LB-20B 53.1 45.4

Table 3: Accuracy (%) on BBH (English) and BBH-BN
(Bengali). We report the average accuracy across 14 sub-
tasks. We compare LANGBRIDGE (LB) models to their
original checkpoints and highlight the best-performing
numbers in bold.

trained on the same training set as Orca 2-LB.

4.4.2 Results

Table 3 shows the average accuracy across the sub-
tasks for BBH and BBH-BN. Orca 2-LB-9B model
shows considerable improvement in BBH-BN, sur-
passing the larger Orca 2-13B model. We report
the performances on each subtask in Table 12 and
Table 13. Remarkably, LANGBRIDGE significantly
increases the performance on BBH-BN subtasks
that require intrinsic linguistic understanding such
as CAUSAL JUDGEMENT and SNARKS. CAUSAL

JUDGEMENT requires the model to comprehend
a short story and determine how a typical human
would answer a given question. For SNARKS, the
model is given two nearly-identical sentences and
is required to indentify which one contains sar-
casm. This observation, together with the results
from the evaluation on XCOPA (Ponti et al., 2020),
a commonsense reasoning dataset, suggests that
LANGBRIDGE models are robust in grasping and
interpreting nuanced linguistic details. Evaluation
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Figure 3: First two principal components of pooled out-
put representations obtained with 300 FLORES samples
per language. Note that the scales of the two subplots
differ.

results on XCOPA are provided in Appendix A.
Figure 8 shows an example of a LANGBRIDGE

model correctly solving CAUSAL JUDGEMENT.

5 Analysis of LANGBRIDGE

Based on the empirical evidence presented in the
previous sections, we assert that LANGBRIDGE

effectively enhances LMs’ capability to address
multilingual tasks without multilingual training,
especially for low-resource languages. This section
presents two fundamental observations that further
reinforce the hypothesis outlined in Section 3.

5.1 PCA

The hypothesis primarily attributes the feasibil-
ity of LANGBRIDGE to the sufficiently language-
agnostic representations of multilingual encoders.
If the conjecture holds, given a LANGBRIDGE

model, the LM’s output representation of the soft
prompt Henc should also exhibit language-agnostic
characteristics. It stands to reason that the LM
would not arbitrarily introduce additional language-
specific features to a language-neutral input derived
from the multilingual encoder.

Therefore, to verify if the LANGBRIDGE mod-
els truly have language-agnostic output represen-
tations, we apply PCA to the mean pooled output
representations from a LANGBRIDGE model and
compare them with those from the original English-
centric LM. Figure 3 shows the first two principal

Model Input

[⋯]
�কান ব�ব��ট ব��া�ক? (Which statement is sarcastic?)

Options:
(A) �যেহত�  কেপ �ােরট িনয়�ণ মােন �ত� ভাষণ,
এ�ট �কৃতপে� গণতে�র জন� এক�ট বড় জয়
(Since corporate restriction equals free speech
 this is actually a big win for democracy)
(B) �যেহত�  কেপ �ােরট মািন মােন �ত� ভাষণ,
এ�ট �কৃতপে� গণতে�র জন� এক�ট বড় জয়
(Since corporate money equals free speech
this is actually a big win for democracy)

Model Output

[⋯]
Step 2: Analyze the given options.
(A) 因为企业主控制意味着独立演讲，
这实际上是民主的一个巨大胜利
(B) 因为企业主钱意味着独立演讲，
这实际上是民主的一个巨大胜利

Step 3: Translate the options to English.
(A) Since corporate control means independent speech,
this is actually a huge victory for democracy
(B) Since corporate money means independent speech,
this is actually a huge victory for democracy
[⋯]
Final answer: (B) 因为企业主钱意味着独立演讲，
这实际上是民主的一个巨大胜利

"Accidental
Translations"

Figure 4: Example of accidental translation of an Orca 2-
LANGBRIDGE model prompted with the SNARK subset
of BBH-BN. Portions of the input prompt and several ra-
tional steps in the output are truncated for brevity. Trans-
lations are provided in (blue with parenthesis) wherever
required.

components of pooled output representations ob-
tained with FLORES (Goyal et al., 2022; Costa-
jussà et al., 2022), a parallel corpus. For Orca
2, high-resource languages, English (EN), Span-
ish (ES), and German (DE), are mapped closely
together. Underrepresented languages, Telugu (TE)
and Swahili (SW), exhibit a more distant mapping
in the representation space, forming three clus-
ters.13 Conversely, for Orca 2-LANGBRIDGE, all
languages are mapped into a single cluster, indi-
cating that the representations of Henc maintain a
relatively language-neutral status.

5.2 Accidental Translations

Figure 4 illustrates an example of “accidental
translation” (Xue et al., 2021) by the Orca 2-
LANGBRIDGE-15B model. Despite being given

13Note that Flores Swahili is in Latin script, the same as the
three high-resource languages.
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the options in Bengali, the LANGBRIDGE model
perceives the options as Chinese and recites them
in Chinese. With Bengali as input, accidental trans-
lation in a third language other than English or Ben-
gali suggests that multiple languages may have sim-
ilar representations in Henc (Li and Murray, 2023).
Nonetheless, outputs in languages other than En-
glish are uncommon for Orca 2-LANGBRIDGE

models. We conduct a qualitative analysis on
the CoTs generated by Orca 2-LANGBRIDGE-15B
for BBH-BN SNARKS subtask, which we find is
the combination with the most frequent accidental
translations. Out of 178 CoT rationales generated,
only eight examples contained accidental transla-
tions in Chinese, Danish, Hindi, Japanese, Marathi,
and Turkish, with one or two examples per lan-
guage. Additionally, seven examples had Bengali
in their CoT rationales. The relatively high fre-
quency of Bengali indicates that Henc does not
exhibit a perfectly language-agnostic behavior, and
for some examples, the LM could discern the input
language as Bengali. This is not ideal, as it suggests
that the LM had to comprehend the input in Bengali,
a language in which the LM lacks proficiency. We
believe that LANGBRIDGE performance can be fur-
ther enhanced by relieving the zero-shot constraint
and adapting the mT5 encoder to have enhanced
language-neutrality (Reimers and Gurevych, 2020;
Feng et al., 2022) prior to alignment with the LM.
However, we leave this exploration for future study.

6 Discussion

6.1 HRL Performance Degradation
In some cases, LANGBRIDGE models exhibit per-
formance degradation in high-resource languages
compared to their target LMs. While we leave
further investigation for future studies, we outline
some conjectures regarding potential causes for
these performance declines.

• Given that the target LM is already proficient
in a certain language, the text representations
derived from the soft prompts may be more
challenging for the LM to interpret compared
to those from the LM’s native embedding
layer.

• Due to limited computing budget, LANG-
BRIDGE models were trained with maximum
input sequence length of 1024 (Xenc) and
maximum output sequence length of 128
(Xlm). This is considerably shorter than what

the original language models were trained on,
especially for language models trained solely
on unlabeled data such as Llemma.

• We fixed the training hyperparameters for all
of the LANGBRIDGE models regardless of the
target LM for the sake of consistency and to
save computing budget. This could have been
suboptimal for some LANGBRIDGE models.

• For Code Llama and Orca 2, their original
training corpora are inaccessible. Therefore,
we opt for the closest alternative as stated in
Section 4.1. Nonetheless, a minor distribution
shift during LM training and LANGBRIDGE

training is inevitable.

6.2 Multilingual CoT Capabilities?

As LANGBRIDGE solely utilizes English data for
training, it is anticipated that the intermediate rea-
soning steps, or CoT, of LANGBRIDGE models
would predominantly be in English. Given that
LANGBRIDGE targets English-centric LMs spe-
cialized in reasoning, we conjecture that English
CoT is one of the key components that contribute
to the competitive performance of LANGBRIDGE

models. This claim is supported by the findings of
Shi et al. (2023), where they observe English CoT
consistently leads to competitive results, and sug-
gests that English CoT serves as a "useful baseline
for future multilingual reasoning work".

While we believe incorporating non-English data
into the LANGBRIDGE training data could induce
multilingual CoT capabilities in LANGBRIDGE

models, this approach does not align well with the
original motivation of this work, which is to avoid
the need for collecting multilingual reasoning data.

7 Conclusion

In this paper, we propose LANGBRIDGE, a sim-
ple yet effective method of extending the capabili-
ties of LMs to solve multilingual reasoning tasks
without using multilingual supervision. We show
that LANGBRIDGE is surprisingly effective for
enhancing multilingual reasoning capabilities for
low-resource languages. Additionally, we provide
analysis that indicates the effectiveness of LANG-
BRIDGE is due to the language-agnostic nature of
the multilingual representations. We hope our find-
ings benefit the low-resource language users and
spur further research advancing the development
of LMs inclusive of the entire global community.
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Limitations

As LANGBRIDGE solely utilizes English data for
training, LANGBRIDGE models may not be pro-
ficient in generating text in languages other than
English. Although LANGBRIDGE successfully nar-
rows the performance gap between high-resource
and low-resource languages, a noticeable perfor-
mance gap remains. Also, while multilingual rep-
resentations are known to have language-agnostic
characteristics to some degree, our analysis and
previous works suggest that there is room for im-
provements (Libovický et al., 2020; Feng et al.,
2022). While LANGBRIDGE has the potential to
generalize to all languages supported by the multi-
lingual encoder, the extent to which LANGBRIDGE

enhances the reasoning capability of a specific lan-
guage depends on two key factors: (1) The original
proficiency of the LM in that particular language.
(2) The proficiency of the encoder model in that
particular language.

Ethical Considerations

While we share LANGBRIDGE models for open
access, their terms for use or license adhere to those
of the original LMs. The training datasets utilized
in our research is primarily sourced from academic
materials. As a result, we assess that the datasets
likely contain a relatively fewer examples featuring
offensive or personal information. Nevertheless, it
is important to acknowledge that such content may
be still present within the datasets.
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Sağnak Taşırlar. 2023. Introducing our multimodal
models.

Loubna Ben Allal, Niklas Muennighoff, Lo-
gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Nuo Chen, Zinan Zheng, Ning Wu, Ming Gong,
Yangqiu Song, Dongmei Zhang, and Jia Li. 2023.
Breaking language barriers in multilingual mathemat-
ical reasoning: Insights and observations.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Hyung Won Chung, Xavier Garcia, Adam Roberts,
Yi Tay, Orhan Firat, Sharan Narang, and Noah Con-
stant. 2023. Unimax: Fairer and more effective lan-
guage sampling for large-scale multilingual pretrain-
ing. In The Eleventh International Conference on
Learning Representations.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

7511

https://aclanthology.org/2022.wmt-1.54
https://aclanthology.org/2022.wmt-1.54
https://aclanthology.org/2022.wmt-1.54
https://openreview.net/forum?id=jjA4O1vJRz
https://openreview.net/forum?id=jjA4O1vJRz
https://openreview.net/forum?id=jjA4O1vJRz
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
http://arxiv.org/abs/2310.20246
http://arxiv.org/abs/2310.20246
https://openreview.net/forum?id=kXwdL1cWOAi
https://openreview.net/forum?id=kXwdL1cWOAi
https://openreview.net/forum?id=kXwdL1cWOAi


Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
878–891, Dublin, Ireland. Association for Computa-
tional Linguistics.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
Swetha Ranganath, Laurie Crist, Misha Britan,
Wouter Leeuwis, Gokhan Tur, and Prem Natara-
jan. 2023. MASSIVE: A 1M-example multilin-
gual natural language understanding dataset with
51 typologically-diverse languages. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4277–4302, Toronto, Canada. Association for
Computational Linguistics.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is chat-
gpt a good translator? yes with gpt-4 as the engine.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge.

Tannon Kew, Florian Schottmann, and Rico Sennrich.
2023. Turning english-centric llms into polyglots:
How much multilinguality is needed?

Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo,
Thuat Nguyen, Franck Dernoncourt, Ryan A. Rossi,
and Thien Huu Nguyen. 2023. Okapi: Instruction-
tuned large language models in multiple languages
with reinforcement learning from human feedback.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’Autume,
Tomas Kocisky, Sebastian Ruder, Dani Yogatama,
Kris Cao, Susannah Young, and Phil Blunsom. 2021.
Mind the gap: Assessing temporal generalization in
neural language models.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023a. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023b. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Tianjian Li and Kenton Murray. 2023. Why does zero-
shot cross-lingual generation fail? an explanation and
a solution. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 12461–12476,
Toronto, Canada. Association for Computational Lin-
guistics.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin
Cook, Chanvichet Vong, and "Teknium". 2023.
Openorca: An open dataset of gpt augmented flan
reasoning traces. https://https://huggingface.
co/Open-Orca/OpenOrca.

7512

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2023.acl-long.235
https://doi.org/10.18653/v1/2023.acl-long.235
https://doi.org/10.18653/v1/2023.acl-long.235
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2312.12683
http://arxiv.org/abs/2312.12683
http://arxiv.org/abs/2307.16039
http://arxiv.org/abs/2307.16039
http://arxiv.org/abs/2307.16039
http://arxiv.org/abs/2102.01951
http://arxiv.org/abs/2102.01951
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2301.12597
https://doi.org/10.18653/v1/2023.findings-acl.789
https://doi.org/10.18653/v1/2023.findings-acl.789
https://doi.org/10.18653/v1/2023.findings-acl.789
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
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A Additional Evaluation Results

A.1 XCOPA

Table 10 shows the evaluation results of Orca 2 and
Orca 2-LANGBRIDGE models on COPA (Roem-
mele et al., 2011) and XCOPA (Ponti et al., 2020),
commonsense reasoning datasets. COPA is avail-
able in English, while XCOPA extends COPA to 11
languages. We do not include other LMs as base-
lines, as COPA was included in the training set of
Orca 2, making it challenging to draw meaningful
comparisons.

Despite reaching near-perfect accuracy for
COPA, Orca 2 models’ performance drops close
to random chance (50%) on some of the under-
represented languages of XCOPA. LANGBRIDGE

successfully decreases this performance degrada-
tion, except for Quechua (QU). The discrepancy is
likely due to Quechua not being included in the 101
languages covered by mT5. This observation reem-
phasizes that the large-scale linguistic proficiency
of LANGBRIDGE models is primarily derived from
mT5.

A.2 MSVAMP

MSVAMP (Chen et al., 2023) is a multilingual
grade school level math word problem dataset trans-
lated from SVAMP (Patel et al., 2021) to 10 lan-
guages. We only evaluate MSVAMP in a zero-shot
setting, as no CoT rationale examples are provided
with the dataset.

Table 11 presents the evaluation results on
MSVAMP. MetaMath and MathOctopus were not
trained on SVAMP or MSVAMP, so MSVAMP can
be seen as an out-of-domain test set to evaluate
domain generalization (Chen et al., 2023). Per-
formance of MetaMath-LB models indicates our
models can generalize to out-of-domain test sets
successfully.

A.3 BBH

Table 12 and 13 showcase the complete results
for the 14 subtasks of BBH and BBH-BN. The
subtasks are: CAUSAL JUDGEMENT, DATE UN-
DERSTANDING, DISAMBIGUATION QA, FORMAL

FALLACIES, LOGICAL DEDUCTION (3, 5 AND 7),
NAVIGATE, PENGUINS IN A TABLE, REASONING

ABOUT COLORED OBJECTS, SNARKS, SPORTS

UNDERSTANDING, TEMPORAL SEQUENCES, and
WEB OF LIES.

Notably, Orca 2-LB models show noticeable per-
formance degradation in DATE UNDERSTANDING.

def greatest_common_divisor(a: int, b: int) -> int:
""" Rudi kipengele kikubwa zaidi cha pamoja cha
integers mbili a na b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5
"""

def func(a: int, b: int) -> int:
""" Rudi kipengele kikubwa zaidi cha pamoja cha
integers mbili a na b
>>> func(3, 5)
1
>>> func(25, 15)
5
"""

Table 4: Comparison between original (Top) and
anonymized (Bottom) prompts of HumanEval-MT
Swahili.

From our qualitative analysis of the CoT, we ob-
serve that Orca 2-LB models frequently falsely
assume an arbitrary date as the current date at the
beginning of CoT (Figure 9), whereas the original
Orca 2 models do not exhibit this behavior. Our
exploration of the OpenOrca dataset reveals that
examples often require the model to assume a spe-
cific current date. For example, an input text is
given as “The current senate majority leader in the
US is Chuck Schumer. Options: - yes - no”, and
the target text contains “...Today’s date is October
12, 2021...”. As we do not have access to Orca
2’s original training dataset, a thorough ablation on
the effect of such examples is challenging. Nev-
ertheless, we speculate this problematic emergent
behavior in Orca 2-LB models is partially due to
the distribution shift of the training data from the
original Orca 2 dataset to the OpenOrca dataset.

A.4 HumanEval
Table 4 compares the original and anonymized
prompts of HumanEval-MT. Top can be solved
without comprehending Swahili whereas Bottom
is not. Table 14 contains the evaluation results
on the original (non-anonymized) version of Hu-
manEval and HumanEval-MT. Compared to LANG-
BRIDGE models, Code Llama models show a
sharper decline in performance when evaluated on
the anonymized version, suggesting that they are
less capable of comprehending natural text in an-
other language.

B Inference Throughput of
LANGBRIDGE Model

We report the inference throughput of models in
Table 5. We measure the total time to infer 500
instances of XCOPA. For each model, we repeat
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Orca
2-7B

Orca 2-
LB-9B

Orca
2-13B

Average Time (sec) 44.46 59.23 102.84
Standard Deviation (sec) 0.13 0.29 0.48
GPU Memory (GBs) 13.48 16.97 25.07

Table 5: Inference throughputs measured using 500
examples of XCOPA.

five times and report the average and the standard
deviation. Additionally, we include the GPU mem-
ory utilization. We test using a single A6000 GPU
on an idle server.

Results show Orca 2-LB-9B model requires con-
siderably less compute and memory compared to
Orca 2-13B, despite it outperforming Orca 2-13B
in BigBenchHard Bengali (BBH-BN) and XCOPA.

C General-domain Language Models

Table 15 probes the effect of LANGBRIDGE on
general-domain English-centric LMs, Llama 2 and
Mistral 7B (Jiang et al., 2023), using MGSM.
Consistent with the findings on specialized LMs,
LANGBRIDGE enhances the performance of low-
resource languages. As training corpora for Llama
2 and Mistral 7B are unavailable, we use a sample
of the SlimPajama dataset (Soboleva et al., 2023)
as the training set.

D Ablation Studies

D.1 Freezing/Unfreezing

We strictly keep the embedding layers of mT5 train-
able throughout our experiments as we extend the
vocabulary and the embedding layer to incorporate
whitespace characters. mT5 tokenizers do not have
whitespace characters in their vocabularies, and
their default behavior is to truncate any consecu-
tive whitespaces to a single space. However, this
could negatively affect understanding code or fol-
lowing instructions considering the frequent use of
whitespaces as delimiters (\n, \t, and “four spaces”).
Therefore, even when we freeze the encoder, we
leave the embedding layer trainable for the added
whitespace vocabulary.

Table 6 presents the ablation study on the im-
pact of parameter freezing during the alignment
process. We apply LANGBRIDGE with mT5-XL
(2B) encoder on multiple LMs while varying the
trainable modules. Notably, freezing the encoder
appears beneficial when adapting finetuned LMs
(MetaMath and Orca), whereas it negatively af-

Target LM
Trainable

AVG Score
Enc LM

MGSM

Llama 2-7B 9.6
! 11.3

Llemma-7B 14.4
! 20.4

MetaMath-7B 48.8
! 43.9

HUMANEVAL + HUMANEVAL-MT

Code Llama-7B 15.3
! 19.4

XCOPA

Orca-7B
76.6

! 71.1
! 74.0

Orca-13B 77.3
! 65.1

Table 6: Ablations on the effect of freezing the encoder
and the LM during aligning of LANGBRIDGE leverag-
ing mT5-XL encoder. !denotes the module is trainable
(not frozen) during aligning.

fects pretrained models (Llama, Llemma, and Code
Llama). We speculate this divergence stems from
differing entropy levels in the datasets: unlabeled
corpora typically exhibit higher entropy than rel-
atively well-formatted finetuning datasets. Con-
sequently, we conjecture that for unlabeled data,
keeping the encoder trainable enables the model
to acclimate to the training data better. Nonethe-
less, we leave a thorough investigation for future
research. Additionally, training the LM during the
alignment phase does not improve performance.
We hypothesize this is due to the training datasets
being in-domain of the LMs. As such, the LMs
may not be learning additional information from
the data.

D.2 Encoder Size

Figure 5 shows the effect of encoder size on LANG-
BRIDGE when applied to Orca 2-7B, measured
with XCOPA. We test five different sizes of mT5
encoder: 270M (Small), 470M (Base), 820M
(Large), 2.2B (XL) and 6.7B (XXL). We observe
that LANGBRIDGE with the two smaller-sized en-
coders underperforms the base Orca 2-7B. Nonethe-
less, performance increases rapidly as the encoder
size scales from 270M to 2.2B and saturates in
the 2.2B to 6.7B range. These results highlight
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Figure 5: XCOPA accuracy (%) of Orca 2-7B models
adapted with LANGBRIDGE using five different sizes
of mT5 encoder. The dotted line shows the original
performance of the target LM.

that scaling the encoder size past a certain point
provides diminishing returns.

D.3 Training Set Size
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Figure 6: XCOPA accuracy (%) of Orca 2-7B models
adapted with LANGBRIDGE using five different sizes of
training datasets.

While we fixed the training set size to 200,000 in
our main experiments, Figure 6 shows that XCOPA
performance peaks on 120,000 training examples,
which is 60% of our experiment setting. This sug-
gests that in practice, LANGBRIDGE can be applied
more efficiently.

D.4 Different Architectures

Table 7 shows the ablations of different LANG-
BRIDGE architectures. Throughout the main ex-
periment, we adopt a single linear layer to connect
the encoder and the language model. We ablate the
effect of using an MLP layer following the second
iteration of LLaVa (Liu et al., 2023a), and a “re-

XCOPA (Acc. %)

Linear 76.6
MLP 72.7
Resampler 49.7

Table 7: Ablations of different LANGBRIDGE architec-
tures using Orca 2-7B and mT5-XL encoder.

sampler” module that adopts the architecture of per-
ceiver resampler employed by Flamingo (Alayrac
et al., 2022). In contrast to the finding of Liu et al.
(2023a), we find that using an MLP layer instead
of a linear layer decreases the performance slightly.
Using a resampler module results in random per-
formance.

D.5 Different Encoder Models

XCOPA (Acc. %)

umT5-XL 49.7
umT5-XL (F) 49.2
XGLM-1.7B 51.5
XGLM-1.7B (F) 49.7

Table 8: Ablations of different encoder models for
LANGBRIDGE tested on Orca 2-7B model. (F) denotes
that the encoder was frozen during alignment.

Table 8 presents the results of using different en-
coder models. We test out umT5 (Chung et al.,
2023), which improves upon mT5 to include a
higher proportion of low-resource languages during
pretraining. As umT5 does not have “LM adapted”
checkpoints, unlike mT5, we use the original check-
points. However, we find using umT5 results in
random performance. Since umT5 has a nearly
identical architecture to mT5, except that it has
relative position bias for every Transformer layer
(Vaswani et al., 2017) in contrast to the very first,
we speculate that using the encoder of a non-LM
Seq2Seq model resulted in failed alignment. We
also test XGLM (Lin et al., 2022), a decoder LM,
as an encoder, in which we also observe similar
results. In both cases, freezing the encoder made
no difference. We leave further investigation for
future research.

E Quality Estimation of HumanEval-MT

Table 9 presents the quality estimation for
HumanEval-MT using backtranslation (Agrawal
et al., 2022; Zhuo et al., 2023). We translate
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EN ⟲SW ⟲BN ⟲PA ⟲TE ⟲UR

CL-7B 36.0 35.4 35.4 36.6 36.6 37.8
CL-34B 43.9 36.6 46.3 42.1 42.1 45.7

BLEU - 88.3 90.5 93.4 90.5 96.1
crhF - 89.9 93.1 94.6 93.1 96.5

Table 9: Quality estimation of HumanEval-MT us-
ing backtranslations. CL prefix denotes Code Llama
Pass@1 score.

HumanEval-MT back to English and measure Code
Llama Pass@1 scores. As explained in Section 4.3,
we anonymize all function names. In addition, we
report automatic evaluation metrics, BLEU (Pap-
ineni et al., 2002) and chrF (Popović, 2015), against
the original HumanEval. We use the docstrings
only for calculating the metrics.

Overall, Code Llama’s performance on the
backtranslations matches the original HumanEval
benchmark, with the exception of Code Llama-
34B’s performance on Swahili backtranslation. As
Code Llama-7B achieves comparable results on
the Swahili backtranslation, this suggests that for
Swahili, GPT-4 may struggle with accurately trans-
lating complex examples that only larger models
can solve. Lower automatic evaluation scores in
Swahili further support the idea.

F Experimental Details

For training LANGBRIDGE models, we leverage
AdamW (Loshchilov and Hutter, 2019). We use a
learning rate of 6e−4 for the linear layer and 2e−5
for the encoder. We do not use any learning rate
scheduling. We use an effective batch size of 128.

For further training BLOOM baselines, we keep
the training configuration the same as LANG-
BRIDGE models with two exceptions: (1) Learning
rate, in which we used a uniform value of 2e−5
across the entire model. (2) Sequence length, which
was set to 1,152 (1, 024 + 128).

For evaluations, we leverage code adapted from
LM Evaluation Harness (version 0.3.0) (Gao et al.,
2023) and Bigcode Evaluation Harness (version
0.1.0) (Ben Allal et al., 2022) packages and report
single run results with fixed seed. We open source
the evaluation code.

For constructing HumanEval-MT, we prompt
GPT-4 with human-translated examples. The two
examples used for HumanEval-MT were translated
to Korean by a native Korean author. GPT-4 was
then prompted to translate HumanEval to the target

languages with the examples as reference. Note
that the examples were provided to guide GPT-4 to
keep the format of the data intact and only translate
the natural language, not necessarily to enhance the
translation quality itself.

G CoT Examples

In this section, we provide three examples of CoT
generated by LANGBRIDGE models. Figure 7
is from the MetaMath-LANGBRIDGE-15B model
prompted with an example from MGSM Telugu.
Figure 8 and 9 are from Orca 2-LANGBRIDGE-
15B model prompted with examples from BBH-
BN CAUSAL JUDGEMENT and BBH-BN DATE

UNDERSTANDING. We select these two subtasks
from BBH-BN as LANGBRIDGE substantially in-
creased the performance of Orca 2-13B for the
former (+13.4%), but caused a considerable de-
crease for the latter (−6.4%). We show a success
case for the former and a failure case for the other.
In Appedix A, we provide an explanation for the
performance degradation in BBH-BN DATE UN-
DERSTANDING.
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EN AVG HRL URL ZH IT VI ID ET HT QU SW TA TH TR

Lang. Freq. (Llama 2, %) 89.7 - - - 0.13 0.11 0.08 0.03 LESS THAN 0.005

Orca 2-7B 98.0 67.3 86.4 63.0 85.6 87.2 83.4 82.4 54.4 52.2 49.8 54.2 58.0 62.0 71.0
Orca 2-LB-9B 90.0 76.6 83.4 75.1 85.4 81.4 79.8 84.6 78.2 74.4 50.8 74.4 78.0 78.4 77.6

Orca 2-13B 99.0 73.7 93.1 69.4 92.4 93.8 87.0 86.8 66.4 61.0 49.8 65.8 63.8 67.6 76.4
Orca 2-LB-15B 92.0 77.3 84.5 75.7 85.2 83.8 83.4 83.8 80.6 74.8 50.4 72.2 77.2 79.8 79.2
Orca 2-LB-20B 92.0 79.8 86.3 78.4 86.2 86.4 83.6 85.4 82.8 76.4 54.2 77.8 82.8 79.8 82.4

Table 10: Accuracy (%) on COPA and XCOPA. For XCOPA, we report the average accuracy across 11 languages.

AVG HRL URL EN DE FR ES RU ZH JA TH SW BN

Lang. Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

MathOctopus-7B 39.2 41.5 34.0 39.8 42.4 44.0 43.3 41.6 40.4 38.7 35.1 29.7 37.2
MathOctopus-13B 45.1 47.2 40.0 44.8 46.7 50.6 49.9 47.6 47.1 43.9 40.0 36.3 43.6
BLOOM-7.1B-MM 24.9 29.5 14.1 40.7 28.8 33.8 32.0 27.7 27.7 15.7 3.0 21.2 18.0

MetaMath-7B 47.8 61.1 16.9 66.3 63.5 64.1 64.9 60.3 55.0 53.4 19.5 16.8 14.4
MetaMath-LB-9B 52.0 54.9 45.1 60.6 58.1 57.0 56.9 55.8 50.4 45.5 46.3 42.1 46.8

MetaMath-13B 50.6 65.1 16.8 69.2 67.3 66.1 66.9 66.9 58.0 61.4 18.6 14.4 17.3
MetaMath-LB-15B 57.0 60.4 49.1 64.1 61.9 65.9 64.8 61.0 55.0 50.1 51.3 42.1 54.0
MetaMath-LB-20B 57.9 60.4 51.8 65.3 63.0 62.5 62.7 60.9 55.4 53.3 52.3 47.1 56.0

Table 11: Accuracy (%) on MSVAMP. MM suffix denotes the model was finetuned on MetaMath.

CAUSAL DATE DISAM. FORMAL LOGIC. 3 LOGIC. 5 LOGIC. 7

EN BN EN BN EN BN EN BN EN BN EN BN EN BN

BLOOM-7B-OpenOrca 49.7 4.8 32.8 48.7 48.4 31.2 43.2 35.2 36.0 12.4 24.8 55.2 20.0 23.6

Orca 2-7B 62.0 47.1 52.4 42.0 62.8 42.4 60.0 50.4 60.0 37.2 43.2 25.6 39.6 20.8
Orca 2-LB-9B 57.2 52.9 26.8 24.4 64.0 46.8 55.2 57.2 52.4 42.0 36.0 30.0 38.8 28.8

Orca 2-13B 56.1 46.5 64.0 50.0 66.8 52.0 52.0 52.0 68.4 45.2 46.8 35.6 49.2 31.2
Orca 2-LB-15B 57.2 59.9 44.8 43.6 56.0 46.8 55.6 48.0 66.8 56.4 47.2 33.2 44.4 34.4
Orca 2-LB-20B 64.7 58.3 34.4 35.2 59.2 56.0 52.0 54.8 62.4 46.8 44.8 38.0 45.2 32.0

Table 12: Full results on BBH and BBH-BN (Part 1 of 2).

NAVI. PENGUINS REASON. SNARKS SPORTS TEMPO. WEB

EN BN EN BN EN BN EN BN EN BN EN BN EN BN

BLOOM-7B-OpenOrca 41.6 34.4 27.4 44.0 25.2 22.6 41.8 20.8 49.6 41.2 6.8 50.4 53.2 12.0

Orca 2-7B 58.8 46.4 57.5 24.0 47.2 25.6 67.8 42.9 68.0 51.6 20.4 13.6 54.4 43.6
Orca 2-LB-9B 48.8 50.4 44.5 39.7 41.6 33.6 56.5 53.7 66.4 53.2 17.6 17.2 50.8 54.8

Orca 2-13B 53.2 49.2 59.6 30.1 61.6 26.4 65.5 48.0 76.4 49.2 39.6 22.8 52.0 45.2
Orca 2-LB-15B 58.4 62.0 56.8 43.2 60.0 32.8 60.5 50.8 73.6 52.4 34.0 20.0 57.6 52.0
Orca 2-LB-20B 60.0 51.2 50.7 39.0 59.6 37.2 62.1 54.8 72.0 53.6 24.0 19.2 52.8 59.2

Table 13: Full results on BBH and BBH-BN (Part 2 of 2).
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AVG EN SW BN PA TE UR

An. An. An. An. An. An. An.

Llama2-7B 10.2 4.6 11.0 9.8 11.6 3.7 11.0 3.0 7.9 3.0 8.5 3.0 11.0 4.9
BLOOM-7.1B 6.7 4.9 8.5 7.3 6.1 2.4 6.1 5.5 6.7 4.3 6.7 6.1 6.1 3.7
BLOOM-7.1B-SC 8.4 4.5 11.0 6.7 9.8 3.0 7.9 4.3 6.7 4.3 7.9 3.7 7.3 4.9

Code Llama-7B 23.0 13.0 36.0 36.0 21.3 14.0 21.3 14.6 17.7 10.4 16.5 9.8 25.0 16.5
Code Llama-LB-9B 24.9 19.4 34.2 31.7 27.4 17.1 23.2 15.2 23.2 18.3 19.5 15.2 22.0 18.9

Code Llama-13B 26.0 19.6 42.7 40.2 24.4 15.2 26.2 17.7 17.7 12.2 17.7 12.8 27.4 19.5
Code Llama-LB-15B 26.3 23.6 36.6 41.5 22.6 20.1 23.8 20.1 26.8 19.5 23.8 19.5 24.4 20.7
Code Llama-LB-20B 26.2 23.5 35.4 36.0 25.6 24.4 22.6 20.1 25.6 20.7 20.7 18.9 27.4 20.7

Code Llama-34B 29.7 22.7 46.3 43.9 28.7 17.1 32.2 23.8 22.0 15.9 19.5 12.8 29.3 22.6

Table 14: HumanEval and HumanEval-MT Pass@1 scores. An. denotes the anonymized version.

AVG HRL URL EN DE FR ES RU ZH JA TH SW BN TE

Lang. Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

Llama 2-7B 9.1 12.1 3.9 15.2 11.6 13.2 11.2 11.6 11.2 10.8 7.2 5.2 3.2 0.0
Llama-LB-9B 11.3 12.2 9.7 16.8 12.4 12.8 13.6 9.2 10.0 10.8 13.6 9.2 7.6 8.4

Mistral-7B 28.5 34.4 12.8 43.6 34.4 35.2 39.6 32.8 28.8 26.4 20.4 7.6 16.0 7.2
Mistral-LB-9B 26.1 27.9 20.7 32.4 29.6 30.8 29.6 28.8 25.2 18.8 24.4 18.8 22.4 17.2

Table 15: Accuracy (%) of general-domain LMs on MGSM.

Kristin invited 16 friends, so she needs 16 x 0.75 = 12 gift bags.

Each gift bag costs $2, so she will spend 12 x $2 = $24 on gift bags.

#### 24

The answer is: 24 ✅

�పశ� : �� �త �వ�� �-ష��� ఉప��ం� ఒక �ంత ����� �. అత�� �ప� ��ర��త� ఒక

���  ఉం�. �ప� ష��� �ంత� ఒక �ప�� క�న �� � ఉం�. �ప� వరస �� ��న�  సంవత� ���

���న ��ర��తల �� � ల� త�� ���. అత� సంవత� ��� ������ ��ర��త� �ళ��,

అత� 23 సంవత� �ల వయ��  �ం� ��ర��త� ����� �, అత� వయ��  ఇ�� � 34.

అత�� �త�ం ఎ��  �� �� �� � � ఉ�� �?

(Question: Christina is planning a birthday party and needs .75 gift bags per invited guest, because
1/4 of attendees don't show up. She invited 16 friends. Gift bags are $2 each. How much will she
spend?)

Model Input

Model Output

Figure 7: Example of zero-shot CoT generated by MetaMath-LANGBRIDGE-15B when prompted with an example
from MGSM Telugu. For brevity, any instructional prompts are truncated. Translation of the input is provided in
(blue with parenthesis).
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Step 1: Understand the context of the question.

The question is asking whether Jo intentionally took the special commemorative

cup along with the mega-sized smoothie.

Step 2: Analyze the information provided.

Jo was overly excited and wanted the largest possible beverage. The cashier

offered a special commemorative cup for purchasing the mega-sized smoothie. Jo

did not express any concern about the cup and only wanted the largest smoothie.

Step 3: Determine the answer based on the information.

Since Jo did not express any concern about the cup and only wanted the largest

smoothie, it can be inferred that Jo did not intentionally take the special

commemorative cup.

Step 4: Choose the appropriate answer from the options.

The appropriate answer is (B) no. 

Model Output

✅

িকভােব একজন সাধারণ ব��� কায �কারণ স�েক� িন�িলিখত �িত�ট �ে�র উ�র �দেবন?
�জা খুব অিতশীত অনুভব করিছল, �স �ানীয় �ুিথ �দাকােন �িগত হেয় সব �ািধক আকােরর পানীয় িকনেত
�গল। অড�ার �দওয়ার আেগ, ক�ািশয়ার তােক বলেলন �য যিদ �স এক�ট �মগা-সাইজড �ুিথ িকেন তাহেল
�স এ�ট এক�ট িবেশষ �ারকীয় কােপ পােব। �জা জবাব িদেলন, 'আিম �ারকীয় কাপ এর ব�াপারটা িনেয়
যেতা িচ�া করিছ না, আিম �ধু আপনােদর সােথ থাকা সবেচেয় বড় �ুিথ চাই।' আশনু�পভােব, �জা
�ারক কােপ �মগা-সাইজড �ুিথ �পল। �জা িক ই�াকৃতভােব �ারক কাপ িনল?
(How would a typical person answer each of the following questions about causation?
Joe was feeling quite dehydrated, so he stopped by the local smoothie shop to buy the largest sized
drink available. Before ordering, the cashier told him that if he bought a Mega-Sized Smoothie he
would get it in a special commemorative cup. Joe replied, 'I don't care about a commemorative cup, I
just want the biggest smoothie you have.' Sure enough, Joe received the Mega-Sized Smoothie in a
commemorative cup. Did Joe intentionally obtain the commemorative cup?)
Options:

(A) হ�া ঁ(Yes)
(B) না (No)

Model Input

Figure 8: Example of zero-shot CoT generated by Orca 2-LANGBRIDGE-15B when prompted with an example
from BBH-BN CAUSAL JUDGEMENT. For brevity, any instructional prompts are truncated. Translation of the input
is provided in (blue with parenthesis).
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Step 1: Identify the current date.

The current date is 7/9/2021.

Step 2: Determine the date one week before the current date.

To find the date one week before the current date, we need to subtract 7 days

from the current date.

Step 3: Calculate the date one week before the current date.\n7/9/2021 - 7 days

= 7/2/2021

[⋯]
Step 11: Match the calculated date with the given options.

The calculated date matches option (A) 05/18/2021.

Final answer: (A) 05/18/2021 ❌

Model Output

Model Input

আজ 9/7। �জন NFL 2003 �দখেছ। MM/DD/YYYY-�ত আজ �থেক এক স�াহ আেগর তািরখ কী?
(Today is 9/7. Jane is watching NFL 2003. What is the date one week ago from today in MM/DD/YYYY?)
Options:

(A) 09/05/2003 (B) 08/30/2003 (C) 08/31/2074 (D) 08/31/2003 (E) 06/30/2004

Figure 9: Example of zero-shot CoT generated by Orca 2-LANGBRIDGE-15B when prompted with an example
from BBH-BN DATE UNDERSTANDING. For brevity, any instructional prompts are truncated. Translation of the
input is provided in (blue with parenthesis).
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