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Abstract

Medical text generation aims to assist with ad-
ministrative work and highlight salient informa-
tion to support decision-making. To reflect the
specific requirements of medical text, in this
paper, we propose a set of metrics to evaluate
the completeness, conciseness, and attribution
of the generated text at a fine-grained level.
The metrics can be computed by various types
of evaluators including instruction-following
(both proprietary and open-source) and super-
vised entailment models. We demonstrate the
effectiveness of the resulting framework, DO-
CLENS, with three evaluators on three tasks:
clinical note generation, radiology report sum-
marization, and patient question summariza-
tion. A comprehensive human study shows that
DOCLENS exhibits substantially higher agree-
ment with the judgments of medical experts
than existing metrics. The results also highlight
the need to improve open-source evaluators and
suggest potential directions.1

1 Introduction

Medical text generation has been widely applied to
various scenarios, including clinical note genera-
tion (Yim et al., 2023; Ben Abacha et al., 2023a), re-
port summarization (Adams et al., 2021; Van Veen
et al., 2023), and patient question summarization
(Abacha and Demner-Fushman, 2019). In report
summarization, for example, text generation sys-
tems aim to assist medical experts by automatically
summarizing the salient findings in a CT or MR
report, which reduces the time on paperwork and
supports decision-making (Zhou et al., 2023). To
help medical experts decide whether to adopt text
generation systems or which system to use, it is im-
perative to have a reliable evaluation methodology.

∗Work done as an intern at Microsoft Research.
1We released the code at https://github.com/

yiqingxyq/DocLens.

One line of work on medical evaluation conducts
human evaluation under multiple aspects, reflect-
ing different criteria of an ideal generation result
(Ben Abacha et al., 2023b; Zhou et al., 2023; Zhang
et al., 2021). To capture which exact information
is inaccurate or omitted, other human evaluation
methods conduct more fine-grained evaluations
by examining each fact individually (Ben Abacha
et al., 2023b). Due to the high cost and poor scal-
ability of human evaluation, another line of work
focuses on automatic evaluation. However, exist-
ing automatic medical evaluation methods typically
assign a coarse-level score for the entire system out-
put (Ben Abacha et al., 2023c; Zhou et al., 2023),
without indicating the aspects or criteria the score
reflects. Recent general-domain evaluation meth-
ods focus on more fine-grained units such as sen-
tences (Gao et al., 2023b) or atomic facts (Min
et al., 2023). However, existing methods neglect
evaluation aspects critical to medical generation or
require external knowledge sources in evaluation.

In this paper, we propose DOCLENS, which au-
tomatically conducts evaluation of medical text
generation at a fine-grained level, including both
reference-based and reference-free aspects. As
shown in Figure 1, to evaluate the recall and pre-
cision of clinically significant information in the
generation, we conduct a reference-based evalua-
tion for the completeness and conciseness of the
system-generated output. Specifically, we break
down the system output (e.g., generated clinical
note) and reference (e.g., human-written note) into
subclaims and assign a binary score for each sub-
claim. In real-world scenarios, AI systems are typi-
cally used in an assisting role, where the medical
experts need to judge the reliability of the gener-
ated information as part of their process using the
AI systems. As a result, we evaluate attribution,
which checks whether each piece of generated in-
formation is properly grounded in the input. Specif-
ically, we conduct a reference-free evaluation and
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HISTORY OF PRESENT ILLNESS
Andrew Perez is a 32-year-old male with a past 
medical history for kidney transplant.

CHIEF COMPLAINT
Injured arms.

PHYSICAL EXAM
• Musculoskeletal: Edema in both arms. Pain to palpation …

 Human-Written Reference

HISTORY OF 
PRESENT ILLNESS
Andrew is a 32-year-old male who 
presents with arm pain [2]. He 
reports that over the weekend, 
his wife asks him to move boxes 
…
PHYSICAL EXAM
• Musculoskeletal: Pain to 
palpation to the right arm [21,22,23]

System Output

[1] [Doctor] How are you doing today?
[2] [Patient] I’m doing well but my my arms hurt.
… 
[21] [Doctor] Alright. I’m going to palpate your right arm now. 
Please let me know if you feel pain.
[22] [Patient] Ouch, yes, that's the spot. Right there.
[23] [Doctor] Okay. It might be a minor strain or tendinitis. …

Input

NLP Model

Recall?

Precision?

Proper
Citations? 

HISTORY OF 
PRESENT ILLNESS
Andrew Perez is a 32-year-old male with a 
past medical history for kidney transplant.

CHIEF COMPLAINT
Injured arms.

PHYSICAL EXAM
• Musculoskeletal: Edema in both arms. Pain 
to palpation of the right arm. …  

Human-written Reference

Covered by the System Output
Not Covered by the System Output

Completeness Eval

[2] [Patient] I’m doing well but my my arms hurt.
HISTORY OF 
PRESENT ILLNESS
Andrew is a 32-year-old male who 
presents with arm pain [2]. 
He reports that …

PHYSICAL EXAM
• Musculoskeletal: Pain to palpation 
of the right arm  [21,22,23]

[21] [Doctor] Alright. I’m going to palpate your right arm 
now. Please let me know if you feel pain.
[22] [Patient] Ouch, yes, that's the spot. Right there.
[23] [Doctor] Okay. It might be a minor strain or tendinitis.

✓✓ ✗

✗

Cite

Cite

System Output

Supported by the Citations
Not Supported by the Citations

✓
✗

Correct Citations

Irrelevant Citations

Attribution Eval

HISTORY OF 
PRESENT ILLNESS
Andrew is a 32-year-old male who presents 
with arm pain [2]. He reports that over the 
weekend, his wife asked him to move 
boxes up on the basement stairs. …

PHYSICAL EXAM
• Musculoskeletal: Pain to palpation of the 
right arm  [21,22,23] …

System Output

Conciseness Eval

Information in the Reference
Superfluous DetailsDOCLENS

Figure 1: Evaluation aspects of DOCLENS for medical text generation. Completeness evaluates the amount of
salient details in the system output. Conciseness evaluates the amount of information that is both accurate and
salient. Attribution checks whether the generated information can be traced back and attributed from the input

check whether each generated sentence contains
accurate references back to the input.

DOCLENS can be computed with various types
of evaluator models and we experiment with three
representatives: a proprietary model (GPT-4 (Ope-
nAI, 2023)), an open-source instruction-following
model (Mistral (Jiang et al., 2023)), and a su-
pervised natural language inference (NLI) model
(TRUE (Honovich et al., 2022)). We apply DO-
CLENS with the three evaluators to benchmark
multiple medical generation systems on three tasks:
clinical note generation, radiology report summa-
rization, and patient question summarization. To
compare the quality of DOCLENS with existing
metrics and to compare different evaluators of DO-
CLENS, we conduct a human study to investigate
how well each metric aligns with medical experts’
judgment. Experiments show that DOCLENS ex-
hibits substantially higher agreement with medical
experts than existing metrics commonly used in the
medical domain. The results also reveal the gap
between open-source and proprietary evaluators.
Our analyses further suggest potential directions to
improve open-source evaluators.

Contributions. (1) We identify crucial aspects of
medical text evaluation and design corresponding
metrics for conducting a fine-grained evaluation.
(2) We present an automatic evaluation framework,
DOCLENS, based on the metrics, which can be
computed by various types of evaluators. (3) We

apply DOCLENS to three medical generation tasks.
Human study results show that DOCLENS exhibits
substantially higher agreement with human judg-
ments than existing metrics.

2 Related Work

Evaluation in the Medical Domain. Existing ap-
proaches to medical text evaluation (Veen et al.,
2023; Van Veen et al., 2023; Tu et al., 2023) have
adopted traditional metrics from general NLP, in-
cluding n-gram-based metrics (Lin, 2004; Papineni
et al., 2002), embedding-based methods (Zhang
et al., 2020a), and model-based methods (Sellam
et al., 2020). Other existing approaches evalu-
ate the overlap of medical concepts Zhang et al.
(2020b); Miura et al. (2021); Delbrouck et al.
(2022), which utilizes information extraction mod-
els (Jain et al., 2021) to extract clinical entities and
relations from the system output and the reference
and compute their overlap. Such metrics heavily
rely on surface-level similarities and lack validity.
Factuality Evaluation in the General Domain.
Factuality evaluation is the most relevant topic to
our work, as it judges the factual alignment be-
tween input and output (Thorne et al., 2018; Wang,
2017; Augenstein et al., 2019). A common ap-
proach is to assign a single score for the entire sys-
tem output (Liu et al., 2023b; Fu et al., 2023). This
does not satisfy the needs of medical applications,
where every piece of information is essential and
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Figure 2: To conduct a multi-aspect evaluation, we
verify the entailment relations among the input (e.g.,
patient-doctor dialogue), system output (e.g., generated
clinical note), and reference (e.g., human-written clini-
cal note).

requires careful examination. Another line of work
decomposes the system output into fine-grained
units, such as content units (Nenkova and Passon-
neau, 2004), short subclaims (Wright et al., 2022;
Chen et al., 2022; Kamoi et al., 2023) or atomic
facts that each convey only one piece of informa-
tion (Min et al., 2023). Towards more transparent
text generation, a strand of prior work further eval-
uates the attribution of generated facts by training
or prompting the models to ground them with ref-
erences back to the input (Gao et al., 2023a,b; Liu
et al., 2023a; Yue et al., 2023).

To satisfy the specific requirements of the med-
ical domain, our work extends past work by (1)
evaluating the recall, precision, and attribution of
the generated facts by conducting completeness,
conciseness, and attribution evaluations at a fine-
grained level, and (2) adapting a wider range of
evaluator models to compute the metrics automati-
cally and conducts empirical comparisons, provid-
ing a diverse range of selections.

3 Evaluation Framework of DOCLENS

There are two special characteristics of clinical
text: (a) Criticality: every piece of information
is essential. Medical documentation must be free
from inaccuracies and omissions. (b) Assistance:
the generated text will be examined by experts. As
decisions can be life-critical, the generated text is
positioned as a resource rather than a final product.

In line with these considerations, our proposed
framework employs three evaluation aspects: com-
pleteness (§3.1), conciseness (§3.2), and attribution

(§3.3) and design a set of corresponding metrics.
The proposed metrics can be automatically com-
puted using a variety of evaluator models (§3.5).
As shown in Figure 2, we formulate the three eval-
uation aspects as verification of entailment rela-
tions between the input, system output, and human-
written references. An illustrative example of each
metric is shown in Figure 3.

3.1 Completeness Evaluation

We first evaluate completeness: the amount of clin-
ically significant information in the system output,
which corresponds to the relation “System Output
⇒ Reference” in Figure 2. This can be viewed as
the recall of the system output. Based on the char-
acteristic of criticality, unlike previous work (Veen
et al., 2023) that assigns an overall score to the sys-
tem output, we are also interested in which exact
salient information is retained or omitted.

We introduce claim recall to evaluate complete-
ness at a fine-grained level. As shown in Figure 3,
we first break down the reference into a list of sub-
claims using GPT-4 (OpenAI, 2023), where each
subclaim states only one fact in the reference. Let
y be the reference, Ly be the list of reference sub-
claims, y′ be the system output. We apply an eval-
uator model to judge whether each claim l ∈ Ly is
entailed by the generated output y′. Claim recall is
then formally defined as 1

|Ly |
∑

l∈Ly
I[y′ ⇒ l].

The concept of claim recall parallels the defini-
tion provided in ALCE (Gao et al., 2023b), with
the following difference: ALCE only requires the
output to follow the key reasoning steps in the ref-
erence and hence restricts the extraction to three
claims per instance. In contrast, since an ideal clin-
ical note should cover all salient details, we prompt
the model to generate claims that encapsulate all
factual information in the reference.

3.2 Conciseness Evaluation

Following the characteristic of assistance, an ideal
system output will allow medical experts to quickly
capture salient information, without spending sig-
nificant time on superfluous details. We thus eval-
uate conciseness: the amount of generated infor-
mation that is both factually accurate and salient.
Assuming that the reference only contains salient
information, conciseness evaluation aligns with the

“Reference ⇒ System Output” relation in Figure 2.
We define claim precision to evaluate concise-

ness. Similar to claim recall, we generate a list of
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HISTORY OF PRESENT ILLNESS
Andrew Perez is a 32-year-old male with 
a medical history for kidney transplant.
 … 
CHIEF COMPLAINT
Injured arms.

PHYSICAL EXAM
• Musculoskeletal: Edema in both arms. …

Reference

Claim: The patient is a 32-year-old male.
Claim: The patient has a past medical 
history of kidney transplant.
… 
Claim: Both arms show signs of edema.

Reference Claims

GPT-4

HISTORY OF 
PRESENT ILLNESS
Andrew is a 32-year-old male who 
presents with arm pain [4]. He reports 
that over the weekend, his wife asked him to move 
boxes up on the basement stairs [7]. … 

PHYSICAL EXAM
• Musculoskeletal: Pain to palpation to the right 
arm  [21,22,23] …

System Output

entail? (✗)

entail? (✗)

entail? (✓)

[Completeness Eval] Claim Recall = 33.33%

ReferenceSystem Output
Claim 1: The patient is a 32-year-old male.
Claim 2: The patient was moving a box up on 
the basement stairs.
… 

Output Claims

GPT-4
entail? (✓)
entail? (✗)

[Conciseness Eval] Claim Precision = 50.00%

Output Sent: 
• Musculoskeletal: Pain to palpation to the right arm  [21,22,23]

Output Sent: Andrew is a 32-year-old male who presents with arm pain [2]. 

…

[Attribution Eval] [1] [Doctor] How are you doing today?
[2] [Patient] I’m doing well but my arms hurt.
… 
[21] [Doctor] Alright. I’m going to palpate your right arm now. 
Please let me know if you feel pain.
[22] [Patient] Ouch, yes, that's the spot. Right there.
[23] [Doctor] Okay. It might be a minor strain or tendinitis. …

Input

entailed by which citations? ([21,22])
entail? (✓)

entail? (✗)

Citation Recall = (0% + 100%) /2  = 50%
Citation Precision = (0% + 66.67%) / 2 = 33.33%

Figure 3: Illustration of the metrics of DOCLENS for medical evaluation: Claim Recall measures the proportion
of claims from the human-written reference that can be entailed by the system output. Claim Precision measures
the proportion of claims from the output that can be entailed by the reference. Citation Recall measures the
proportion of output statements that can be entailed by their corresponding citations. Citation Precision measures
the proportion of citations that factually support the associated statement.

claims for the system output and apply the evalu-
ator to compute the proportion of claims that can
be entailed by the reference. Formally, let y be the
reference, y′ be the system output, and L′

y be the
list of output subclaims, we define claim precision
as 1

|Ly′ |
∑

l∈Ly′
I[y ⇒ l].

3.3 Attribution Evaluation

Based on the characteristic of assistance, to help
medical experts quickly verify the output state-
ments, we also evaluate attribution: the amount
of generated information that can be traced back
from the input, which corresponds to the “Input
⇒ System Output” relation in Figure 2. As shown
in Figure 3, the system also generates citations to
the input following each statement, which helps
medical experts quickly locate the relevant context
and verify the generated information.

Following existing work (Liu et al., 2023a; Gao
et al., 2023b), we first compute citation recall,
which evaluates whether each statement in the sys-
tem output can be fully supported by the combi-
nation of its cited sentences. Formally, for each
output statement s, let C be the set of input sen-
tences it cites. The claim recall of s is 1 if and only
if C ⇒ s and otherwise 0. The citation recall of the
whole output is then defined as the percentage of
statements that can be entailed by their citations.

We also evaluate citation precision to examine
whether the system generates redundant citations.
Intuitively, if a statement s can be supported by the
combination of its citations C, a citation c ∈ C is
necessary if it independently supports the statement
s, or if removing it leaves the statement unsup-
ported. Formally, we define the citation precision
of c as 1 if and only if:
(i) C ⇒ s, and
(ii) c ⇒ s or C \ {c} ⇏ s.

For instance, in Figure 3, the output statement cites
conversational turns “[21][22][23]” in the in-
put, but only [21] and [22] are pertinent to the
output. So [21] and [22] will have citation pre-
cision = 1 and [23] will have citation precision
= 0. We define the citation precision of the whole
output as the average precision of all its citations.

3.4 Discussion of Excluded Aspects

There are other evaluation aspects for text gener-
ation in general domains, such as coherence and
fluency (Zhong et al., 2022; Gao et al., 2023b),
where coherence evaluates whether the generated
sentences form a coherent body and fluency eval-
uates whether each sentence is well-written and
grammatical. These aspects are less emphasized
in the medical domain since they do not directly
impact treatment outcomes.
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To ensure the accuracy of the generated text,
many existing methods evaluate factual consis-
tency (Thorne et al., 2018; Augenstein et al., 2019;
Min et al., 2023), which compares the factual state-
ments in the generated text and the input. Among
our proposed aspects, conciseness and attribution
both incorporate the need for factual consistency.
In addition to the factuality of output statements,
conciseness further evaluates whether the state-
ments are salient and attribution judges whether
they can be traced back from the input.

3.5 DOCLENS with Various Evaluators

In this section, we introduce how we compute the
metrics of DOCLENS with various evaluator mod-
els, including NLI models and open-source and
proprietary instruction-following models.
DOCLENS computed with NLI models. Let
ϕ(p, h) be the output of the NLI model, which
is 1 if the premise p entails the hypothesis h and 0
otherwise. The claim recall, claim precision, and
citation recall can be computed by ϕ(system out-
put, reference claim), ϕ(reference, output claim),
and ϕ(combination of citations, output statement).

To compute citation precision for each citation
c ∈ C in statement s, following our definition, c has
citation precision = 1 if and only if s has citation
recall = 1 and ϕ(c, s)||ϕ(C \ {c}, s) = 1.
DOCLENS computed with instruction-following
models. We also apply instruction-following mod-
els to compute the metrics, including proprietary
and open-source models. To compute claim re-
call and claim precision, we prompt the evaluator
to generate “1” or “0” for each claim based on
whether they can be supported.

As for citation recall and precision, to reduce
computation, we prompt the evaluator to predict
if a statement is entailed by its citations and to
identify the supporting citations in a single call.
In the example of Figure 3, where the citations
“[21][22][23]” support the output statement
but [23] is irrelevant, the evaluator should output
“1” for the entailment prediction and “[21][22]”
as the supporting citations.

We further adopt two prompt styles to improve
the quality of instruction-following evaluators,
where the example prompts are shown in §A.2:

(1) Generation with Structure. Existing re-
search has observed that models have better per-
formance when they are prompted to generate in a
structured format, such as logic representations, or

Model MedNLI ANLI Weight AVG

TRUE 81.9 71.5 74.3

GPT-4 (2-shot) 92.8 86.1 87.8
+ JSON 91.0 87.7 88.5
+ CoT 91.6 86.7 88.2
+ JSON + CoT 91.8 87.5 88.6

Mistral (2-shot) 84.8 69.6 73.4
+ JSON 87.8 67.8 72.8
+ CoT 87.2 70.6 74.8
+ JSON + CoT 87.3 70.0 74.3

Table 1: Classification accuracy on MedNLI and ANLI
under the 2-way classification setting. “ANLI” is the
average accuracy on ANLI (R1, R2, R3). We provide
one in-context example from each of the 2 classes.

pseudo code (Mishra et al., 2023). With the same
high-level idea, we prompt the evaluator to gener-
ate the entailment prediction in a JSON dictionary.

(2) Chain-of-Thought. Chain-of-thought (CoT)
prompts the model to generate a series of inter-
mediate reasoning steps, which has shown to be
effective in various tasks (Wei et al., 2023). Follow-
ing this idea, we prompt the evaluator to generate
the explanation before the prediction.

We conduct experiments on two NLI datasets:
MedNLI (Romanov and Shivade, 2018) and
ANLI (Nie et al., 2020) to investigate the effec-
tiveness of the two prompt styles on predicting
entailment relationships. MedNLI evaluates rea-
soning with medical knowledge and ANLI focuses
on commonsense reasoning. Both are reasoning
abilities that an evaluator needs.

To align with our evaluation setting, we adopt
a 2-way classification setting where “entailment”
forms one class and both “neutral” and “contradic-
tion” are merged into the other class. As shown in
Table 1, the GPT-4 evaluator benefits the most from
the combination of generation in JSON and CoT,
and the Mistral evaluator only benefits from CoT.
We observe that in many cases, Mistral fails to gen-
erate outputs in a valid JSON format, which leads
to parsing error when reading the results. Detailed
experiment results are shown in §A.1.

4 Experiments

In this section, we aim to answer three research
questions: (RQ1) How do different medical gener-
ation models perform under our evaluation? (RQ2)
How is the evaluation quality of DOCLENS com-
pared to existing metrics? (RQ3) How is the eval-
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Figure 4: Clinical note generation results on ACI-BENCH (Yim et al., 2023). We split the results under existing
metrics and DOCLENS computed with GPT-4. We evaluate open-source and proprietary note generation models
with different numbers of in-context examples.
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Figure 5: Radiology report summarization results on MIMIC-III (Van Veen et al., 2023) evaluated by existing
metrics and DOCLENS computed with GPT-4.
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Figure 6: Patient question summarization results on MeQSum (Abacha and Demner-Fushman, 2019) evaluated by
existing metrics and DOCLENS computed with GPT-4.

uation quality of DOCLENS computed with open-
source evaluators compared to proprietary ones?

4.1 Evaluation tasks and metrics

To answer RQ1, we experiment with three types
of evaluators for DOCLENS: proprietary and open-
source instruction-following models, and NLI mod-
els, and evaluate three representative medical gen-
eration tasks: clinical note generation (Yim et al.,
2023), medical report summarization (Van Veen
et al., 2023), and patient question summariza-
tion (Abacha and Demner-Fushman, 2019).
Clinical note generation. Clinical note generation
is defined as generating a “SOAP” note given a
dialogue between a doctor and a patient (Yim et al.,
2023; Ben Abacha et al., 2023a). A SOAP note con-
sists of the subjective, objective Exam, objective
results, and assessment and plan sections. We con-
duct experiments on the ACI-BENCH dataset (Yim
et al., 2023). A test example is shown in Table 16.

Radiology report summarization. We follow the
setting from Van Veen et al. (2023), where the input
is the findings section of a radiology report, and
the goal is to generate an impression section that
contains key observations and conclusions. we
utilize the public test set of MIMIC-III (Johnson
et al., 2016). A test example is shown in Table 17.
Patient question summarization. Question sum-
marization aims to generate a condensed ques-
tion expressing the minimum information required
to find correct answers to the original ques-
tion (Abacha and Demner-Fushman, 2019). We
utilize the MeQSum dataset, which consists of con-
sumer health questions and their corresponding
summaries authored by medical experts. A test
example is shown in Table 18.
Evaluation methods. We evaluate the three tasks
with DOCLENS computed with GPT-4 (OpenAI,
2023), Mistral (Jiang et al., 2023), and TRUE (Hon-
ovich et al., 2022), representing three types of mod-
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We only annotate the system outputs pairs where the two metrics have different preferences. The outputs are selected
from the Objective Exam (O-Exam) and Assessment and Plan (A&P) section in note generation.

els. We also apply existing commonly-used met-
rics (Yim et al., 2023; Jain et al., 2021; Veen et al.,
2023). We list the metrics for each task in Table 10.

Experimental details are provided in §A.4.

4.2 Exp-I: Medical Text Generation Results

Figures 4 to 6 show the results on the three repre-
sentative tasks evaluated by existing metrics and
DOCLENS computed with GPT-4. The detailed
numbers are provided in Tables 20, 21, 28, 29, 32
and 33. We show the results of DOCLENS with the
Mistral evaluator in Tables 26, 30 and 34 and the
TRUE evaluator in Tables 27, 31 and 35.
Influence of in-context examples. We observe
that the results under most metrics can be improved
by adding in-context examples, but increasing the
number of examples from 1 to 2 leads to dimin-
ishing returns. Intriguingly, when the prompt only
contains the instruction with no examples, GPT-
3.5-turbo often fails to generate any citations or
produces all citations together at the end. In con-
trast, GPT-4 consistently generates citations in the
correct format across the three datasets.
Proprietary vs. Open-source generation mod-
els. As shown in Figure 4, GPT-based models
outperform open-source models in the majority of
experiments. We also observe that open-source
models typically generate much shorter outputs
than GPT-based models with heavy omission. E.g.,
BART+SAMSum (full) generates 179.4 words on
average and GPT-4 (full, 2-shot) generates 351.9.
Results under different evaluators. Comparing
results computed by DOCLENS with different eval-
uators, we can observe that Mistral assigns overall
higher scores than the other models, which in many
cases misjudges “partially support” as “fully sup-
port”. We can also observe that the correlation
between TRUE and GPT-4 is much lower on MeQ-

Comparison
Corr w/ Medical Experts

O-Exam A & P

ρ τ ρ τ

Rouge-L Recall 0.326 0.267 -0.389 -0.307
Claim Recall (GPT-4) 0.787 0.653 0.732 0.638

MEDCON Recall 0.138 0.103 0.132 0.078
Claim Recall (GPT-4) 0.752 0.621 0.820 0.652

Claim Recall (TRUE) 0.710 0.526 0.251 0.168
Claim Recall (GPT-4) 0.953 0.844 0.522 0.431

Claim Recall (Mistral) 0.627 0.486 0.342 0.234
Claim Recall (GPT-4) 0.682 0.612 0.702 0.546

Table 2: Spearman (ρ) and Kendall-τ correlation be-
tween each recall-based metric and the completeness
scores assigned by medical experts. When comparing
two metrics, we only annotate the system outputs pairs
where the two metrics have different preferences.

Sum than the other two datasets. The reason might
be TRUE is mainly trained on declarative sentences
and hence has unsatisfactory performance in judg-
ing the entailment relationships between questions.

4.3 Exp-II: Agreement with Human

To answer (RQ2) and (RQ3), we conduct a human
study to check the alignment of different evaluation
methods with medical experts.
Setup. We focus on the completeness evaluation
and compare claim recall computed by GPT-4 with
other metrics, including (i) existing recall-based
metrics: Rouge-L recall and MEDCON recall, and
(ii) claim recall computed by Mistral and TRUE.

As shown in Table 11, we observe that the met-
rics have agreed preferences in most of the cases.
As our primary goal is to compare pairs of metrics,
to reduce the required amount of human annotation,
we only annotate pairs of system outputs where the
two metrics disagree: one metric ranks one system
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Figure 8: Kendall’s τ coefficients between recall-based
and precision-based metrics on note generation.

output higher, and the other metric ranks the other
output higher. We select system outputs from the
“Objective Exam” (O-Exam) and “Assessment and
Plan” (A&P) sections in clinical note generation.

We invite five medical experts to the human
study and assign three of them to label each pair
of selected system outputs, without telling them
which model generates which output Given the ref-
erence note and the reference subclaims, we ask
the medical experts (1) what percent of the claims
can be entailed by each output, and (2) which out-
put they think is more complete (i.e., their subjec-
tive preference). We present the inter-annotator
agreement when comparing each two metrics in
Table 12. The average Spearman (ρ) coefficient is
0.763. More details are shown in §A.4.5.
DOCLENS vs. existing metrics. Table 2 shows the
Spearman (ρ) and Kendal-τ correlations between
metrics and medical experts and Figure 7 shows
the agreement with human subjective preference.
Results show that in both experiments, claim recall
(GPT-4) has a substantially better alignment with
human than Rouge-L and MEDCON, which typi-
cally misjudges the cases where the system output
and the reference have little or no lexical overlap.
An example is shown in Table 9.
Comparison among DOCLENS evaluators. We
can also observe from Table 2 and Figure 7
that there is still a large gap between open-
source models (Mistral and TRUE) and GPT-4.
As shown in Table 3, we observe several pat-
terns in the cases where GPT-4 and Mistral dis-
agree: [Case 1] The judgment requires medi-
cal knowledge. In claim 1, a medical expert
would know that “lungs are clear” already
means there are “no wheezes, rales, or
rhonch” and hence “clear bilaterally”
fully support this claim. However, this is mis-

Subclaims of the reference (Used to compute claim recall)
1. Lungs are clear bilaterally, with no wheezes, rales, or rhonchi.
2. The patient has a grade 2/6 systolic ejection murmur, unchanged.
3. Examination of the abdomen shows no masses or tenderness.

Output 1 (Preferred by GPT-4 and human)
PHYSICAL EXAMINATION
The doctor performs a physical exam and finds the patient’s lungs
to be clear bilaterally and no tenderness or pain in the abdomen.
The patient has a grade two out of six systolic ejection murmur in
her heart, which has not changed since the previous visit.

Claim Recall (Mistral): 33.34 // Support Claim 2.
Claim Recall (GPT-4): 66.67 // Support Claim 1 and 2.
Human Judgment: 66.67 // Support Claim 1 and 2.

Output 2 (Preferred by Mistral)
PHYSICAL EXAMINATION
• Lungs: Clear bilaterally. No wheezes, rales, or rhonchi.
• Heart: Grade 2/6 systolic ejection murmur.
• Abdomen: No tenderness to palpation.

Claim Recall (Mistral): 100.00 // Support Claim 1, 2 and 3.
Claim Recall (GPT-4): 33.34 // Support Claim 1.
Human Judgment: 33.34 // Support Claim 1.

Preference of Human & claim recall (GPT-4): Output 1
Preference of claim recall (Mistral): Output 2

Table 3: An example of disagreement between claim
recall (GPT-4) and claim recall (Mistral) on the com-
pleteness over two system outputs.

judged by Mistral, which suggests that continu-
ous pretraining on medical corpus could be benefi-
cial. [Case 2] The output only partially entails
the subclaim. Although output 2 mentions the
“systolic ejection murmur”, it omits the
fact that the murmur is unchanged, but Mistral does
not capture the omission. [Case 3] Multiple facts
are related to each other. Output 2 omits the fact
of “no masses” in claim 3. However, Mistral
wrongly predicts claim 3 as “supported” with the
explanation: The notes states that there is no ten-
derness, which could potentially indicate that there
is no masses. In both case 2 and 3, Mistral does
not strictly follow the instruction of “judge whether
the text fully supports the claim”, which calls for
instruction tuning for entailment.

4.4 Exp-III: Correlations between Metrics

§4.3 shows that DOCLENS (GPT-4) aligns better
with human than existing metrics or open-source
evaluators. To further study (RQ2) and (RQ3), we
investigate to which extent these metrics diverge
from each other. Specifically, we divide the metrics
into two groups: recall-based metrics (including
claim recall, ROUGE-L recall, etc.) and precision-
based metrics (including claim precision, ROUGE-
L precision, etc.). We then compute Kendall’s τ
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coefficient between each two metrics in each group.
Results in Figure 8 suggest that DOCLENS com-

puted with various models exhibit relatively weak
correlations with existing metrics, where the τ coef-
ficients are lower than 0.5 in the majority of cases.
Recall that DOCLENS (GPT-4) also has a better
alignment with human when it disagrees with ex-
isting metrics, the results suggest that DOCLENS

can highly improve current evaluation qualities.
We can also observe that although computing the

same metrics, the correlations between DOCLENS

computed with open-source evaluators and GPT-4
are not particularly high. For instance, there are
only around 78% of the system output pairs where
Mistral and GPT-4 have the same preference. This
suggests that open-source evaluators exhibit signif-
icant divergence from proprietary models, which
calls for future improvement.

5 Conclusions and Future Works

We present DOCLENS, a medical evaluation frame-
work that judges three aspects with a set of fine-
grained level metrics. DOCLENS can be computed
with various types of evaluator models, including
proprietary and open-source instruction-following
models and NLI models. We apply DOCLENS

to three tasks: clinical note generation, radiology
report summarization, and patient question genera-
tion. Human study shows that DOCLENS exhibits
substantially higher agreement with human judg-
ments than existing metrics. The results also re-
veals the substantial gap between proprietary and
open-source evaluators.

To close the gap, as suggested by our case study,
future works could improve open-source evaluators
by (1) continuous pretraining the model on medical
corpora, and (2) instruction-tuning the model for
entailment, where we can construct training data
by adapting existing NLI datasets or leveraging the
model itself to generate silver labels. Another po-
tential direction is to train the evaluator to generate
multiple forms of feedback, such as the explanation
of its judgement used in this work. Then evalua-
tor model can then be applied to further improve
medical text generation models.
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7 Limitations

We have only tested DOCLENS on public datasets,
and hence this work cannot be directly used in real-
world clinical scenarios.
Self-bias of GPT-4. While recent work (Zheng
et al., 2023) shows that there is no evidence that
LLMs exhibit a self-enhancement bias, we agree
that the GPT-4 evaluator may potentially have self-
bias towards the text that is also generated by GPT-
4. We use two ways in our paper to mitigate the
potential bias; (1) implement two other evaluators:
Mistral and TRUE, and (2) conduct a human study
to verify the quality of the evaluators. As shown
by our human study, GPT-4 still has a higher cor-
relation with human judgment than the other two
evaluators.
Improvement of open-source evaluators. In this
work, we use the open-source evaluator models
in a zero-shot or few-shot way, and observe that
there is still a substantial gap between open-source
evaluators and GPT-4. Given that GPT-4 is costly,
inefficient, and potentially contains self-bias, future
works could focus on further training open-source
evaluators to bridge the gap.
Medical question-answering. Though we have
evaluated our work on multiple medical summa-
rization tasks, we have not conducted experiments
on medical question-answering (QA), which is an-
other crucial task in the medical domain. The major
reason is that current medical QA datasets mainly
focus on short answers or multiple-choice ques-
tions (Jin et al., 2019, 2020; Pal et al., 2022), where
evaluation is simpler than with the tasks we have fo-
cused on because in this case, it is possible simply
to evaluate the exact match between the generated
output and the answer.
Multimodal medical generation. Another lim-
itation is that we do not consider the evaluation
of multimodal medical generation, including vi-
sual QA (Lin et al., 2023; He et al., 2020) and
multimodal note/report generation. An interesting
extension for future work may be to focus on the
consistency between input and output in different
modalities.

8 Ethics Statement

License. In our use of three public datasets,
we have observed the highest ethical standards
of conduct. The specific datasets include: ACI-
BENCH (Yim et al., 2023), MIMIC-III (Johnson
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et al., 2016), and MeQSum (Abacha and Demner-
Fushman, 2019). The ACI-BENCH data is pub-
lished under a Creative Commons Attribution 4.0
International Licence (CC BY). MIMIC-III is un-
der the PhysioNet Credentialed Health Data Li-
cense 1.5.0. MeQSum is distributed under the
apache-2.0 license.
Potential Risks. Our framework leverages GPT-4
to evaluate medical data, which could be highly
sensitive. To prevent data leakage as we have done,
the potential users of our framework may use Azure
OpenAI services in a HIPAA-compliant manner,
which sets the privacy rule, the security rule, and
the breach notification rule to protect patient health
information2. The privacy rule especially imposes
restrictions on the use and disclosure of patient
health information without patient authorization.
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A Appendix

A.1 Experiments on LLM Evaluators with
Different Prompt Styles

In this section, we examine how different prompt
styles affect the entailment ability of instruction-
following evaluators.
Experiments on existing NLI datasets. We first
conduct experiments on two prevalent natural lan-
guage inference (NLI) datasets: ANLI (Nie et al.,
2020) and MedNLI (Romanov and Shivade, 2018).
We use GPT-4 as the base model. To evaluate bi-
nary factual consistency, we consider “entailment”
as one class and merge two NLI labels “neutral”
and “contradiction” into the other class, denoting
inconsistency between a premise-hypothesis pair.

Table 4 compares supervised NLI and
instruction-following models on ANLI and
MedNLI under the 2-way classification setting.
GPT-4 significantly outperforms open-source
models on both datasets and both generating in
JSON format and CoT improves its performance.

We further compare GPT-4 and Mistral with su-
pervised state-of-the-art models on MedNLI in Ta-
ble 5. With few-shot examples, GPT-4 outperforms
supervised models, but Mistral does not have satis-
factory performance.
Experiments on claim recall. We also compare
different prompt styles for GPT-4 on the computa-
tion of claim recall.

We first randomly sample 20 (system output, ref-
erence claim) pairs from note generation where
at least two evaluators make different entailment
predictions. Then we ask 4 human annotators to
annotate these examples. We use the majority vote
of the first three annotators’ answers as the ground
truth and compute the accuracy of the fourth hu-
man annotator as well as the models. As shown
in Table 6, we can observe that the fourth annota-
tor achieves 0.85 accuracy, indicating high agree-
ment among annotators. Results also show that the
agreement among humans is still stronger than the
agreement between models and human annotators.

To obtain annotations for more examples, we
additionally sample 100 (system output, reference
claim) pairs where at least two evaluators disagree,
and assign them to 5 human annotators. Namely,
each human evaluator is assigned 20 examples. We
consider human evaluations as the ground truth
and compute the accuracy of each evaluator. The
results of note generation are shown in Table 7. We

can observe that both CoT and JSON improve the
evaluation quality of claim recall (GPT-4).

A.2 Examples of Different Prompt Styles

We show the prompt styles “CoT” in Table 14 and
“JSON + CoT” in Table 15. Based on the experi-
ment results in Table 1 and §A.1, we use the prompt
style “CoT” for the Mistral evaluator and use the
prompt style “JSON + CoT” for the GPT-4 evalua-
tor.

A.3 Case Studies for Human Evaluation

Table 8 presents a case where the medical experts
assign the same score to both outputs, but still pre-
fer one over the other. The reason is that Output
2 contains the details about EKG, which supports
“the heart rate is normal” with evidence. In com-
parison, Output 1 only mentions the heart rate is
normal without revealing how the heart rate is ex-
amined.

Table 9 presents an example where claim recall
(GPT-4) disagrees with both ROUGE and MED-
CON on preference over a pair of outputs.

We explain the human judgment of each claim
as follows:
- Output 1 supports Claim 1: the output states “pa-
tient is not in any distress”
- Output 1 supports Claim 2: the output states
“Carotid: No appreciable carotid bruits”
- Output 1 supports Claim 3: “Lungs: Clear to
auscultation bilaterally” already means no wheezes,
rales, or rhonchi.
- Output 1 supports Claim 4: the output states
“Slight 2/6 systolic ejection murmur ”.
- Output 1 supports Claim 5: the output states “1+
edema in lower extremities”.
- Output 2 does not support Claim 1: no information
about distress.
- Output 2 does not support Claim 2: no information
about neck.
- Output 2 supports Claim 3: “clear lungs” already
means no wheezes, rales, or rhonchi.
- Output 2 supports Claim 4: the output states “2/6
systolic ejection murmur”.
- Output 2 supports Claim 5: the output states “1+
pitting edema in bilateral lower extremities”.

A.4 Experimental details

A.4.1 Datasets
Clinical note generation experiments. We ex-
periment on the ACI-BENCH (Yim et al., 2023)

661



Model / Prompt Style ↓ ANLI-R1 ANLI-R2 ANLI-R3 MedNLI Average
|Test Set| 1000 1000 1200 1422 –

TRUE 78.8 69.1 67.3 81.9 74.3

Mistral (2-shot) 68.9 69.2 70.8 84.8 73.4
+ JSON 68.2 65.6 69.7 87.8 72.8
+ CoT 70.6 69.6 71.7 87.2 74.8
+ JSON + CoT 71.5 66.8 71.7 87.3 74.3

GPT-4 (2-shot) 88.7 84.5 85.1 92.8 87.8
+ JSON 91.4 86.3 85.4 91.0 88.5
+ CoT 90.0 84.9 85.2 91.6 88.2
+ JSON + CoT 90.6 86.2 85.6 91.8 88.6

Table 4: Accuracy on ANLI and MedNLI under the 2-way classification setting. We combine “neutral” and
“contradiction” into one class. In the 2-shot prompt, we provide one example for each class.

Model / Prompt Style ↓ MedNLI

Supervised
T5-large (Phan et al., 2021) 83.8
ClinicalT5-large (Lu et al., 2022) 85.9
BioBART-large (Yuan et al., 2022) 86.3
SciFive-large (Phan et al., 2021) 86.6

Few-shot, open-source
Mistral (Jiang et al., 2023) 78.3
Mistral + JSON 83.0
Mistral + CoT 81.5
Mistral + JSON+CoT 82.4

Few-shot, proprietary
GPT-4 (OpenAI, 2023) 87.6
GPT-4 + JSON 86.4
GPT-4 + CoT 87.6
GPT-4 + JSON+CoT 87.8

Table 5: Accuracy on MedNLI under the 3-way clas-
sification setting. For 3-shot models, we provide one
example from each class in the prompt. We organize re-
sults into 3 groups: fully supervised, 3-shot open-source,
and 3-shot proprietary models.

dataset for note generation, which is a dataset of
207 pairs of dialogue and SOAP notes. We re-
port results on the “test1” split, which contains
40 dialogue-note pairs. The definition of “SOAP
note” is a widely used method of documentation
for healthcare providers 3. The original task setup
only evaluates the generated SOAP note against the
reference. To assess attribution, our task setup ad-
ditionally requires each sentence in the generated
note to cite at least one conversational turn in the
input dialogue that supports the sentence.
Radiology report summarization experiments.
We conduct report summarization experiments on

3ncbi.nlm.nih.gov/books/NBK482263/

Claim Recall Evaluation
(20 examples, three annotators per example)

Model Accuracy

TRUE 60.0

GPT-4 (0-shot) 40.0
+ JSON 50.0
+ JSON + CoT 80.0

GPT-4 (2-shot) 50.0
+ JSON 55.0
+ JSON + CoT 80.0

Human 85.0

Table 6: Accuracy of each evaluator (including hu-
man) on claim recall evaluation on 20 sentences of
ACI-BENCH. We take the majority vote of three an-
notators as the ground truth and compute the accuracy
of another annotator (denoted as “human”).

MIMIC-III (Johnson et al., 2016). It contains 67K
radiology reports spanning seven anatomies (head,
abdomen, chest, spine, neck, sinus, and pelvis)
and two modalities: magnetic resonance imaging
(MRI) and computed tomography (CT). In our ex-
periments, we randomly sample 200 examples fol-
lowing the proportion of each Modality/Anatomy
category (e.g., CT head, MR spine) for evaluation.
Similarly, we require each sentence to cite at least
one sentence in the input.
Patient question summarization experiments.
We conduct patient question summarization experi-
ments on MeQSum (Abacha and Demner-Fushman,
2019). It contains (1) original patient health ques-
tions of varying verbosity and coherence selected
from the U.S. National Library of Medicine, and
(2) corresponding condensed questions created by

662

https://www.ncbi.nlm.nih.gov/books/NBK482263/


Claim Recall Evaluation
(100 examples, one annotator per example)

Model Accuracy

TRUE 58.0

GPT-4 (0-shot) 52.0
+ JSON 64.0
+ JSON + CoT 65.0

GPT-4 (2-shot) 48.0
+ JSON 62.0
+ JSON + CoT 66.0

Table 7: Accuracy of each evaluator on claim recall eval-
uation on ACI-BENCH. We select 100 sentences where
at least two of these models have different predictions.
We consider human annotations as the ground truth.

Reference subclaims
1. The patient’s carotid arteries do not have audible bruits.
2. The patient’s lungs are clear to auscultation on both sides, with
no wheezes, rales, or rhonchi.
3. The patient exhibits a slight 2/6 systolic ejection murmur in the
cardiovascular exam, which is stable.
4. The patient has a normal heart rate.
5. The patient has trace lower extremity edema in both legs.

Output 1
PHYSICAL EXAM: Heart rate is normal. On physical examina-
tion, there are no carotid bruits in the neck, but a slight 2/6 systolic
ejection murmur is present on heart exam, which is stable. Lungs
are clear, and there is trace lower extremity edema bilaterally.

Claim Recall (GPT-4): 100.00 // Support all claims.
Human Judgment: 100.00 // Support all claims.
Preferred by Subjective Preference?: No.

Output 2 (Preferred by human)
OBJECTIVE EXAM:
- Carotid: No appreciable carotid bruits
- Heart: 2/6 systolic ejection murmur, stable from previous exams
- Lungs: Clear to auscultation bilaterally
- Extremities: Trace lower extremity edema bilaterally
EKG: Within normal limits

Claim Recall (GPT-4): 100.00 // Support all claims.
Human Judgment: 100.00 // Support all claims.
Preferred by Subjective Preference?: Yes. // more details.

Table 8: An example where human and claim recall
(GPT-4) give the same entailment score for both outputs,
but human subjectively prefers one of them. In this case,
Output 2 also contains the EKG results, which is not
presented in the reference but should be included.

three medical experts such that the summary al-
lows retrieving complete, correct answers to the
original question without the potential for further
condensation. We experiment on the subset of
the test set selected by the MEDIQA 2021 chal-
lenge (Ben Abacha et al., 2021), which contains
100 examples and covers a wide range of topics
and question types such as Treatment, Information,

Reference subclaims
1. The patient appears to be in no apparent distress.
2. No carotid bruits are present in the patient’s neck.
3. The patient’s lungs are clear upon auscultation, with no wheezes,
rales, or rhonchi.
4. The patient has a grade 2/6 systolic ejection murmur.
5. There is 1+ edema in both lower extremities of the patient.

Output 1 (Preferred by GPT-4 and human)
OBJECTIVE EXAM:
Vital Signs:
- Blood pressure: within normal range
- Heart rate: within normal range
- Pulse ox: within normal range
Physical Exam:
- General: Patient is not in any distress
- Carotid: No appreciable carotid bruits
- Heart: Slight 2/6 systolic ejection murmur (previously noted)
- Lungs: Clear to auscultation bilaterally
- Extremities: 1+ edema in lower extremities
Labs:
- Blood glucose: 162 mg/dL (fasting)
- Hemoglobin A1c: 8%

ROUGE-L Recall: 27.66
MEDCON Recall: 33.33
Claim Recall (GPT-4): 100.00 // Support all claims.
Human Judgment: 100.00 // Support all claims.

Output 2 (Preferred by ROUGE-L and MEDCON)
PHYSICAL EXAMINATION
• Cardiovascular: 2/6 systolic ejection murmur, stable.
• Respiratory: Lungs clear to auscultation.
• Extremities: 1+ pitting edema in bilateral lower extremities.

ROUGE-L Recall: 40.43
MEDCON Recall: 75.00
Claim Recall (GPT-4): 60.00 // Support Claim 3, 4, 5.
Human Judgment: 60.00 // Support Claim 3, 4, 5.

Table 9: An example of disagreement between claim
recall (GPT-4) and ROUGE/MEDCON on preferences
over a pair of outputs. In this example, Output 1 has
fewer medical terms overlapping with the reference, but
covers more subclaims.

Side effects, Cause, Effect, Person-Organization,
Diet-Lifestyle, Complications, Contraindications,
Diagnosis, Usage, Interaction, Ingredients, Prog-
nosis, Susceptibility, Transmission, and Toxicity.

A.4.2 Examples for each Dataset

Table 16 is an example of clinical note generation
under the full-note generation setting. The input
is the dialogue between the doctor and the patient
and the target output is the full clinical note based
on the dialogue. We highlight the four sections
in the reference clinical note, which is divided au-
tomatically by the name of each paragraph (e.g.,
“REVIEW OF SYSTEMS” belongs to the subjec-
tive section). As for per-section generation, the
input is the same and the target output contains
only one of the four sections.
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Task Commonly-Used Metrics Reference

Clinical note generation ROUGE, BERTScore, BLEURT, MEDCON Yim et al. (2023); Ben Abacha et al. (2023a)
Radiology report summarization ROUGE, BERTScore, BLEU, F1-RadGraph Van Veen et al. (2023); Tu et al. (2023)
Patient question summarization ROUGE, BERTScore, BLEU, MEDCON Abacha and Demner-Fushman (2019); Veen et al. (2023)

Table 10: Evaluated tasks and their commonly used metrics. We list prior works that apply the corresponding
metrics under “Reference”.

Comparison # Disagreements
O-Exam A & P

Claim Recall (GPT-4) & ROUGE Recall 524 / 2460 635 / 2460
Claim Recall (GPT-4) & MEDCON Recall 251 / 2460 499 / 2460
Claim Recall (GPT-4) & Claim Recall (TRUE) 148 / 2460 268 / 2460
Claim Recall (GPT-4) & Claim Recall (Mistral) 121 / 2460 309 / 2460

Table 11: Number of disagreements between each two evaluation metrics among all 2460 pairs of generated outputs.

Table 17 is an example of radiology report sum-
marization. The input is the findings section of
the radiology report, containing experiment results
and findings. The target output is the impression
section of the report, which should summarize the
important information in the findings section.

Table 18 shows an example of patient question
summarization. The input is the patient question
of varying verbosity and coherence, and the goal
is to summarize the input into a short question that
allows retrieving complete, correct answers to the
original question.

A.4.3 Evaluation Metrics
To evaluate note generation, we compare DO-
CLENS with the following metrics that are com-
monly used in the existing research (Yim et al.,
2023): ROUGE (Lin, 2004) computes the over-
lap of n-grams. BERTScore (Zhang et al., 2020a)
compares the embeddings of matched tokens in
the output and reference. BLEURT (Sellam et al.,
2020) trains a model to compute output-reference
similarity. MEDCON (Yim et al., 2023) computes
the F1-score of the UMLS concepts in the output
and the reference.

To evaluate report summarization, we follow pre-
vious work (Van Veen et al., 2023) and evaluate
ROUGE, BERTScore, BLEU, and F1-RadGraph
(Jain et al., 2021), where BLEU evaluates the over-
lap of 1- to 4-grams, and F1-RadGraph computes
the F1 score of a predefined set of entities and rela-
tions present in radiology reports.

As for question summarization, we evaluate
ROUGE, BERTScore, BLEU, and MEDCON fol-
lowing existing words (Veen et al., 2023; Abacha
and Demner-Fushman, 2019).

A.4.4 Evaluated Methods
We evaluate both open-source models and propri-
etary models on note generation. For open-source
models, we choose the best models reported by
Yim et al. (2023): BART fine-tuned on SAMSum
(Gliwa et al., 2019) (denoted as BART + SAMSum
FT) and BioBART (Yuan et al., 2022). Since these
models are not capable of generating citations, we
do not report their citation metrics. For proprietary
models, we experiment on GPT-3.5-turbo and GPT-
4 with zero-shot and few-shot prompting.

As for report summarization, we compare GPT-
3.5-turbo and GPT-4 with zero-shot and few-shot
prompting. For few-shot prompts, we sample the
same number of examples (1 or 2) from each of the
six Modality/Anatomy categories in MIMIC that
have a train set. Namely, we experiment on 0-shot,
6-shot, and 12-shot prompting.

Similarly, to evaluate question summarization,
we compare 3.5-turbo and GPT-4 with 0-shot, 1-
shot, and 2-shot prompting. The few-shot examples
are selected from the validation set of MeQSum.

A.4.5 Human Evaluation Details
We only annotate the disagreement between two
metrics to manage the required amount of human
annotation. As shown in Table 11, the metrics
have agreed preferences in most of the cases. For
instance, if we randomly sample a set of output
pairs for the objective exam section, GPT-4 and
TRUE disagree in only 148 / 2640 = 5.6% of the
output pairs. GPT-4 and Mistral disagree in only
121 / 2640 = 4.6% of the output pairs. As a result,
randomly sampling from all output pairs would be
inefficient, and we only focus on the disagreement.

We focus on completeness evaluation because
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Inter-annotator Agreement

Comparison Section Spearman-ρ Kendall-τ

Claim Recall (GPT-4) vs. Rouge Recall
O-Exam 0.744 0.641
A & P 0.881 0.767

Claim Recall (GPT-4) vs. MEDCON Recall
O-Exam 0.688 0.594
A & P 0.785 0.667

Claim Recall (GPT-4) vs. Claim Recall (TRUE)
O-Exam 0.765 0.644
A & P 0.686 0.554

Claim Recall (GPT-4) vs. Claim Recall (Mistral)
O-Exam 0.690 0.561
A & P 0.861 0.709

Table 12: Inter-annotator agreement in the human study (§4.3). We compare the correlation between one annotator
and the average score given by the other two annotators.

in medical scenarios, omission errors (i.e., impor-
tant information is missed or excluded) are more
critical than commission errors (Hayward et al.,
2005) or hallucinations (Schumacher et al., 2023),
in which information is fabricated and erroneously
included. In the most common setting where we
have human experts in the loop, detection of hal-
lucinations is a much easier task as it can rely on
comparisons against cited input or external sources.
In contrast, detecting erroneous omissions is es-
pecially challenging as they are by definition not
present in a system output, yet can mislead a reader
by incorrectly portraying the source document.

We have five medical experts from two coun-
tries participating in our human evaluation, as in-
troduced in §4.3. All of them are researchers in
biomedical machine learning. We held a 1-hour
meeting to briefly introduce our work and explain
the purpose and setting of the human study.

We provide the instructions for the annotators
in Table 19 and provide a screenshot of the inter-
face in Figure 9. We provide the annotators with
the reference note, the extracted subclaims of the
reference note, and two notes generated by two
models. We do not tell the annotators which model
generates which note. The annotators are asked to
judge (1) whether each claim is fully supported by
the two notes, and (2) which note they subjectively
think is more complete (i.e., covers more informa-
tion in the reference note). To better understand the
judgments of the annotators, they are free to leave
any comments or thoughts when annotating the
example, including but not limited to the explana-
tions of their subjective preferences, and whether
the claims extracted from the reference note are
accurate and complete.

A.5 Detailed Evaluation Results
For DOCLENS computed with GPT-4, we provide
the detailed evaluation results of note generation
in Table 25, which corresponds to Figure 4. Eval-
uation results on report summarization are shown
in Table 29, which corresponds to Figure 5. Eval-
uation results on question summarization are in
Table 33, which corresponds to Figure 6.

Tables 27, 31 and 35 show the results evaluated
by DOCLENS computed with TRUE.

Tables 22, 26, 30 and 34 show the results evalu-
ated by DOCLENS computed with Mistral.

A.5.1 Generation With or Without Citations
We compare the performance with or without ask-
ing the model to generate citations. As shown in
Table 36, there are no significant differences in the
performances of generating with or without cita-
tions.
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Prompt style: JSON

Instruction:
Please act as an impartial judge and evaluate whether the clinical note provided by an AI assistant can fully entail each claim below.
For each claim, please output ’1’ or ’0’ for each claim, where ’1’ means the claim can be fully entailed by the clinical note, and ’0’
means the claim contains information that cannot be entailed by the clinical note.
Generate the answer as a list of json dicts. Each dict should be in the format of {’claim’: the original claim, ’entailment prediction’:
1 or 0, whether the claim can be entailed}."

Example input:
{

"clinical note": "PHYSICAL EXAM • Cardiovascular: 3/6 systolic ejection murmur, previously noted. • Extremities: 1+ pitting
edema in lower extremities.",

"claims": [
"The patient’s blood pressure is high.",
"The patient has a grade 3/6 systolic ejection murmur.",
"The patient exhibits 1+ pitting edema in both lower extremities."

]
}

Example output:
[

{
"claim": "The patient’s blood pressure is high.",
"entailment prediction": 0

},
{

"claim": "The patient has a grade 3/6 systolic ejection murmur.",
"entailment prediction": 1

},
{

"claim": "The patient exhibits 1+ pitting edema in both lower extremities.",
"entailment prediction": 0

}
]

Table 13: Example of the prompt style “JSON” for claim recall and precision computation on ACI-BENCH. We
format the input and output as a JSON dictionary.

Prompt style: CoT

Instruction:
Please act as an impartial judge and evaluate whether the clinical note provided by an AI assistant can fully entail the claim below.
Also generate an explanation for your answer. Please output ’1’ or ’0’ as your entailment prediction, where ’1’ means the claim
can be fully entailed by the clinical note, and ’0’ means the claim contains information that cannot be entailed by the clinical note.
Generate the answer in the following format:
explanation: the reason why the entailment prediction is made.
entailment prediction: 1 or 0, whether the claim can be entailed.

Example input:
clinical note: PHYSICAL EXAM • Cardiovascular: 3/6 systolic ejection murmur, previously noted. • Extremities: 1+ pitting edema
in lower extremities.
claim: The patient exhibits 1+ pitting edema in both lower extremities.

Example output:
explanation: the clinical note mentions ’Extremities: 1+ pitting edema’, but does not specify whether it is in the upper or lower
extremities.
entailment prediction: 0

Table 14: Example of the prompt style “CoT” for claim recall and precision computation on ACI-BENCH. We
prompt the model to generate an explanation for its prediction.
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Prompt style: JSON + CoT

Instruction:
Please act as an impartial judge and evaluate whether the clinical note provided by an AI assistant can fully entail each claim below.
Also generate an explanation for your answer. For each claim, please output ’1’ or ’0’ for each claim, where ’1’ means the claim
can be fully entailed by the clinical note, and ’0’ means the claim contains information that cannot be entailed by the clinical note.
Generate the answer as a list of json dicts. Each dict should be in the format of {’claim’: the original claim, ’explanation’: the
reason why the entailment prediction is made, ’entailment prediction’: 1 or 0, whether the claim can be entailed}."

Example input:
{

"clinical note": "PHYSICAL EXAM • Cardiovascular: 3/6 systolic ejection murmur, previously noted. • Extremities: 1+ pitting
edema in lower extremities.",

"claims": [
"The patient’s blood pressure is high.",
"The patient has a grade 3/6 systolic ejection murmur.",
"The patient exhibits 1+ pitting edema in both lower extremities."

]
}

Example output:
[

{
"claim": "The patient’s blood pressure is high.",
"explanation": "The clinical note does not mention anything about the blood pressure.",
"entailment prediction": 0

},
{

"claim": "The patient has a grade 3/6 systolic ejection murmur.",
"explanation": "The PHYSICAL EXAM section mentions that ’Cardiovascular: 3/6 systolic ejection murmur’, which

supports the claim.",
"entailment prediction": 1

},
{

"claim": "The patient exhibits 1+ pitting edema in both lower extremities.",
"explanation": "The clinical note mentions ’Extremities: 1+ pitting edema’, but does not specify whether it is in the

upper or lower extremities.",
"entailment prediction": 0

}
]

Table 15: Example of the prompt style “JSON + CoT” for claim recall and precision computation on ACI-BENCH.
We format the input and output as a JSON dictionary and prompt the model to generate an explanation for its
prediction. We highlight the difference between the “JSON” and “JSON + CoT” prompt styles in bold.

667



Input: Dialogue between the doctor and the patient
[0] (doctor) hi, martha. how are you?
...
[4] (doctor) so, martha, it’s been a year since i’ve seen you. how are you doing?
[5] (patient) i’m doing well. i’ve been traveling a lot recently since things have, have gotten a bit lighter. and i got my, my vaccine,
so i feel safer about traveling. i’ve been doing a lot of hiking. uh, went to washington last weekend to hike in northern cascades, like
around the mount baker area.
...
[28] (doctor) so, i’m just gon na check out your heart and your lungs. and you know, let you know what i find, okay?
[29] (patient) okay.
[30] (doctor) okay. so, on your physical examination, you know, everything looks good. on your heart exam, i do appreciate a three
out of six systolic ejection murmur, which i’ve heard in the past, okay? and on your lower extremities, i do appreciate one plus
pitting edema, so you do have a little bit of fluid in your legs, okay?
[31] (patient) okay.
...
[37] (doctor) i also wanna repeat another echocardiogram, okay?
[38] (patient) okay.
...
[46] (patient) can i take all my pills at the same time?
[47] (doctor) yeah.
...

Reference: Clinical note

CHIEF COMPLAINT
Annual exam [4].

HISTORY OF PRESENT ILLNESS
Martha Collins is a 50-year-old female with a past medical history significant for congestive heart failure, depression, and
hypertension who presents for her annual exam [4]. It has been a year since I last saw the patient [4].

The patient has been traveling a lot recently since things have gotten a bit better [5]. She reports that she got her
COVID-19 vaccine so she feels safer about traveling [5]. She has been doing a lot of hiking [5].
...

REVIEW OF SYSTEMS
• Ears, Nose, Mouth and Throat: Endorses nasal congestion from allergies [22].
• Cardiovascular: Denies chest pain or dyspnea on exertion [12][13].
...

PHYSICAL EXAMINATION
• Cardiovascular: Grade 3/6 systolic ejection murmur [30].
1+ pitting edema of the bilateral lower extremities [30].

VITALS REVIEWED
• Blood Pressure: Elevated [26].

RESULTS
Echocardiogram demonstrates decreased ejection fraction of 45% [32]. Mitral regurgitation is present [32].
Lipid panel: Elevated cholesterol [33].

ASSESSMENT AND PLAN
Martha Collins is a 50-year-old female with a past medical history significant for congestive heart failure, depression, and
hypertension who presents for her annual exam [4].

Congestive heart failure.
• Medical Reasoning: She has been compliant with her medication and dietary modifications [8][9][10][11]. Her previous year’s
echocardiogram demonstrated a reduced ejection fraction of 45%, as well as some mitral regurgitation [32]. Her cholesterol
levels were slightly elevated on her lipid panel from last year [33].
• Additional Testing: We will order a repeat echocardiogram [37][38]. We will also repeat a lipid panel this year [33][34].
...

Table 16: An example of note generation, where the input is the dialogue between the doctor and the patient, and
the goal is to generate a clinical note based on the dialogue. We highlight the four sections in the note: subjective,
objective exam, objective results, and assessment and plan.
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Input: The findings section of a radiology report
[0] there are new areas of slow diffusion in left frontal and parietal lobes involving the precentral gyrus suggestive of acute infarcts.
[1] areas of slow diffusion are noted in left corona radiata, left thalamus, left parieto-occipital regions and splenium of corpus
callosum which are unchanged since the prior study. [2] areas of gliosis with flair and t2 hyperintensities are noted in bilateral
occipital lobes which are sequelae of subacute/ chronic infarcts (left greater than right). [3] there is no evidence of hemorrhagic
transformation of infarcts. [4] there is prominence of the cortical sulci, ventricular system and extra-axial csf spaces suggestive of
generalized cerebral atrophy. [5] mucosal thickening is noted in the sphenoid sinus and bilateral ethmoid air cells. [6] orbits are
unremarkable. [7] there is partial opacification of bilateral mastoid air cells.

Reference: The impression section, which summarizes the findings section
1. new acute infarcts in left frontal and parietal lobes. [0]
2. subacute infarcts in splenium of corpus callosum, left thalamus and left parietal and frontal white matter. [0][1]
3. sequelae of subacute/chronic infarcts in bilateral occipital lobes. [2]

Table 17: An example of report summarization, where the input is the findings section of a radiology report, and the
goal is to generate an impression section that summarizes important results in the findings section.

Input: The original patient health questions
[0] Hello, I have been dealing with trimethylaminuria since I was a child. [1] I have done some of my own research and it looks like
not much can be done for this condition. [2] I do not have it all over my body. [3] It’s only in my armpits. [4] In the past I’ve gone
to doctors and dermatologist they gave me no answers until I looked online today and finally found out what I have. [5] I don’t
know maybe I’m wrong. [6] But this disease isn’t even consider common because no one has done anything about it. [7] I’m sure
they’re thousands of women with it... [8] Can I be tested for it and help in some kind of way to finding a cure or something? [9]
What testing is done for this? [10] And where? [11] Thank you

Output: The summarized question
How can I get tested and treated for trimethylaminuria? [0][8][9][10]

Table 18: An example of question summarization, where the input is the patient question of varying verbosity and
coherence, and the goal is to summarize the input into a short question that allows retrieving complete, correct
answers to the original question.

Instructions for the annotators

We are working on a project on medical text evaluation, and we need your help to evaluate the quality of
clinical notes generated by different models. In this study, you will be presented with 20 (or 10) examples.
Each example contains 2 clinical notes generated by different models, the reference clinical note written
by human, and a list of subclaims we extracted from the reference clinical note.

Your tasks are as follows:
(1) Judge whether the information in each subclaim is fully covered by each of the generated clinical
notes.
(2) Judge which clinical note is more complete. Namely, which clinical note better captures the important
information in the reference clinical note.

Table 19: Instructions for the annotators in our human study. We present the instructions in a meeting in which we
briefly introduced them to the task of note generation, our project, and the purpose of the human study.
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Figure 9: The screenshot of the interface of our human study. Each annotator is asked to decide (1) whether each
claim is fully supported by the two notes, and (2) which note they subjectively think is more complete (i.e., covers
more information in the reference note). They are optionally asked to provide their comments for each example.
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Evaluation Methods: Rouge, MEDCON

Model Rouge-1 Rouge-2 Rouge-L MEDCON

BART + SAMSum FT (full) 40.87 18.96 34.60 41.69
BART + SAMSum FT (section) 53.46 25.08 48.62 48.37
BioBART (full) 39.09 17.24 33.19 43.05
BioBART (section) 49.53 22.47 44.92 43.21

GPT-3.5-turbo (full, 0-shot) 48.25 20.54 43.78 56.82
GPT-3.5-turbo (section, 0-shot) 47.61 20.80 43.65 57.48
GPT-4 (full, 0-shot) 48.74 22.93 45.26 59.49
GPT-4 (section, 0-shot) 51.16 23.33 46.98 60.01

GPT-3.5-turbo-16k (full, 1-shot) 53.08 24.16 48.71 57.96
GPT-3.5-turbo-16k (section, 1-shot) 50.56 23.85 47.21 57.52
GPT-4 (full, 1-shot) 56.34 27.04 51.62 62.84
GPT-4 (section, 1-shot) 56.99 28.10 52.74 62.07

GPT-3.5-turbo-16k (full, 2-shot) 56.50 27.38 52.27 60.13
GPT-3.5-turbo-16k (section, 2-shot) 51.99 25.52 48.22 58.80
GPT-4-32k (full, 2-shot) 58.50 29.44 54.34 63.00
GPT-4-32k (section, 2-shot) 58.25 29.73 53.96 61.95

Table 20: Note generation results on ACI-BENCH-test1 evaluated with existing metrics. We compute each metric
over the full note.

Evaluation Method: DOCLENS computed with GPT-4

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 20.30 48.11 – –
BART + SAMSum FT (section) 33.59 30.38 – –
BioBART (full) 16.53 42.43 – –
BioBART (section) 29.37 26.10 – –

GPT-3.5-turbo (full, 0-shot) 46.80 69.74 53.99 42.16
GPT-3.5-turbo (section, 0-shot) 56.28 29.18 58.77 49.31
GPT-4 (full, 0-shot) 48.31 75.67 68.74 66.07
GPT-4 (section, 0-shot) 60.24 36.73 61.13 58.47

GPT-3.5-turbo-16k (full, 1-shot) 49.96 71.94 65.32 63.12
GPT-3.5-turbo-16k (section, 1-shot) 59.13 39.29 62.63 60.94
GPT-4 (full, 1-shot) 58.26 73.90 69.94 65.72
GPT-4 (section, 1-shot) 67.69 52.47 70.81 65.75

GPT-3.5-turbo-16k (full, 2-shot) 54.92 68.89 63.54 61.83
GPT-3.5-turbo-16k (section, 2-shot) 62.44 42.91 65.79 64.09
GPT-4-32k (full, 2-shot) 59.07 69.20 68.74 64.17
GPT-4-32k (section, 2-shot) 69.88 54.92 67.90 63.01

Table 21: Note generation results on ACI-BENCH-test1 evaluated with DOCLENS computed with GPT-4. We
compute each metric over the full note.

Evaluation Method: DOCLENS computed with Mistral

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 24.76 52.42 – –
BART + SAMSum FT (section) 43.03 36.08 – –
BioBART (full) 18.77 47.63 – –
BioBART (section) 36.84 32.95 – –

GPT-3.5-turbo (full, 0-shot) 60.97 75.79 91.31 80.03
GPT-3.5-turbo (section, 0-shot) 67.30 36.44 83.34 64.20
GPT-4 (full, 0-shot) 62.13 79.23 94.00 89.65
GPT-4 (section, 0-shot) 72.31 42.33 89.47 80.58

GPT-3.5-turbo-16k (full, 1-shot) 61.50 75.58 85.68 82.79
GPT-3.5-turbo-16k (section, 1-shot) 65.20 46.91 88.64 80.19
GPT-4 (full, 1-shot) 69.53 78.56 89.01 82.90
GPT-4 (section, 1-shot) 72.59 57.32 91.34 82.18

GPT-3.5-turbo-16k (full, 2-shot) 66.05 74.04 84.60 79.10
GPT-3.5-turbo-16k (section, 2-shot) 66.30 50.82 88.32 81.90
GPT-4-32k (full, 2-shot) 67.89 73.17 87.86 80.06
GPT-4-32k (section, 2-shot) 73.96 59.24 86.15 77.57

Table 22: Note generation results on ACI-BENCH-test1 evaluated with DOCLENS computed with Mistral. We
compute each metric over the full note.
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Evaluation Method: DOCLENS computed with TRUE

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 19.95 47.62 – –
BART + SAMSum FT (section) 32.23 29.42 – –
BioBART (full) 15.74 40.45 – –
BioBART (section) 27.84 24.05 – –

GPT-3.5-turbo (full, 0-shot) 41.76 63.25 68.27 55.52
GPT-3.5-turbo (section, 0-shot) 53.54 27.14 56.20 34.52
GPT-4 (full, 0-shot) 45.21 72.61 72.41 64.53
GPT-4 (section, 0-shot) 57.79 34.53 49.38 38.59

GPT-3.5-turbo-16k (full, 1-shot) 47.40 66.28 56.51 52.23
GPT-3.5-turbo-16k (section, 1-shot) 56.39 37.57 58.45 48.03
GPT-4 (full, 1-shot) 56.61 69.49 60.95 51.92
GPT-4 (section, 1-shot) 67.13 49.81 60.99 49.13

GPT-3.5-turbo-16k (full, 2-shot) 53.04 65.19 54.99 49.50
GPT-3.5-turbo-16k (section, 2-shot) 60.71 41.00 59.59 52.18
GPT-4-32k (full, 2-shot) 57.90 63.83 54.41 46.42
GPT-4-32k (section, 2-shot) 67.63 50.78 55.33 45.99

Table 23: Note generation results on ACI-BENCH-test1 evaluated with DOCLENS computed with TRUE. We
compute each metric over the full note.

672



Evaluation Methods: Rouge, BERTScore, BLEURT, MEDCON

Subjective

Model Rouge-1 Rouge-2 Rouge-L BERTScore-F1 BLEURT MEDCON

Reported GPT-3.5-turbo (full, 0-shot) 32.70 14.05 22.69 65.14 39.48 38.21
Reported GPT-4 (full, 0-shot) 41.20 19.02 26.56 63.34 43.18 44.25

BART + SAMSum FT (full) 46.33 25.52 29.88 68.68 45.00 43.02
BART + SAMSum FT (section) 52.44 30.44 35.83 72.41 44.51 47.68
BioBART (full) 45.79 23.65 28.96 68.49 41.09 41.10
BioBART (section) 46.29 25.99 32.43 70.30 42.98 41.21

GPT-3.5-turbo (full, 0-shot) 33.56 15.15 23.54 63.73 42.48 40.81
GPT-3.5-turbo (section, 0-shot) 36.30 13.27 20.30 59.69 43.55 35.95
GPT-4 (full, 0-shot) 35.09 16.49 25.56 65.12 42.11 41.15
GPT-4 (section, 0-shot) 43.32 19.03 27.04 63.70 46.30 48.54

GPT-3.5-turbo-16k (full, 1-shot) 43.02 21.97 31.15 70.37 45.62 48.50
GPT-3.5-turbo-16k (section, 1-shot) 40.95 18.15 29.21 62.37 43.57 38.02
GPT-4 (full, 1-shot) 47.63 24.71 33.07 71.51 46.58 50.96
GPT-4 (section, 1-shot) 48.16 23.23 34.08 65.04 47.86 44.97

GPT-3.5-turbo-16k (full, 2-shot) 50.44 27.18 35.55 73.68 48.62 49.18
GPT-3.5-turbo-16k (section, 2-shot) 40.95 18.76 29.80 63.27 44.52 35.92
GPT-4-32k (full, 2-shot) 53.45 30.12 38.68 75.44 48.03 49.65
GPT-4-32k (section, 2-shot) 49.58 24.71 34.86 65.81 47.55 45.95

Objective-Exam

Model Rouge-1 Rouge-2 Rouge-L BERTScore-F1 BLEURT MEDCON

Reported GPT-3.5-turbo (full, 0-shot) 49.44 27.29 38.60 71.39 49.39 48.95
Reported GPT-4 (full, 0-shot) 50.11 28.20 40.43 71.79 51.11 42.59

BART + SAMSum FT (full) 6.22 3.74 5.21 44.33 14.83 4.14
BART + SAMSum FT (section) 47.73 29.51 36.98 73.41 42.86 35.91
BioBART (full) 2.57 1.04 1.68 42.10 12.40 1.22
BioBART (section) 42.51 26.15 32.19 71.57 42.18 29.55

GPT-3.5-turbo (full, 0-shot) 51.19 31.04 42.10 71.23 52.15 49.02
GPT-3.5-turbo (section, 0-shot) 32.21 17.87 26.44 60.11 45.57 31.60
GPT-4 (full, 0-shot) 62.41 40.44 52.82 77.04 55.40 55.69
GPT-4 (section, 0-shot) 39.58 22.91 35.11 62.70 45.55 38.33

GPT-3.5-turbo-16k (full, 1-shot) 55.67 32.25 45.85 76.74 51.77 44.25
GPT-3.5-turbo-16k (section, 1-shot) 39.07 22.02 34.52 60.45 37.69 36.29
GPT-4 (full, 1-shot) 63.18 40.99 53.14 80.52 55.74 55.04
GPT-4 (section, 1-shot) 52.45 30.10 46.81 66.45 44.42 49.54

GPT-3.5-turbo-16k (full, 2-shot) 61.13 37.93 51.84 79.40 52.18 48.14
GPT-3.5-turbo-16k (section, 2-shot) 46.46 27.29 42.44 64.02 41.24 44.97
GPT-4-32k (full, 2-shot) 65.98 42.61 53.65 81.43 51.50 53.80
GPT-4-32k (section, 2-shot) 55.58 32.45 49.69 68.54 47.29 50.50

Objective-Results

Model Rouge-1 Rouge-2 Rouge-L BERTScore-F1 BLEURT MEDCON

Reported GPT-3.5-turbo (full, 0-shot) 34.50 17.75 30.84 66.68 48.51 22.28
Reported GPT-4 (full, 0-shot) 37.65 19.94 35.73 68.33 48.50 26.73

BART + SAMSum FT (full) 20.79 0.46 20.67 54.54 28.35 0.77
BART + SAMSum FT (section) 29.45 18.01 26.63 66.43 40.76 20.17
BioBART (full) 17.50 0.00 17.50 52.44 25.35 0.00
BioBART (section) 35.38 14.33 32.79 68.40 47.64 15.69

GPT-3.5-turbo (full, 0-shot) 36.01 20.57 33.45 66.06 51.00 22.27
GPT-3.5-turbo (section, 0-shot) 32.88 5.68 31.81 63.49 54.42 6.94
GPT-4 (full, 0-shot) 45.81 28.78 43.76 70.62 54.60 36.23
GPT-4 (section, 0-shot) 34.11 6.46 32.62 62.94 52.69 7.05

GPT-3.5-turbo-16k (full, 1-shot) 47.94 30.74 46.36 77.69 58.28 36.64
GPT-3.5-turbo-16k (section, 1-shot) 40.26 9.07 39.03 65.50 56.38 11.35
GPT-4 (full, 1-shot) 64.59 33.67 63.26 86.09 68.34 37.27
GPT-4 (section, 1-shot) 46.13 12.34 43.86 67.85 58.69 15.71

GPT-3.5-turbo-16k (full, 2-shot) 47.87 33.08 46.82 77.34 56.74 34.62
GPT-3.5-turbo-16k (section, 2-shot) 44.94 12.90 43.45 67.92 61.29 13.97
GPT-4-32k (full, 2-shot) 61.87 32.35 60.66 84.54 65.40 32.95
GPT-4-32k (section, 2-shot) 45.63 12.55 44.10 68.05 58.58 15.02

Assessment and Plan

Model Rouge-1 Rouge-2 Rouge-L BERTScore-F1 BLEURT MEDCON

Reported GPT-3.5-turbo (full, 0-shot) 36.43 12.50 23.32 63.56 48.21 43.71
Reported GPT-4 (full, 0-shot) 38.16 14.12 24.90 64.26 49.41 42.36

BART + SAMSum FT (full) 1.52 0.49 0.87 35.38 19.80 1.00
BART + SAMSum FT (section) 43.89 21.37 27.56 68.09 41.95 31.65
BioBART (full) 0.00 0.00 0.00 0.00 29.05 0.00
BioBART (section) 42.44 19.44 26.42 67.57 43.88 31.07

GPT-3.5-turbo (full, 0-shot) 37.42 14.20 25.14 64.38 49.79 47.63
GPT-3.5-turbo (section, 0-shot) 38.17 14.10 26.80 62.41 51.16 43.75
GPT-4 (full, 0-shot) 39.25 16.12 27.71 68.13 50.91 47.03
GPT-4 (section, 0-shot) 41.68 16.52 30.14 63.47 52.44 43.20

GPT-3.5-turbo-16k (full, 1-shot) 48.20 23.16 33.58 71.79 51.31 50.00
GPT-3.5-turbo-16k (section, 1-shot) 43.93 17.98 31.81 63.98 48.44 43.61
GPT-4 (full, 1-shot) 49.32 23.50 33.74 72.14 50.26 50.07
GPT-4 (section, 1-shot) 46.48 20.38 34.18 65.57 47.39 44.80

GPT-3.5-turbo-16k (full, 2-shot) 52.18 26.99 35.83 73.25 48.47 47.82
GPT-3.5-turbo-16k (section, 2-shot) 44.68 19.38 32.34 64.68 47.19 43.99
GPT-4-32k (full, 2-shot) 52.87 28.10 36.28 73.78 49.39 51.49
GPT-4-32k (section, 2-shot) 46.64 22.11 34.36 65.72 47.54 46.13

Table 24: Note generation results of each section on ACI-BENCH-test1, evaluated by existing metrics.
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Evaluation Method: DOCLENS computed with GPT-4

Subjective

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 46.98 49.50 – –
BART + SAMSum FT (section) 42.94 55.90 – –
BioBART (full) 39.92 44.00 – –
BioBART (section) 33.69 50.68 – –

GPT-3.5-turbo (full, 0-shot) 32.30 72.84 57.42 40.21
GPT-3.5-turbo (section, 0-shot) 48.82 37.90 56.29 38.71
GPT-4 (full, 0-shot) 32.22 75.85 76.21 68.90
GPT-4 (section, 0-shot) 51.02 66.36 71.96 65.77

GPT-3.5-turbo-16k (full, 1-shot) 41.06 71.63 69.65 64.04
GPT-3.5-turbo-16k (section, 1-shot) 58.55 44.76 68.72 54.94
GPT-4 (full, 1-shot) 47.39 75.53 79.57 69.91
GPT-4 (section, 1-shot) 63.76 64.50 74.05 65.96

GPT-3.5-turbo-16k (full, 2-shot) 50.65 67.65 71.16 63.85
GPT-3.5-turbo-16k (section, 2-shot) 62.47 41.71 67.19 63.74
GPT-4-32k (full, 2-shot) 52.42 72.29 75.78 68.13
GPT-4-32k (section, 2-shot) 63.91 67.57 73.77 66.06

Objective-Exam

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 1.71 21.94 – –
BART + SAMSum FT (section) 32.48 20.65 – –
BioBART (full) 1.04 15.83 – –
BioBART (section) 34.08 16.41 – –

GPT-3.5-turbo (full, 0-shot) 61.30 68.88 57.25 47.07
GPT-3.5-turbo (section, 0-shot) 62.27 22.33 63.90 52.64
GPT-4 (full, 0-shot) 64.28 69.22 62.00 59.38
GPT-4 (section, 0-shot) 66.39 23.54 55.25 50.39

GPT-3.5-turbo-16k (full, 1-shot) 51.19 72.89 62.62 60.49
GPT-3.5-turbo-16k (section, 1-shot) 51.22 44.59 72.44 70.03
GPT-4 (full, 1-shot) 70.72 72.98 71.88 67.08
GPT-4 (section, 1-shot) 70.57 60.35 78.48 71.51

GPT-3.5-turbo-16k (full, 2-shot) 51.77 77.97 63.08 61.74
GPT-3.5-turbo-16k (section, 2-shot) 49.73 61.51 72.42 70.18
GPT-4-32k (full, 2-shot) 60.90 74.35 71.09 65.39
GPT-4-32k (section, 2-shot) 71.22 69.21 70.81 67.28

Objective-Results

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 3.12 25.00 – –
BART + SAMSum FT (section) 33.96 11.44 – –
BioBART (full) 0.00 0.00 – –
BioBART (section) 34.37 15.47 – –

GPT-3.5-turbo (full, 0-shot) 64.24 48.21 49.33 47.74
GPT-3.5-turbo (section, 0-shot) 66.25 5.98 56.11 44.93
GPT-4 (full, 0-shot) 71.60 57.86 62.08 60.62
GPT-4 (section, 0-shot) 76.67 8.60 65.84 46.66

GPT-3.5-turbo-16k (full, 1-shot) 61.83 57.91 77.57 77.48
GPT-3.5-turbo-16k (section, 1-shot) 64.00 13.80 76.93 69.80
GPT-4 (full, 1-shot) 71.66 75.44 80.88 78.68
GPT-4 (section, 1-shot) 77.66 25.94 77.27 73.25

GPT-3.5-turbo-16k (full, 2-shot) 61.83 62.83 79.46 79.46
GPT-3.5-turbo-16k (section, 2-shot) 70.66 24.57 69.94 65.72
GPT-4-32k (full, 2-shot) 59.39 75.21 77.59 74.71
GPT-4-32k (section, 2-shot) 80.16 22.23 67.71 64.97

Assessment and Plan

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 0.63 10.71 – –
BART + SAMSum FT (section) 20.01 27.03 – –
BioBART (full) 0.00 0.00 – –
BioBART (section) 17.84 24.36 – –

GPT-3.5-turbo (full, 0-shot) 52.47 73.10 55.53 41.54
GPT-3.5-turbo (section, 0-shot) 60.32 53.43 59.98 46.24
GPT-4 (full, 0-shot) 53.90 82.74 67.77 65.43
GPT-4 (section, 0-shot) 66.60 50.73 57.81 51.22

GPT-3.5-turbo-16k (full, 1-shot) 58.40 74.43 62.58 58.29
GPT-3.5-turbo-16k (section, 1-shot) 63.90 46.80 62.63 57.43
GPT-4 (full, 1-shot) 61.07 69.59 62.83 55.12
GPT-4 (section, 1-shot) 67.38 50.71 63.04 53.40

GPT-3.5-turbo-16k (full, 2-shot) 62.53 66.48 57.48 52.79
GPT-3.5-turbo-16k (section, 2-shot) 66.58 50.09 62.31 58.23
GPT-4-32k (full, 2-shot) 65.87 62.90 60.29 49.26
GPT-4-32k (section, 2-shot) 72.11 50.99 63.28 54.44

Table 25: Note generation results of each section on ACI-BENCH-test1, evaluated with DOCLENS (GPT-4).
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Evaluation Method: DOCLENS computed with Mistral

Subjective

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 55.52 53.92 – –
BART + SAMSum FT (section) 51.05 58.00 – –
BioBART (full) 44.33 48.37 – –
BioBART (section) 40.21 57.67 – –

GPT-3.5-turbo (full, 0-shot) 41.43 75.12 95.30 76.89
GPT-3.5-turbo (section, 0-shot) 57.64 45.27 86.02 61.57
GPT-4 (full, 0-shot) 41.36 78.44 97.92 90.71
GPT-4 (section, 0-shot) 65.99 69.35 93.05 85.15

GPT-3.5-turbo-16k (full, 1-shot) 49.52 74.05 94.60 88.57
GPT-3.5-turbo-16k (section, 1-shot) 59.74 51.08 85.45 79.70
GPT-4 (full, 1-shot) 58.96 76.46 97.82 86.50
GPT-4 (section, 1-shot) 63.35 65.57 95.42 83.76

GPT-3.5-turbo-16k (full, 2-shot) 61.44 72.30 93.14 82.31
GPT-3.5-turbo-16k (section, 2-shot) 62.42 49.08 89.06 80.16
GPT-4-32k (full, 2-shot) 59.61 73.09 96.11 83.89
GPT-4-32k (section, 2-shot) 65.39 67.61 95.12 83.54

Objective-Exam

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 5.18 42.41 – –
BART + SAMSum FT (section) 45.81 31.56 – –
BioBART (full) 2.50 30.00 – –
BioBART (section) 44.91 24.69 – –

GPT-3.5-turbo (full, 0-shot) 73.15 78.74 89.92 78.55
GPT-3.5-turbo (section, 0-shot) 71.14 34.50 82.07 68.32
GPT-4 (full, 0-shot) 74.20 74.68 90.79 87.10
GPT-4 (section, 0-shot) 76.97 30.21 84.59 76.08

GPT-3.5-turbo-16k (full, 1-shot) 64.38 78.41 82.09 79.79
GPT-3.5-turbo-16k (section, 1-shot) 61.78 48.42 89.92 83.38
GPT-4 (full, 1-shot) 80.37 80.74 84.08 80.37
GPT-4 (section, 1-shot) 78.66 64.75 91.50 86.53

GPT-3.5-turbo-16k (full, 2-shot) 71.24 82.35 79.46 75.82
GPT-3.5-turbo-16k (section, 2-shot) 62.78 65.96 91.62 89.52
GPT-4-32k (full, 2-shot) 70.77 72.77 87.52 83.83
GPT-4-32k (section, 2-shot) 82.69 70.04 85.33 81.19

Objective-Results

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 3.12 25.00 – –
BART + SAMSum FT (section) 38.19 16.53 – –
BioBART (full) 0.00 0.00 – –
BioBART (section) 40.93 18.60 – –

GPT-3.5-turbo (full, 0-shot) 81.53 62.38 91.03 85.56
GPT-3.5-turbo (section, 0-shot) 70.68 10.11 81.46 64.97
GPT-4 (full, 0-shot) 89.31 68.07 95.00 93.54
GPT-4 (section, 0-shot) 85.26 13.67 93.57 86.36

GPT-3.5-turbo-16k (full, 1-shot) 79.27 67.52 82.61 82.21
GPT-3.5-turbo-16k (section, 1-shot) 77.20 20.14 92.04 77.56
GPT-4 (full, 1-shot) 86.19 85.29 85.29 85.29
GPT-4 (section, 1-shot) 90.78 31.37 89.74 83.96

GPT-3.5-turbo-16k (full, 2-shot) 77.45 69.17 81.22 81.22
GPT-3.5-turbo-16k (section, 2-shot) 79.62 31.93 86.67 83.26
GPT-4-32k (full, 2-shot) 76.84 84.90 79.31 77.59
GPT-4-32k (section, 2-shot) 89.32 27.42 78.03 76.12

Assessment and Plan

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 1.63 23.21 – –
BART + SAMSum FT (section) 30.72 33.83 – –
BioBART (full) 0.00 0.00 – –
BioBART (section) 26.23 31.96 – –

GPT-3.5-turbo (full, 0-shot) 72.63 80.30 88.99 79.27
GPT-3.5-turbo (section, 0-shot) 76.39 60.97 83.82 61.93
GPT-4 (full, 0-shot) 74.00 84.77 92.30 87.23
GPT-4 (section, 0-shot) 77.24 58.16 86.66 74.76

GPT-3.5-turbo-16k (full, 1-shot) 71.30 77.53 83.17 80.53
GPT-3.5-turbo-16k (section, 1-shot) 71.82 58.50 87.16 80.12
GPT-4 (full, 1-shot) 74.05 78.01 88.29 79.82
GPT-4 (section, 1-shot) 76.12 59.77 88.70 74.45

GPT-3.5-turbo-16k (full, 2-shot) 70.17 73.26 84.16 77.29
GPT-3.5-turbo-16k (section, 2-shot) 69.48 60.30 85.91 74.66
GPT-4-32k (full, 2-shot) 74.89 70.89 86.16 74.26
GPT-4-32k (section, 2-shot) 77.43 60.72 86.11 69.43

Table 26: Note generation results on different sections of ACI-BENCH-test1 evaluated with DOCLENS (Mistral).
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Evaluation Method: DOCLENS computed with TRUE

Subjective

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 45.74 49.26 – –
BART + SAMSum FT (section) 40.99 52.31 – –
BioBART (full) 37.63 42.04 – –
BioBART (section) 32.20 47.37 – –

GPT-3.5-turbo (full, 0-shot) 28.40 67.75 61.31 40.40
GPT-3.5-turbo (section, 0-shot) 45.33 33.87 54.97 30.80
GPT-4 (full, 0-shot) 31.09 72.18 66.95 45.98
GPT-4 (section, 0-shot) 50.03 64.72 51.55 41.39

GPT-3.5-turbo-16k (full, 1-shot) 41.29 65.96 44.94 38.99
GPT-3.5-turbo-16k (section, 1-shot) 56.08 43.66 44.56 40.29
GPT-4 (full, 1-shot) 47.75 69.38 52.98 40.39
GPT-4 (section, 1-shot) 64.72 60.22 51.88 40.42

GPT-3.5-turbo-16k (full, 2-shot) 50.12 63.41 43.08 37.14
GPT-3.5-turbo-16k (section, 2-shot) 43.61 40.38 48.94 40.33
GPT-4-32k (full, 2-shot) 53.54 64.99 46.25 37.32
GPT-4-32k (section, 2-shot) 63.42 62.43 44.82 35.93

Objective-Exam

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 1.71 24.17 – –
BART + SAMSum FT (section) 34.17 26.14 – –
BioBART (full) 1.46 15.83 – –
BioBART (section) 34.96 18.28 – –

GPT-3.5-turbo (full, 0-shot) 61.82 62.06 69.54 55.63
GPT-3.5-turbo (section, 0-shot) 67.47 23.90 58.99 41.60
GPT-4 (full, 0-shot) 67.27 71.48 71.75 63.96
GPT-4 (section, 0-shot) 71.44 21.30 45.65 35.35

GPT-3.5-turbo-16k (full, 1-shot) 49.95 72.29 58.90 54.13
GPT-3.5-turbo-16k (section, 1-shot) 52.49 44.54 68.66 61.92
GPT-4 (full, 1-shot) 74.53 68.91 66.58 59.37
GPT-4 (section, 1-shot) 71.91 60.81 71.67 63.13

GPT-3.5-turbo-16k (full, 2-shot) 55.00 79.64 60.08 53.18
GPT-3.5-turbo-16k (section, 2-shot) 52.84 59.67 72.72 69.34
GPT-4-32k (full, 2-shot) 65.50 72.58 62.30 57.88
GPT-4-32k (section, 2-shot) 75.61 66.35 63.35 57.35

Objective-Results

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 3.12 25.00 – –
BART + SAMSum FT (section) 35.89 12.81 – –
BioBART (full) 0.00 0.00 – –
BioBART (section) 35.90 15.71 – –

GPT-3.5-turbo (full, 0-shot) 56.50 51.92 74.36 70.67
GPT-3.5-turbo (section, 0-shot) 64.42 4.86 54.98 34.51
GPT-4 (full, 0-shot) 63.87 60.15 85.83 80.21
GPT-4 (section, 0-shot) 81.64 8.73 55.91 44.80

GPT-3.5-turbo-16k (full, 1-shot) 51.31 61.32 72.97 72.07
GPT-3.5-turbo-16k (section, 1-shot) 66.27 14.49 73.43 53.60
GPT-4 (full, 1-shot) 65.17 78.24 72.06 69.85
GPT-4 (section, 1-shot) 78.07 27.31 70.31 62.20

GPT-3.5-turbo-16k (full, 2-shot) 52.34 65.83 71.36 71.36
GPT-3.5-turbo-16k (section, 2-shot) 71.36 28.26 66.54 62.16
GPT-4-32k (full, 2-shot) 52.95 77.40 62.07 59.77
GPT-4-32k (section, 2-shot) 81.51 22.96 64.12 61.07

Assessment and Plan

Model Claim Recall Claim Prec Citation Recall Citation Prec

BART + SAMSum FT (full) 0.42 10.71 – –
BART + SAMSum FT (section) 17.79 23.11 – –
BioBART (full) 0.00 0.00 – –
BioBART (section) 15.47 19.78 – –

GPT-3.5-turbo (full, 0-shot) 44.92 63.23 68.00 55.74
GPT-3.5-turbo (section, 0-shot) 55.00 49.47 55.87 31.16
GPT-4 (full, 0-shot) 47.68 74.80 65.12 57.98
GPT-4 (section, 0-shot) 57.29 45.77 44.39 32.83

GPT-3.5-turbo-16k (full, 1-shot) 53.91 63.62 50.45 45.21
GPT-3.5-turbo-16k (section, 1-shot) 58.22 42.88 47.14 36.30
GPT-4 (full, 1-shot) 56.30 63.99 54.01 40.78
GPT-4 (section, 1-shot) 64.30 46.09 50.13 30.77

GPT-3.5-turbo-16k (full, 2-shot) 56.80 58.82 47.48 39.05
GPT-3.5-turbo-16k (section, 2-shot) 61.51 44.62 50.14 36.89
GPT-4-32k (full, 2-shot) 60.10 55.73 49.11 34.36
GPT-4-32k (section, 2-shot) 67.65 44.78 49.03 29.61

Table 27: Note generation results on different sections of ACI-BENCH-test1 evaluated with DOCLENS (TRUE).
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Evaluation Methods: Rouge, BERTScore, BLEU, RadGraph

Model/Prompt Style Rouge-L BERTSore BLEU F1-RadGraph

GPT-3.5-turbo (0-shot) 28.83 86.33 8.22 25.93
GPT-4 (0-shot) 28.98 86.39 7.81 25.47

GPT-3.5-turbo (6-shot) 34.27 87.46 13.10 29.11
GPT-4 (6-shot) 34.25 87.42 12.59 28.13

GPT-3.5-turbo-16k (12-shot) 34.07 87.56 13.99 28.69
GPT-4 (12-shot) 34.61 87.54 13.12 28.51

Table 28: Report summarization performance on 200 examples in MIMIC-III evaluated with existing metrics. The
examples are proportionally sampled from each modality. We select one or two training example(s) from each of
the 6 modality-anatomy pairs that contain a train set as the few-shot demos.

Evaluation Method: DOCLENS computed with GPT-4

Model/Prompt Style Claim Recall Claim Prec Citation Recall Citation Prec

GPT-3.5-turbo (0-shot) 62.40 24.20 91.63 89.21
GPT-4 (0-shot) 63.39 25.38 97.48 96.64

GPT-3.5-turbo (6-shot) 53.19 27.82 98.14 96.57
GPT-4 (6-shot) 57.12 29.12 99.11 97.98

GPT-3.5-turbo-16k (12-shot) 47.38 29.77 97.37 96.26
GPT-4 (12-shot) 56.01 29.98 97.73 96.13

Table 29: Report summarization results on 200 examples in MIMIC-III evaluated with DOCLENS (GPT-4).

Evaluation Method: DOCLENS computed with Mistral

Model Claim Recall Claim Prec Citation Recall Citation Prec

GPT-3.5-turbo (0-shot) 67.36 38.78 98.17 86.71
GPT-4 (0-shot) 69.26 39.47 99.79 97.91

GPT-3.5-turbo (6-shot) 59.60 43.09 99.50 96.26
GPT-4 (6-shot) 64.99 43.99 99.93 97.24

GPT-3.5-turbo-16k (12-shot) 59.79 44.28 99.59 95.94
GPT-4 (12-shot) 62.64 45.72 99.43 96.51

Table 30: Report summarization performance on 200 examples in MIMIC-III evaluated with DOCLENS (Mistral).

Evaluation Method: DOCLENS computed with TRUE

Model Claim Recall Claim Prec Citation Recall Citation Prec

GPT-3.5-turbo (0-shot) 47.55 17.95 96.68 64.24
GPT-4 (0-shot) 46.00 17.96 97.54 93.86

GPT-3.5-turbo (6-shot) 38.60 21.49 96.67 92.43
GPT-4 (6-shot) 42.47 22.05 97.69 91.81

GPT-3.5-turbo-16k (12-shot) 35.12 23.54 95.42 89.00
GPT-4 (12-shot) 43.17 23.70 95.80 89.87

Table 31: Report summarization performance on 200 examples in MIMIC-III evaluated with DOCLENS (TRUE).
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Evaluation Methods: Rouge, BERTScore, BLEU, MEDCON

Model/Prompt Style Rouge-L BERTSore BLEU MEDCON

GPT-3.5-turbo (0-shot) 28.26 91.20 8.36 44.93
GPT-4 (0-shot) 31.02 91.41 6.69 49.08

GPT-3.5-turbo (1-shot) 29.80 91.56 8.74 44.34
GPT-4 (1-shot) 33.15 91.85 8.36 46.14

GPT-3.5-turbo-16k (2-shot) 29.98 91.34 8.57 44.64
GPT-4 (2-shot) 32.96 91.78 8.50 48.42

Table 32: Question summarization performance on MeQSum evaluated with existing metrics. We experiment on the
test set provided by the MEDIQA 2021 challenge (Ben Abacha et al., 2021) with 100 examples.

Evaluation Method: DOCLENS computed with GPT-4

Model/Prompt Style Claim Recall Claim Prec Citation Recall Citation Prec

GPT-3.5-turbo (0-shot) 49.00 48.00 85.00 77.93
GPT-4 (0-shot) 52.00 53.00 93.00 86.90

GPT-3.5-turbo (1-shot) 44.00 48.00 87.00 81.72
GPT-4 (1-shot) 50.00 56.00 94.00 85.27

GPT-3.5-turbo-16k (2-shot) 46.00 47.00 85.00 80.72
GPT-4 (2-shot) 53.00 49.00 93.00 86.42

Table 33: Question summarization performance on MeQSum evaluated with DOCLENS computed with GPT-4.

Evaluation Method: DOCLENS computed with Mistral

Model Claim Recall Claim Prec Citation Recall Citation Prec

GPT-3.5-turbo (0-shot) 64.00 64.00 84.00 69.07
GPT-4 (0-shot) 71.00 72.00 86.00 69.20

GPT-3.5-turbo (1-shot) 71.00 64.00 88.00 66.77
GPT-4 (6-shot) 79.00 76.00 88.00 69.58

GPT-3.5-turbo-16k (2-shot) 74.00 79.00 82.00 72.37
GPT-4 (12-shot) 72.00 73.00 87.00 69.58

Table 34: Question summarization performance on MeQSum (MEDIQA 2021 test set) evaluated with DOCLENS
(Mistral).

Evaluation Method: DOCLENS computed with TRUE

Model Claim Recall Claim Prec Citation Recall Citation Prec

GPT-3.5-turbo (0-shot) 29.00 14.00 69.00 57.23
GPT-4 (0-shot) 39.00 10.00 82.00 66.22

GPT-3.5-turbo (1-shot) 30.00 12.00 68.00 55.49
GPT-4 (6-shot) 33.00 16.00 86.00 67.08

GPT-3.5-turbo-16k (2-shot) 33.00 14.00 69.00 58.19
GPT-4 (12-shot) 37.00 11.00 80.00 66.92

Table 35: Question summarization performance on MeQSum (MEDIQA 2021 test set) evaluated with DOCLENS
(TRUE).
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Model/Prompt Style Rouge-L BLEU F1-RadGraph Claim Recall (GPT-4)

GPT-4 (no citation, 6-shot) 33.95 13.01 29.08 55.24
GPT-4 (with citation, 6-shot) 34.25 12.59 28.13 57.12

GPT-4 (no citation, 12-shot) 34.81 14.40 30.61 55.43
GPT-4 (with citation, 12-shot) 34.54 13.12 28.51 56.01

Table 36: Report summarization results with or without asking the model to generate citations. We report the results
on 200 examples in MIMIC-III evaluated with DOCLENS computed with GPT-4. The examples are proportionally
sampled from each modality. We underline the better result in each block.
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