
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7131–7142
August 11-16, 2024 ©2024 Association for Computational Linguistics

Large Language Models Are No Longer Shallow Parsers

Yuanhe Tian♠♥, Fei Xia♥, Yan Song♠†
♠University of Science and Technology of China ♥University of Washington

♥{yhtian, fxia}@uw.edu ♠clksong@gmail.com

Abstract

The development of large language models
(LLMs) brings significant changes to the field
of natural language processing (NLP), enabling
remarkable performance in various high-level
tasks, such as machine translation, question-
answering, dialogue generation, etc., under end-
to-end settings without requiring much training
data. Meanwhile, fundamental NLP tasks, par-
ticularly syntactic parsing, are also essential
for language study as well as evaluating the
capability of LLMs for instruction understand-
ing and usage. In this paper, we focus on ana-
lyzing and improving the capability of current
state-of-the-art LLMs on a classic fundamen-
tal task, namely constituency parsing, which
is the representative syntactic task in both lin-
guistics and natural language processing. We
observe that these LLMs are effective in shal-
low parsing but struggle with creating correct
full parse trees. To improve the performance
of LLMs on deep syntactic parsing, we pro-
pose a three-step approach that firstly prompts
LLMs for chunking, then filters out low-quality
chunks, and finally adds the remaining chunks
to prompts to instruct LLMs for parsing, with
later enhancement by chain-of-thought prompt-
ing. Experimental results on English and Chi-
nese benchmark datasets demonstrate the effec-
tiveness of our approach on improving LLMs’
performance on constituency parsing.1

1 Introduction

Recently, the development of large language mod-
els (LLMs) (Achiam et al., 2023; Touvron et al.,
2023a,b; Taori et al., 2023; Chiang et al., 2023) sig-
nificantly reshapes the field of natural language pro-
cessing (NLP), where they achieve impressive per-
formance on a variety of NLP applications such as
question-answering and dialogue interaction. Nev-
ertheless, in the era of LLM, fundamental NLP

†Corresponding author.
1Resources of this paper are available at https://github.

com/synlp/LLMPar.

tasks that involve linguistic analysis still play es-
sential roles in the field of NLP (Mahowald et al.,
2023; Blevins et al., 2023). For example, syntax
parsing provides structural understanding of sen-
tences and thus is valuable in evaluating the capa-
bility of LLMs to understand and use instructions
(McCoy et al., 2023; Muñoz-Ortiz et al., 2023;
Blevins et al., 2023).

In general, syntactic parsing is an essential NLP
task that has been studied for decades (Collins,
1997; Glaysher and Moldovan, 2006; Cai et al.,
2009; Liu and Zhang, 2017; Kitaev and Klein,
2018; Tian et al., 2020b, 2022; Gu et al., 2022)
and has two widely used conventional variants
with phrase-structure and dependency grammar, of
which the former drives constituency parsing that
provides deep structural analysis of sentences with
informative phrase and function markups. Recent
studies (Bai et al., 2023; Lin et al., 2023) reveal
that LLMs are ineffective in such parsing task, and
we also confirm the fact in Figure 1 with parse trees
generated by GPT-4 (Achiam et al., 2023) under
various prompts, where they all look very different
from human-crafted gold-standard trees, indicating
syntactic parsing is challenging to LLMs. Although
some studies (Blevins et al., 2023; Bai et al., 2023;
Li et al., 2023) design prompts to instruct LLMs
for better parsing, it is still limited in performing
one-step (i.e., end-to-end) parsing, which does not
fully benefit from the advantages brought by the
strengths of LLMs.

In this paper, we explore the effectiveness of di-
rectly using state-of-the-art LLMs for constituency
parsing, and find that they generate parse trees
that are shallow and with relatively low recalls on
retrieving correct text spans, while in the mean-
time LLMs show relatively better performance in
chunking, especially in identifying short chunks.
Therefore, based on our analyses and motivated
by existing studies that decompose complex tasks
into several steps to improve LLM’s performance

7131

https://github.com/synlp/LLMPar
https://github.com/synlp/LLMPar

Gold Standard Zero-shot Five-shot Zero-shot CoT

(a) Trading volume was only modestly higher than normal .

(b) Weatherford currently has approximately 11.1 million common shares outstanding .

Figure 1: Two example sentences with gold-standard parse trees followed by parse trees generated by GPT-4
with different types of prompts–namely, zero-shot, five-shot, and standard zero-shot CoT (i.e., adding “let’s think
step-by-step” to the prompt). The parts where the LLMs do not match the gold standard are marked by red boxes.

(Wei et al., 2022; Valmeekam et al., 2023; Zhao
et al., 2023; Guan et al., 2023; Ranaldi and Zan-
zotto, 2023), we propose a three-step approach to
improve LLMs for parsing. The approach firstly
prompts LLMs to extract chunks in the text, which
is considered partial parsing and is demonstrated to
be an essential step for full parsing (Gu et al., 2022;
Yang and Tu, 2023). Then, our approach filters
out long chunks that are more likely to carry noise
than the short ones. Finally, it uses the remain-
ing chunks as conditions in the prompts to instruct
LLM for parsing, allowing LLMs to directly use
the chunks to generate the parse tree of a sentence.
We validate our approach on several benchmark
datasets, including English Penn Treebank 3 (PTB)
(Marcus et al., 1993), Chinese Penn Treebank 5
(CTB5) (Xue et al., 2005), and Genia (Tateisi et al.,
2005), where the results prove the effectiveness of
our approach over existing LLMs used directly for
constituency parsing.

The contributions of this paper are summarized
as follows. First, we provide comprehensive anal-
yses of existing state-of-the-art LLMs on con-
stituency parsing. Second, we propose a three-
step approach that involves chunking, filtering, and
parsing, to improve LLMs for constituency parsing.
Third, the experiment results and further analyses
demonstrate the effectiveness of the proposed ap-
proach for constituency parsing.

2 Analysis of Current LLMs for Parsing

In order to understand the issues and improvement
directions in existing LLMs for parsing, we analyze

Datasets Sent. # Token # ASL

CTB5
Train 17K 478K 27.4
Dev 350 7K 19.5
Test 348 8K 23.0

PTB
Train 40K 950K 23.9
Dev 2K 40K 23.6
Test 2K 57K 23.5

Genia (Full) 17K 446K 26.2

Table 1: The statistics of all experimental datasets (with
splits) in terms of sentence and token numbers, and
average word-based sentence length (ASL).

the performance of LLMs, which can be divided
into two groups. The first group includes GPT-
3.5 and GPT-4, which are accessible only through
online API. The second group contains publicly
available LLMs; namely, the 7B and 65B versions
of LLaMA-2 for English (Touvron et al., 2023b),
and the 7B and 13B versions of Alpaca for Chinese
(Cui et al., 2023) (we denote these English and
Chinese LLMs as LLaMA for the sake of conve-
nience).2

We use these LLMs to parse the test sets of PTB,
CTB5, and Genia, where PTB and CTB5 are gen-
eral domain English and Chinese datasets, respec-
tively, and Genia is an English medical dataset.
The statistics of the datasets are reported in Table
1. To perform efficient evaluation, we randomly

2We obtain English “Llama2-chat-hf ” from
https://huggingface.co/meta-llama and the Chi-
nese “Chinese-Alpaca-2” from https://github.com/
ymcui/Chinese-LLaMA-Alpaca-2, respectively.

7132

https://huggingface.co/meta-llama
https://github.com/ymcui/Chinese-LLaMA-Alpaca-2
https://github.com/ymcui/Chinese-LLaMA-Alpaca-2

Prompt Template:
The following is a sentence that has already
been tokenized. Words are separated by white
spaces. Please parse the sentence with given
words.
<few-shot examples>
[sentence]: <sentence>
[parse tree]:

Input:
Is this what the home builders want ?

Output:
(SQ (VBZ Is) (NP (DT this)) (SBAR (WHNP
(WP what)) (S (NP (DT the) (NN home) (NNS
builders)) (VP (VBP want)))) (. ?))

Table 2: The prompt with example input and output
used for constituency parsing. “<few-shot examples>”
and “<sentence>” are placeholders for few-shot demon-
stration examples and the test sentence, respectively.

sample 2,000 sentences from Genia dataset and run
experiments on it.

Generally, there are two approaches to lineariz-
ing a parse tree into a string to facilitate LLM pro-
cessing (Vinyals et al., 2015; Liu and Zhang, 2017).
The first is the bracket-based approach, which uses
brackets to represent the structure of a parse tree,
such as “(S (NP he) (VP jumps))”. The second is
the transition-based approach that utilizes the se-
quence of transition actions to construct the parse
tree, such as “SHIFT he; NP; SHIFT jumps; VP;
REDUCE; S”. According to Bai et al. (2023), when
working with LLMs, the bracket-based approach
outperforms the transition-based one; therefore, we
adopt the bracket-based representation in our study.

Motivated by Bai et al. (2023), we design
prompts (see Table 2)3 to instruct LLMs to gener-
ate the parse trees of sentences under the five-shot
setting. The demonstration examples are (sentence,
parse tree) pairs and can be obtained by various
methods such as random sampling from a treebank
or automatic generation with rules. When LLMs
produce invalid parse trees with mismatched left
or right brackets, we add a post-processing step
to ensure bracket pairing by adding the necessary
left or right brackets to the parse tree until they are
matched. Finally, LLM outputs are evaluated with
the standard evaluation toolkit EVALB4.

3For Chinese datasets, we translate the English prompts
into Chinese to instruct the LLMs.

4https://nlp.cs.nyu.edu/evalb/

Dataset Models P R F

PTB

∗Fried et al. (2019) - - 95.71
∗Yang and Tu (2023) 96.64 96.34 96.48
†LLaMA-7B - - 8.82
†LLaMA-65B - - 26.85
†GPT-3.5 - - 66.41
†GPT-4 - - 73.28
LLaMA-7B 15.76 5.84 8.52
LLaMA-65B 40.39 18.54 25.41
GPT-3.5 79.38 57.19 66.48
GPT-4 87.37 63.23 73.36

CTB5

∗Fried et al. (2019) - - 92.14
∗Yang and Deng (2020) 93.80 93.40 93.59
∗Yang and Tu (2023) 92.83 91.97 92.41
LLaMA-7B 12.58 6.49 8.56
LLaMA-13B 18.40 6.85 9.98
GPT-3.5 73.35 50.46 59.79
GPT-4 80.47 55.84 65.93

Genia

∗Fried et al. (2019) - - 87.54
∗Tian et al. (2020c) - - 87.58
LLaMA-7B 6.24 2.58 3.65
LLaMA-65B 32.84 15.42 20.99
GPT-3.5 69.53 48.36 57.04
GPT-4 73.27 53.06 61.55

Table 3: Parsing performance (in labeled precision (P),
recall (R), and F1 scores) of different models on PTB,
CTB5, and Genia. Models fine-tuned on the training
data are marked by “∗”; LLM results from Bai et al.
(2023) under the five-shot setting are marked by “†”;
the rest are our own results when running LLMs under
the five-shot setting.

2.1 Parsing Results

We report parsing performance by labeled preci-
sion, recall and F1 scores in Table 3. For each
corpus, the top part (above the horizontal lines) are
the results reported in previous studies, and the bot-
tom part are ours when running the LLMs under the
five-shot setting. It is shown that the performance
of LLMs is much lower than the parsers (marked by
"*") that are based on BERT (Devlin et al., 2019)
and fine-tuned on the training set. In particular, pub-
licly available LLaMA models with various sizes
are unable to produce valid parse trees, confirming
the observations in Bai et al. (2023). Moreover,
both GPT-3.5 and GPT-4 tend to produce parse
trees that are shallower than the gold-standard trees
(illustrated in Figure 1) and their precision is higher
than the recall.

In addition, we use Figure 2 to show the average
depth of gold-standard (i.e., the blue curve) and
GPT4-generated (i.e., the orange curve) parse trees
with respect to sentence length. On average, the
LLM-generated trees are shallower than the gold-

7133

https://nlp.cs.nyu.edu/evalb/

Figure 2: The average depth (Y-axis) of gold-standard and LLM-produced parse trees with respect to sentence
length (X-axis). Parse trees in gold standard and produced by the GPT-4 baseline are represented in blue and orange
colors, respectively, where the ones from our approach (see Section 3) are marked in gray color.

Prompt Template:
The following is a sentence that has already
been tokenized. Words are separated by white
spaces. Please find all valid text spans (chunks)
in the following sentence based on the phrase
structure grammar.
<few-shot examples>
[sentence]: <sentence>
[chunking]:

Input:
The Dow was down about 35 points

Output:
(NP the Dow), (NP 35 points), (NP about 35
points), (PP down about 35 points), (VP was
down about 35 points)

Table 4: The example prompt for the chunking task.
The top part is the prompt template, where “<few-shot
examples>” and “<sentence>” are placeholders for
few-shot demonstration examples and the test sentence,
respectively. The bottom part shows an example input
test sentence and the output produced by LLMs.

standard ones. Interestingly, while the depth of
the gold standard parse tree increases roughly lin-
early with the increase of sentence length, that of
the LLM-generated trees tends to plateau for long
sentences, indicating that LLMs have difficulties in
generating deep structures.

Overall, our analysis of parsing results show that
LLMs are ineffective in producing high-quality full
parse trees.

2.2 Chunking Results
Previous studies (Wei et al., 2022; Valmeekam
et al., 2023; Zhao et al., 2023; Guan et al., 2023;
Ranaldi and Zanzotto, 2023) have shown that de-
composing complex tasks into several steps is able
to improve the performance of LLMs. In this study,
we want to test whether the same approach is appli-
cable to parsing.

To decompose the parsing task, we first exam-
ine how well LLMs perform at chunking. Here,
the term “chunk” refers to a text span covered by
an internal node in a parse tree. Unlike the stan-
dard chunking task where the chunks in the output
should not overlap, the goal of the chunking task in
this study is to identify all the chunks in a sentence.
Our chunking experiments use the same datasets,
LLMs and five-shot setting as in our parsing ex-
periments. The only difference is the prompt for
parsing is replaced by the prompt in Table 4. For
demonstration examples, we extract chunks with
various lengths from treebanks.

The chunking results are in Table 5, which also
includes the results of the supervised approach with
the BERT-base encoder. Not surprisingly, LLMs
achieve better performance on chunking than pars-
ing (Table 5 vs. Table 3). Furthermore, as shown
in Figure 3, LLMs are better at identifying shorter
chunks than longer ones.5

3 Adapting LLMs for Parsing

Based on experimental results on parsing and
chunking, we hypothesize that LLMs’ performance
on parsing can be improved by decomposing the
parsing task into two steps: first, LLMs are asked to
chunk the input sentence; second, LLMs are asked
to produce a parse tree based on a list of chunks. To
alleviate the effect of error propagation in a multi-
step system like this, after the chunking step, we
filter out low-quality chunks and send the remain-
ing ones to the parsing step, as illustrated in Figure
4. As LLMs are better at identifying short chunks
than the long ones, the filtering step will simply
filter by the chunk length. We also propose chain-
of-thought (CoT) prompting (Wei et al., 2022) in

5Figure 3 shows the F-scores for chunks with length 16+
are higher than chunks with 11-15 words. This is due to the
fact that our calculation includes chunks that cover the entire
sentences; those chunks tend to have 16+ words and can be
identified by LLMs pretty accurately.

7134

Dataset Models Unlabeled Labeled
P R F P R F

PTB

∗BERT-base 94.43 94.35 94.88 93.20 93.47 93.33
LLaMA-7B 72.04 58.40 64.51 70.31 52.07 59.83
LLaMA-65B 79.26 62.74 71.27 75.54 58.91 67.42
GPT-3.5 84.87 73.35 78.70 80.42 69.68 74.67
GPT-4 88.54 78.35 83.14 84.53 73.22 78.47

CTB5

∗BERT-base 92.26 92.60 92.43 90.85 91.10 90.97
LLaMA-7B 66.53 50.32 57.30 63.41 47.89 54.56
LLaMA-13B 68.46 52.17 59.21 65.14 48.04 55.30
GPT-3.5 79.64 65.28 71.74 75.25 61.09 67.43
GPT-4 81.53 70.30 75.50 77.32 66.49 71.50

Genia

∗BERT-base 87.10 87.53 87.31 83.64 83.79 83.71
LLaMA-7B 52.76 35.78 42.64 49.24 33.90 40.15
LLaMA-65B 57.80 40.72 47.78 53.57 36.04 43.09
GPT-3.5 79.47 58.43 67.34 77.79 55.82 64.99
GPT-4 81.46 63.95 71.65 79.74 61.49 69.43

Table 5: The performance (in unlabeled and labeled F1 scores) of the chunking task. Models tuned on the training
data are marked by “∗”.

Figure 3: The precision (a)-(c) and F1 scores (d)-(f) of GPT-4 produced chunks with respect to the chunk length.
X-axis is the range of chunk length, and y-axis is the F1 scores of the chunks of the length in that range.

the third step for further enhancement.

3.1 Three-step Parsing with LLMs
The details of our parsing procedure are illustrated
as follows. In Step 1, we prompt LLMs (e.g., using
the one presented in Table 4) to annotate chunks in
various word-based lengths following the five-shot
setting. In Step 2, we filter out chunks whose word-
based length is larger than a threshold. We set that
threshold to be 5, based on the results from Figure
3. In Step 3, we utilize the chunks as knowledge
to enhance the performance of natural language

processing models, which is demonstrated to be
effective in existing studies (Song et al., 2017; Zhou
and Zhao, 2019; Zhang et al., 2019a,b; Yang et al.,
2019; Tian et al., 2020a; Qin et al., 2021; Ouyang
et al., 2022; Song, 2022). Specifically, we add
the chunks to the prompt as conditions to instruct
LLMs for parsing. In this step, we do not want
LLMs to treat the given chunks as hard constraints
when producing the parse trees; thus, we ask LLMs
to refer to the chunks without having to use all
of them. This way, LLMs are allowed to ignore

7135

Figure 4: Workflow and example prompts used in our
three-step approach for parsing. We first use the prompt
(e.g., the one in Table 4) to extract chunks; then filter
the chunks based on their length (this example filters
out chunks whose length is higher than 3); and finally
perform parsing. The yellow background highlights
the example; the blue dashed box presents the prompt
to leverage the chunks from the second step; the red
dashed box shows the CoT prompt that illustrates the
instructions for final parsing.

the errors that could exist in the provided chunks,
alleviating the impact of error propagation.

3.2 CoT for Parsing
In the aforementioned third step, to provide more
detailed instructions for LLMs to leverage chunks
for parsing, we perform CoT prompting. Specifi-
cally, to provide CoT demonstration, we automat-
ically obtain step-by-step instructions from gold-
standard parse trees through the following process.
For each internal node N in the parse tree, we
find all its children nodes C1 · · ·CM and the cor-
responding text spans s1 · · · sM . Then we add
“s1, s2, · · · , sM are combined into a new text span
s” (where s is the concatenation of s1 · · · sM) into
the demonstration, which serves as a part of the
prompt. This process instructs LLMs to leverage
chunk information when processing each test in-
stance. In practice, s1, s2, · · · , sM include single

words; we only add the case where s1, s2, · · · , sM
appear in the filtered chunks from Step 2.

Let us use the example in Figure 4 to demon-
strate the process. Here, the provided chunks are
“(NP the Dow)”, “(NP 35 points)”, and “(NP the
35 points)”. In the gold-standard parse tree, the
PP node that covers “down about 15 points” has
two children, namely, the single word “down” and
an NP phrase “about 35 points”. Since the phrase
“about 35 points” appears in the chunk list, we com-
bine “down” and “(NP about 35 points)” and get
a new chunk “(PP down about 15 points)” in the
CoT part. In contrast, for the VP node that covers
“was down about 15 points”, we do not include it
in CoT since one of its children, the phrase “down
about 15 points” does not appear in the chunk list.

4 Analysis

4.1 Main Results

We evaluate our approach on the benchmark
datasets with five-shot learning, and the results are
in Table 6. For Step 3, we show the results with
or without CoT. There are two main observations.
First, CoT improves system performance across
the board, which confirms the benefits of providing
step-by-step guidance on how chunks should be
used during the parsing step.

Second, compared with the results of directly
using LLMs for parsing in Table 3, our approach,
with or without CoT, achieves significant improve-
ments on all datasets for all four LLMs. Particu-
larly, the improvements on recall are remarkable,
which indicates that our approach is able to prompt
LLMs to correctly identify more chunks and in-
clude them in parse trees. A possible explanation
for the improvement is that, by separating chunk-
ing from parsing, the LLMs in Step 1 are able to
focus on the shallow parsing, which they are good
at. Thus, this step allows more correct chunks to
be identified. In the parsing step, LLMs pay more
attention to combining these chunks to construct a
valid parse tree. In addition, we alleviate the risk of
the error propagation by filtering out long chunks
and asking LLMs to treat the given chunks as soft
constraints. All these factors may contribute to the
better performance of the 3-step approach over the
1-step direct parsing approach.

Furthermore, as shown in Figure 2, on aver-
age, the parse trees generated by our approach are
deeper than the ones generated by the 1-step ap-
proach and the curves for our approach are similar

7136

Dataset Models P R F1

PTB

LLaMA-7B 33.58 25.74 29.14
LLaMA-7B + CoT 39.39 32.85 35.82
LLaMA-65B 49.04 38.10 42.88
LLaMA-65B + CoT 55.46 48.06 51.50
GPT-3.5 75.09 60.31 76.00
GPT-3.5 + CoT 84.86 72.48 78.18
GPT-4 86.27 73.36 79.29
GPT-4 + CoT 89.04 77.74 83.00

CTB5

LLaMA-7B 31.39 24.15 27.30
LLaMA-7B + CoT 37.09 30.16 33.27
LLaMA-13B 37.56 28.49 32.40
LLaMA-13B + CoT 44.53 36.41 40.06
GPT-3.5 79.50 70.84 74.92
GPT-3.5 + CoT 83.83 73.11 78.10
GPT-4 85.14 74.05 79.21
GPT-4 + CoT 87.53 76.64 81.72

Genia

LLaMA-7B 26.59 19.47 22.47
LLaMA-7B + CoT 28.95 22.04 25.03
LLaMA-65B 40.11 32.04 35.62
LLaMA-65B + CoT 44.39 35.82 39.64
GPT-3.5 73.58 63.20 67.99
GPT-3.5 + CoT 74.95 66.23 70.32
GPT-4 76.70 66.65 71.32
GPT-4 + CoT 79.27 68.80 73.66

Table 6: The results of our approach with different LLMs on PTB, CTB5, and Genia. “+CoT” means that the CoT
is used in our approach. Note that the corresponding baseline results are reported in Table 3.

Dataset Models UC UCC

PTB
LLaMA-65B 82.38 85.37
GPT-4 89.92 92.02

CTB5
LLaMA-13B 76.36 79.78
GPT-4 87.64 89.89

Genia
LLaMA-65B 78.26 80.31
GPT-4 85.70 87.83

Table 7: Comparison of chunk usage in Step 3 by dif-
ferent models. “UC” and “UCC” are the percentages of
used and used correct chunks, as defined in Section 4.2.

to the ones based on gold-standard parse trees. This
indicates that LLMs are no longer shallow parsers,
when used appropriately.

4.2 Effect of Chunking

In Step 3, LLMs are given a chunk list and are
instructed to refer to the list but do not have to use
all the chunks in the list when producing the parse
tree. We want to know how many chunks in the
list are actually used by LLMs. Let A be the set of
chunks that appear in the parse tree produced by

Dataset Models P R F

PTB
LLaMA-65B 48.20 36.87 41.78
GPT-4 85.21 70.46 77.13

CTB5
LLaMA-13B 37.01 28.11 31.95
GPT-4 78.39 69.01 73.40

Genia
LLaMA-65B 39.82 31.67 35.28
GPT-4 76.42 66.29 70.99

Table 8: Performance of LLMs without CoT when they
are explicitly prompted to use all the chunks from step
2 for parsing, which is compared to the results of our
approach in Table 6 that does not use all chunks.

an LLM. Let B be the set of chunks provided to
the LLM in Step 3’s prompt. Let B1 be the set of
chunks in B that appear in the gold-standard parse
tree for the sentence. We compute two metrics: the
first one, UC (the percentage of "Used Chunks"),
is the percentage of the provided chunks that are
used by the LLM; that is, UC =| A ∩ B | / |
B |. The second metric, UCC (percentage of "Used
Correct Chunks"), is the percentage of the gold
chunks that are used by the LLM; i.e., UCC =|

7137

Figure 5: Parsing performance (in labeled F-1 score) of GPT-4 with or without CoT on the test sets of the three
treebanks. The X-axis shows the value of the chunk length threshold, which is used to filter out chunks in Step 2.
When x=0, we show the performance of the baseline system (i.e., 1-step parsing) which does not use chunks.

A ∩ B1 | / | B1 |. Table 7 show the results of
two representative LLMs; namely, LLaMA and
GPT-4 (one open-source and one closed-source
LLM). The table indicates that in Step 3 LLMs use
the majority of chunks provided to them, and the
percentage of chunks used is even higher among
the gold chunks in the provided chunk list.

What would happen if we require LLMs to use
all the chunks provided to them? The results under
the no-CoT setting are in Table 8, which are worse
than the corresponding rows in Table 6. In other
words, forcing LLMs to use all the chunks hurts
the parsing performance; therefore, the provided
chunk list should indeed be treated as a reference,
not a hard constraint.

Finally, we analyze the effect of the chunk length
threshold used in Step 2. Figure 5 shows the pars-
ing performance with different threshold values.
The figure shows that the system performance im-
proves a lot when the threshold value increases
from 1 all the way to 5; afterwards, parsing perfor-
mance quickly plateaus as bigger chunks identified
in Step 1 are more error-prone and thus offer lim-
ited help.

4.3 Case Study

As previously shown, our 3-step approach outper-
forms the baseline system where LLMs produce the
parse tree in one step ("the GPT-4 baseline"). To
better understand where the gain comes from, we
look at parse trees produced by these approaches
and two examples are in Figure 6. In the first exam-
ple, in the gold-standard parse tree, the VP “called
it simply a contrast in styles” has a deep syntac-
tic structure, where as the GPT-4 baseline simply
combines all the words together to construct a flat

VP. In our system, GPT-4 identifies chunks such
as "(PP in styles)" and "NP simply a contrast in
styles" in Step 1. When they are provided to GPT-4
in Step 3, GPT-4 is able to produce a parse tree
with much deeper structure.

In the second example, the GPT-4 baseline fails
to combine the word “ago” and the NP phrase “all
of three months” to form an ADVP. In our ap-
proach, GPT-4 produces chunks such as “all of
three months ago” in Step 1. When they are passed
to GPT-4 in Step 3, GPT-4 is able to build the cor-
rect parse tree.

5 Related Work

Constituency parsing is a fundamental NLP task
that is generally performed via chart- or transition-
based approaches (Collins, 1997; Sagae and Lavie,
2005; Glaysher and Moldovan, 2006; Song and Kit,
2009; Dyer et al., 2016; Liu and Zhang, 2017; Stern
et al., 2017; Kitaev and Klein, 2018; Suzuki et al.,
2018; Fried et al., 2019; Zhou and Zhao, 2019; Tian
et al., 2020c; Yang and Deng, 2020; Zhang et al.,
2020; Nguyen et al., 2021; Yang et al., 2022; Gu
et al., 2022), where extra resources are leveraged
to improve the parsing performance (Mrini et al.,
2019; Maveli and Cohen, 2021; Yang et al., 2022;
He and Choi, 2023; Shayegh et al., 2023).

Recently, LLMs have achieved remarkable suc-
cess in many NLP tasks, which motivates re-
searchers to apply them to parsing. Existing ap-
proaches that leverage LLMs for parsing generally
follow the sequence-to-sequence settings (Vinyals
et al., 2015; Suzuki et al., 2018), where the goal of
LLMs is to produce the parse tree in the bracket for-
mat. The LLM-based approaches fine-tune LLMs
on the training data or design prompts to instruct

7138

Figure 6: Two examples from the test set of PTB. The first three columns show the gold-standard parse tree; the
parse tree generated by the GPT-4 baseline and our approach, respectively; the last column lists some chunks
produced in Step 1 of our approach. The red boxes mark the parts in the generated parse tree that do not match the
gold standard. The parse trees by our approach for these sentences happen to be identical to the gold-standard trees.

LLMs to generate valid parse trees (Bai et al., 2023;
Li et al., 2023). For example, Bai et al. (2023)
directly train LLaMA (Touvron et al., 2023a) on
the training set of PTB and show inferior perfor-
mance than the conventional chart- and transition-
based approaches that leverage small pre-trained
language models such as BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019). They also
perform zero-shot and few-shot parsing but the
results are unsatisfactory, which confirms the inef-
fectiveness of LLMs for parsing. There are studies
that select appropriate training data (Li et al., 2023)
to further improve constituency parsing with LLM.

In this study, we propose to break parsing into
three steps: chunking, filtering chunks, and parsing
with chunks, and demonstrate this 3-step approach
improve system performance significantly.

6 Conclusion

In this paper, we apply LLMs to parsing and ob-
serve that the current state-of-the-art LLMs are
shallow parsers in that they are effective in perform-

ing simple syntactic tasks such as chunking but are
ineffective at conducting full constituency parsing
due to their auto-regressive nature of text modeling
approach. Given this, we propose to break parsing
into three steps: chunking, filtering, and parsing
with a chunk list. Experiments on English, Chinese,
and domain benchmark datasets show that the 3-
step approach enables LLMs to produce deeper
and better parse trees and thus they are no longer
shallow parsers.

This study demonstrates the benefits of decom-
posing a complex task (e.g., parsing) into subtasks
and the importance of including additional mecha-
nisms (e.g., filtering chunks in Step 2 and treating
given chunks as soft constraints in Step 3) to alle-
viate the risk of the error propagation. We plan to
apply this idea to other NLP tasks in the future.

Acknowledgements

This work is supported by the National Key Re-
search and Development Program of China under
the grant (2023YFC3303800).

7139

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Xuefeng Bai, Jialong Wu, Yulong Chen, Zhongqing
Wang, and Yue Zhang. 2023. Constituency Parsing
using LLMs. arXiv preprint arXiv:2310.19462.

Terra Blevins, Hila Gonen, and Luke Zettlemoyer. 2023.
Prompting Language Models for Linguistic Structure.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 6649–6663, Toronto, Canada.

Dongfeng Cai, Yonghua Hu, Xuelei Miao, and Yan
Song. 2009. Dependency Grammar Based English
Subject-Verb Agreement Evaluation. In Proceedings
of the 23rd Pacific Asia Conference on Language,
Information and Computation, Volume 1, pages 63–
71, Hong Kong.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An Open-
Source Chatbot Impressing GPT-4 with 90%* Chat-
GPT Quality. GitHub repository.

Michael Collins. 1997. Three Generative, Lexicalised
Models for Statistical Parsing. In 35th Annual Meet-
ing of the Association for Computational Linguistics
and 8th Conference of the European Chapter of the
Association for Computational Linguistics, pages 16–
23, Madrid, Spain.

Yiming Cui, Ziqing Yang, and Xin Yao. 2023. Efficient
and Effective Text Encoding for Chinese LLaMA and
Alpaca. arXiv preprint arXiv:2304.08177.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A. Smith. 2016. Recurrent Neural Network
Grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.

Daniel Fried, Nikita Kitaev, and Dan Klein. 2019.
Cross-Domain Generalization of Neural Con-
stituency Parsers. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 323–330, Florence, Italy.

Elliot Glaysher and Dan Moldovan. 2006. Speeding Up
Full Syntactic Parsing by Leveraging Partial Parsing
Decisions. In Proceedings of the COLING/ACL 2006
Main Conference Poster Sessions, pages 295–300,
Sydney, Australia.

Xiaotao Gu, Yikang Shen, Jiaming Shen, Jingbo Shang,
and Jiawei Han. 2022. Phrase-aware Unsupervised
Constituency Parsing. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6406–
6415, Dublin, Ireland.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and
Subbarao Kambhampati. 2023. Leveraging Pre-
trained Large Language Models to Construct and
Utilize World Models for Model-based Task Plan-
ning. arXiv preprint arXiv:2305.14909.

Han He and Jinho D Choi. 2023. Unleashing the True
Potential of Sequence-to-Sequence Models for Se-
quence Tagging and Structure Parsing. Transactions
of the Association for Computational Linguistics,
11:582–599.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia.

Jianling Li, Meishan Zhang, Peiming Guo, Min Zhang,
and Yue Zhang. 2023. LLM-enhanced Self-training
for Cross-domain Constituency Parsing. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 8174–8185,
Singapore.

Boda Lin, Xinyi Zhou, Binghao Tang, Xiaocheng
Gong, and Si Li. 2023. ChatGPT is a Poten-
tial Zero-Shot Dependency Parser. arXiv preprint
arXiv:2310.16654.

Jiangming Liu and Yue Zhang. 2017. In-Order
Transition-based Constituent Parsing. Transactions
of the Association for Computational Linguistics,
5:413–424.

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy
Kanwisher, Joshua B Tenenbaum, and Evelina Fe-
dorenko. 2023. Dissociating language and thought
in large language models: a cognitive perspective.
arXiv preprint arXiv:2301.06627.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Nickil Maveli and Shay B Cohen. 2021. Co-training an
unsupervised constituency parser with weak supervi-
sion. arXiv preprint arXiv:2110.02283.

R. Thomas McCoy, Paul Smolensky, Tal Linzen, Jian-
feng Gao, and Asli Celikyilmaz. 2023. How Much
Do Language Models Copy From Their Training

7140

Data? Evaluating Linguistic Novelty in Text Genera-
tion Using RAVEN. Transactions of the Association
for Computational Linguistics, 11:652–670.

Khalil Mrini, Franck Dernoncourt, Trung Bui, Walter
Chang, and Ndapa Nakashole. 2019. Rethinking Self-
Attention: An Interpretable Self-Attentive Encoder-
Decoder Parser. arXiv preprint arXiv:1911.03875.

Alberto Muñoz-Ortiz, Carlos Gómez-Rodríguez, and
David Vilares. 2023. Contrasting linguistic patterns
in human and llm-generated text. arXiv preprint
arXiv:2308.09067.

Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq Joty,
and Xiaoli Li. 2021. A Conditional Splitting Frame-
work for Efficient Constituency Parsing. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5795–5807, Online.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training Language Models to Follow Instruc-
tions with Human Feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Han Qin, Yuanhe Tian, and Yan Song. 2021. Rela-
tion Extraction with Word Graphs from N-grams.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2860–2868, Online and Punta Cana, Dominican Re-
public.

Leonardo Ranaldi and Fabio Massimo Zanzotto.
2023. Empowering multi-step reasoning across
languages via tree-of-thoughts. arXiv preprint
arXiv:2311.08097.

Kenji Sagae and Alon Lavie. 2005. A Classifier-
Based Parser with Linear Run-Time Complexity. In
Proceedings of the Ninth International Workshop
on Parsing Technology, pages 125–132, Vancouver,
British Columbia.

Behzad Shayegh, Yanshuai Cao, Xiaodan Zhu,
Jackie CK Cheung, and Lili Mou. 2023. Ensemble
Distillation for Unsupervised Constituency Parsing.
arXiv preprint arXiv:2310.01717.

Yan Song. 2022. Chinese Couplet Generation with Syn-
tactic Information. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 6436–6446, Gyeongju, Republic of Korea.

Yan Song and Chunyu Kit. 2009. PCFG Parsing with
CRF Tagging for Head Recognition. Proceedings of
CIPS-ParsEval, pages 133–137.

Yan Song, Chia-Jung Lee, and Fei Xia. 2017. Learn-
ing Word Representations with Regularization from
Prior Knowledge. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 143–152, Vancouver, Canada.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A Minimal Span-Based Neural Constituency Parser.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 818–827, Vancouver, Canada.

Jun Suzuki, Sho Takase, Hidetaka Kamigaito, Makoto
Morishita, and Masaaki Nagata. 2018. An Empirical
Study of Building a Strong Baseline for Constituency
Parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 612–618, Melbourne,
Australia.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca:
An Instruction-following LLaMA model. GitHub
repository.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and
Jun’ichi Tsujii. 2005. Syntax Annotation for the
GENIA Corpus. In Companion Volume to the Pro-
ceedings of Conference including Posters/Demos and
tutorial abstracts.

Yuanhe Tian, Yan Song, Xiang Ao, Fei Xia, Xiaojun
Quan, Tong Zhang, and Yonggang Wang. 2020a.
Joint Chinese Word Segmentation and Part-of-speech
Tagging via Two-way Attentions of Auto-analyzed
Knowledge. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8286–8296, Online.

Yuanhe Tian, Yan Song, and Fei Xia. 2020b. Supertag-
ging Combinatory Categorial Grammar with Atten-
tive Graph Convolutional Networks. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6037–
6044.

Yuanhe Tian, Yan Song, and Fei Xia. 2022. Enhanc-
ing Structure-aware Encoder with Extremely Limited
Data for Graph-based Dependency Parsing. In Pro-
ceedings of the 29th International Conference on
Computational Linguistics.

Yuanhe Tian, Yan Song, Fei Xia, and Tong Zhang.
2020c. Improving Constituency Parsing with Span
Attention. In Findings of the 2020 Conference on
Empirical Methods in Natural Language Processing.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. LLaMA: Open and Effi-
cient Foundation Language Models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. LLaMA 2: Open Founda-
tion and Fine-tuned Chat Models. arXiv preprint
arXiv:2307.09288.

7141

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar-
quez, Alberto Olmo, and Subbarao Kambhampati.
2023. On the planning abilities of large language
models (a critical investigation with a proposed
benchmark). arXiv preprint arXiv:2302.06706.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a Foreign Language. In Advances in Neural Infor-
mation Processing Systems 28, pages 2773–2781.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The Penn Chinese TreeBank: Phrase
structure annotation of a large corpus. Natural lan-
guage engineering, 11(2):207–238.

Kaiyu Yang and Jia Deng. 2020. Strongly incremen-
tal constituency parsing with graph neural networks.
Advances in Neural Information Processing Systems,
33:21687–21698.

Sen Yang, Leyang Cui, Ruoxi Ning, Di Wu, and Yue
Zhang. 2022. Challenges to Open-Domain Con-
stituency Parsing. In Findings of the Association
for Computational Linguistics: ACL 2022, pages
112–127, Dublin, Ireland.

Songlin Yang and Kewei Tu. 2023. Don’t Parse, Choose
Spans! Continuous and Discontinuous Constituency
Parsing via Autoregressive Span Selection. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 8420–8433, Toronto, Canada.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems 32, pages 5753–5763.

Hongming Zhang, Yan Song, and Yangqiu Song. 2019a.
Incorporating Context and External Knowledge for
Pronoun Coreference Resolution. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 872–881, Minneapolis, Min-
nesota.

Hongming Zhang, Yan Song, Yangqiu Song, and Dong
Yu. 2019b. Knowledge-aware Pronoun Coreference
Resolution. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 867–876, Florence, Italy.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast
and accurate neural CRF constituency parsing. arXiv
preprint arXiv:2008.03736.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023.
Large Language Models as Commonsense Knowl-
edge for Large-Scale Task Planning. arXiv preprint
arXiv:2305.14078.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar Parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy.

7142

