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Abstract

Table-to-text generation involves generating ap-
propriate textual descriptions given structured
tabular data. It has attracted increasing atten-
tion in recent years thanks to the popularity of
neural network models and the availability of
large-scale datasets. A common feature across
existing methods is their treatment of the in-
put as a string, i.e., by employing linearization
techniques that do not always preserve infor-
mation in the table, are verbose, and lack space
efficiency. We propose to rethink data-to-text
generation as a visual recognition task, remov-
ing the need for rendering the input in a string
format. We present PixT3, a multimodal table-
to-text model that overcomes the challenges
of linearization and input size limitations en-
countered by existing models. PixT3 is trained
with a new self-supervised learning objective
to reinforce table structure awareness and is
applicable to open-ended and controlled gen-
eration settings. Experiments on the ToTTo
(Parikh et al., 2020a) and Logic2Text (Chen
et al., 2020c) benchmarks show that PixT3 is
competitive and, in some settings, superior to
generators that operate solely on text.1

1 Introduction

Generating text from structured inputs such as ta-
bles, tuples, or graphs, is commonly referred to
as data-to-text generation (Reiter and Dale, 1997;
Covington, 2001; Gatt and Krahmer, 2018). This
umbrella term includes several tasks ranging from
generating sport summaries based on boxscore
statistics (Wiseman et al., 2017), to producing fun
facts from superlative Wikipedia tables (Korn et al.,
2019), and creating textual descriptions given bio-
graphical data (Lebret et al., 2016). From a model-
ing perspective, data-to-text generation is challeng-
ing as it is not immediately obvious how to best
describe the given input. For instance, the table in

1Our code, models, and data are available at https://
github.com/alonsoapp/PixT3.

Figure 1 can be verbalized in different ways, de-
pending on the specific content we choose to focus
on. In controlled data-to-text generation (Parikh
et al., 2020a), models are expected to generate de-
scriptions for pre-selected parts of the input (see
the highlighted cells in Figure 1).

Regardless of the generation setting, numerous
approaches have emerged in recent years with dif-
ferent characteristics. A few exploit the structural
information of the input (Puduppully et al., 2019;
Chen et al., 2020b; Wang et al., 2022), use neural
templates (Wiseman et al., 2018), or resort to con-
tent planning (Su et al., 2021; Puduppully et al.,
2022). While others (Chen et al., 2020a,c; Agha-
janyan et al., 2022; Kasner and Dusek, 2022) im-
prove on fluency and generalization by leveraging
large-scale pre-trained language models (Devlin
et al., 2019; Raffel et al., 2020). A common feature
across these methods is their treatment of tabular
input as a string, following various linearization
methods. As an example, Figure 1 shows the rep-
resentation of tabular data (top) as a sequence of
(Column, Row, Value) tuples (bottom).

Problematically, representing tabular informa-
tion as a linear sequence results in a verbose repre-
sentation that often exceeds the context window
limit of popular Transformer models (Vaswani
et al., 2017). The challenge of processing such
long sequences has fostered the development of
even more controlled methods which refrain from
encoding the table as a whole, concentrating exclu-
sively on highlighted content (e.g., only the yellow
cells in Figure 1). Unfortunately, models trained
on abridged input have difficulty generalizing to
new domains while being practically ineffective in
scenarios where content selection is not provided.

In this paper we propose to rethink data-to-text
generation as a visual recognition task, allowing
us to represent and preserve tabular information
compactly. Vision Transformers (ViTs; Doso-
vitskiy et al. 2021) have significantly advanced
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Table Title: Shuttle America
Section Title: Fleet

Aircraft Total Orders Passengers Operated for Notes
F Y+ Y

Embraer E170 5 - 6 16 48 70 United Express transferred to Republic Airline
14 - 9 12 69 Delta Connection Delta Shuttle 2 planes on wet lease 

from Republic AirlineEmbraer E175 15 - 12 12 52 76
Total 35 -

Linearized Table: <page_title> Shuttle America <page_title> <section_title> Fleet <section_title> <table> <row>
<cell> Aircraft <cell> <cell> Total <row_header> Aircraft <row_header> <cell> <cell> Orders <row_header> Aircraft
<row_header> <row_header> Total <row_header> <cell> <cell> Passengers <row_header> Aircraft <row_header>
<row_header> Total <row_header> <row_header> Orders <row_header> <cell> <cell> Operated For <row_header>
Aircraft <row_header> <row_header> Total <row_header> <row_header> Orders <row_header> <row_header>
Passengers <row_header> <cell> <cell> Notes <row_header> Aircraft <row_header> . . . . . .

Target Description: Shuttle America operated the E-170 and the larger E-175 aircraft for Delta Air Lines.

Figure 1: Example of table-to-text generation taken from the ToTTo dataset (Parikh et al., 2020a). In the controlled
setting, a natural language description is generated only for highlighted (yellow) cells. The table is linearized by
encoding each value as a (Column, Row, Value) tuple. We only show the first row, for the sake of brevity.

the field of visual language understanding (Kim
et al., 2022; Davis et al., 2022) demonstrating pro-
ficiency in various tasks, including language mod-
eling (Rust et al., 2023), visual document under-
standing (Huang et al., 2022), and visual ques-
tion answering (Masry et al., 2022). Our work
builds on Pix2Struct (Lee et al., 2023), a pretrained
image-to-text model which can be fine-tuned for
visually-situated language tasks. We recast data-
to-text generation as an image-to-text problem and
present PixT3, a Pixel-based Table-to-Text model,
which is generally applicable to open-ended and
controlled generation settings, overcoming the chal-
lenges of linearization and input size limitations
encountered by existing models.

Our contributions can be summarized as follows:
(a) we introduce the first pixel-based model for
table-to-text generation and showcase its robust-
ness across generation settings with varying table
sizes; (b) we propose a new training curriculum
and self-supervised learning objective to reinforce
table structure awareness; (c) automatic and human
evaluation results on the ToTTo benchmark (Parikh
et al., 2020b) show that PixT3 excels in open-ended
generation, leading to improved faithfulness and
generation quality, while being competitive with ex-
isting methods in controlled scenarios; and (d) we
present a new dataset based on Logic2Text (Chen
et al., 2020c), which allows us to evaluate general-
ization capabilities of current table-to-text models.

2 Related Work

The bulk of previous work treats tables as textual
objects. Several techniques have been developed

to extract accurate information from them (Pudup-
pully et al., 2019; Chen et al., 2020b) using tem-
plates (Wiseman et al., 2018), enforcing table struc-
ture awareness (Mahapatra and Garain, 2021; Wang
et al., 2022), applying contrastive learning (An
et al., 2022; Chen et al., 2023b) or focusing on con-
tent planning (Su et al., 2021; Puduppully et al.,
2022). Other techniques (Chen et al., 2020a,c;
Aghajanyan et al., 2022; Kasner and Dusek, 2022)
improve fluency and generalization by leveraging
large-scale pretrained language models (Devlin
et al., 2019; Raffel et al., 2020). Tables are gen-
erally linearized, even when special-purpose tech-
niques are developed for encoding table structure
(Wang et al., 2022). Dedicated table understand-
ing techniques (Wang et al., 2021; Jin et al., 2023)
eschew linearization but have not been integrated
with generation tasks.

Previous attempts to address table-to-text gener-
ation from a visual recognition perspective (Dash
et al., 2023; Srihari et al., 2003) have relied on
OCR methods which first extract text from the im-
age and then feed it as a string to a generation
model. Aside from being noisy, these techniques
typically embrace a text-centric point of view, treat-
ing the image as a limitation rather than an infor-
mative modality. Our work builds on recent visual
language understanding models (Kim et al., 2022;
Davis et al., 2022; Lee et al., 2023) which are based
exclusively on pixels and have managed to outper-
form OCR methods in several natural language
processing tasks (Rust et al., 2023; Huang et al.,
2022; Masry et al., 2022; Salesky et al., 2023).

The field of Vision Language Models (VLMs)
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has also experienced significant growth in recent
years (Liu et al., 2023; Ye et al., 2023b; Bai et al.,
2023; Wang et al., 2023; Alayrac et al., 2022).
While most of them focus primarily on natural im-
ages, a few are starting to explore the application of
dual encoder architectures to visually represented
language (Ye et al., 2023a; Zhang et al., 2023).
However, these architectures are not parameter lean
(with increased model size of a factor of 40 or more
compared to Pix2Struct), and some continue to rely
on fixed resolution images which can be particu-
larly problematic when processing tabular data.

A few other efforts have recently explored multi-
modal approaches to processing tables for various
tasks, including table-to-text generation. Dash et al.
(2023) convert images into HTML tokens which
are subsequently linearized and processed by a tra-
ditional text-to-text model. Other work (Chen et al.,
2023a) focuses on recognizing the structure of ta-
bles from images as an independent task. It also
leverages multimodal pretraining and unsupervised
table structure learning objectives, but ignores the
content of table cells and their relations. To the best
of our knowledge, our work is the first to conceptu-
alize data-to-text generation as a visually-situated
language understanding problem.

3 Problem Formulation

The task of table-to-text generation aims to take
a structured table t as input and output a natural
language description y = [y1, . . . , yk] where k
is the length of the description. Table t is
typically reformatted as a sequence of textual
records t = [t1,1, t1,2, . . . , ti,j , . . . , tm,n] where m
and n respectively denote the number of rows and
columns of t.

We approach this task from a visual recognition
perspective, and expect the input table to be an
image x. The image is reshaped into a sequence
of patches analogous to linguistic tokens. More
formally, for an input image x ∈ RH×W×C and
patch size p, we create N image patches denoted
as xp ∈ RN×(P 2·C). (H,W ) is the resolution of
the original image, C is the number of channels,
(P, P ) is the resolution of each image patch, and
N = HW

P 2 the resulting number of patches, which
serves effectively as the input sequence length. Our
proposed model learns to autoregressively estimate
the conditional probability of a text sequence from
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Figure 2: Overview of PixT3 generation model.

a source image as:

P (y|x;θ) =
n∏

i=1

P (yi|y<i,x;θ) (1)

where θ are transformer parameters and y<i the
words decoded thus far.

We further define three generation settings,
which manipulate the information provided to
the model in terms of content selection (see
Appendix B for visualization). In the tightly-
controlled setting (TControl), the model is given
highlighted cells only, ignoring the table. Most
recent approaches benchmark model performance
in this setting (Wang et al., 2022; An et al., 2022;
Chen et al., 2023b; Su et al., 2021; Kale and Ras-
togi, 2020). In the loosely controlled setting (LCon-
trol), the model is given highlighted cells and the
entire table. This is the original setting for which
the ToTTo dataset (Parikh et al., 2020a) was con-
structed. Finally, we introduce the open-ended set-
ting (OpenE), where the model is given the table
without any highlighting.

4 The PixT3 Model

PixT3 is an image-encoder-text-decoder model
based on Pix2Struct (Lee et al., 2023). It expects
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image rendered tables and generates descriptions
thereof (see Figure 2). Pix2Struct is a Vision Trans-
former model pretrained on 80M screenshots of
web pages extracted from URLs in the C4 corpus
(Raffel et al., 2020). It splits input images into
patches of 16×16 pixels (see Figure 2), linearly
embeds each patch, adds position embeddings, and
feeds the resulting sequence of vectors to a standard
Transformer encoder (Vaswani et al., 2017).

Pix2Struct was first warmed up with a reading
curriculum (Rust et al., 2023; Davis et al., 2022),
to improve training stability and fine-tuning per-
formance and then pretrained with a screenshot
parsing objective; specifically, it generates a sim-
plified version of an HTML subtree that represents
a highlighted area of a web page screenshot. It
also adds a BART-like (Lewis et al., 2020) learning
signal to pretraining by masking 50% of the text in
the input and then requiring the model to produce
the entire subtree. Importantly for our table-to-text
generation task, Pix2Struct supports variable im-
age resolution and multiple aspect ratios. It first
re-scales the input (up or down) to extract the max-
imal number of fixed-size patches that fit within a
given sequence length and then replaces the typi-
cal 1-dimensional absolute positional embedding
with a 2-dimensional one, which adds resolution
flexibility and removes any aspect ratio distortion.

We initialize PixT3’s model weights with
Pix2Struct; we next adopt a curriculum training
strategy which instills in our model knowledge
about tables and their structure (see Section 4.2);
and finally, we fine-tune on table-to-text generation
datasets such as ToTTo (Parikh et al., 2020a) with
a task-specific supervised objective.

4.1 Table-to-Image Rendering
We parse tables to HTML, and subsequently render
them into images. We also render table metadata
(e.g., Wikipedia page and section title), if it exists,
as part of the image, adding it on top of the ta-
ble. Tables are rendered into three different images
corresponding to the generation settings defined in
Section 3 (see Appendix B, Figure 6).

Although Pix2Struct can handle variable resolu-
tions and input patches, very long inputs are nev-
ertheless computationally expensive. Following
Lee et al. (2023), we set the maximum input length
to 2,048 patches (of 16×16 pixels) which corre-
sponds to a maximum image size of 524,288 pixels.
41.74% of the tables in a dataset like ToTTo (Parikh
et al., 2020a) exceed this size (see Figure 5 in Ap-

pendix A), with 5% being larger than 8.3M pixels
(32,768 patches). Indiscriminately down-scaling
all images exceeding the maximum input length
would negatively affect performance, especially for
very big tables, effectively rendering them unread-
able (we showcase how image size affects model
performance in Figure 4). To avoid this as much
as possible, we truncate the image to fit within a
maximum down-scaling factor γ. In other words,
images are first compressed to γ% of their original
size and then truncated from left to right until they
fit into 2,048 patches. The optimal value for γ is
determined empirically (see Appendix C).

4.2 Structure Learning Curriculum

Pix2Struct is a general-purpose visual language un-
derstanding model, and as such it is not particularly
knowledgeable about tables and their structure. Ta-
bles can be presented in a variety of ways visually,
such as spanning multiple columns or rows, with or
without horizontal and vertical lines, non-standard
spacing and alignment, and text formatting. Aside
from presentation, there are various conventions
about the underlying semantics of tables and their
structure, e.g., each cell is only related to cells in
the same column and row. These challenges have
led to the development of dedicated table under-
standing techniques (Jin et al., 2023; Wang et al.,
2022) in the domain of text but cannot be readily
ported to images.

Instead, we encourage PixT3 to adhere to tabular
conventions, by first training it on an intermediate
supporting task. This acts as a structure learning
curriculum, exposing the model to the rules govern-
ing tables. We next elaborate on the intermediate
task, its corresponding dataset, and the proposed
self-supervised objective.

Dataset for Intermediate Training Existing
datasets like ICDAR2021 (Kayal et al., 2021) and
TableBank (Li et al., 2019) are representative of the
task of parsing table images into their structure and,
in theory, could be used for our intermediate train-
ing purposes. However, they focus on scientific
tables which do not follow the typical distribution
of Wikipedia tables found in ToTTo (Parikh et al.,
2020a), e.g., in terms of size and cells spanning
across rows and columns. We instead propose to
create a synthetic image-to-text dataset, making
use of the table rendering pipeline described in Sec-
tion 4.1. Although we generate tables specifically
tailored for our use-case, the generation process is
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Table:
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Figure 3: Synthetically generated table with a high-
lighted cell and corresponding pseudo-HTML target
sequence (for self-supervised objective). Cells within
the target sequence are highlighted in the table with a
colored background. For details on the structure of the
target, please refer to Appendix D.

flexible and can be adapted to other domains with
different characteristics.

We determine the structure of each table (size,
column, and row spans) randomly, following
ToTTo’s training set distribution. We cap the gener-
ation process at a maximum of 20 columns and 75
rows. Table cells are filled with synthetic val-
ues consisting of a random combination of one to
five random English alphabet characters and digits,
functioning as identifiers rather than meaningful
values (see Figure 3 for an example). Our dataset
contains 135,400 synthetic tables, 120,000 for train-
ing, 7,700 for validation, and 7,700 for testing.

Self-supervised Objective While masking is a
widely adopted learning objective (Devlin et al.,
2019), it does not naturally transfer to our table-to-
text generation task; table values are not naturally
correlated to neighboring values and thus a masked
cell cannot be easily predicted from other cells
in its context. Table values could be rearranged
so that they correlate to their neighbors, however,
early experiments showed that this type of objective
does not improve downstream task performance
(see Appendix D for details). Another common
pretraining objective is table linearization (Chen
et al., 2023a), which, however, scales poorly with
table size, leading to slow pretraining.

We propose a self-supervised objective that en-
courages PixT3 to capture the relations between
cells within a table while generating a small amount
of tokens. Specifically, we highlight a random cell
in a synthetically generated table, and train the
model to produce a sorted list of cells within the

same column and row (see Figure 3). Our objec-
tive encapsulates a loose notion of table structure,
nudging the model to pay attention to the arrange-
ment of columns and rows around a cell. We fol-
low the same pseudo HTML notation introduced in
Pix2Struct to format our output sequence, easing
the model’s transition from its original screenshot
parsing objective to this new one. Note that we con-
sider tables with a heterogeneous structure where
cells can span across multiple columns and rows.
In such cases, the expected sequence will contain
all cells in related rows and columns surrounding
the highlighted cell (see Figure 3).

4.3 PixT3 Fine-tuning

The intermediately pre-trained PixT3 is subse-
quently fine-tuned on an image-rendered dataset
(see Section 4.1). In experiments, we use ToTTo
(Parikh et al., 2020b), however, our approach is
not tied to a particular style of tables. Due to our
model’s requirement for unimodal input, we treat
table-related information (such as its title) as part of
the table itself and render them both as one image
(see Lee et al. 2023 for a similar approach).

5 Experimental Setup

Model Configuration All our experiments were
conducted with the base pretrained Pix2Struct2

model (282M parameters). We trained PixT3 vari-
ants for the three table-to-text generation settings
defined in Section 3. All PixT3 models were fine-
tuned on ToTTo (Parikh et al., 2020a) with tables
rendered as images following the procedure out-
lined in Section 4.1. The maximum down-scaling
factor γ was set to 0.39.

PixT3 models were fine-tuned with a batch size
of 8 and a gradient accumulation of 32 steps on
a single NVIDIA A100 80GB GPU. Checkpoints
were selected according to best performance on
the validation set. All models used an input se-
quence length of 2,048 patches and were optimized
with AdamW (Loshchilov and Hutter, 2017). We
used a learning rate scheduler with a linear warmup
of 1,000 steps to 0.0001, followed by cosine de-
cay to 0. The decoder maximum sequence length
was set to 50 tokens, which covers 97.49% of the
target descriptions in the training data. PixT3 was
trained for 1.4k steps with the self-supervised ob-
jective described in Section 4.2. Our decoder was
not frozen during intermediate training, as initial

2https://github.com/google-research/pix2struct

6725

https://github.com/google-research/pix2struct


experiments showed that a fully trained model out-
performed one with frozen decoder weights. A full
list of fine-tuning hyper-parameters can be found
in Appendix H.

Datasets We evaluated our model on ToTTo
(Parikh et al., 2020a), a large-scale, manually cu-
rated dataset representative of several domains and
types of tables. We also assessed the generalization
capabilities of PixT3 on out-of-distribution tables.
We created an out-of-domain benchmark with con-
tent selection annotations similar to ToTTo based
on Logic2Text (Chen et al., 2020c), an existing
dataset which contains a total of 10,161 Wikipedia
tables, paired with human-authored descriptions
and logical forms. Logic2Text differs from ToTTo
in that descriptions are not simple verbalisations
of table rows and columns, but require some form
of reasoning (e.g., comparisons or counting op-
erations). We were able to automatically trace
values mentioned in the logical form back to the
cells of the input tables (Alonso and Agirre, 2023),
thus obtaining highlighted cell annotations similar
ToTTo’s (see Appendix E for an example). We re-
port results on the official test set (1,085 examples).

Model Comparison We evaluated PixT3 against
several text-only models with similar parameter
sizes. These include CoNT (An et al., 2022), the
top performant (published) model in the ToTTo
leaderboard.3 CoNT is a text-to-text generation
model which makes use of contrastive learning,
through improved selection of contrastive exam-
ples, a new contrastive loss, and a global decoding
strategy. CoNT expects the input table to be con-
verted to a string, and is built on top of T5-base
(220M parameters). We also compared against
Lattice (Wang et al., 2022), a model which en-
forces awareness of table layout though pruning
the attention flow and encoding cells in a way
that is invariant to their relative position in a se-
quence. This model also uses T5-base and expects
linearized input. In addition, we report results with
vanilla T5-base which performed competitively on
the ToTTo leaderboard without any task specific
modifications (Kale and Rastogi, 2020; An et al.,
2022). All comparison models and PixT3, were
trained on the ToTTo training set in our three gen-

3A model named SKY appears to slightly outperform
CoNT in the leaderboard, however, at the time of writing,
we were not able to verify this, i.e., by finding a publication
or preprint describing this model.

Dev TestN TestO Test

Model BL PR BL PR BL PR BL PR

T5-base 47.7 57.1 38.9 51.2 55.4 61.1 47.2 56.2
T5-3B 48.4 57.8 39.3 51.6 55.1 60.7 47.2 56.2
Lattice 48.0 58.4 40.0 53.8 55.9 62.4 48.0 58.1
CoNT 49.0 58.6 40.6 53.7 56.7 62.5 48.7 58.1T

C
on

tr
ol

PixT3 45.7 55.7 37.5 50.6 53.2 60.4 45.4 55.5

T5-base 24.5 27.2 19.4 23.9 29.4 30.3 24.5 27.1
T5-3B 23.6 26.0 18.0 22.4 28.7 29.2 23.4 25.8
Lattice 24.9 31.0 20.8 27.7 27.5 33.8 24.4 30.8
CoNT 23.8 29.3 19.2 26.1 28.7 32.3 23.9 29.2L

C
on

tr
ol

PixT3 46.2 55.1 38.1 50.3 52.7 59.0 45.4 54.7

T5-base 21.5 23.5 16.8 21.0 26.5 26.5 21.7 23.8
T5-3B 20.8 22.9 16.7 20.3 25.5 25.5 21.2 22.9
Lattice 20.9 26.1 17.6 24.3 23.7 27.6 20.8 25.9
CoNT 21.7 25.8 16.9 23.2 26.3 28.3 21.6 25.8O

pe
nE

PixT3 24.8 28.3 20.5 26.3 28.9 30.3 24.7 28.3

Table 1: Automatic evaluation results on ToTTo in
three generation settings: tightly controlled (TControl),
loosely controlled (LControl), and open-ended (OpenE).
We report BLEU (BL) and PARENT (PR) results on the
development (Dev) and Test sets, including the overlap-
ping (TestO) and non-overlapping (TestN) test set splits.
BLEURT results are in Appendix E.

eration settings.4

For our out-of-domain experiments, we also
compare against LLaVA-1.5 (Liu et al., 2023), a
large pretrained multimodal model (13B parame-
ters) which is built on top of the CLIP visual en-
coder (Radford et al., 2021) and the Vicuna-7B lan-
guage model (Zheng et al., 2023), and fine-tuned
on vision-language instructions. LLaVA has not
been fine-tuned specifically for table-to-text gener-
ation, however, it is interesting to see if sufficiently
large scale is all it takes to do well on the table-
to-text generation task. LLaVA can only handle
a single image at each forward pass. This limita-
tion prevents it from performing inference in an
in-context learning setting, where the model has
access to multiple input-output examples at the
same time. To approximate in-context learning as
closely as possible, we provided LLaVA with an
image, an instruction, and three table descriptions
as output examples for each generation setting (see
Appendix F for details). We summarize the number
of parameters for all comparison models in Table 2.

we do still provide a few description examples in
our prompt to ensure a fair zero-shot comparison.
All prompts used for LLaVA in this evaluation can
be found in Appendix F.

4Comparison models were trained with the authors’ pub-
licly available scripts.
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6 Results

PixT3 is the best performing model in loosely
controlled and open-ended generation settings.
Table 1 summarizes our results on ToTTo in our
three generation settings. We evaluated model per-
formance automatically with the same metrics used
to rank participant systems in the ToTTo leader-
board. These include BLEU (Papineni et al., 2002)
which is as a proxy for fluency, PARENT (Dhin-
gra et al., 2019), a metric proposed specifically
for data-to-text evaluation that takes the table into
account, serving as a proxy of faithfulness, and
BLEURT (Sellam et al., 2020); the latter is a com-
posite metric that takes a reference and model out-
put as input, and returns a score that indicates the
extent to which the output is fluent and conveys the
meaning of the reference. Note that ToTTo features
two splits in the development/test set containing
tables whose header values are present (overlap-
ping split) and absent (non-overlapping split) in the
training set. Results on the test set, which is not
publicly available, were obtained via submitting to
the ToTTo leaderboard.

We first discuss our results on the tightly con-
trolled generation setting (TControl) where models
are not given the full table, just the highlighted
cells. We would not expect PixT3 to excel at this
setting, which is better suited to text-to-text mod-
els (highlighted cells make for non-descriptive im-
ages, see Appendix B, Figure 6). PixT3 is indeed
unable to outperform CoNT, Lattice, and related
T5 variants, falling 3.5 BLEU points behind on
the development set and 3.7 on the test set. How-
ever, LControl, the loosely controlled generation
setting, better showcases the advantages of PixT3,
which in this case demonstrates almost a two times
improvement over CoNT and T5 models. Perfor-
mance degrades drastically for all systems in the
open-ended setting (OpenE) which is challenging;
models are expected to perform content selection
in addition to text generation, and could produce ta-
ble descriptions which are valid but different from
the reference. Automatic metrics based on n-gram
overlap are particularly punitive in this case. Nev-
ertheless, PixT3 is superior to CoNT, Lattice, and
T5 across evaluation metrics.

PixT3 generalizes to out-of-domain tables which
require reasoning skills. We next evaluate
whether PixT3 generalizes to unseen tables, outside
ToTTo’s distribution. Table 2 shows our results on
Logic2Text (Chen et al., 2020c), again following

Model Size BLEU PARENT

LLaVA 13B 12.6 34.36
T5-base 220M 16.8 55.97
T5-3B 3B 17.7 52.75
Lattice 220M 19.8 61.05
CoNT 220M 18.8 61.73T

C
on

tr
ol

PixT3 282M 20.6 61.86

LLaVA 13B 5.9 23.18
T5-base 220M 11.5 40.02
T5-3B 3B 10.9 35.45
Lattice 220M 11.5 40.02
CoNT 220M 11.8 43.25L

C
on

tr
ol

PixT3 282M 21.5 56.45

LLaVA 13B 6.7 20.14
T5-base 220M 7.9 30.67
T5-3B 3B 9.5 29.47
Lattice 220M 11.7 38.12
CoNT 220M 11.0 36.94O

pe
nE

PixT3 282M 11.4 35.68

Table 2: Automatic evaluation results on Logic2Text
in three generation settings: tightly controlled (LCon-
trol), loosely controlled (LControl), and open-ended
(OpenE). All models (except LLAVA) were fine-tuned
on ToTTo and tested on Logic2Text. BLEURT results
are in Appendix E.

the three generation settings. Compared to ToTTo,
Logic2Text is a more challenging dataset as most
descriptions rely on reasoning over the entire ta-
ble. This results in poor model performance in the
TControl setting which does not include the table as
input. Nonetheless, we observe that PixT3 excels
at the LControl setting, even though it has to pro-
cess and reason over the entire table. The OpenE
setting is challenging for all models as they are
asked to identify interesting cells to talk about in
out-of-domain tables. PixT3 still maintains an edge
over T5 and LLaVA, performing on par with CoNT
and Lattice. We observe that LLaVA cannot match
the performance of PixT3 and T5-based models.
This underscores the importance of task-specific
fine-tuning over parameter size. We present output
examples in Appendix E.

PixT3 is robust against table input size. In Fig-
ure 4, we analyze the effect of table size on model
performance. As can be seen, T5, Lattice, and
CoNT are severely affected: the bigger the table,
the less accurate the generated description. PixT3
is evidently more robust, showing degradation in
performance only for very big tables. We also ex-
amined whether PixT3 has an edge because of its
ability to encode longer inputs. Recall that CoNT,
Lattice, and T5-base utilize a fixed input length
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Figure 4: Model performance (CoNT, T5, PixT3, Lat-
tice, and PixT3 with 512 patch input size) in the LCon-
trol setting across 18 table size groups (logarithmic
scale). Upper and lower bounds in shaded areas corre-
spond to results for the overlapping and non-overlapping
ToTTo splits, while central points correspond to results
overall. We report results with PARENT, other metrics
show similar tendencies. We refer to Appendix A for
further details.

of 512 tokens, while PixT3 uses 2,048 patches. We
thus trained a PixT3 variant with input length set
to 512 patches. As shown in Figure 4, the more con-
strained PixT3 model is slightly worse and more
likely to degrade with increased table size but con-
sistently outperforms CoNT, Lattice, and T5.

The structure learning curriculum improves
generation quality across metrics. In Table 3
we perform an ablation study comparing PixT3
with and without our structure learning curriculum
and self-supervised objective (Section 4.2). For
both models we follow the same fine-tuning pro-
cess: we render tables into images, identify the opti-
mal point of image compression and truncation (see
Section 4.1), and perform hyper-parameter search
to optimize Pix2Struct-base for our task. Vanilla
PixT3 (second row in Table 3) shows a substantial
improvement over an out-of-the-box Pix2Struct
model which achieves a BLEU score of 0.2 and
PARENT score of 0.6 on the ToTTo development
set. Adding the intermediate training curriculum
(second row in Table 3) slightly improves vanilla
PixT3 across evaluation metrics.

Manual inspection of the descriptions produced
by the two PixT3 model variants reveals they are
often semantically equivalent to the target (43% of
the time). Nevertheless, the intermediate training
curriculum substantially reduces structure-based
faithfulness errors, especially in the OpenE setting.
On a sample of 200 outputs (randomly selected

Dev Test

Models BL PR BRT BL PR BRT

Pix2Struct 0.2 0.6 −1.433 — — —
PixT3 (W/o SLC) 38.7 46.0 −0.003 38.3 45.6 0.001
PixT3 (With SLC) 39.2 46.5 0.008 38.7 46.3 0.007

Table 3: PixT3 with and without structure learning
curriculum (SLC); we report results on the ToTTo devel-
opment (Dev) and Test set with BLEU (BL), PARENT
(PR), and BLEURT (BRT), averaged across the three
generation settings.

from the development set), we found that 23% of
the descriptions produced by vanilla PixT3 disre-
gard or misinterpret the structure of the table. Struc-
tural faithfulness errors reduce to 7% when PixT3
is trained with our structure learning curriculum.

PixT3 is most faithful in loosely controlled and
open-ended generation settings. We further con-
ducted a human evaluation study to quantify the
extent to which the generated descriptions are faith-
ful to the table. We evaluated PixT3, and the two
best performing text-only systems (CoNT, and Lat-
tice) on two sets of 100 randomly selected table-
description pairs from ToTTo (development set)
and Logic2Text (test set), in the three generation
settings. Crowdworkers were presented with an un-
compressed image of a table, its page and section ti-
tle, and a model generated description. As an upper
bound, we also elicited judgments for the human
curated reference descriptions for the same ToTTo
and Logic2Text examples. Participants were asked
to determine whether a description was "True" or
"False" based on the information provided in the
table and/or its title and subtitle (see instructions in
Appendix G). Overall we elicited 7,200 judgments
(100 examples × 3 generation settings × 4 model
descriptions × 3 participants × 2 datasets). Crowd-
workers were recruited using the online platform
Prolific.5

Table 4 shows the results of the human evalu-
ation, specifically the proportion of descriptions
deemed faithful. As expected, the human authored
Reference description is consistently faithful across
generation settings. CoNT is more faithful in TCon-
trol but deteriorates in the LControl and OpenE
settings. We further examined whether differences
among systems are statistically significant using
paired bootstrap resampling. PixT3 is significantly
worse (p < 0.05) than the Reference in TControl

5https://www.prolific.com
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Model TControl LControl OpenE

Reference 87 84 89
Lattice 79 16 20
CoNT 76 16 35To

T
To

PixT3 69 72 78

Reference 81 87 86
Lattice 34 3 16
CoNT 35 3 26L

2T

PixT3 32 40 60

Table 4: Human evaluation results on ToTTo and
Logic2Text (L2T). Proportion of descriptions rated as
faithful for PixT3, CoNT, and Reference in three gen-
eration settings: tightly controlled (LControl), loosely
controlled (LControl), and open-ended (OpenE).

but not CoNT or Lattice. In LControl all differ-
ences between systems are statistically significant
(p < 0.05). In OpenE, PixT3 is significantly differ-
ent (p < 0.05) from CoNT and Lattice but not from
the Reference. Inter-rater agreement was moder-
ate with a Fleiss’ Kappa coefficient of 0.55 (Fleiss,
1971).

7 Conclusion

In this paper, we leverage the capabilities of Vi-
sion Transformers to recast table-to-text generation
as a visual recognition task, removing the need
for rendering the input in a string format. Our
model, PixT3, introduces a new training curricu-
lum and self-supervised learning objective in order
to capture the structure and semantics of tables.
Experiments across constrained and open-ended
generation settings show it is robust to different
table sizes, performing competitively and often bet-
ter than state-of-the-art models. PixT3 is also able
to handle new domains with unseen tables, as evi-
denced by our results on Logic2Text, a new dataset
which we propose for assessing the generalization
capabilities of table-to-text generation models.

Avenues for future research are many and var-
ied. There are several downstream tasks which
stand to benefit from a pixel-based view of textual
information, including multilingual table-to-text
generation, and semantic parsing. We would also
like to investigate additional objectives and induc-
tive biases that can better capture the structure of
tables and inter-cell dependencies.

8 Limitations

While PixT3 shows promising results, its perfor-
mance is affected by the dimension of the input
tables (for instance, 16% of the Wikipedia tables

in ToTTo remain too big for PixT3 to represent
effectively). It would be interesting to look into
alternative ways of preprocessing very large tables,
e.g., by rendering them via multiple images. While
our proposed intermediate training methodology
mitigates faithfulness errors, the model still strug-
gles with hallucinations, falling short of human-
level performance.

Finally, PixT3, as well as other comparison sys-
tems, have limited reasoning capabilities, e.g., they
cannot infer information which is not explicitly
stated in the table or make logical connections be-
tween concepts. PixT3’s superior performance in
terms of faithfulness on Logic2Text (see Table 4)
is due to generating simpler sentences rather than
superior reasoning skills. Thus, aside from new
training objectives, a promising direction would be
to combine the visual representations with an inter-
mediate planning component that encourages the
model to reason about the input while generating
the output.
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Figure 5: Proportion of ToTTo examples (development
set) per table size (shown in logarithmic scale).

A Table Size Distribution in ToTTo

We measure the size of a table by the total amount
of pixels in its corresponding rendered image. We
then calculate the distribution of each size, and
group tables into 20 buckets accordingly. Each
bucket covers a logarithmically increasing amount
of table sizes. Figure 5 shows the resulting buck-
ets and the proportion of ToTTo examples in each
(development set). The quality of descriptions gen-
erated within each group, are evaluated in Section 6,
see Figure 4.

B Table-to-Text Generation Settings

Figure 6 illustrates how the image input to PixT3
differs according to three generation settings:
tightly controlled (the model is given only high-
lighted cells, no table), loosely controlled (the
model is given the table and highlighted cells), and
open-ended (the model is given the table without
any highlighting).

C Image Truncation and Down-scaling

We explored the impact of down-scaling on model
performance and its tradeoff with truncation. We
conducted a series of experiments wherein PixT3
models were trained on versions of ToTTo with
varying down-scaling factor γ: 0.87, 0.58, 0.39,
0.26, and 0.00. Note that γ=0.00 corresponds to a
setting where no truncation takes place, only down-
scaling. According to the results shown in Table 5,
it is best to combine truncation with down-scaling,

TControl

LControl

OpenE

Reference
On October 13, 1997, Canal de las Estrellas 
started broadcasting Huracán on 
weekdays.

Figure 6: PixT3 input image examples (and reference) in
three generation settings: tightly controlled (TControl),
loosely controlled (LControl), and open-ended (OpenE).

none of the extreme settings (no truncation vs too
much truncation) are beneficial. The optimal γ
value is 0.39.

D Intermediate Training

Synthetic Dataset Generation In this section
we provide a more detailed description regarding
the generation of synthetic tables for intermediate
training. As our goal was to generate tables with a
structure similar to ToTTo, we first measured the
probability distribution of columns, rows, column
spans and row spans for the tables in the training
set to avoid over-fitting and contamination. We
observed that the distribution of columns (up to
20 columns) remained almost constant across ta-
bles, and did not affect the probability distribution
of rows. As a result, we aggregated row numbers
across columns and computed a single distribution
for rows to simplify our generation task, using dis-
crete probability distributions. In order to limit the
size of the generated tables we cap the number of
columns and rows to 20 and 75, respectively. For
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PPPPPPEpoch
γ 0.00 0.26 0.39 0.57 0.87

16 28.71 29.13 29.47 29.58 27.47
17 28.99 29.53 29.99 29.70 27.69
18 29.67 30.04 30.55 30.21 28.13
19 29.98 30.04 30.63 30.54 28.33
20 29.83 30.21 30.68 30.53 29.39

Table 5: Evaluation results (BLUE) for PixT3 model
in tightly controlled generation setting for different γ
down-scaling factors. We show the Last five epochs on
the ToTTo training set.

the synthetic text within the cells, we randomly
generated digits in the [1–5] range and character
sequences from [A–Z, a–z] which gave us a total
of 776,520,240 permutations of possible unique
cell values.

Overall, we generated 120K tables accompanied
with target pseudo HTML descriptions. The latter
were on average 121 tokens long, with the longest
sequences containing 877 tokens. In experiments,
we observed that text size affects mainly the aver-
age count of tokens, whereas the number of table
columns and rows influences the length of the tar-
get sequences. The sequences follow a hierarchical
structure defined by the characters < and >. In
the first hierarchical level, one container can be
found for each highlighted cell in the table. Each
container includes, in the following order, the high-
lighted cell, the cells in all related columns, and
all cells in all related rows. This structure can
represent multiple related columns and rows per
highlighted cell, as well as multiple highlighted
cells per table.

Alternative Objectives We conducted a set of
experiments to identify the best self-supervised ob-
jective for our structure learning curriculum. In
addition to the objective presented in Section 4.2,
we also experimented with a masking objective.
Specifically, given a randomly generated table, we
filled each cell with text indicative of its position
in the table. We then masked random cells and the
model was trained to predict the missing cell values
(see Figure 7 for an example). We empirically ob-
served that this objective led to worse performance
compared to PixT3, even though it resulted in rela-
tively fast training, since the table can be converted
into a sequence with a small number of tokens.
We hypothesize that this objective only weakly en-
forces table structure learning as the model does
not need to pay attention to all the cells in a column
and row to guess the missing value but simply rely

Figure 7: Synthetically generated table with masked
cell. Filled cell values denote position in the table.

Dev Set (All) Test Set (Non) Test Set (Over) Test Set (All)

Model BLEURT BLEURT BLEURT BLEURT

T5-base 0.233 0.106 0.354 0.230
T5-3B 0.228 0.104 0.344 0.224
Lattice 0.226 0.103 0.348 0.226
CoNT 0.240 0.116 0.364 0.240T

C
on

tr
ol

PixT3 0.178 0.044 0.312 0.178

T5-base −0.298 −0.395 −0.191 -0.293
T5-3B −0.309 −0.416 −0.194 -0.305
Lattice −0.287 −0.382 −0.195 -0.288
CoNT −0.293 −0.387 −0.190 -0.289L

C
on

tr
ol

PixT3 0.169 0.047 0.287 0.167

T5-base −0.371 −0.458 −0.278 -0.368
T5-3B −0.385 −0.456 −0.301 -0.378
Lattice −0.377 −0.451 −0.302 -0.377
CoNT −0.370 −0.452 −0.281 -0.366O

pe
nE

PixT3 −0.332 −0.414 −0.258 −0.336

Table 6: BLEURT results on ToTTo for T5, PixT3,
Lattice, and CoNT in three generation settings: tightly
controlled (LControl), loosely controlled (LControl),
and open-ended (OpenE). In the TControl setting, T5 re-
sults are taken from Kale and Rastogi (2020) and CoNT
results from An et al. (2022). This table complements
results reported in Table 1.

on its closest neighbors. We also experimented
with a combination of the masking objective dis-
cussed here and the structure learning objective
described in Section 4.2. However, this model still
lagged behind PixT3.

E Additional Results and Examples

In addition to BLEU and PARENT reported in Ta-
bles 1 and 2, we also present results with BLEURT
in Table 6 and Table 7. We further show example
output on the Logic2Text dataset (zero-shot setting)
in Figure 8. In the TControl setting, CoNT strug-
gles to produce a coherent sentence, while PixT3
generates a faithful but not very informative one.
This is not surprising as the models receive noth-
ing but the title and highlighted cells, making it
extremely difficult to generate the target sentence.
In LControl, both models have access to the entire
table; however, they still produce a false statement,
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Model BLEURT

LLaVA −1.230
T5-base −1.086
T5-3B −1.079
Lattice −1.060
CoNT −1.103T

C
on

tr
ol

PixT3 −1.104

LLaVA −1.189
T5-base −1.147
T5-3B −1.167
Lattice −1.147
CoNT −1.159L

C
on

tr
ol

PixT3 −1.073

LLaVA −1.184
T5-base −1.237
T5-3B −1.196
Lattice −1.231
CoNT −1.231O

pe
nE

PixT3 −1.213

Table 7: Automatic evaluation results on Logic2Text in
three generation settings: tightly controlled (LControl),
loosely controlled (LControl), and open-ended (OpenE).
All models (except LLAVA) were fine-tuned on ToTTo
and tested on the Logic2Text. This table complements
results reported in Table 2.

most likely a consequence of the zero-shot nature
of our generation task. Finally, in the less con-
strained OpenE setting, PixT3 generates a coherent
and faithful sentence. While CoNT also produces a
fluent sentence, it incurs a faithfulness error when
mentioning "(+5)" instead of "(-5)". This is likely
due to the performance degradation this model ex-
periences when provided with the full table.

F LLaVA promts

As mentioned in Section 5, our zero-shot exper-
iments involved comparisons against LLaVA-1.5
(Liu et al., 2023), a large pretrained multimodal
model (13B parameters). We devised the following
prompts for each generation setting:

TControl "Here are some descriptions based on
other highlights of other tables ’chilawathurai had
the 2nd lowest population density among main
towns in the mannar district .’, ’zhou mi only
played in one bwf super series masters finals tour-
nament .’, ’tobey maguire appeared in vanity fair
later than mike piazza in 2003 .’. Now write a short
description based on the following highlighted cells
extracted form a table."

LControl "Here are some descriptions based on
the highlights of other tables not present in the in-
put: ’chilawathurai had the 2nd lowest population

density among main towns in the mannar district .’,
’zhou mi only played in one bwf super series mas-
ters finals tournament .’, ’tobey maguire appeared
in vanity fair later than mike piazza in 2003 .’. Now
write a short description based on the highlighted
cells in this table following the same style as the
example descriptions."

OpenE "Here are some descriptions from other
tables not present in the input: ’chilawathurai had
the 2nd lowest population density among main
towns in the mannar district .’, ’zhou mi only
played in one bwf super series masters finals tour-
nament .’, ’tobey maguire appeared in vanity fair
later than mike piazza in 2003 .’. Now write a short
description stating something from this table fol-
lowing the same style as the example descriptions."

G Human Evaluation Guidelines

We provide the full set of instructions presented to
crowdworkers for the human evaluation study. Our
participants were native English speakers from the
United Kingdom and the United States of America,
with a 50/50 equal gender split between male and
female.

Thank you for taking part in our experi-
ment! You will be presented with a table and
a computer-generated description of its con-
tent. Your task is to determine whether each
description is "True" or "False" based on the
information provided in the table and/or its title
and subtitle (you will see examples later-on).
No expert knowledge is required to perform
this task. You should evaluate the descriptions
given the information presented in the table,
without taking any other information into ac-
count (e.g., based on your own knowledge or
the web).

Here are some guidelines to help you with
your evaluation:

Acronyms: tables often have acronyms
which the descriptions might spell out. For
example, if the table mentions "TD" and the de-
scription correctly spells it out as "touch down,"
you should not consider this "False" (although
the description might be false for other rea-
sons).

Implicit information: the description might
mention information that can be inferred but is
not explicitly spelled-out in the table. For ex-
ample, it could mention "steam engines" when
the table lists theirs names without explicitly
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• Reference: Jim Colbert has the second best number of strokes to par.

• CoNT (TControl): Jim Colbert led the 1973 U.S. open (golf course)
with a score of to par.

• PixT3 (TControl): Jim Colbert took part in the 1973 U.S. open
(golf) tournament.

• CoNT (LControl): At the 1973 U.S. open (golf), Jim Colbert shot a
record of 267 (+1) and finished four strokes ahead of runner-up Lee
Janzen.

• PixT3 (LControl): Jim Colbert had a score of 142.

• CoNT (OpenE): Gary Player scored 137 (+5) and finished five
strokes ahead of runner-up Jim Colbert.

• PixT3 (OpenE): Gary Player won the 1973 U.S. Open (golf) with a
score of 137.

Figure 8: Logic2Text table and model output in three generation settings: tightly controlled (TControl), loosely
controlled (LControl), and open-ended (OpenE).

talking about steam engines. In this case, the
description should not be considered "False".

- You should evaluate each description inde-
pendently.

- If the description does not make sense
and is impossible to evaluate (usually when
summarizing very large tables), you should
consider it as "False".

We suggest starting by reading the description
and then referring to the table to verify if it aligns
with its claims.

This data elicitation study is performed by
researchers at [REDACTED]. If you have any
questions, feel free to contact [REDACTED].
Participation in this research is voluntary. You
have the right to withdraw from the experiment
at any time. The collected data will be used
for research purposes only. We will not col-
lect any personal information. Your responses
will be linked to your anonymous Prolific ID
for the exclusive purpose of conducting our
experiment.

H PixT3 Fine-tuning Hyper-parameters

PixT3 models across all three settings (TControl,
LControl, OpenE) were fine-tuned using the same

Hyperparameter Value

Optimizer AdamW
Learning rate 0.0001
Warm-up steps 1000
Max. input patches 2048
Shuffle train data False
Epochs 30
Train batch size 8
Gradient accum. steps 32
Mixed precision fp16
Evaluation batch size 32
Eval freq. steps 250
Inf. beam search 8 beams

Table 8: Hyperparameters used in PixT3.

hyper-parameters. To prevent over-fitting, we em-
ployed early stopping based on the BLEU score
computed on the validation set every 250 steps.
Table 8 enumerates the specific hyper-parameter
values used in PixT3, with all remaining parame-
ters set to the default values defined in Pix2Struct
(Lee et al., 2023).
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