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Abstract

An essential requirement for a real-world
Knowledge Base Question Answering (KBQA)
system is the ability to detect answerability
of questions when generating logical forms.
However, state-of-the-art KBQA models as-
sume all questions to be answerable. Recent
research has found that such models, when
superficially adapted to detect answerability,
struggle to satisfactorily identify the different
categories of unanswerable questions, and si-
multaneously preserve good performance for
answerable questions. Towards addressing this
issue, we propose RetinaQA, a new KBQA
model that unifies two key ideas in a single
KBQA architecture: (a) discrimination over
candidate logical forms, rather than generating
these, for handling schema-related unanswer-
ability, and (b) sketch-filling-based construc-
tion of candidate logical forms for handling
data-related unaswerability. Our results show
that RetinaQA significantly outperforms adap-
tations of state-of-the-art KBQA models in han-
dling both answerable and unanswerable ques-
tions and demonstrates robustness across all
categories of unanswerability. Notably, Reti-
naQA also sets a new state-of-the-art for an-
swerable KBQA, surpassing existing models.
We release our code-base1 for further research.

1 Introduction

Question answering over knowledge bases (KBQA)
(Saxena et al., 2022; Zhang et al., 2022; Mitra et al.,
2022; Wang et al., 2022; Das et al., 2022; Cao et al.,
2022; Ye et al., 2022; Chen et al., 2021; Das et al.,
2021; Shu et al., 2022; Gu et al., 2023) requires
answering natural language questions over a knowl-
edge base (KB), most commonly via generating for-
mal queries or logical forms that are then executed
over the knowledge base to retrieve the answers.
When users interact with KBs in real-world set-
tings, unanswerability of questions arises naturally.

1https://github.com/dair-iitd/RetinaQA

Users are typically unfamiliar with the schema and
data of the underlying KB. Further, KBs are also
often incomplete. While specialized models for
handling unanswerability have been proposed for
other question answering tasks (Rajpurkar et al.,
2018; Choi et al., 2018; Reddy et al., 2019; Sulem
et al., 2022; Raina and Gales, 2022), all existing
models for KBQA assume answerability of ques-
tions over the given KB.

Recently, Patidar et al. (2023) published a bench-
mark dataset called GrailQAbility incorporating
different categories of unanswerable questions.
This work also demonstrated that state-of-the-art
KBQA models perform poorly off-the-shelf for
unanswerable questions. This performance im-
proves with superficial adaptations for unaswerabil-
ity, such as adding unanswerable questions during
training and thresholding. However, such adapta-
tions significantly hurt performance for answer-
able questions. Additionally, different state-of-
the-art models struggle with different categories
of unaswerability, such as (a) questions for which
schema elements (i.e. relations or entity types) are
missing in the KB, and which therefore do not have
valid logical forms, and (b) questions for which
data elements (i.e. entities or facts) are missing
in the KB, and which therefore have logical forms
that are valid, but return empty answers on execu-
tion. This work demonstrated that there is no single
model which performs well for all categories of
unanswerable questions and answerable ones.

Our analysis of existing models reveals two key
drawbacks that make KBQA models less robust
– imperfect calibration and over-reliance on path-
based retrieval. To overcome these, we propose
a new multi-stage Retrieve, generate, and rank
architecture for KBQA named RetinaQA, which
brings together several ideas from the literature.

First, a robust KBQA model has to separate
questions that are answerable (having a valid log-
ical form) from those that are unanswerable due
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to missing schema elements (not having a valid
logical form). This requires good model calibra-
tion. Most KBQA models use generation of logical
form as their final step, which has calibration chal-
langes. Instead, since discriminative models are
generally better calibrated, RetinaQA’s final stage
discriminates among candidate logical forms, bet-
ter separating questions without any logical form.

Secondly, existing models assume answerabil-
ity, where all logical forms have accompanying
paths in the KB. These models learn to rely on
retrieved paths from the KB to generate logical
forms. However, missing data elements may break
any valid path, while the question, even though
unanswerable, still has a valid logical form. Ex-
isting models falter here, and end up generating
some other logical form corresponding to paths that
do exist in the KB. To handle such unanswerable
questions, RetinaQA additionally employs sketch-
filling-based construction. It first generates schema-
independent high-level sketches, and then grounds
these for the specific KB using relevant schema
elements retrieved for the question.

Using experiments over GrailQAbility, we
demonstrate that the performance of RetinaQA is
not only stable but also significantly better than that
of adaptations of multiple state-of-the-art KBQA
models that assume answerability, not only across
different categories of unanswerable questions, but
also for answerable ones. Interestingly, we demon-
strate that the RetinaQA architecture performs
strongly for fully answerable KBQA benchmarks
as well, and establishes a new state-of-the-art per-
formance on the GrailQA dataset.

2 Related Work

The predominant approach for supervised KBQA
uses the question to construct a logical form, which
is then executed to retrieve the answer (Cao et al.,
2022; Ye et al., 2022; Chen et al., 2021; Das et al.,
2021). State-of-the-art models use k-hop path
traversal to retrieve data paths from linked entities
in the question (Ye et al., 2022; Shu et al., 2022).
Some models, instead (Chen et al., 2021) or addi-
tionally (Shu et al., 2022), retrieve schema elements
(namely, entity types and relations) based on the
question. These utilize transformer-based decoders
to generate the target logical forms. We have ob-
served that generative models are not adequately
calibrated to separate answerable and unanswer-
able questions correctly.

In contrast, Pangu (Gu et al., 2023) uses lan-
guage models to incrementally enumerate and dis-
criminate between partial logical forms. Though
this approach is better calibrated, its path-level enu-
meration makes it brittle for questions with missing
data elements. Some retrieval-based methods (Sax-
ena et al., 2020, 2022) also perform ranking of an-
swer paths, but directly select answer nodes. These
methods maximize the similarity score between
a relation and the question. Adapting such tech-
niques to detect unanswerable questions is difficult.
In contrast, we perform contrastive-learning-based
one-shot discrimination on fully-formed logical
form candidates in the final stage.

In addition to supervised in-domain settings,
transfer (Cao et al., 2022; Ravishankar et al., 2022)
and few-shot (Li et al., 2023) settings have also
been studied for KBQA. Here, test questions in-
volve unseen KB relations and entity types. Ap-
proaches for these settings first generate high-level
sketches (also called drafts or skeletons) that cap-
ture the syntax of the target language. These
sketches are then filled in with KB-specific argu-
ments to construct complete programs, which are
finally scored and ranked. Notably, these transfer
architectures do not involve any traversal-based
component to retrieve logical forms. In contempo-
raneous work on few-shot transfer, Patidar et al.
(2024) propose the FuSIC-KBQA framework ac-
commodating one or more supervised retrievers
coupled with an LLM for retrieval reranking and
logical form generation. This demonstrates how
retrievers from existing supervised models (Shu
et al., 2022; Gu et al., 2023) can be adapted and aug-
mented using LLMs for low-supervision settings.
In principle, RetinaQA can also be accommodated
as a retriever in this framework.

Unanswerability and specialized models for de-
tecting unanswerable questions have been stud-
ied for many question-answering tasks (Rajpurkar
et al., 2018; Choi et al., 2018; Reddy et al., 2019;
Sulem et al., 2022; Raina and Gales, 2022). How-
ever, no specialized models have been proposed for
detecting unanswerable questions in KBQA. All
existing KBQA models assume that questions have
valid logical forms with non-empty answers. Even
in the transfer setting for KBQA (Cao et al., 2022;
Ravishankar et al., 2022), though the target log-
ical forms may involve schema elements unseen
during training, questions are still assumed to be
answerable. Recent work (Patidar et al., 2023)
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Figure 1: RetinaQA Architecture showing different components illustrated with an example question. Symbols l
and s represent candidate logical form and its score as Discriminator output, L the output logical form, A the final
answer, l(1) the top ranked logical form, Ex(l) the answer obtained by executing logical form l. NK and NA are
special symbols indicating No Knowledge (for logical form) and No Answer. The logical form in red under LF
Retriever would not be found if data element (C. Manning, works at, Stanford) is missing in the KB, and additionally
that in red under LF Integrator would not be found if relation works at is missing in KB schema and therefore not
retrieved by the Schema Retriever. The candidate logical form in red under Discriminator would not be found if
both of these are missing.

has published the GrailQAbility benchmark by
modifying the popular GrailQA dataset (Gu et al.,
2021) to incorporate multiple categories of unan-
swerable questions. This work also demonstrates
that answerable-only KBQA models, when super-
ficially adapted for handling unanswerability, fall
short in many ways.

3 The Problem and Our Solution

We first briefly define the KBQA with unanswer-
ability task, and then describe the architecture of
our proposed RetinaQA model.

3.1 KBQA with Unanswerability

A Knowledge Base G consists of a schema S with
data D stored under it. The schema consists of en-
tity types T and binary relations R defined over
pairs of types. Together, we refer to these as
schema elements. The data D consists of entities E
as instances of types T , and facts F ⊆ E ×R×E.
Together, we refer to these as data elements. We
follow the definition of (Patidar et al., 2023) for
defining the task of Knowledge Base Question An-
swering (KBQA) with unanswerability. A natural
language question q is said to be answerable for
a KB G if it has a corresponding logical form l,
which, when executed over G, returns a non-empty

answer A. In contrast, a question q is unanswerable
for G, if it either (a) does not have a correspond-
ing logical form that is valid for G, or (b) it has a
valid logical form l for G, but which on executing
returns an empty answer. The first case indicates
that G is missing some schema element necessary
for capturing the semantics for q. The second case
indicates that the schema S is sufficient for q, but
G is missing some necessary data elements for an-
swering it. In the KBQA with unanswerability task,
given a question q, if it is answerable, the model
needs to output the corresponding logical form l
and the non-empty answer A entailed by it, and if
it is unanswerable, the model either needs to out-
put NK (meaning No Knowledge) for the logical
form, or a valid logical form l with NA (meaning
No Answer) as the answer. While different for-
malisms have been proposed for logical forms, we
use s-expressions (Gu et al., 2021). These have
set-based semantics, functions with arguments and
return values as sets.

3.2 The RetinaQA Model

Fig. 1 shows the architecture of RetinaQA. At a
high level, RetinaQA has two stages – logical form
enumeration, followed by logical form ranking.
For logical form enumeration, RetinaQA follows
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two complementary approaches and then takes the
union. The first is path-traversal based retrieval.
Starting from linked entities in the question, Reti-
naQA traverses data-level KB paths and transforms
these to logical forms. The second is sketch-filling
based construction, which is critical when the KB
has missing data elements for the question. Here,
RetinaQA first generates logical form sketches
corresponding to the question, and then enumer-
ates semantically valid groundings for these by
retrieving relevant KB schema elements for filling
in the sketch arguments. Note that this approach
utilizes only the KB schema and avoids data. Once
candidate logical forms are so identified, RetinaQA
uses discriminative scoring to rank these logical
forms with respect to the question. We next explain
each of these components in more detail.

Entity Linker: The pipeline starts with linking
mentioned entities in the question with KB entities
E. This is required for both logical form retrieval
and logical form construction. We use an off-the-
shelf entity linker (Ye et al., 2022) previously used
in the KBQA literature (Shu et al., 2022; Gu et al.,
2023). More details are in the Appendix (A.1). If
the mentioned entities are missing in the KB, the
entity linker returns an empty set.

Logical Form Retriever: As the first approach
for enumerating logical forms, RetinaQA uses KB
data path traversal (Ye et al., 2022). RetinaQA
traverses 2-hop paths starting from the linked en-
tities and transforms these to logical forms in s-
expression. These logical forms are then scored
according to their similarity with the question, and
the top-10 logical forms are selected for the next
stage, as illustrated under LF Retriever in Fig. 1.
Following (Ye et al., 2022), we score a logical form
l and question q as:

s(l, q) = LINEAR(BERTCLS([l; q])) (1)

and optimize a contrastive objective for ranking:

Lret = − exp(s(l∗, q))
exp(s(l∗, q)) +

∑
l∈L∧l ̸=l∗ exp(s(l, q))

(2)
where l∗ is the gold-standard logical form for q,
and L is the set of logical forms similar to l∗. Note
that the transformation to logical forms from KB-
paths only covers certain operators (such as count),
but not some others (such as argmin, argmax), so
that this enumeration approach is not guaranteed to

cover all logical forms. More importantly for unan-
swerability, as illustrated in Fig. 1, this approach
cannot retrieve the logical form in red when the
relevant data path in the KB is broken, as by the
absence of the data element (C. Manning, works at,
Stanford) in our example.

Logical Form Constructor: The second ap-
proach used by RetinaQA for logical form enumer-
ation is sketch-filling. Drawing inspiration from the
transfer approaches for KBQA (Cao et al., 2022;
Ravishankar et al., 2022; Li et al., 2023), RetinaQA
uses logical form sketches. Sketches capture KB-
independent syntax of s-expressions with functions,
operators and literals, and replace KB-specific el-
ements, specifically entities, entity types and rela-
tions, with arguments. RetinaQA first generates
sketches using a sketch generator, and in parallel
retrieves relevant schema elements as candidates
for sketch arguments using a schema retriever,
and finally fills in arguments for each candidate
sketch using the retrieved argument candidates in
all possible valid ways using a logical form in-
tegrator. By avoiding path-based retrieval, this
approach can construct valid logical forms when
these exist, even when some relevant data element
for the question is missing in the KB, for example,
when the data element (C. Manning, works at, Stan-
ford) is missing in the KB but the relation works at
is present in the KB schema.

Sketch Generator: The sketch generator takes
the question q as input and outputs a sketch s, opti-
mizing a cross-entropy-based objective:

Lsketch = −
n∑

t=1

log(p(st|s<t, q))

Specifically, we fine-tune T5 (Raffel et al., 2020) as
the Seq2Seq model. We also perform constrained
decoding during inference to ensure syntactic cor-
rectness of the generated sketch. This step is unaf-
fected by any KB incompleteness.

Schema Retriever: To retrieve candidate ar-
guments for generated sketches, we follow the
schema retriever of TIARA (Shu et al., 2022). It
is a cross encoder and uses the form of Eqn.1 to
score a schema element x and the question q, and
optimizes the same form of the objective as for
the sentence-pair classification task (Devlin et al.,
2019). We train two retriever models, one for rela-
tions and one for types, and use the top-10 types
and top-10 relations as candidate arguments for
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each question. As illustrated in Fig. 1, this step
breaks when relevant relations, such as works at,
or entity types are missing from the KB schema.

Logical Form Integrator: This component
grounds each generated candidate sketch using the
retrieved candidate arguments and the linked enti-
ties to construct complete logical form candidates.
Each candidate sketch is grounded using every
possible combination of candidate arguments. A
symbolic checker ensures type-level validity of the
grounded logical forms for the KB G. This also
avoids a combinatorial blow-up and restricts the
space of logical form candidates. This component
does not involve any trainable parameters.

Logical Form Discriminator: This component
finally scores and ranks all the logical form candi-
dates provided by the retriever and constructor com-
ponents. A T5 encoder-decoder model is trained to
score a logical form candidate. Following Zhuang
et al. (2022), we feed a (question, logical form) pair
to the encoder, and use decoding probability for a
special token as the ranking score.2 This compo-
nent uses a contrastive learning-based optimization
objective similar to Eqn.2. We sample negative
examples randomly, but this mostly covers the set
of all negative candidates given its small size.

For a test question, the candidate logical forms
are ranked according to the predicted discriminator
scores. If the score of the top-ranked candidate
is below a threshold (tuned on the validation set),
it is classified as unanswerable i.e. L = NK and
A = NA. This helps in identifying questions for
which valid logical forms do not exist due to miss-
ing schema elements. For example, in Fig. 1, if
the logical form in red is missing from the candi-
date list, the discriminator assigns a low score to
the rank 1 logical form candidate, and NK is out-
put after thresholding. Otherwise, the top-ranked
candidate is predicted as the logical form.

The predicted logical form is then converted to
SPARQL and executed over KB. If a non-empty
answer is obtained, then the question is considered
answerable with the output as the desired answer.
On the other hand, if the answer is empty, the ques-
tion is classified as unanswerable under the missing
data elements category, i.e., A = NA.

2We use < extra_id_6 > token of T5 for tuning the
ranking score.

4 Experiments

We address the following research questions: (1)
How does RetinaQA compare against baselines for
answerable and unanswerable questions in two dif-
ferent training settings: one with only answerable
questions and another with both answerable and
unanswerable questions? (2) How does RetinaQA
perform for different categories of unanswerable
questions? (3) How does RetinaQA perform in the
answerable-only setting? (4) To what extent do
the different components of RetinaQA contribute
towards its performance in (1), (2) and (3) above?

4.1 Experimental Setup

Datasets: For research questions (1) and (2)
above, we use the GrailQAbility dataset, which
is the only KBQA dataset that contains both an-
swerable and unanswerable questions. For research
question (3), we use the two most popular KBQA
datasets with only answerable questions, namely
GrailQA and WebQSP.

GrailQA (Gu et al., 2021) is a popular KBQA
dataset that contains only answerable questions. It
contains questions at various levels of generaliza-
tion: IID (seen schema elements), compositional
(unseen combination of seen schema elements) and
zero-shot (unseen schema elements). WebQSP
(Yih et al., 2016) also has only answerable ques-
tions with Freebase as the KB, but unlike GrailQA,
where the questions are synthetically constructed,
it contains real user queries annotated with logical
forms. It only has IID test questions. GrailQA-
bility (Patidar et al., 2023) is a recent dataset that
adapts GrailQA to additionally incorporate unan-
swerable questions. The unanswerable questions
are constructed by systematically dropping data
and schema elements from the KB. More details
are added in the Appendix (A.4).
Evaluation Metrics: We primarily focus on evalu-
ating the logical form using the Exact Match (EM)
metric, which checks whether the predicted logi-
cal form is same as the gold logical form (which
is NK for unanswerable questions with missing
schema elements). We also evaluate the answers
using the F1 score, which compares the predicted
answer set with the gold answer set. For unanswer-
able questions, similar to prior work (Patidar et al.,
2023), we report two F1 scores – the regular score
F1(R) compares the list of answers based on the
given incomplete KB, and the lenient score F1(L)
which does not penalize a model for returning ideal
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Train Model Overall Answerable Unanswerable
F1(L) F1(R) EM F1(L) F1(R) EM F1(L) F1(R) EM

A

RnG-KBQA 67.80 65.60 51.60 78.10 78.10 74.20 46.90 40.10 5.70
RnG-KBQA + T 67.60 65.80 57.00 71.40 71.30 68.50 59.90 54.50 33.60
Tiara 75.05 72.84 53.69 80.03 80.00 75.63 64.95 58.31 9.20
Tiara + T 73.26 71.62 55.23 74.08 74.05 70.56 71.60 66.68 24.15
Pangu 63.09 60.06 54.55 78.72 78.7 74.00 31.40 22.25 15.13
Pangu + T 79.14 77.89 66.53 75.52 75.51 72.37 86.48 82.70 54.68
RetinaQA 76.83 75.24 64.54 81.22 81.2 77.41 67.93 63.16 38.45
RetinaQA + T 83.30 82.18 73.76 81.19 81.17 75.01 87.59 84.22 71.20

A+U

RnG-KBQA 80.50 79.40 68.20 75.90 75.90 72.60 89.70 86.40 59.40
RnG-KBQA + T 77.80 77.10 67.80 70.90 70.80 68.10 92.00 89.80 67.20
Tiara 78.29 77.43 66.29 71.33 71.32 68.29 92.4 89.82 62.24
Tiara + T 77.67 76.94 66.87 69.89 69.88 66.98 93.43 91.24 66.65
Pangu 63.59 60.42 53.79 79.45 79.42 73.49 31.42 21.89 13.85
Pangu + T 78.29 76.91 66.14 75.25 75.22 71.62 80.46 80.32 55.03
RetinaQA 77.31 75.71 64.79 80.98 80.97 76.95 69.87 65.04 40.14
RetinaQA + T 83.30 82.69 77.45 77.91 77.91 75.16 94.21 92.38 82.10
RetinaQA - LFR + T 77.36 76.37 65.37 73.40 73.39 70.90 85.38 82.43 54.17
RetinaQA - LFI + T 74.89 73.53 53.89 70.89 70.85 68.07 83.01 78.95 25.13
RetinaQA - (SG ∪ SR) + T 64.68 62.58 52.46 72.99 72.95 68.13 47.84 41.54 20.70

Table 1: Performance of different models on the GrailQAbility dataset: overall and for answerable and unanswerable
questions. A indicates training with answerable questions, A+U with answerable and unanswerable questions, +T
indicates thresholding. Ablations of RetinaQA are named as RetinaQA - X, where we denote logical form retriever
as LFR, logical form integrator as LFI and sketch generator and schema retriever together as (SG ∪ SR).

Train Model Schema Element Missing Data Element Missing
Type Relation Mention Entity Other Entity Fact

F1(R) EM F1(R) EM F1(R) EM F1(R) EM F1(R) EM

A

RnG-KBQA + T 55.50 49.50 57.10 46.60 44.70 40.30 56.00 11.50 58.60 13.90
Tiara + T 66.27 21.70 70.21 28.06 61.01 23.43 68.91 22.97 68.29 23.63
Pangu + T 87.97 87.50 80.07 79.63 90.57 90.41 83.19 0.00 76.48 1.07
RetinaQA + T 86.32 80.31 79.41 62.08 90.72 77.83 85.71 68.07 84.68 71.14

A+U

RnG-KBQA + T 93.40 86.80 89.70 85.50 92.10 89.60 87.10 30.80 86.00 32.50
Tiara + T 91.63 83.84 90.90 72.37 94.50 71.38 91.60 50.42 90.38 52.85
Pangu + T 90.80 90.68 78.66 78.44 90.41 90.25 74.51 0.00 69.71 0.95
RetinaQA + T 94.22 90.21 88.52 81.91 94.34 86.64 93.84 75.91 94.30 76.13

Table 2: Performance of different models for the unanswerable questions in GrailQAbility, grouped by categories of
KB incompleteness. Note that missing mention entities result in invalid logical form, while other missing entities
lead to valid logical form with no answer.

answers. Specifically, F1(L) accepts answers con-
sidering both KBs – the ideal or complete KB and
new or incomplete KB. In a way, it evaluates the
model’s ability to infer missing KB elements and
predict the correct answer.

Baselines: We compare RetinaQA against ex-
isting state-of-the-art KBQA models, as per the
GrailQA leaderboard and code availability. These
are TIARA (Shu et al., 2022), RnG-KBQA (Ye
et al., 2022), and Pangu (Gu et al., 2023). Of
these, the first two are shown to the best perform-
ing models on GrailQAbility, and Pangu is a SoTA
model for GrailQA3 and WebQSP (Gu et al., 2023).
For fair comparison, we use the same entity linker
(Ye et al., 2022) and T5-base as base LLM for all

3https://dki-lab.github.io/GrailQA/

models. For GrailQAbility, we adapt all models
appropriately for unanswerability. Specifically, we
perform thresholding (denoted as "+ T") on logi-
cal form generation to output NK. The thresholds
are tuned on the dev set. Additionally, instead of
training the models only on answerable questions
(denoted as A training), we train the models using
both answerable and unanswerable questions (de-
noted as A+U training). Further implementation
details are in the Appendix (A.2).

4.2 Results for KBQA with Unanswerability

We first address research question (1). In Table
1, we report high-level performance of different
models on GrailQAbility. With A+U training, Reti-
naQA+T outperforms all models overall and is
about 9 pct points ahead of the closest competi-
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Train Model IID Compositional Zero-Shot
F1(L) F1(R) EM F1(L) F1(R) EM F1(L) F1(R) EM

A

RnG-KBQA 85.50 85.40 83.20 65.90 65.90 60.20 72.70 72.70 67.30
TIARA 86.53 86.47 84.52 72.02 72.02 64.93 74.24 74.24 67.60
Pangu 82.00 81.97 79.09 71.63 71.63 65.95 77.02 77.02 70.18
RetinaQA 87.94 87.90 85.85 73.92 73.92 67.48 74.84 74.84 69.68

A+U

RnG-KBQA 85.40 85.30 83.30 65.80 65.80 60.80 66.90 66.90 62.60
TIARA 82.38 82.36 80.57 65.16 65.16 59.84 58.50 58.50 54.65
Pangu 81.08 81.01 76.85 77.43 77.43 69.52 78.01 78.01 70.42
RetinaQA 89.00 88.98 87.06 71.69 71.69 65.55 73.59 73.59 67.51

Table 3: Performance of different models for answerable questions in the GrailQAbility dataset, for IID, composi-
tional, and zero-shot test scenarios. Names have the same meanings as in Table 1.

tor (Pangu+T) in terms of EM. For unanswerable
questions, RetinaQA achieves a 16 pct points im-
provement, while being consistently better for an-
swerable questions. Unsurprisingly, thresholding
helps all models for unanswerable questions and
hurts slightly for answerable ones. This drop is rel-
atively small for Pangu and RetinaQA, suggesting
that these are better calibrated due to their discrim-
inative training.

Next, we address research question (2). Table 2
drills down on performance for different categories
of unanswerability. First, we observe that for the
baselines, performance varies significantly across
different categories. Pangu performs well for miss-
ing schema elements but is the worst model for
missing data elements. TIARA is the best base-
line for missing data elements but does not per-
form as well for missing schema elements. We
further analyze such variability in performance for
the baselines in the Appendix (Sec. A.3.1). Reti-
naQA performs the best by a large margin for ques-
tions with missing data elements, and compares
favorably with Pangu for missing schema elements,
making it the overall model of choice across dif-
ferent categories of unanswerability. We also note
that RetinaQA+T results shows little degradation
for questions with missing data (which have valid
logical forms), and huge gains for questions with
missing schema elements.

In the A training setting, as a testimony to its
robustness, RetinaQA achieves comparable perfor-
mance for answerable and unanswerable questions,
with an EM gap of only 4 pct points. In contrast,
this gap ranges 18 to 45 pct points for other models.
Other trends are very similar to the A+U setting.

Additionally, we see that RetinaQA largely out-
performs existing models across different general-
ization settings for answerable questions (Table 3).
RetinaQA performs the best for IID and composi-
tional generalization, but for zero-shot generaliza-

tion, RetinaQA performs slightly worse than Pangu.
This is mainly because of the trade-off related to
path traversal, as we explain in Section 4.4.

For unanswerable questions (Table 4), Reti-
naQA outperforms all existing models for both IID
and zero-shot generalization. Furthermore, we ob-
serve that the difference between EM and F1(R)
scores is the smallest by far for RetinaQA, indicat-
ing that it not only predicts unanswerability cor-
rectly but also does so for the right reason.

Model IID Zero-Shot
F1(R) EM F1(R) EM

RnG-KBQA + T 94.30 75.90 85.90 59.50
TIARA + T 95.10 77.77 87.86 56.88
Pangu + T 80.51 57.52 80.15 52.85

RetinaQA + T 97.01 89.94 88.31 75.22

Table 4: Performance of different models for IID and
zero-shot test scenarios for unanswerable questions in
GrailQAbility for A+U training. Names have the same
meanings as in Table 1.

Additionally, In Table 5, we further scrutinize
the performance of the models for sub-categories
of zero-shot unanswerable questions. We observe
that RnG-KBQA and Pangu perform better in terms
of both EM and F1(R) for these categories. How-
ever, this is a natural benefit of mostly predicting
L = NK for unanswerable questions, which re-
sults in extremely poor performance for the missing
data element category, as we have already seen in
Table 2. As seen earlier, here too all the baseline
models have huge variations in performance across
full z-shot and partial z-shot categories. This is in
contrast to RetinaQA, which achieves comparable
performance. It does so without compromising on
performance for missing data elements category.
This further establishes the stability of RetinaQA
across various generalization categories and makes
it more reliable for real-world scenarios.
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Model Full Z-Shot Partial Z-Shot
F1(R) EM F1(R) EM

RnG-KBQA + T 89.70 86.70 83.10 71.00
TIARA + T 90.64 78.82 82.64 54.14
Pangu + T 89.66 89.66 79.94 79.46

RetinaQA + T 88.67 77.83 80.89 70.54

Table 5: Performance of different models for missing
schema elements - partial zero-shot and full-zero test
scenarios in GrailQAbility for A+U training. Names
have the same meanings as in Table 1.

4.3 Results for Answerable-only KBQA
We designed RetinaQA for stability across answer-
able and unanswerable questions, and this natu-
rally trades off performance across the two cate-
gories. However, we observed that RetinaQA per-
formed the best for answerable questions as well in
GrailQAbility. Motivated by this, we next address
research question (3), by evaluating it for tradi-
tional KBQA benchmarks with only answerable
questions. Since all questions are answerable in
this setting, we (re-)introduce Execution Guided
Check (EGC) as the final step for all models in-
cluding RetinaQA. With EGC, models output the
highest-ranked logical form which when executed
over the KB returns a non-empty answer.

In Table 6, we report results on GrailQA. We
find that overall RetinaQA beats previous the state-
of-the art by around 1.2 pct points in terms of F1
and 1.8 pct points in terms of EM, establishing a
new state-of-the-art for this dataset. We also see
that, as for answerable questions in GrailQAbility,
here too RetinaQA performs the best for IID and
compositional generalization, and performs almost
at par with Pangu for zero-shot generalization.

Further analysis shows that RetinaQA performs
well across questions of various complexities. It is
the best model for 1, 2, and 4-hop questions, while
it is outperformed by TIARA for 3-hop questions.
More details are in the Appendix ( A.3.2).

In Table 7, we record results for WebQSP. Here,
RetinaQA outperforms Pangu by 0.6 pct points
but ranks below TIARA by 0.2 pct points. These
numbers further establish the usefulness of its ar-
chitecture for answerable-only KBQA as well.

4.4 Ablation Study
Finally, we address the research question (4). Here,
we assess the individual contributions of the dif-
ferent components in RetinaQA. First, we remove
(one at a time) the three key components: the logi-
cal form integrator (LFI), the logical form retriever

(LFR), and the coupled sketch generator (SG) and
schema retriever (SR).

Our ablation study focuses on specific question
categories. First, we study the recall of the correct
logical form within the candidate set for unanswer-
able questions for missing data elements (see Table
12 in Appendix). We see that if we remove SR
and SG, there is a significant 65 pct point decrease
in recall. In contrast, removing LFR has little im-
pact. This is because LFR relies on path traversal
to retrieve candidate logical forms This fails when
paths are incomplete, preventing RetinaQA from
effectively enumerating logical forms. This agrees
with our intuition that when essential data elements
are missing, we need retrieval techniques that are
independent of path traversal.

Next, we do a similar study of recall for answer-
able questions (Table 11 in Appendix). We observe
that eliminating LFR leads to a significant reduc-
tion in recall for zero-shot questions. This is unlike
removing SG and SR, which only affects i.i.d. ques-
tions. This is because retrieval techniques that do
not rely on path traversal have a larger search space,
resulting in more errors when encountering unseen
schema elements. In contrast, path traversal-based
methods are grounded at the fact level. This re-
sults in a smaller search space and therefore fewer
errors for zero-shot questions. Thus, path-traversal-
dependent logical form retrieval is important for
zero-shot generalization of answerable questions.

Finally, we evaluate the impact of LFI and EGC.
Both reduce the space of logical form candidates
for the discriminator, by pruning out invalid logical
forms. Table 10 in the Appendix records perfor-
mance of ablations of RetinaQA in the answerable
setting on GrailQA. By switching off LFI and EGC
separately, we see drops in performance by about 4
pct points and 2 pct points respectively. However,
on switching off both together, we observe a 17 pct
point drop. This shows that these components can
compensate for each other, but RetinaQA needs at
least one of them for good performance.

Additional ablations show that SG and SR are
more helpful for complex (3-hop and 4-hop) ques-
tions. See Sec. A.3.2 for more details.

4.5 Error Analysis

We have done detailed error analysis for RetinaQA
on GrailQAbility. Here, we present a brief sum-
mary of it. For this, we used the the best ver-
sion RetinaQA, which is RetinaQA+T with A+U
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Model Overall IID Compositional Zero-Shot
F1 EM F1 EM F1 EM F1 EM

RnG-KBQA 76.80 71.40 89.01 86.70 68.90 61.70 74.70 68.80
TIARA 81.90 75.30 91.20 88.40 74.80 66.40 80.70 73.30
Pangu 82.16 75.90 86.38 81.73 76.12 68.82 82.82 76.29
RetinaQA’ 83.33 77.84 91.22 88.58 77.49 70.48 82.32 76.20

Table 6: Performance of different models on GrailQA (validation set) for IID, compositional, and zero-shot test
scenarios. RetinaQA’ denotes RetinaQA with EGC

Model F1
TIARA 75.80
Pangu 75.00
RetinaQA’ 75.60

Table 7: Performance of different models on WebQSP
(test set) containing only IID answerable questions. We
use the WebQSP evaluation script that only reports F1.
RetinaQA’ = RetinaQA + EGC

training. We found three main error categories:
(1) thresholding error, where, due to threshold-
ing, RetinaQA incorrectly predicts NK for a ques-
tion with a valid logical form; (2) reranking error,
where the discriminator makes a mistake in scoring,
though the candidates contain the correct logical
form, and (3) recall error, where the correct logical
form is not in the set of discriminator candidates.
This may be due to errors in entity linking, logical
form retrieval or logical form construction.

On the subset of answerable questions, thresh-
olding and reranking errors occur for around 38%,
and 30% of the total errors respectively. Improv-
ing discriminator calibration can potentially reduce
these errors. The most frequent error is recall error
(70%). Among these, entity linking errors occur
80% of the time. This clearly suggests that im-
proving entity linkers can significantly improve the
overall performance of KBQA models. Unsurpris-
ingly, the majority of the errors across categories
occur for the zero-shot generalization questions.
Detailed statistics are in Table 8 in the Appendix.

For unanswerable questions, we first look at
those with missing data elements (Table 9). We
find that the vast majority of errors (around 90%)
are recall errors, out of which about 72% are at-
tributed to the entity linker. Next, thresholding er-
ror accounts for 45% of the total errors. Reranking
errors only occur in 5% of total error. This suggests
that while the ranking of the logical forms accord-
ing to discriminator assigned scores is correct, the
absolute scores have errors.

Finally, we look at the subset of unanswerable

questions with missing schema elements. Since for
these the gold logical form is NK, thresholding er-
ror is the only source of error. This occurs for only
14% of the questions (under the same category),
out of which 90% of errors occur for zero-shot gen-
eralization. This suggests that RetinaQA broadly
performs well in this setting but the scores assigned
to logical forms with unseen schema elements have
occasional errors.

5 Conclusions

We have presented RetinaQA, the first specialized
KBQA model that shows robust performance for
both answerable and unanswerable questions. To
address this challenging task, RetinaQA identifies
candidate logical forms using data-traversal-based
retrieval, as well as schema-based generation via
sketch-filling that bridges over data gaps that break
traversal. RetinaQA also discriminate between
fully formed candidate logical forms at the final
stage instead of generating these. This enables it
to better differentiate between valid and invalid
logical forms. In doing so, RetinaQA unifies key
aspects of different existing KBQA models that
assume answerability in IID and transfer settings.

Unlike superficial adaptations of existing SoTA
models for unanswerability, we show that Reti-
naQA demonstrates stable performance across
adaptation strategies, question categories (answer-
able and different categories of unanswerable ques-
tions) and different generalization settings. We also
show that RetinaQA performs significantly better
for unanswerable questions and almost at par for
answerable ones. RetinaQA also performs well
with only answerable training, which is a likely
real-world scenario. RetinaQA also retains this sta-
bility and performance for answerable-only KBQA
benchmarks, achieving a new state-of-the-art per-
formance on the answerable-only GrailQA dataset.
We release our code-base 4 for further research.

4https://github.com/dair-iitd/RetinaQA
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Limitations

A sketch, while free of references to the KB, still
specifies the length of the path to be traversed in
the KB. The subsequent grounding step is limited
by this and cannot adapt the path length after re-
trieving schema elements from the KB. RetinaQA
inherits this limitation from existing sketch gener-
ation approaches (Cao et al., 2022; Ravishankar
et al., 2022). We hope to improve this in future
work.

For unanswerable questions without valid logical
forms for the given KB, RetinaQA only outputs
l =NK. However, this does not explain the gap in
the schema, which, if bridged, would have make
this question answerable. The situation is similar
for unanswerable questions with valid logical forms
but missing data elements. This is also an important
area of future work.

Risks

Our work does not have any obvious risks.
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A Appendix

A.1 Entity Linker
We use an off-the-shelf entity linker (Ye et al.,
2022) previously used in the KBQA literature (Shu
et al., 2022; Gu et al., 2023), which uses a standard
3-staged pipeline - Mention Detection, Candidate
Generation, and Entity Disambiguation. Mention
Detector first identifies span of text from question
which corresponds to name of an entity. For each
mention a set of candidates entities are generated
using alias mapping of FACC1 (Gabrilovich et al.,
2013). Final stage is a neural disambiguator which
rank candidates given the question and context of
entities.
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Components Overall IID Compositional Zero-shot
#questions 6808 3386 981 2441
total_errors 1691 445 347 899

thresholding_error 637 161 113 363
reranking_error 508 49 134 325

recall_error 1183 396 213 574
entity_linking_error 949 343 136 470

schema_retriever_error 460 61 77 322
sketch_parser_error 420 43 154 22

Table 8: Component wise errors of RetinaQA + T (A+U) for answerable questions. Note that reranking errors and
recall errors are non-intersecting, while thresholding errors are a subset of total errors i.e. union of reranking and
recall errors. Also, recall error is the union of entity_linking_error, schema_retriever_error, and sketch_parser_error
while individually these are intersecting.

Components Overall IID Zero-shot
#questions 1196 530 666
total_errors 287 127 160

thresholding_error 131 59 72
reranking_error 16 5 11

recall_error 271 122 149
entity_linking_error 195 77 118

schema_retriever_error 56 29 27
sketch_parser_error 49 27 22

Table 9: Component wise errors of RetinaQA+ T
(A+U) for data element missing unanswerable questions.
Names have the same meanings as in Table 8

A.2 Implementation Details

To perform experiments for GrailQAbility, we first
update the original Freebase KG using codebase5.
To test baselines for GrailQAbility, we use the ex-
isting codebases6 7 8 and make changes in code
to adapt for answer-ability detection. All of the
baselines assumes answerability and employs Exe-
cution Guide Check i.e. if a logical form returns an
empty answer upon execution then they select next
best logical form. We have removed this constraint
while performing experiments for GrailQAbility.
Also for A+U training we have made code changes
so that models can be trained to predict logical form
as NK unanswerable questions. We implement
our model using Pytorch (Paszke et al., 2019) and
Hugging Face9. All the experiments of RetinaQA
are performed using an NVIDIA A100 GPU with
80 GB RAM. Above mentioned configurations are
the maximum ones, since we have different com-
ponents and all do not require same compute con-
figurations. For Sketch Generation we fine tune

5https://github.com/dair-iitd/GrailQAbility
6https://github.com/dki-lab/Pangu
7https://github.com/microsoft/KC/tree/main/

papers/TIARA
8https://github.com/salesforce/rng-kbqa
9https://huggingface.co/

Seq2Seq t5-base model for 10 epochs (fixed). We
use learning rate of 3e-5 and batch size of 8. We use
beam search during decoding with beamsize = 10.
We also check syntactic correctness while selecting
top ranked sketch. For WebQSP sketch genera-
tor is trained for 15 epochs with batch size of 2
Training time for sketch parser is around 3 hours.
LF Integrator is a parameter free module and does
not require any training. Since, LF Integrator con-
verts logical forms into query-graphs and validates
type-level constraints, it is a costly operation. So
we employ parallel processing(with cache) for this
stage i.e. we use 4-6 CPUs (each with 2 cores) to
create pool of valid logical forms. It takes around
5 hours to generate candidates for all train, dev
and test data. Finally we train Discriminator which
fine-tune t5-base Seq2Seq model. We train Dis-
criminator with learning rate 1e-4 and batch size 4
for 10 epochs. For discriminator training we use
AdmaW (Loshchilov and Hutter, 2019) optimizer
and linear scheduler with warm up ratio of 0.01.
We use 64 negative samples per question for con-
trastive training. Generally discriminator model
converges in 2 epochs of training so we use pa-
tience of 2 i.e. if best model does not change for
consequent 2 epochs then we assume model has
converged and will stop training. It takes around 7-
8 hours to train a discriminator. We train WebQSP
for 15 epochs with patience equal to 10 and 32 neg-
ative samples. Inference time for discriminator is
few minutes.

For A+U training components like Entity Linker,
Schema Retriever, LF Retriever are trained only
on question where logical form is known. While
training for questions with l ="NK" is performed
only at last step.

All the results presented for single run (however
the reproducibility of results is already verified).
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Model Overall IID Compositional Zero-Shot
F1 EM F1 EM F1 EM F1 EM

RetinaQA’ 83.33 77.84 91.22 88.58 77.49 70.48 82.32 76.2
RetinaQA’ - EGC 80.62 75.68 89.81 87.7 74.78 68.1 79.03 73.58
RetinaQA’ - LFI 78.65 73.1 88.1 84.81 75 67.31 76.04 70.4
RetinaQA’ - LFR 71.8 68.33 87.33 85.56 69 63.47 66.19 62.83

RetinaQA’ - (SG ∪ SR) 73.2 66.78 77.06 72.13 60.63 54.43 76.73 69.56
RetinaQA’ - LFI - EGC 63.29 59.99 79.84 77.84 59.33 54.03 57.73 54.68

Table 10: Ablation experiment on GrailQA dev set. EGC refers to Execution Guided Check and LFI refers to
Logical Form Integrator, RetinaQA’ = RetinaQA + EGC

Model Overall IID Compositional Zero-shot
RetinaQA 82.62 88.3 78.29 76.49

RetinaQA- LFR 74.24 85.91 67.38 60.79
RetinaQA- (SG ∪ SR) 71.94 74.22 65.24 71.49

Table 11: Ablation experiment of Logical Form Recall(%) on GrailQAbility test set for Answerable questions. LFR
refers to Logical Form Retriever, SG refers to Sketch Generation and SR refers to Schema Retriever.

Model Overall IID Zero-shot
RetinaQA 77.34 76.98 77.63

RetinaQA- LFR 77.17 76.79 77.48
RetinaQA- (SG ∪ SR) 12.29 10 14.11

Table 12: Ablation experiment of Logical Form Cover-
age(%) on GrailQAbility test set (Unanswerable ques-
tions - Data Element Missing). LFR refers to Logical
Form Retriever, SG refers to Sketch Generation and SR
refers to Schema Retriever.

#relation 1 2 3 4
Pangu 82.8 63.5 24.7 0.0

TIARA 81.2 64.7 29.3 50.0
RetinaQA 83.7 68.5 26.9 50.0

RetinaQA - LFR 76.3 50.9 25.1 50.0
RetinaQA - (SP ∪ SR) 72.9 56.9 12.0 0.0

Table 13: Performance for different types of questions
on the GrailQA validation set in terms of EM. #relation
denotes the number of relations in the s-expression.

We release our code-base10 for the community.

A.3 In Depth Analysis

A.3.1 Trade-off Analysis
Sec 4.4 describes how individual components
strengthens performance for different types of an-
swerabilties and unanswerabilties. This section
discusses an important trade-off i.e. Traversal
dependent Retrieval Vs Traversal independent
Retrieval : Traversal based Retrieval methods per-
form step by step enumeration over KB to retrieve
next possible set of candidates(which is retrieval at
data level). While Traversal independent Retrieval

10https://anonymous.4open.science/r/
RETINAQA-122B

based method generate candidates based on seman-
tic similarity with the question(which is at schema
level). So for Data Element Missing unanswerabil-
ity where data paths are missing, Traversal based
methods will never find correct path during enu-
meration and hence will not be able to reach to a
correct logical form. While Traversal independent
method can generate correct logical form. Hence
Traversal independent methods performs well for
data element missing.
At the same time the search space for Traversal
independent methods is much larger as it lacks KB
grounding information. So for zero-shot generali-
sation where schema elements are unseen Traversal
dependent tends to get confused between similar
schema elements.

A.3.2 Complexity Analysis
Tab. 13 records the performance of RetinaQA for
queries of different complexities represented by
number of relations in s-expression (or number of
hops in answer path). We can see that for 1-hop
and 2-hop questions RetinaQA is better than both
baselines, while for 3-hop questions RetinaQA is
not the best but is better than Pangu. Further by
comparing ablations i.e. without Logical Form Re-
triever and without (Sketch Generation and Schema
Retriever) we can see that Sketch Generation and
Schema Retriever contribute more to the perfor-
mance of 3-hop and 4-hop questions.

A.4 GrailQAbility - Dataset Creation

We summarise the dataset creation algorithm of
GrailQAbility (Patidar et al., 2023) here. In a
nutshell, the authors start with a standard KBQA
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dataset containing only answerable questions for
a given KB. Then they introduce unanswerability
in steps, by deleting schema elements (entity types
and relations) and data elements (entities and facts)
from the given KB. They mark questions that be-
come unanswerable as a result of each deletion
with appropriate unanswerability labels. So start-
ing from a larger set of all answerable questions,
the authors create two subsets of data - one set
of answerable questions and another set of unan-
swerable questions (which are unanswerable due
to missing structures in graph/KB).
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