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Abstract

In spoken dialogue, even if two current turns
are the same sentence, their responses might
still differ when they are spoken in different
styles. The spoken styles, containing paralin-
guistic and prosodic information, mark the
most significant difference between text and
speech modality. When using text-only LLMs
to model spoken dialogue, text-only LLMs can-
not give different responses based on the speak-
ing style of the current turn. In this paper, we
focus on enabling LLMs to listen to the speak-
ing styles and respond properly. Our goal is
to teach the LLM that "even if the sentences
are identical if they are spoken in different
styles, their corresponding responses might be
different". Since there is no suitable dataset
for achieving this goal, we collect a speech-
to-speech dataset, StyleTalk, with the follow-
ing desired characteristics: when two current
speeches have the same content but are spo-
ken in different styles, their responses will be
different. To teach LLMs to understand and
respond properly to the speaking styles, we
propose the Spoken-LLM framework that can
model the linguistic content and the speak-
ing styles. We train Spoken-LLM using the
StyleTalk dataset and devise a two-stage train-
ing pipeline to help the Spoken-LLM better
learn the speaking styles. Based on extensive
experiments, we show that Spoken-LLM out-
performs text-only baselines and prior speech
LLMs methods. 1

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in dialogue genera-
tion, natural language understanding, and common-
sense reasoning (Wei et al., 2022; OpenAI, 2023).
While LLMs mostly focus on text modality, speech

1Demo of the StyleTalk dataset and output of
Spoken-LLM are at https://sites.google.com/view/
spoken-llm/home. Code and dataset are available at https:
//github.com/DanielLin94144/StyleTalk.
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   Dialogue context
A : Can you believe this
amazing weather we're
having? It's like summer
came early!
B : Totally, I've already
planned a beach day for
tomorrow! Gonna soak
up some sun!
A : Oh, that sounds
perfect. Count me in, I
could use a day to just
relax and enjoy the sun.

1<cheerful, fast, normal>
2 <sad, slow, normal>    

Well, let's keep our hopes up that it clears up quick!
Oh no, that's sad news. It might spoil our plans ...

Expressive
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 Current text
B: Looks like it
might rain later
this week though.

Speech-to-Text

: Frozen parameters
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<friendly, fast, loud>
  
<neutral, slow, quiet>

Figure 1: The overview framework of Spoken-LLM.
(c1,r1) and (c2,r2) are the current and response speech
sample pairs. c1 and c2 are fed into the model individu-
ally.

represents the most natural form of human commu-
nication in our daily lives. In this work, we aim to
inject speech modality for modeling spoken con-
versation with Multi-modal LLMs (MM-LLMs).
The main goal is to develop a humanizing agent ca-
pable of listening, understanding, and engaging in
dialogue with humans, ultimately leading to higher
user satisfaction.

Speech signals contain linguistic aspects (words,
phonetics, syntax, and semantics), paralinguistic
elements (emotions and speaker characteristics),
and prosodic factors (speaking style, emphasis, and
attitude). In human conversation, while the dia-
logue primarily relies on the lexical aspect, the
speaking styles convey rich information beyond
text, and can even alter the semantics of the spoken
sentences (Castro et al., 2019). Neglecting spoken
styles can lead to misinterpretation of communica-
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tion or unnatural human interaction. For example,
as shown in Figure 1, the current speech with the
same current text (Looks like it might rain later this
week though.) but different speaking styles. The
friendly speaking style leads to a cheerful response
while speaking in a slow and neutral tone leans
toward a sad and negative response.

Although there are recent studies on MM-LLMs
for speech/audio and text, most of the existing
studies focus on content-centric Spoken Language
Modeling (SLM) (Lakhotia et al., 2021; Kharitonov
et al., 2022), joint text and speech processing
tasks (Rubenstein et al., 2023; Chou et al., 2023;
Maiti et al., 2023; Nachmani et al., 2023; Zhang
et al., 2023) or general audio perception and hear-
ing ability (Tang et al., 2023; Gong et al., 2023a;
Deshmukh et al., 2023). There is less attention
on spoken dialogue with advanced methods and
suitable datasets for modeling paralinguistics and
speaking styles of spoken responses.

To model spoken dialogue with a generative lan-
guage model, dGSLM (Nguyen et al., 2023) pro-
poses a dual-tower SLM on discrete speech units to
model two-channel spoken dialogue, but the gen-
erated spoken sentences lack semantic meaning.
ParalinGPT (Lin et al., 2023b) organizes tasks in
the sequence of current paralinguistic attribute pre-
diction, response paralinguistic attribute prediction,
and response text generation with autoregressive
conditioning. However, it only uses the speech sen-
timent as speaking style, which might be primarily
based on textual information, and how the speak-
ing styles affect the spoken response is unclear. A
concurrent work E-chat (Xue et al., 2023) enhances
LLM to generate responses in different emotional
contexts, but the training and evaluation data are
entirely generated by GPT-3.5 without human su-
pervision, equivalent to distillation and prompting
of GPT-3.5. It can only generate response text, con-
straining its capacity to control response style or
speech-to-speech modeling.

To overcome the current limitation, we collect
a novel speech-to-speech conversational dataset
named StyleTalk. This dataset is the first spoken
conversation benchmark with the same dialogue
context and input sentence in different speaking
styles, accompanied by corresponding expressive
spoken responses for speech-to-speech modeling.
The dataset will be released upon the paper’s ac-
ceptance.

Based upon the StyleTalk dataset, we pro-

Dataset S2S Expressive Purpose Diff styles&resp
IEMOCAP ✓ ✓ recognition ✗

Switchboard ✓ ✓ recognition ✗

MUStARD ✓ ✓ recognition ✗

SEMAINE ✓ ✓ recognition ✗

MELD ✓ ✓ recognition ✗

MEISD ✓ ✓ recognition ✗

MSP-improv ✓ ✓ recognition ✗

SCQA ✗ ✗ question answering ✗

NMSQA ✓ ✗ question answering ✗

OpenSAQA∗ ✗ ✓ question answering ✗

E-chat200∗ ✗ ✓ dialogue generation ✗

StyleTalk ✓ ✓ dialogue generation ✓

Table 1: The list of spoken conversation datasets. “S2S"
means speech-to-speech, and “Diff styles&resp" stands
for the same sentence in different speaking styles and re-
sponses. In the “Purpose" column, “recognition" refers
to recognizing the speaking style attributes in the speech,
“question answering" means the task is formulated as
the (question, answer) pair, and “dialogue generation" is
the general chatbot agent to response any kinds of input.
The datasets noted with ∗ are purely generated by LLM.

pose a multi-modal two-stage training method
named Spoken-LLM for spoken dialogue mod-
eling. Spoken-LLM is a fusion of the widely-used
open-sourced LLM (Llama 2-Chat (Touvron et al.,
2023)) and a self-supervised speech emotion rep-
resentation model (emotion2vec (Ma et al., 2023)).
The proposed model can predict response speaking
style and text, enabling the subsequent expressive
Text-to-Speech (TTS) model to generate natural
and diverse speech responses. We validate the per-
formance through objective and subjective evalua-
tions of spoken responses. With the same backbone
model, the proposed method outperforms the text
and speech LLM baseline in lexical/semantic sim-
ilarity and response style F1 score. The human
evaluation also indicates that the proposed method
yields more reasonable and proper response speech
than the text-only LLM baseline approach.

2 Dataset: StyleTalk

2.1 Overview

StyleTalk is a speech-to-speech conversation
dataset. Each sample in the dataset comprises dia-
logue context (in text), current turn in speech (anno-
tated with speaking style), and the response turn in
speech (annotated with speaking style) (illustrated
in Figure 1).

StyleTalk features the following characteristics:
Multiple samples in StyleTalk share the same di-
alogue context, the text of the current input turn,
but they have different responses speech since the
speaking style of the current turn is different. To
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Automatic data generation

Expressive speech
synthesis

Human annotators filtering

Dialogue
topic

Dialogue context

Curr text+curr style 1

Curr text+curr style 2

Curr text+curr style 3

Resp text 1+resp style 1

Resp text 2+resp style 2

Resp text 3+resp style 3

Select the spoken response sounds
most natural corresponding to the
current speech?

None of above
sounds natural

Current
speech

(style 1)

Dialogue context

Prompt

StyleTalk

Figure 2: Data collection pipeline of StyleTalk. The
details of instruction and prompt template are in the
Appendix.

the best of our knowledge, no existing corpora fo-
cus on such a characteristic.

By training on this dataset, we hope the LLM
can learn to use the dialogue context and current
turn, specifically, the speaking style, to predict the
next turn. Given that speaking styles convey addi-
tional information beyond text, incorporating style
modeling helps to disambiguate human intent and
facilitates dialogue engagement.

2.2 Data Collection
In this section, we introduce how the dataset is
collected. The data collection pipeline includes
three stages: (1) using LLM for data generation
text dialogue with style annotation, (2) using an
expressive TTS model to synthesize speech from
text dialogue, and (3) recruiting human annotators
to filter the dataset. We illustrate the data collection
pipeline in Figure 2.

2.2.1 LLM for Data Generation
Crafting a scenario with the same context and
words but expressed in different speaking styles
is a non-trivial task. Most dialogue corpora typ-
ically consist of one style, making it challenging
to study the impact of various speaking styles on
spoken responses.

Recently, LLMs have demonstrated human-level
knowledge and powerful data generation capabil-
ities when provided with well-designed prompts

and instructions. In light of this, we propose lever-
aging GPT-4 (OpenAI, 2023) to generate spoken
dialogue set consisting of a dialogue context, the
same sentence presented in three different speak-
ing styles, and three corresponding responses. To
let LLM understand the speaking style informa-
tion, the speaking style is represented in text by
surrounded by special marker, for example, <emo-
tion, speed, volume>. To increase the diversity of
the dialogue, we prompt the GPT-4 with 17 com-
mon daily dialogue topics: school, work, family,
health, entertainment, travel, food, sports, finance,
technology, music, movies, books, games, beauty,
shopping, and weather. Additionally, we use decod-
ing with temperature sampling to ensure diversity
in the dataset. The prompt template is shown in the
appendix 6.

2.2.2 Expressive Speech Synthesis
To generate high-quality speech with style and
prosody control, we utilize an industrial-grade Mi-
crosoft Azure Text-to-Speech (TTS) system2. For
the speaking style, we employ emotion (neutral,
cheerful, sad, friendly, unfriendly), speeds (slow,
medium, fast), and volumes (quiet, medium, loud)
for prosodic control. There are nine speakers, with
four male and five female speakers.

2.2.3 Human Annotator Filtering
While LLMs can effectively follow instructions
and generate reasonably coherent dialogue samples,
LLMs are trained on textual data and lack exposure
to human-human spoken dialogue. Additionally,
the expressive TTS system may not achieve per-
fect naturalness and style-following in synthesizing
speech under style conditions. The automatically
generated data may exhibit unnatural characteris-
tics for human speakers. Therefore, additional ex-
amination is necessary to check the quality of the
speech data and the overall naturalness of spoken
dialogue sample pairs.

To ensure data quality, we request human listen-
ers to participate in a listening test conducted on the
Amazon Mechanical Turk platform. An illustration
of the listening test is provided in Figure 2. In this
evaluation, participants are presented with a dia-
logue context text, the current spoken turn and three
response spoken turns. They are then instructed to
choose the most suitable response among the three
options. Alternatively, if they perceive all three

2https://azure.microsoft.com/en-us/products/ai-
services/text-to-speech
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responses as unnatural, they can select the option
"None of the above is natural." Participants need to
be aware of the style of the current turn and differ-
entiate between the three response turns to identify
the most natural one. Through this evaluation, we
aim to filter out sample pairs that are deemed un-
natural or indistinguishable. Details are shown in
Appendix A. We found out that only around 33%
samples successfully passed the human filtering
process. This suggests that LLM-generated spoken
samples are either not natural to human perception
or the speaking style does not distinctly influence
spoken responses.

2.3 Data split

After manual filtering, we split the filtered data
into training and evaluation sets with dialogue sets.
“Sample" means a current and response speech pair.
The detailed data statistics are shown in Appendix
Table 7.
Train set: The training set is carefully curated
through manual filtering, resulting in 1,878 dia-
logue sets and 1,986 samples.
Evaluation set: The evaluation set contains 486 di-
alogue sets and 981 samples, most of the dialogue
sets have two to three speaking styles for the cur-
rent text.
In addition to the train and evaluation set, a fully
LLM-generated unfiltered set is introduced for
data augmentation since the size of the training set
is limited. The unfiltered set consists of 5,777 dia-
logue sets and 16,472 samples. It is crucial to note
that this data is not subject to human supervision,
and as such, the samples may not align perfectly
with human standards.

3 Spoken-LLM framework

3.1 Overview

The framework of Spoken-LLM is illustrated in
Figure 1. The main components include the large
language models, speaking style encoder, speech-
to-text conversion, and expressive TTS system. Ds

and Dt denote the dimension of the speech en-
coder’s output and LLM’s input space, respectively.

We formulate the task as follows: given a multi-
turn spoken dialog with dialogue context H in text
Th, a current turn C comprising speech Sc and text
Tc. The prediction response speech R includes
response style Lr and response text Tr. Note that
we use the ground truth transcripts Tc of the current
turn, since addressing speech recognition errors is

not the focus of this work. The discussion of using
ASR prediction is in section C.

3.2 Large Language Model

This study adopts the open-sourced Llama 2-Chat
7B model, derived from the fine-tuned version of
Llama 2 (Touvron et al., 2023), exhibiting opti-
mized dialogue generation capabilities. Through-
out the training process, the Llama 2-Chat model re-
mains frozen, and we introduce the trainable LoRA
adapter (Hu et al., 2021) for parameter-efficient
fine-tuning.

3.3 Speech Style Encoder

Among the self-supervised speech models (Yang
et al., 2021; Lin et al., 2023a), emotion2vec (Ma
et al., 2023) achieves state-of-the-art performance
on diverse paralinguistics-related tasks. Precisely,
it extends the data2vec 2.0 (Baevski et al., 2023)
with both utterance-level and frame-level loss us-
ing emotional speech data, and extra chunk token
embeddings are used to capture utterance-wise in-
formation.

We choose emotion2vec as the speech encoder
to extract universal paralinguistic and prosody em-
beddings. Two approaches are used for feature
extraction. (1) Utterance-level averaging embed-
ding (utt): which involves a simple averaging of
frame-wise representations to create an utterance-
level embedding. The embedding is in 1 × Ds

dimension. (2) Chunk embedding: emotion2vec
learns 10 extra chunk token embeddings to capture
both fine-grained and global speech information.
Chunk embeddings are in 10×Ds dimension.

A lightweight Connector module with layer nor-
malization and a linear model is utilized to project
the speech embeddings into the dimension of the
language model’s input space (from Ds to Dt).
Only the parameters of the connector are updated,
while the emotion2vec model remains frozen. The
number of trainable parameters for utterance and
chunk embeddings are the same.

3.4 Spoken Dialogue Modeling

1st-stage: style alignment: The first-stage training
is used to align the speech embedding with LLM
input space. To achieve this, the frozen LLM has to
predict the current input style. Only the connector
ϕ is trained. The training objective is to minimize
the cross-entropy loss for classifying Lc:

P(Lc|C, I1;ϕ), (1)
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where C = {Tc, Sc}. I1 is the task instruction
shown in Appendix F. Since this training stage
requires a reasonable amount of data to have better
alignment, we use the current speech from the
unfiltered set for training.

2nd-stage: spoken response modeling: After the
LLM can understand the speech embedding, the
LLM is optimized to predict the response style
and response text by training the LoRA adapter θ
and speech connector ϕ. The second-stage training
objective is the causal language modeling cross-
entropy loss to predict the response style Lr then
response text Tr:

P(R|H,C, I2; θ, ϕ) = P(Lr|H,C, I2; θ, ϕ)

P(Tr|H,C,Lr, I2; θ, ϕ) (2)

where H = Th and I2 is the task instruction shown
in Appendix F. The speaking style label Lr is inte-
grated into the text through special bracket markers
with the format <emotion, speed, volume>. Th and
Tc are fed into LLM subword embedding, and Sc

is passed through the speech encoder plus the con-
nector. We concatenate the resulting continuous
embeddings as the input prompt for LLM.
Warmup pre-training: Given the limited size of
the human-annotated training set, we propose lever-
aging the unfiltered set for model warmup pre-
training. This allows the model to grasp general
knowledge and understand the structure of the dia-
logue modeling task. Subsequently, we fine-tune
the model on the training set to align with human
perception, utilizing a smaller learning rate for sta-
ble training. This warmup training strategy is de-
signed to mitigate overfitting on the small training
data while maintaining good performance.

3.5 Inference
Once the model has completed training, when pre-
sented with a dialogue context and current speech
input, the initial step involves converting the speech
into text through either ground truth text in the or-
acle setup or an Automatic Speech Recognition
(ASR) model in the ASR setup. Then, the Spoken-
LLM generates response style and response text se-
quentially. The representation of the response style
is surrounded by special bracket tokens, designed
to enable the decoding of both the response style
and text. Leveraging the capability of an expressive
TTS model to control the response speaking style,
we can synthesize the generated response back into

speech. This synthesis takes into account the iden-
tified response style, and the generated response
text, resulting in a synthesized speech output that
is not only coherent but also aligns with the desired
style and content.

4 Experiments

4.1 Baseline method

All baseline methods are fine-tuned on the same
amount of training data and warmup pre-training,
with the identical LLM backbone and speech style
encoder for ParalinGPT.
Text-LLM (text-only): The initial simple baseline
is built by simply fine-tuning text-to-text LLM on
StyleTalk. This serves as a performance reference
to evaluate the model’s capability without know-
ing any explicit speaking style information. Since
the model cannot predict the response style, A ran-
domly selected response style is assigned for this
method to synthesize expressive speech.
Text-LLM (cascaded): One can represent the style
information in text to enable the model to better pre-
dict the response style and text. This approach, re-
ferred to as the cascaded pipeline method, involves
cascading a style recognition model3 with the text
LLM. The Text-LLM (upper bound) method is the
cascaded text-LLM with ground truth style labels.
ParalinGPT (Lin et al., 2023b): The serialized
multitasking approach proposed by ParalinGPT
is a sequential conditioning mechanism, unify-
ing current style prediction, response style predic-
tion, and response text generation within an auto-
regressive chain. The main difference between
ParalinGPT and Spoken-LLM is that Spoken-LLM
performs two-stage training (style alignment for
current speech then focus on the response speech),
but ParalinGPT directly models them in an auto-
regressive chain, which might be prone to error
propagation if the incorrect current style prediction
or focusing too much on the current style.

4.2 Evaluation Metrics

Objective evaluation: For automatic evaluation
of response text, we adopt the widely-used text
generation metric, including lexical-level score
(BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005)), and

3We use the Spoken-LLM-chunk 1st-stage model as the
style recognition model, which achieves 86.8, 99.2, 64.0 f1
scores on current emotion, speed, volume prediction, respec-
tively.
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Method Response text Response style
BLEU ROUGEl METEOR BERTf1 F1emotion F1speed F1volume

Text-LLM (text-only) 3.1 16.2 17.4 75.3 17.5 37.1 41.9
Text-LLM (cascaded) 3.2 17.3 19.1 76.0 37.5 52.9 65.6
Text-LLM (upper bound) 4.0 17.9 19.6 76.3 40.2 53.5 65.8
ParalinGPT-utt 3.1 16.8 18.5 75.9 32.3 51.9 64.8
ParalinGPT-chunk 3.1 16.5 18.2 75.8 34.0 54.8 65.8
Spoken-LLM-utt 2.8 16.6 20.2 75.8 47.4 61.5 56.5
Spoken-LLM-chunk 4.0 17.8 19.4 76.3 49.6 62.1 61.1

Table 2: Main results comparing text-LLM, ParalinGPT, and Spoken-LLM. utt and chunk refer to utterance-wise and
chunk-wise speech embedding from emotion2vec. The Text-LLM (upper bound) method is the cascaded text-LLM
with ground truth style labels.

Figure 3: Human evaluation result comparing Spoken-
LLM-chunk with Text-LLM (text-only) and Text-LLM
(cascaded).

semantic-level (BERT Score (Zhang et al., 2019))4.
For response style evaluation, since the style at-
tributes are categorical, we calculate the Weighted
F1 score for speaking emotion, speed, and volume.
Subjective evaluation: We perform the human
evaluation on a set of 200 samples using an A/B
test for model comparison. Three human evaluators
are assigned to each sample, and they are instructed
to rate the model based on both the generated text
and speech. The details of subjection evaluation
are in Appendix H.

4.3 Main Results
Spoken-LLM outperforms speech and text base-
lines: Table 2 shows the result on objective evalua-
tion. Firstly, for the text-LLM baseline on response
text metrics, we observe that adding current speech
style information yields significantly better perfor-
mance than the text-only method, indicating that
recognizing the style information is beneficial to
predict textual response. Next, we compare the
Text-LLM and speech ParlinGPT baseline. Par-
alinGPT consistently outperforms the Text-LLM

4Score calculated by Hugging face Evaluate package

method on the response text metrics. However, on
the response style, the text-LLM (cascaded) is bet-
ter than ParalinGPT-utt. In contrast, our proposed
Spoken-LLM methods perform slightly better than
ParalinGPT on response text, with significantly su-
perior performance on response style. Specifically,
the Spoken-LLM-chunk achieves 49.6 F1 score on
response emotion with 62.1 F1 score on response
speaking speed.
Chunk vs. utterance-level embedding: We com-
pare the granularity of speech embedding on both
ParalinGPT and Spoken-LLM methods. Results
show that the use of chunk embedding achieves
better performance on response style prediction.
As for response text, the Spoken-LLM benefits
significantly from chunk embedding while Paral-
inGPT performs similarly. In general, chunk em-
bedding extracts richer style-related information
than average-pooling embedding, which is more
helpful in modeling response speech.

4.4 Subjective evaluation

We perform the human listening evaluation to com-
pare the generated samples of two methods. Specif-
ically, we compare the proposed Spoken-LLM-
chunk with Text-LLM (text-only) and Text-LLM
(cascaded) baseline. As shown in Figure 3, Spoken-
LLM wins over the Text-LLM (text-only) method
by a large margin, demonstrating that it is impor-
tant to consider the speaking style information to
respond properly. On the other hand, human listen-
ers slightly prefer more on Text-LLM (cascaded)
than Spoken-LLM. This result can be explained
in two ways: 1) From the objective evaluation of
response text, the performance of Spoken-LLM
and Text-LLM (cascade) is similar, so the human
listeners might not differentiate the content differ-
ence, and 2) for the response style, it is possible to
respond with more than one response style but still
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Training data Response text Response style
BLEU ROUGEl METEOR BERTf1 F1emotion F1speed F1volume

train 2.9 15.7 17.8 75.5 45.5 61.6 61.7
unfiltered 3.4 17.0 18.7 75.7 44.1 61.2 56.5

unfiltered→train 4.0 17.8 19.4 76.3 49.6 62.1 61.1

Table 3: Different training strategy and data usages on Spoken LLM-chunk method. “→" indicates the two-stage
warmup training pipeline.

Method self-BLEU
Ground truth 8.2
Text-LLM (text-only) 100.0
Text-LLM (cascaded) 11.2
ParalinGPT-chunk 11.3
Spoken-LLM-chunk 10.9

Table 4: The dialogue set-level self-BLEU score for
different methods on the evaluation set.

sounds reasonably natural. Therefore, the current
and response speaking style is not a one-to-one but
a one-to-many relation. Future efforts should con-
sider modeling with more than one response style
for better performance and evaluation.

5 Analyses

5.1 Same sentence in different speaking styles
induce diverse responses

Since the proposed StyleTalk evaluation set pro-
vides sets of the same dialogue context and cur-
rent input content with two or three distinct speak-
ing styles, we can analyze how diverse are the re-
sponses for each input speaking style. To mea-
sure the response text diversity, we adopt the self-
BLEU (Zhu et al., 2018) score to measure the di-
versity of each dialogue set. Precisely, we average
the BLEU score of two response sentences given
two speaking styles as the dialogue set-level self-
BLEU score. The lower self-BLEU score indi-
cates the generated text is more diverse according
to different speaking styles. The results are shown
in Table 4. We observe that Spoken-LLM gener-
ates the most diverse response content compared
to Text-LLM (cascaded) and ParalinGPT. In con-
trast, the Text-LLM (text-only) baseline generates
the same content regardless of different speaking
styles, yielding 100% self-BLEU score.

5.2 Warmup pre-training and data quality

Table 3 discusses different training strategies.
Firstly, when we only utilize LLM-generated un-

filtered data for training, despite the data amount
being abundant compared to the train set, the per-
formance of the response style is worse than the
train set. Meanwhile, we observe that training on
the unfiltered set can achieve better performance
on response text, probably because the data amount
of the train set is too small and prone to overfitting.
We reveal that pre-training on the unfiltered set and
fine-tuning on the train set (unfiltered→train) can
boost the performance significantly, which enables
the model to learn the task and the common lan-
guage usage first and then align the human standard
with the train set.

5.3 Qualitative example
We show the qualitative example in Table 5 with
different models’ outputs. This example shows
that the Text-LLM (text-only) baseline predicts a
more neutral sentiment response text, while the
text-LLM (cascaded) and Spoken-LLM model gen-
erate text with a more aggressive and engaging
tone, and the predicted response speaking styles
are similar to the ground truth. More quantitative
analyses are in Appendix D (style transition) and E
(Diversity of current and responding style).

6 Related works

Speech-text Multimodal LLM: The progress in
speech Self-supervised Learning (SSL) (Mohamed
et al., 2022; Yang et al., 2021; Tsai et al., 2022; Lin
et al., 2023a) and neural audio codec (Zeghidour
et al., 2021; Défossez et al., 2022; Wu et al., 2023b;
Yang et al., 2023; Kumar et al., 2023) enable ex-
tracting discrete speech units, drawing attention
to generative spoken language modeling. Specif-
ically, the discrete speech units are treated as a
special language for unit language modeling (Bor-
sos et al., 2023; Lakhotia et al., 2021; Kharitonov
et al., 2022; Nguyen et al., 2023; Hassid et al.,
2023), further enabling multiple speech processing
tasks in single multimodal LLM (Rubenstein et al.,
2023; Zhang et al., 2023; Chou et al., 2023; Maiti
et al., 2023; Wang et al., 2023; Wu et al., 2023a;
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Dialogue context
A : I’ve finally hit my goal of running five miles every day!
B : That’s amazing, hard work really does pay off, doesn’t it?
A : Absolutely, and I’ve never felt more alive!

Current text B: I really need to get back into exercising too.
Not knowing current style Text-LLM (text-only): Totally understand, let’s start small together, maybe a walk or something?

Current style in
<neutral, normal, quiet>

Text-LLM (cascaded): <friendly, normal, normal>Definitely! Let’s find a day when we can go together; I could use the company.
Spoken-LLM: <cheerful, normal, normal>That’s the spirit! Let me know if you want any tips or company on your runs!
Ground truth: <friendly, normal, normal>Hey, we could be workout buddies if you want, I can help you get started!

Current style in
<unfriendly, fast, loud>

Text-LLM (cascaded): <neutral, normal, normal>Hey, no pressure though, take things at your own pace, you know?
Spoken-LLM: <unfriendly, normal, normal>Whoa, no need to stress out about it, we can start with something small if you want.
Ground truth: <unfriendly, normal, normal>Whoa there, no need to get upset, maybe we can find a way to ease you into a routine?

Table 5: A qualitative example. The model outputs the response of speaker A’s turn.

Pan et al., 2023; Nachmani et al., 2023). However,
these works mostly leverage content information
in speech, due to the speech unit clustering and the
use of speech-transcript pairs for modality align-
ment. The multimodal LLM itself does not learn
to model speaking style, and the models are mostly
trained with single-turn utterances.

The other line of work aims for the universal
speech and audio understanding model to have
general audio perception and hearing ability, either
leveraging off-the-shelf expert models (Huang
et al., 2023; Shen et al., 2023), or with a single
MM-LLM (Chu et al., 2023; Tang et al., 2023;
Gong et al., 2023b,a; Deshmukh et al., 2023).
Those methods are mainly trained to perform com-
prehensive speech and audio understanding tasks
and then fine-tuned for audio-based instruction-
following data generated by off-the-shelf LLM
like GPT-3.5. However, they are limited to only
generating text responses without considering
responding styles, and the data quality from LLM
is unknown. In contrast, we focus on modeling
speaking style in speech-to-speech conversation
with a manual-filtered dataset.

Speaking Style in Spoken Dialogue: Speak-
ing style is important for speech understanding
and response generation in spoken dialogue. The
understanding of speaking styles in spoken dia-
logue is crucial for extracting style attributes such
as emotion, sentiment, sarcasm, and more. Repre-
sentative corpora for studying speaking styles in
spoken conversations include IEMOCAP (Busso
et al., 2008), SEMAINE (McKeown et al., 2010),
MUStARD (Castro et al., 2019), Switchboard-
sentiment (Chen et al., 2020), MELD (Poria et al.,
2019), MEISD (Firdaus et al., 2020), and MSP-
improv (Busso et al., 2016). These datasets are
primarily constructed based on label annotations
from real speech conversations (e.g., TV series) or
acted spoken conversations.

Another research direction involves spoken con-
versation in the form of spoken question answering.
Datasets in this category include NMSQA (Lin
et al., 2022), SCQA (You et al., 2022), Open-
SAQA (Gong et al., 2023a), and E-chat200 (Xue
et al., 2023), where the data sample is presented as
a tuple of (question, answer). Specifically, for style-
related questions and answers, OpenSAQA em-
ploys GPT-3.5 to generate textual questions based
on the speech content and metadata style infor-
mation, while E-chat considers text with emotion
labels as the question for GPT-3.5 to generate the
responding answer as gold answers.

In all existing datasets, only one style is attached
to the speech, and one corresponding response
speech exists for each conversational context. Thus,
prohibiting researchers from investigating the im-
pact of different styles given the same context and
the same words. Additionally, the SQA data in
OpenSAQA and E-chat are fully generated by GPT-
3.5 and not carefully checked by humans, resem-
bling distillation and prompting of GPT-3.5, which
is concerning whether the sample follows a hu-
man standard as spoken conversation. Our work
provides the spoken dialogue data with the same
context, the same current text with different speak-
ing styles, and the corresponding response speech
with human annotator filtering.

7 Conclusion

This paper focuses on enhancing LLM by mod-
eling how the same sentence spoken with differ-
ent speaking styles causes different responses in
speech, in the spoken conversation scenario. Due to
the absence of a suitable dataset, we first collect the
speech-to-speech StyleTalk dataset that contains
the same dialogue context the same sentence spo-
ken in different styles, and the corresponding dif-
ferent response speech. Next, we propose Spoken-
LLM, a two-stage multi-modal training framework
to capture different speaking styles and respond
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properly. The proposed method yields better per-
formance than the text and speech baseline on ob-
jective metrics and performs better than text-only
LLM on subjective evaluation. We encourage the
research community to use the released StyleTalk
for joint speaking style and language modeling.

Limitation

Data scale: The current StyleTalk training set con-
sists of only around 2K samples, which may lead
to training instability and overfitting. Utilizing a
larger-scale dataset could alleviate these issues and
eliminate the need for a pre-training stage on unfil-
tered LLM-generated data.
Real speech with diverse and mixed styles: The
speech data in StyleTalk is synthesized from the
Azure TTS system with style control. However, in-
corporating spontaneous speech with even more
diverse styles is preferable. Moreover, the cur-
rent one-hot emotion simplified the problem since
speech emotion may by expressed multi-label dis-
tribution.
Direct speech-to-speech modeling: The Spoken-
LLM generates predefined style attributes to feed
into the expressive TTS system. Future work on
directly modeling responding speech has the poten-
tial to eliminate the need for explicit style labels.
Toward human-like spoken dialogue: Real-
world human communication includes backchan-
nel, laughter, and turn-taking behaviors, which
is beyond the turn-based spoken dialogue sys-
tem (Nguyen et al., 2023; Mitsui et al., 2023). Fu-
ture endeavors to explore speaking style with those
behaviors can make the spoken dialogue model
closer to human conversation.
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Appendix

A Details of human annotators filtering

We assign three listeners for each test. All listeners
are based in the United States with HIT approval
rate higher than 95%, given that the corpus is in
American English. Only the pairs that receive a
majority vote and do not have anyone choosing
"None of the above is natural" are retained in our
corpus. Each test contains 20 samples for evalu-
ation. The example of the annotation interface is
shown in Figure 7. We pay the annotators 3 USD
for each test. On average, based on the time of
playing audio (if played twice for each sample) and
reading the content, it takes 10 minutes on one test,
so the hourly wage is around 18 USD.

B Implementation details

The model is trained using a two-stage approach
with distinct learning rates. The learning rate is
1e-3 and 2e-4 during the 1-stage and 2-stage, re-
spectively. The batch size is 128, and LoRA (r=8)
is utilized for efficient fine-tuning of the LLM. To
facilitate stable training, a warmup learning rate
strategy is with 100 initial steps then linear decay.
We use 10% of the training samples as the vali-
dation data to assess model performance during
training. Model checkpoint is selected based on the
validation set performance. In the inference stage,
a temperature of 0.7 was applied to control the ran-
domness of generated outputs, and top-p sampling
with a probability threshold of 0.95 was used. The

number of trainable parameters is 7.8M (0.11% for
total parameters). All experiments are run with a
single A40 48G GPU.

C ASR prediction as input

In this particular setup, we use the Whisper base
ASR (Radford et al., 2023) model to transcribe the
current speech into text, which is then input into
the trained model for inference. The Word Error
Rate (WER) on the current turn speech within the
evaluation set is 3.21%. In this setup, we test with
the text-LLM (cascaded) and Spoken-LLM-chunk
models. In Table 6, compared to using the ground
truth transcripts, we observe slight performance
degradation in response text and style for both the
Spoken-LLM-chunk and text-LLM (cascaded). It’s
important to note that addressing ASR error propa-
gation on LLM is beyond the scope of this paper.
However, several previous efforts have delved into
investigating methods to mitigate such issues (He
and Garner, 2023; Everson et al., 2024), which may
be one of the further directions especially when the
more expressive and spontaneous speech as current
input speech.

D Style transition

In this section, we delve into an analysis of the cor-
relation between input and output emotions. While
the dataset comprises diverse samples with varying
dialogue contexts and inputs, human responses ex-
hibit discernible patterns associated with specific
styles. Notably, individuals are inclined to respond
with particular styles given a certain current style,
and conversely, they are less likely to adopt certain
styles in their responses. For instance, in cases
where the input style is cheerful, the corresponding
response style is more inclined towards positivity,
such as cheerful and friendly emotions, as opposed
to styles such as unfriendly or sad.

In Figure 4, we present a visual representation
of the output style distribution corresponding to
different input styles. The visualization reveals
that for each input style, certain response styles are
markedly more prevalent than others, underscoring
the nuanced relationship between input and output
emotions.

E Diversity of current and responding
styles

In exploring human responses across varied styles,
individuals may employ more assertive or passive
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Method Response text Response style
BLEU ROUGEl METEOR BERTf1 F1emotion F1speed F1volume

Text-LLM (cascaded) 3.1 (-0.1) 16.9 (-0.4) 18.5 (-0.6) 75.9 (-0.1) 37.0 (-0.5) 52.5 (-0.4) 63.7 (-2.1)
Spoken-LLM-chunk 3.3 (-0.7) 17.1 (-0.9) 19.0 (-0.4) 75.9 (-0.4) 47.5 (-2.1) 60.3 (-1.8) 57.4 (-3.7)

Table 6: The results of using whisper base ASR model’s prediction as input current text on text-LLM (cascaded)
and Spoken-LLM-chunk.

Figure 4: The output emotion distribution given input
emotion. Each row is the probability distribution for an
input-output pair.

speaking approaches, resulting in potential differ-
ences in content. In this context, we delve into
an examination of how the interplay between in-
put and output styles influences response diversity.
Specifically, we seek to determine whether the tran-
sition between styles in certain scenarios leads to
responses characterized by increased diversity or
a tendency to adopt simpler, more predictable pat-
terns. This investigation sheds light on the intricate
dynamics of style transitions and their impact on
the richness and complexity of response text.

In Figure 5, we present the result of the top-5
and bottom-5 diverse pairs, organized according
to their self-BLEU scores. The self-BLEU score
represents the average BLEU score for each style
transition pair, with lower scores indicating greater
diversity in the responses. Notably, we observe
that the top-5 diverse pairs frequently involve re-
sponses characterized by positive and excitement
styles such as cheerfulness. Conversely, the bottom-
5 non-diverse pairs are associated with empathy,
particularly when the input style is sad. This anal-
ysis provides insights into the response diversity
across various style transition scenarios, emphasiz-
ing notable patterns in the use of distinct emotional
styles.

Figure 5: Top-5 and Bottom-5 diverse pairs in the train
and evaluation set. The self-BLEU is normalized for
each style transition pair to make a fair comparison. The
pairs with fewer than 5 pairs are removed. The lower the
self-BLEU score, the more diverse the lexical response
given different dialogue contexts and input.

eval train unfiltered

# dialogue set 1 16 1,770 0
# dialogue set 2 445 108 859
# dialogue set 3 25 0 4,918
# sample 981 1,986 16,472

Table 7: Data statistics of StyleTalk. The # dialogue
set 1, 2, and 3 mean the amount of different speaking
styles for the current speech. # sample is the number of
current and response speech pairs.

F Instruction

I1: Instruction: Classify speaking style of speech.
The speaking style is represented in (emotion,
speed, volume).
I2: Instruction: Generate human-like response
given context. speaking style is represented in
(emotion, speed, volume).

G Prompting GPT-4 for Data Generation

We utilize gpt-4-1106-preview and the prompt
template in Figure 6.

6638



system_msg:
You are an human-like dialogue data expert that imitates the real human-to-human spoken dialogue. The

speaking style should be very natural in the dialogue context.

Important: Consider a scenario that after the history turns, there is a current turn with neutral-sentiment text

but with different possible speaking styles, the different current speaking styles would make the response turn

fairly different in terms of semantics.

Just one sentence for each turn. The sentence is spoken and spontaneous not too formal.

[Rules you must follow]:

0. We use speical token <> to representation the class type that you have to generate. Do not have <> in the

output.

1. You can only use these styles for representation speaking style (<tone>, <speaking speed>, <speaking

volume>). Important, do not use other class that is not defined below!!!

1.1 tone: neutral, angry, cheerful, sad, excited, friendly, terrified, shouting, unfriendly, whispering, hopeful.

Don’t use other tones!

1.2 Speaking speed class: slow, normal, fast.

1.3 Speaking volume class: loud, normal, quiet.

1.4 Speaker class: A, B.

2. Use diverse speaking styles in the conversation context.

3. The text of current turn is in neutral sentiment, and the response turn should carefully consider the

current turn, response naturally, not just copying current turn style.

4. There are two speakers (A and B) in the dialogue. The speaker A and B talk with back and forth

interaction.

5. Each turn should follow the format: <speaker> (<tone>, <speaking speed>, <speaking volume>): <text>

6. The order of turns is history turns -> current turn -> upcoming response.

7. The transistion of dialogue turns should be very consistent and the conversation follows the common

sense.

8. The dialouge contains emotional variation.

9. The output valid dictionary format is as below:

{

"history_turns": [ "<speaker> (<tone>, <speed>, <volume>): <text>", ...], # 3 history turns

"current_turn": "<speaker>: <text>", # the word of current turn is exactly the same with neutral sentiment

"current_turn_style_1": "(<tone>, <speed>, <volume>)",

"current_turn_style_2": "(<tone>, <speed>, <volume>)",

"current_turn_style_3": "(<tone>, <speed>, <volume>)",

"response_of_current_style_1": "<speaker> (<tone>, <speed>, <volume>): <text>",

"response_of_current_style_2": "<speaker> (<tone>, <speed>, <volume>): <text>",

"response_of_current_style_3": "<speaker> (<tone>, <speed>, <volume>): <text>",

}

10. Output the valid dictionary example, so that it can be parse as dictionary.

11. For <speaker>, only use A or B.

user_msg:
[dialogue topic]: {TOPIC}. Given the context of {HISTORY_NUM} conversational turns with speaking-related

emotional styles. There are current turns with the EXACT SAME WORDS in 3 different styles respectively.

Predict the upcoming response. The dialogue topic is [topic]. Feel free to imagine the dialogue content but it

should based on common sense. We use (<tone>, <speaking speed>, <speaking volume>) to represent

speaking style."

Figure 6: Prompt template. {TOPIC} and {HISTORY_NUM} are variables. The system message and user message
are sent to GPT-4 (gpt-4-1106-preview) API.
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Figure 7: Human annotators filtering template.
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Figure 8: Subjective evaluation template.
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H Subjective evaluation

Each test contains 10 samples for evaluation. The
example of subjective evaluation interface is shown
in Figure 8. We pay the annotators 3 USD for each
test. On average, based on the time of listening to
audio (if played three times for each sample) and
reading the content, it takes 10 minutes on one test.
The hourly wage is around 18 USD.

I Dataset license

We released the StyleTalk dataset under the MIT
license.
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