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Abstract

A major challenge for narrative reasoning
is to learn narrative coherence. Existing
works mainly follow the contrastive learning
paradigm. However, the negative samples
in their methods can be easily distinguished,
which makes their methods unsatisfactory. In
this work, we devise two strategies for mining
hard negatives, including (1) crisscrossing a
narrative and its contrastive variants; and (2)
event-level replacement. To obtain contrastive
variants, we utilize the Brownian Bridge pro-
cess to guarantee the quality of generated con-
trastive narratives. We evaluate our model on
several tasks. The result proves the effective-
ness of our method, and shows that our method
is applicable to many applications.

1 Introduction

Narrative reasoning (Charniak, 1972; Winograd,
1972) is an account of the development of events,
along with explanations of how and why these
events happened (Hutto, 2015), which has pro-
voked a variety of applcations, including common-
sense causal reasoning (Roemmele et al., 2011;
Gordon et al., 2012; Luo et al., 2016), abductive
reasoning (Bhagavatula et al., 2019), and so on.

A major challenge for narrative reasoning is to
evaluate narrative coherence (Mostafazadeh et al.,
2016). Existing methods mainly focus on devising
self-supervised tasks, in which positive samples
are from large-scale real narratives (Mostafazadeh
et al., 2016; Yao and Huang, 2018), and negative
samples are created by sampling-based strategies.
For example, Xie et al. (2020); Lin et al. (2020b);
Uehara et al. (2020) create negative samples by
shuffling or masking real narratives. Krishna et al.
(2022) incorporates randomly sampled sequences
and model-completed (Radford et al., 2019; Brown
et al., 2020) sequences as negative samples. How-
ever, these strategies are generally coarse-grained
and superficial. The resulting negatives still face

problems of low quality, such as being irrelevant or
repetitive (Krishna et al., 2022), making them less
representative, and easily distinguishable.

Hard negatives are critical in the contrastive
learning framework (Wu et al., 2017; Mishchuk
et al., 2017; Xuan et al., 2020). The ideal of hard
negative samples should be that are similar to a
real narrative but actually less coherent. To mine
such negatives, a possible approach is to introduce
contrastive narratives. Contrastive narratives are
examples that are similar in content, but convey
different semantics (Margatina et al., 2021; Wang
et al., 2021). Due to this property, we can criss-
cross1 a narrative and its contrastive variants to
obtain negative samples, as shown in Figure 1. The
resulting negatives should be similar to the real nar-
ratives but less coherent, making them good candi-
dates for hard negatives. However, existing works
for collecting contrastive narratives rely heavily on
manual annotation, which is costly and not scal-
able. To solve this problem, exploiting automated
methods has great value, but is difficult since it
requires preserving subtle differences while pro-
viding a clear delineation between the observed
narrative and the generated ones.

Actually, the generation of contrastive narratives
involves exploring the latent space surrounding a
given narrative, enabling the creation of similar
narratives with distinct characteristics. Assuming
that the evolution tendency of an observed narra-
tive can be represented as a continuous trajectory
in latent space, which can be modeled by Brow-
nian motion (Revuz and Yor, 2013; Wang et al.,
2022). Consequently, we can sample the latent tra-
jectories which exhibit proximity to the observed
trajectory, and then decode the sampled trajectories
into explicit narratives. But the problem is that the

1For example, according to X = (P, S) and Xc =
(Pc, Sc), we can exchange their prefixes and suffixes to obtain
the negatives (P, Sc) and (Pc, S). We define this strategy as
“crisscrossing", and use this definition in the rest of our paper.

6538



Figure 1: We define that an example consists of a prefix (P) and a suffix (S). Left: An ideal contrastive variant
Xc, which is similar to X but conveys different semantics. Text with red color denotes the difference. Right: The
solid line denotes the data manifold. The dashed line represents the methods for creating negatives, such as Mixup
(Zhang et al., 2017) or crisscrossing. As Xc approaches X , the created negative example should be more “hard".

decoded narratives may differ significantly in con-
tent from the observed narrative, which may not
meet the requirements for contrastive narratives.
To simplify the problem, we further suggest that
contrastive narratives keep the same endpoint as the
observed narrative, which directly models the fact
that a narrative event can evolve to the same end
through different paths (Qin et al., 2019). Based
on this constraint, we are able to sample different
trajectories from the Brownian Bridge (Majumdar
and Orland, 2015; Wang et al., 2022) region that is
centered around the observed narrative. The sam-
pled trajectories are decoded as narratives with the
same start and end as the observed narrative, while
also having similar but different intermediate event
chains. Then we crisscross the observed narrative
and the generated ones to synthesize negative sam-
ples. In fact, in our crisscrossing strategy, the start
and end points of resulting negatives remain the
same as the positive ones. That is, the start and
end of positive narratives will never be perturbed.
This further motivates us to design an event-level
perturbation to obtain negatives, as more diverse
negatives definitely benefit contrastive learning.

In this paper, we devise two strategies to cre-
ate hard negatives for narrative coherence learning.
The first strategy crisscrosses a narrative with its
contrastive variants, and the second strategy per-
forms an event-level replacement. To obtain con-
trastive narratives, we first sample different latent
trajectories from the Brownian Bridge region, then
fix the start and end points of the narrative, and
generate diverse contrastive narratives.

Our contributions can be summarized as follows.
(1) Based on the Brownian Bridge process, we gen-
erate high-quality contrastive narratives, which are
used to synthesize hard negatives. (2) We propose
a new coherence evaluator (CohEval), which is
enhanced by diverse and high-quality hard nega-
tives. Our model is trained entirely through self-
supervised contrastive learning, and can be applied
to a wide range of downstream tasks.

We evaluate our model on multi-choice tasks and
one narrative generation task. We also conduct an
in-depth analysis of our negative sample synthesis
strategies. The experimental results demonstrate
the effectiveness of our method. Code is released
at github.com/mufeiteng/ContrastiveNarratives.

2 Related Work

Counterfactual Story Generation Counterfac-
tual story generation (Qin et al., 2019; Hao et al.,
2021; Chen et al., 2021) requires predicting how
alternative events, contrary to what actually hap-
pened, might have resulted in different story end-
ings. Existing works for counterfactual story gener-
ation mainly include manual annotation (Qin et al.,
2019) or supervised fine-tuning (Hao et al., 2021)
methods. In our work, contrastive narratives can
be seen as a special case of counterfactual narra-
tives, where we confine that an observed narrative
and its contrastive variants have the same start and
end. We generate contrastive narratives in a self-
supervised manner, which is based on the Brownian
Bridge process (Wang et al., 2022).

Language Modeling via Stochastic Process
Generating long, coherent text is conceptually dif-
ficult for autoregressive models because they lack
the ability to model text structure and dynamics
(Lin et al., 2020a). Wang et al. (2022) explicitly
models latent structure with Brownian Bridge dy-
namics, which can capture how sentence embed-
dings evolve over a document. (Wang et al., 2023)
uses the stochastic process to model the temporal
dynamics of dialogue paths. Motivated by Wang
et al. (2022), we use Brownian Bridge for gener-
ating contrastive stories because it allows for the
smooth modeling of gradual changes between two
narrative states. Based on the simple constraint, we
are able to generate coherent contrastive narratives,
which are used to synthetic hard negatives.
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Hard Negatives Mining Earlier researchers de-
vise a series of corrupting strategies, such as shuf-
fling, masking, or lexical conversion, to perturb
real narratives (Cai et al., 2020; Xie et al., 2020;
Lin et al., 2020b; Uehara et al., 2020; Zhou et al.,
2022a,b). Recent methods focus on mining hard
negatives. For example, Jwalapuram et al. (2021)
retrieves hard negatives from the corpus with a mo-
mentum encoder. Krishna et al. (2022) incorporates
random sequences and model-generated sequences
as hard negatives. Kalantidis et al. (2020) mixes
different negatives in latent space to create hard
negatives. Zhang et al. (2022) mixes multiple pos-
itive samples to produce hard negatives. Instead,
we propose to use a narrative with its contrastive
variants to synthesize hard negatives. Since the con-
trastive narratives are similar to the original ones,
we can obtain qualified negatives.

3 Methods

3.1 Data Preparation

Following the previous method (Cai et al., 2020),
we use RocStories (Mostafazadeh et al., 2016) as
our data corpus, since it contains abundant event
commonsense knowledge, making it a good re-
source for narrative reasoning. Due to the limi-
tation of computational resources, we randomly
select about 20k samples from RocStories, and de-
note them as the positive sample set D+. Each
sample in D+ is a narrative X = {e1, · · · , e5},
in which each ei (i = 1, · · · , 5) is an event. Fol-
lowing previous works, we lay narrative coherence
learning in the contrastive learning framework, in
which the negative samples are needed for training.

We devise two strategies for mining hard neg-
atives: (1) crisscrossing a narrative and its con-
trastive variants; (2) event-level replacement. Next,
we introduce how to obtain contrastive narratives.

3.2 Generating Contrastive Narratives via the
Brownian Bridge Process

Given a narrative, the contrastive variants should
be similar to it and express distinctive characteris-
tics. We regard this problem as exploring the latent
space surrounding the given narrative, and propose
to model this problem by the Brownian Bridge pro-
cess (Wang et al., 2022). The density distribution
of a Brownian Bridge process from a start point z0
at t = 0 to an endpoint zT at t = T is:

p(zt|z0, zT ) ∼ N ((1− t

T
)z0 +

t

T
zT ,

t(T − t)

T
). (1)

The Brownian Bridge density acts like a noisy lin-
ear interpolation between the start and end point
of the trajectory, where the intermediate point zt
should be more like z0 at the start and more like zT
at the end of the trajectory. Uncertainty is highest
in the middle region, and low near the start and end
points (rf. Figure 2, the green region). The char-
acteristic of the Brownian Bridge is to maintain a
smooth transition between the sampling midpoint
and the starting and ending points.

Following (Wang et al., 2022), we pre-train
an event encoder with the Brownian Bridge con-
trastive loss2. Given the starting and ending events,
the encoder is responsible for encoding an event
e into latent code z and ensuring that the latent
codes of any intermediate events conform to the
Brownian bridge distribution (Equation 1). Once
the event encoder is trained, it will be frozen in all
subsequent processes and will never get updated.

To train the contrastive narratives generator, we
automatically construct training examples. Given
the start event e1 and the end event e5, we first
use the event encoder to encode them into latent
vectors z1 and z5. Once z1 and z5 are obtained,
we know the corresponding Brownian Bridge den-
sity (Equation 1), and we can sample middle
points to obtain diverse latent trajectories, i.e.,
Z = {z1, z2, z3, z4, z5}. To generate contrastive
narratives, we encode (e1, e5) with BART (Lewis
et al., 2019) to obtain the context embeddings:

Hc = BARTEncoder([e1, e5]), (2)

where [; ] denotes the concatenation, Hc ∈ Rl×d,
l is the length of [e1; e5]. Next, given Hc and
latent codes Z, we generate middle events y =
(e2, e3, e4). Specifically, let yt denotes the t-th to-
kens in y. At the timestep t, the generator must
predict yt using Hc, all tokens in the past y<t, as
well as the event latent codes Z:

hyt = BARTDecoder(y<t,Hc,W
T
z Z)

P (yt|Y<t) = softmaxV (Wvhyt + b).
(3)

where V denotes the standard vocabulary, Wz de-
notes a linear layer that maps the dimension of z to
be identical to Hc. This can be seen as decoding
a latent trajectory {z1, z2, z3, z4, z5} into narrative
events given the start event e1 and end event e5.

However, in our preliminary trials, we found that
the generated narratives are coherent but less simi-
lar to the original one, which brings difficulties to
the construction of hard negatives. The possible
reason is that the encoding process, i.e., encoding

2See Appendix A and (Wang et al., 2022) for details.
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Figure 2: The training phrase of contrastive narratives generation. Given z1 and z5, Z is sampled according to
Equation 1. The masked e2, e3, e4 are used as the prompt for decoding.

e to z, lost too much information, making it diffi-
cult for the model to reconstruct y. To solve this
problem, we randomly mask the y with the ratio of
ρ (0.85 by default), and use the masked sequence
as the prompt for the decoding phrase, which en-
courages the generator to generate more similar
events to y. Actually, these can be seen as two
types of constraints, where Z requires that y and
the generated text show similar trajectories in latent
space, and the masked prompt requires that y and
the generated text are similar in vocabulary. The
whole training process is shown in Figure 2.

When training, we use RocStories excluding
D+ as training data. We have also tried other pre-
trained models, such as GPT2 (Radford et al., 2019)
and T5 (Raffel et al., 2020), and BART empirically
performs best, as shown in Appendix B. Therefore,
we choose BART as the backbone. After train-
ing, for each X ∈ D+, we fix its start and end
events, then sample different intermediate events.
For each X , we first generate 200 candidates, then
use several criteria3 to filter low-quality candidates.
We finally retain N (60 by default) most-qualified
contrastive examples.

3.3 Synthesizing Negative Examples

We devise two strategies to create negative exam-
ples. The first strategy crisscrosses a narrative with
its contrastive variants, and the second strategy per-
forms an event-level replacement.

3.3.1 Crisscrossing a Narrative and its
Contrastive Variants

Note that each X contains five events. For simplic-
ity, we define the first three events as the prefix (P ),
and the last two events as the suffix (S), so that
we denote X = (P, S) and the contrastive variant
Xc = (Pc, Sc). Then we are able to synthesize
the negative example X− = (Pc, S). The basic
intuition is: Pc is coherent with Sc, so it should be
less coherent with S. This is because X and Xc are
different paths with the same start and end points.

3See Appendix C for details.

More specifically, by comparing X = (P, S) and
X− = (Pc, S), we can find that the difference
between X and X− lies in the second and third
events. In other words, we have replaced two events
in the original story with different events. There-
fore, the resulting samples should be less coherent
than X . Meanwhile, X− = (Pc, S) is similar to
X = (P, S), making it qualified as a hard nega-
tive4. With loss of generality, we denote the ob-
tained negative samples as CX = {X−

i }2Ni=1.

For each training epoch, we randomly sample K
(15 by default) negatives samples {X−

k }Kk=1 from
CX for each X , and feed them as well as X into a
pre-trained language model (PLM) (Devlin et al.,
2018a; Liu et al., 2019), e.g. RoBERTa, to obtain
sequence-level representations:

h+ = RoBERTa(X),h−
k = RoBERTa(X−

k ), (4)

where k = {1, · · · ,K}, h+ and h−
k ∈ Rd, d is

the hidden size of RoBERTa. We have also tried
BERT (Devlin et al., 2018b) as the backbone, as
shown in Appendix E. Next, the sequence-level
representations are passed into a linear layer Wc ∈
Rd to derive coherence scores of all samples:

s+ = WT
c h

+, s−k = WT
c h

−
k . (5)

Lastly, we use the contrastive classifying objec-
tive to distinguish the positive examples from the
corresponding negative examples:

L1 = − 1

|D+|
∑

D+

log
exp(s+)

exp(s+) +
∑K

k=1 exp(s
−
k )

. (6)

It should be noted that the difference between
X− = (P, Sc) and X = (P, S) lies in the third and
fourth events, i.e., e3 and e4. Due to the masked
prompt, some tokens in (e3, e4) of X− are similar
to those of X , making X− qualified. However, in
the crisscrossing strategy, e1 and e5 will never be
perturbed. This further motivates us to perform a
simple event-level perturbation to X to create more
diverse negative samples.

4Similarly, we can obtain the negative example X− =
(P, Sc) by defining the first two events as the prefix.
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3.3.2 Event-level Replacement

Due to the fact that events are the basic semantic
unit of neural language, for a narrative, if we re-
place a component event with another similar but
different event, the resulting example should be
less coherent and similar to the original narrative.

Specifically, based on D+, we build an event
pool, which consists of about 100k different events.
We pre-compute the cosine similarity among all
event pairs using SimCSE (Gao et al., 2021),
and cache the top 20 most similar events Qe for
each query event e. Then, given a positive ex-
ample X , we randomly select a position i and
replace i-th event ei with a randomly sampled
event ē from Qe to create a negative example
X̄ = {· · · , ei−1, ē, ei+1, · · · }. Likewise, for each
training epoch, we create K negatives samples
{X̄k}Kk=1. After obtaining hidden states of neg-
atives: h̄k = RoBERTa(X̄k), we derive coherence
scores of all samples and use the contrastive loss
to rank the positive sample above the negatives:

s+ = WT
c h

+, s̄k = WT
c h̄k,

L2 = − 1

|D+|
∑

D+

log
exp(s+)

exp(s+) +
∑K

k=1 exp(s̄k)
.

(7)

3.4 Training and Knowledge Transferring

When training, the final loss is

L = γL1 + (1− γ)L2, (8)

where γ is set to 0.5. It should be noted that an-
other way is to merge two types of negatives and
directly perform contrastive learning. However,
this requires more GPU memory, which exceeds
our condition. Therefore, we calculate the two
losses separately and then average them.

Our CohEval can be easily transferred to many
downstream applications. For example, for the
multi-choice task with a input C and option candi-
dates O = {o1, · · · , on}, we can use CohEval to
select most reasonable o by:

o← argmax
i

CohEval([C, oi]). (9)

Motivated by existing plug-and-play text genera-
tion methods (Miao et al., 2018; Chen et al., 2021),
we also evaluate our CohEval in narrative text gen-
eration, with CohEval as coherence guidance. De-
tails can be seen in the experiment.

4 Experiment

4.1 Datasets and Experimental Details

The evaluation datasets include COPA (Roemmele
et al., 2011), e-Care (Du et al., 2022a), αNLI
(Bhagavatula et al., 2020), Cloze (Mostafazadeh
et al., 2016), Swag (Zellers et al., 2018), HellaSwag
(Zellers et al., 2019), and TimeTravel (Qin et al.,
2019). TimeTravel is a text-generation dataset,
while others are multi-choice datasets. We evaluate
our model on these datasets in the zero-shot setting.
Note that the test sets of e-Care and HellaSwag
are not released. So we evaluate our model on the
validation set of the three datasets. The statistics of
the datasets, as well as the experimental details are
shown in Appendix D.

Methods COPA e-Care αNLI Cloze Swag HS.

LLMs-based Prompting
Alpaca-lora (7B) 57.4 54.5 52.6 66.1 36.0 30.2
ChatGLM2 (6B) 78.1 66.9 58.1 84.3 48.7 41.2
ChatGPT 96.2 81.8 75.5 94.7 70.7 76.4

Contrastive Training Based Methods
RankGen(base) 63.8 70.3 52.2 50.7 46.3 33.9
RankGen(large) 70.2 72.1 54.8 54.4 49.2 40.5
EventBERT N/A N/A 59.5 75.6 N/A N/A
CohEval (ours) 77.8 71.9 67.6 77.6 67.4 44.9

Ablation Study

MER 73.4 75.4 65.3 77.1 61.8 38.9
MCC 75.8 68.2 67.2 69.4 66.9 44.7

Table 1: The accurary (%) on multi-choice datasets. HS.
denotes HellaSwag. Scores with bold denote the best
results among contrastive training based methods.

4.2 Baselines and Metrics

For multi-choice tasks, the metric is Accuracy.
We compare our method with EventBERT (Zhou
et al., 2022a), RankGen (Krishna et al., 2022),
and several large language models (LLMs), in-
cluding Alpaca-lora (7B)5, ChatGLM2 (6B) (Du
et al., 2022b; Zeng et al., 2022) and ChatGPT
(OpenAI. , 2023). For LLMs, we use one-shot
prompting for experiments, the used prompts are
in Appendix F. For TimeTravel, we follow Chen
et al. (2021) and formulate this task in the MCMC-
based sampling paradigm. The details are in
Appendix G. We compare our method with DE-
LOREAN (Qin et al., 2020), ClarET (Zhou et al.,
2022b), CGMH (Miao et al., 2018), EDUCAT
(Chen et al., 2021). Automatic evaluation metrics

5The checkpoint is at https://github.com/tloen/alpaca-lora.
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include BLEU4 (Papineni et al., 2002), BertScore
(Zhang et al., 2019), ENTScore (Chen et al., 2021),
and HMean= 2·BLEU4·ENTScore

BLEU4·ENTScore (Chen et al., 2021).
Manual evaluation metrics include Fluency, Min-
Edits (Chen et al., 2021), and Coherence.

4.3 Overall Results

Automatic Evaluation The automatic evaluation
result can be seen in Table 1 and 2, respectively.
We have the following observations.
• In Table 1, our model surpasses all contrastive

training-based methods. This indicates that the
negative samples we create are more qualified,
which verifies the effectiveness of our method.

• Although there is still a significant gap com-
pared to ChatGPT, our method surpasses smaller
LLMs, e.g., ChatGLM2, on most datasets.

• In Table 2, our method outperforms EDUCAT.
Since EDUCAT uses the off-the-shelf PLMs for
evaluating coherence, the performance improve-
ment proves that our CohEval is better at evalu-
ating narrative coherence.

• Compared with our method, ChatGLM2 and
ChatGPT achieve high ENTScore, but low
BLEU4. This indicates that auto-regressive meth-
ods tend to generate coherence counterfactual
ending with massive edits. These behaviors con-
flict with the requirements of the task.

Methods BLEU4 BertS. ENTS. HMean

LLMs-based Prompting
ChatGLM2 (6B) 16.47 60.03 66.15 26.37
ChatGPT 36.41 69.81 82.62 50.55

Off-the-shelf small PLMs
DELOREAN 23.89 59.88 51.40 32.62
ClarET 23.75 63.93 N/A N/A
CGMH† 41.09 73.90 28.06 33.34
EDUCAT 44.05 74.06 32.28 37.26
EDUCAT† 43.57 74.00 33.41 37.82
CohEval (ours) 42.46 73.36 37.39 39.77

Ablation Study

MER 44.18 74.34 34.63 38.82
MCC 42.99 73.64 35.78 39.05

Table 2: The automatic result on TimeTravel. † denotes
our implementation. BertS. denotes BertScore. ENTS.
denotes ENTScore. Scores with bold denote the best
results among off-the-shelf small PLMs.

Ablation Study To investigate the influence of
the two kinds of negatives, we devise two ablated
variants: (1) MER which means we create nega-
tives via event-level replacement; (2) MCC which

means we create negatives via the crisscrossing
strategy. The ablation study result is shown in Ta-
ble 1, 2. We have the following observations.
• Compared to CohEval, MER and MCC achieve

lower ENTScore, indicating their weaker co-
herence evaluation abilities. But both variants
obtain higher BLEU4 and BertScore. In Time-
Travel, there is a trade-off phenomenon between
BLEU and EntScore. This is because the gold
y′ is obtained through editing the original y with
minimal-edits. This leads to a high word over-
lap between y′ and y. Due to the weaker co-
herence evaluation abilities of the two variants,
the probability of accepting transitions is lower
when adopting MCMC for rewriting. In other
words, when using MER and MCC , the number
of rewritings is relatively low, resulting in higher
BLEU4 and BertScore but lower ENTScore.

• The best ENTScore is achieved by combining
two kinds of hard negatives. This indicates the
two kinds of negatives complement each other.
The reason is that more diverse negative exam-
ples contribute to contrastive learning.

• MCC generally performs better than MER. The
possible reason is that, compared to the criss-
crossing strategy, the event-level perturbation is
more coarse-grained. Nevertheless, event-level
replacement is an effective supplement to the
crisscrossing strategies.

Manual Evaluation on TimeTravel We perform
an A/B test to compare our method with several
baselines. Following (Chen et al., 2021), the human
evaluation mainly focuses on three primary crite-
ria: i) Fluency, whether a model produces fluent
text; ii) Coherence, the logical consistency between
the counterfactual context (z, x′) and the generated
endings y; and iii) Min-Edits, the extent of minimal
revision between two endings. We carry out a pair-
wise comparison with CGMH, EDUCAT, and two
ablated models: Mexp and Mimp. We randomly
sample 100 cases for each pair of models. Three an-
notators are recruited to make a preference among
win, tie, and lose given the counterfactual context
and two outputs by our model and a baseline re-
spectively. The annotators are research students
from the field of text generation to make sure they
have a fair judgment of used metrics. We calcu-
late Fleiss’s kappa reliability as the inter-annotator
agreement. As is shown in Table 3, LLMs are able
to generate fluent and coherent counterfactual end-
ing, but tend to massively edit the original ending,
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which coincides with the finding in automatic eval-
uation. Compared to EDUCAT and two ablated
variants, CohEval achieves better fluency and co-
herence results. In addition, four models achieve
similar Min-Edits results, this is because they run
for the same editing steps. The Fleiss’s kappa re-
liability of Fluency, Min-Edits, and Coherence is
0.488, 0.507, and 0.428, respectively.

Methods Fluency Min-Edits Coherence

W(%) L(%) W(%) L(%) W(%) L(%)

vs. EDUCAT† 27.0 13.7 23.0 24.7 33.7 4.7
vs. MER 25.7 16.7 22.3 23.3 28.0 6.7
vs. MCC 20.0 12.0 23.7 22.3 23.0 7.0
vs. ChatGLM2 13.3 45.3 84.7 7.7 19.0 37.0
vs. ChatGPT 14.7 41.3 60.3 25.0 13.7 40.0

Table 3: Manual evaluation result on TimeTravel.
Scores indicate the percentage of Win(W) and Lose(L).

Human Correlation with our CohEval Same
as (Chen et al., 2021), we analyze the correlation
between our CohEval and human ratings in terms
of coherence evaluation. We calculate Pearson’s r
and Kendall’s τ coefficients. The result is shown
in Appendix H. All results show positive correla-
tions. The result of our CohEval is close to that of
ENTScore. Notice that ENTScore is trained with
human-labeled counterfactual data, while our Co-
hEval is trained in a self-supervised manner. This
demonstrates the applicability of our CohEval.

Overall, the result demonstrates that our CohE-
val is a generic narrative coherence evaluator, and
can be applied to a wide range of downstream tasks.

4.4 Deeper Analysis about Contrastive
Narratives Generation

Indirect Evaluation through Multi-choice Tasks
We conduct an ablation experiment to explore the
impact of different sub-modules in contrastive nar-
ratives generation. We compare our Brownian-
Bridge based method (denoted as “BB") with the
following variants. (1) “w/o prompt", in which
we ablate the masked prompt when training. (2)
“w/o trajectory", in which we ablate the latent tra-
jectories sampled from the Brownian bridge. (3)
“Infilling", in which we ablate the masked prompt
and the sampled latent trajectory when training.
In this case, the ablated variant degenerates into a
text-infilling model. We use the counterparts gener-
ated by different variants for crisscrossing to obtain
negative examples, which are then used for con-
trastive learning. The result is shown in Table 4.

We find: (1) Compared to “BB", “w/o prompt" and
“w/o trajectory" get result drops, respectively; (2)
“Infilling" gets a further performance drop.

The possible reasons lie in the following aspects.
(1) If contrastive narratives are incoherent, then the
synthesized negatives are not “hard". The sampled
latent trajectories help to maintain the coherence of
generated contrastive narratives, which benefits the
quality of synthesized negatives. (2) The masked
prompt helps to reduce the difficulty of the gener-
ation process, as a result, the obtained contrastive
counterparts are similar to the original ones, mak-
ing the resulting negatives more qualified.

Methods COPA e-Care αNLI Cloze Swag HS. ∇
BB (our MCC ) 75.8 68.2 67.2 69.4 66.9 44.7 —
w/o prompt 79.0 65.4 68.5 75.6 59.2 39.9 -4.6
w/o trajectory 71.0 71.2 65.9 69.9 67.1 42.0 -5.1
Infilling 72.2 71.9 64.8 77.7 58.1 40.4 -7.1

Table 4: The result (%) of different kinds of counterparts
for synthesizing negative examples.

Methods Coherence Similarity SubtleDiff.

W(%) L(%) W(%) L(%) W(%) L(%)

vs. w/o prompt 43.0 19.0 46.0 6.3 27.3 7.0
vs. w/o trajectory 53.7 15.3 26.7 7.7 28.0 12.7
vs. Infilling 60.3 10.3 56.3 5.7 49.0 6.7
vs. ChatGLM2 40.0 20.0 39.0 20.3 24.3 28.3
vs. ChatGPT 21.0 26.0 30.7 17.0 18.0 23.0

Table 5: The manual evaluation on contrastive narratives
generation. We compare “BB" with “w/o prompt", “w/o
trajectory", “Infilling", ChatGLM2, and ChatGPT.

Direct Evaluation through Manual Judgement
We further conduct a manual evaluation to directly
evaluate the quality of generated contrastive nar-
ratives. Since we want the generated narrative to
be similar to the original one and reflect subtle dif-
ferences (such as changes in opinions or entities)
to make itself a different story, we use Coherence,
as well as Similarity and SubtleDifference (Sub-
tleDiff.) as metrics. Coherence reflect the logical
consistency between the given (start,end) events
and the generated middle events. Similarity re-
flects the similarity between the generated middle
events and those of the original story. SubtleD-
iff. measures whether the generated example is a
qualified contrastive narrative, which reflects subtle
differences from the original story but is actually a
different story. We randomly select 100 stories that
have no overlap with train data for the experiment.
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For each story, we use different models to generate
its contrastive variant. We also perform a pairwise
comparison with “w/o prompt", “Infilling", and two
LLMs: ChatGLM2 and ChatGPT. The same three
annotators are asked to make a preference among
win, tie, and lose for each pair of generations. In
Table 5, ChatGPT generally exhibits the best re-
sult, which reflects its powerful reasoning ability.
Our “BB" is slightly inferior to ChatGLM2 on Sub-
tleDiff. , but wins on the other two metrics. This
indicates that our method is comparable to small
LLMs. In addition, “BB" significantly surpasses
the ablated variants. Specifically, we find that the
masked prompt helps to improve Similarity, while
latent trajectory helps to improve Coherence. This
coincides with human intuition. The Fleiss’s kappa
reliability of Coherence, Similarity, and SubtleDiff.
is 0.369, 0.371, 0.244, respectively.

Generally, by utilizing the Brownian bridge pro-
cess, we harvest qualified contrastive narratives,
which contributes to contrastive learning.

4.5 Further Discussion

Strategies COPA e-Care αNLI Cloze Swag HS.

Mixup
Random 60.2 49.7 52.1 59.1 32.7 28.8
w/o prompt 61.8 55.5 57.0 64.3 35.4 32.1
BB 63.6 60.0 64.4 66.5 41.9 29.3

CrissC.
Random 72.6 71.8 58.8 70.0 53.6 37.4
w/o prompt 79.0 65.4 68.5 75.6 59.2 39.9
BB (our MCC ) 75.8 68.2 67.2 69.4 66.9 44.7

Table 6: The result of different strategies for creating
negatives. CrissC. denotes the crisscrossing strategy.

Influence of Different Strategies for Creating
Negatives In our method, we crisscross a posi-
tive narrative with its contrastive counterparts to
create negatives. Here, we further investigate the
result when using Mixup (Zhang et al., 2017) to
create negatives. The experimental setting is shown
in Appendix I. We additionally explore three ways
of obtaining the counterparts: (1) “BB" denotes
our Brownian-Bridge based contrastive narratives;
(2) “w/o prompt" denotes we ablate the prompt
when generating contrastive narratives; (3) Ran-
dom denotes we randomly select different positive
narratives as counterparts. The result is shown in
Table 6. We observe that:
• The crisscrossing strategy is superior then Mixup

by a large margin. We speculate that in the era
of self-attention (Vaswani et al., 2017), using the
transformer to directly learn the representation

Figure 3: Results under the different number of retrained
contrastive narratives.

of negative samples is better than manipulating
representations of samples in the hidden space.

• Whether adopting “CrissC." or Mixup, our BB-
based contrastive narratives far surpass “ran-
dom", which proves the strength of our method.

Results under Different Number of Retained
Contrastive Narratives We explore the influ-
ence of the number of retained contrastive narra-
tives. The result is shown in Figure 3. Our method
generally achieves the best result when N = 60,
and the result even decreases when N further in-
creases. We speculate that as N increases, inco-
herent contrastive examples increase, which has
a negative impact on the quality of synthesized
negative examples. So, we set N = 60 by default.

Impact of the Mask Ratio ρ We investigate the
impact of the different mask ratios ρ when gener-
ating contrastive narratives. In Table 7, the result
is best when ρ = 0.85. As ρ decreases, the result
gets worse. To investigate the reason, we man-
ually examine the generated examples, and find
the model tends to paraphrase the original story
and generate duplicate examples when ρ decreases.
This is because more information about the origi-
nal story will be exposed when using a lower mask
rate, making it easier to reconstruct the original
story. We additionally calculate the diversity of the
contrastive narratives generated at different ρ. We
use Distinct-n (Li et al., 2015) as the metric. As
shown in Table 7, as ρ decreases, the corresponding
Distinct scores also decrease. This indicates that a
lower mask rate ρ may lead to duplicate samples
when the generation phase, which harms the diver-
sity of synthesized negative samples. Therefore,
we proactively filter out duplicate items.

The Reliability of Created Negative Examples
We further analyze whether the created negative
samples are indeed “negative". On the training
set, we first use ENTScore to directly evaluate the
coherence of positive samples and two types of
negatives. As shown in Table 8, the real positive ex-
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ρ
Accuracy(%) Dist-2 Dist-3

αNLI Swag HS.

ρ = 0.90 65.2 67.5 42.6 26.4 41.0
ρ = 0.85 67.5 67.4 44.9 27.1 42.6
ρ = 0.80 66.2 66.5 43.3 26.8 42.9
ρ = 0.70 64.0 63.4 42.9 25.0 40.7

Table 7: The result under the different ρ. Dist-n denotes
Distinct-n. Scores with bold denote the best result.

Types ENTScore FN Rate

Positive examples 94.6 N/A
Negatives via replacement 54.5 3.0%
Negatives via crisscrossing 65.9 4.3%

Table 8: The reliability evaluation of created negatives.
FN denotes false negative.

amples receive an especially high ENTScore. How-
ever, the synthesized two types of negatives receive
lower ENTScore, proving that they are obviously
less coherent than positive examples. Next, we
sample 100 cases and ask the annotators to make
a judgment about whether the created ‘negatives‘
are actually more coherent than positives, making
them false negatives. As shown in Table 8, both
types of negatives show a low FN rate. We show
the error cases in the Appendix J.

Visualize the Representations of Examples using
t-SNE It is interesting to qualitatively visualize
our model’s ability to distinguish hard negatives.
Based on the test set of TimeTravel, we are able to
obtain positive examples and corresponding hard
negatives. We leave the details in Appendix K.
We use our CohEval and the ablated variant MER,
respectively, to obtain the representations of the
examples, then we use t-SNE (Van der Maaten
and Hinton, 2008) to visualize the representations.
As shown in Figure 4 (a), the representations of
positive and negative examples obtained by MER

entangle together, this shows that MER, a model
that significantly outperforms baselines, still suf-
fers from distinguishing the created positive and
negative examples. But in Figure 4 (b), positive
samples are concentrated on the right, while neg-
ative samples are concentrated on the left. This
proves our CohEval’s ability to distinguish positive
examples from hard negatives, and confirms the ef-
fectiveness of the generated contrastive narratives.

Case Study Appendix L, Table 15 presents a case
study for the task of TimeTravel. The counterfac-
tual endings generated by ChatGLM2 and Chat-

(a) MER (b) CohEval

Figure 4: Visualization of the representations of exam-
ples obtained from different models.

GPT are coherent but very different from the origi-
nal ending. This conflicts with the minimal-editing
requirement of the task. On the contrary, based on
the MCMC sampling, our method can produce sim-
ilar and coherent counterfactual endings. Appendix
L, Table 16 presents a case study for contrastive
narratives generation. Due to the sampled differ-
ent trajectories, in the case #1, our method shifts
the topic of accent to personality, and produces a
coherent story. And in the case #2, our method
exchanges the opinions of two participants. On
the contrary, the middle events generated by Chat-
GLM2 and ChatGPT show a significant difference
from that of the original story.

5 Conclusion

In this paper, we propose to use the Brownian
Bridge process to generate contrastive narratives,
then we crisscross a positive story and its con-
trastive variants to create negative examples for
contrastive learning. In addition, we devise the
event-level replacement, which is an effective sup-
plement to the crisscrossing strategy. The exper-
iment verifies that (1) the generated contrastive
narratives are qualified, and (2) our CohEval is ef-
fective and is a general coherence evaluator that is
applicable to many downstream tasks.
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Limitations

To automatically generate contrastive narratives,
we made the following assumption: the observed
story and its contrastive variants have the same start
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and end events. However, this assumption may not
be consistent with reality. In addition, under limited
computing resources, we are unable to explore our
method on larger data scales and larger pre-trained
models. The experiment shows that our method
is not able to surpass ChatGPT. But this does not
mean that our work has no value in the era of large
language models.

Our method is essentially a discriminative model,
while LLMs are generative models. They have dif-
ferent advantages. For example, LLM is better at
generating coherent text, and our CohEval is bet-
ter at multi-choice tasks. In fact, on TimeTravel,
we use MCMC to make our CohEval applicable to
generating tasks. Therefore, the gap between our
method and LLM has been magnified. On discrim-
inative tasks, although our model is not as good as
ChatGPT, it outperforms the smaller ChatGLM on
most multi-choice tasks. On the other hand, it is
inherently unfair to directly compare small models
with LLMs, as large models are obtained with mas-
sive resources, e.g., data, hardware, funding, etc.
Due to resource limitations, our method is not as
good as ChatGPT, but it is superior to ChatGLM,
which also indicates that our method is valuable in
low-resource scenarios. With sufficient computa-
tional resources, we can use a larger backbone and
more data for training, which is expected to yield
better results. We leave this in future works.

Ethical Considerations

This work does not involve any sensitive data, but
only crowd-sourced datasets released in previous
works, including RocStories (Mostafazadeh et al.,
2016), COPA (Roemmele et al., 2011), e-Care (Du
et al., 2022a), αNLI (Bhagavatula et al., 2020),
Cloze (Mostafazadeh et al., 2016), Swag (Zellers
et al., 2018), HellaSwag (Zellers et al., 2019), and
TimeTravel (Qin et al., 2019). We believe that our
research work meets the ethics of ACL.
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PLMs Fluency (↓) ENTScore (↑)
GPT2 2.8 58.2
T5 3.3 52.2
BART 3.4 66.7

Table 9: Impact of different backbones for contrastive
narratives generation.

A Training Details about the Event
Encoder

The event encoder is a nonlinear mapping from raw
input space to latent space, fθ : X → Z . Con-
sider a set of triplet observations, (x1, x2, x3), the
goal is to ensure that fθ(x1), fθ(x2), fθ(x3) follow
the Brownian bridge transition density in Equation
1. Following (Wang et al., 2022), we ensure this
using a contrastive objective. Formally, given a
narrative event sequences, S = {e0, · · · , e4}, we
draw batches consisting of randomly sampled pos-
itive triplets e0, et, eT where 0 < t < T : B =
{(e0, et, eT )}. Note that we use indices 0, t, T to
denote the start, middle, and end points of a Brow-
nian bridge, but these do not correspond to strictly
sampling the first, middle, and last events of a nar-
rative story. The encoder is optimized by,

Lf = − log
exp(d(e0, et, eT ; fθ))∑

(e0,et′ ,eT )∈B
exp(d(e0, et′ , eT ; fθ))

d(e0, et, eT ; fθ) = − 1

2σ2
||fθ(et)− µ||22,

(10)

where µ and σ2 are the mean and variance in Equa-
tion 1. As suggested by (Wang et al., 2022), we
freeze the BART and add a non-linear layer that
converts the BART output to a latent vector. The
size of the latent space is set to 64 by default.

B Impact of Different Backbones for
Generating Contrastive Narratives

We conduct a preliminary study on the influence
of different backbones, including GPT2 (Radford
et al., 2019) and T5 (Raffel et al., 2020), and BART
(Lewis et al., 2019), for generating contrastive nar-
ratives. We use Fluency and ENTScore as metrics.
Fluency evaluates whether the generated text is a
fluent text sequence. We use off-the-shelf GPT2 to
calculate Fluency. ENTScore evaluates the coher-
ence of the generated stories. We randomly sample
2000 examples that do not exist in training for eval-
uation. We calculate the average result. As shown

in Table 9, GPT2 is good at generating more flu-
ent text, and BART generates more coherent text.
A possible reason is that the contrastive narrative
generation is more compatible with BART’s pre-
training task, e.g., masked auto-encoding. Finally,
we choose BART as the backbone.

C Criteria for Filtering Low-Quality
Candidates

For each positive narrative, we generate 200 can-
didates. In practice, we observe that the generator
may produce incoherent or duplicate candidates.
Therefore, we set several rules to filter low-quality
items. We first use our event-level replacement
strategy to train the base evaluator MER. We use
MER to filter items whose coherence scores are
smaller than a threshold (empirically set to 0). Next,
for each candidate, we calculate its text similarity
with the remaining candidates. We gradually dis-
card the candidates with the highest similarity until
there are 100 remaining. When training Coheval,
we select N top-ranked candidates according to
their coherence scores for synthesizing negative
samples.

D Statistics and Experimental Details

Statistics Table 12 shows the statistics of the
used datasets.

Experimental Details For training the con-
trastive narratives generator, we use BART-base
as the backbone. Batch-size is set to 16. We use
the AdamW optimizer. lr is set to 5e-5. Weight-
decay is set to 1e-4. We train the generator with
10 epochs and linearly decrease the lr to zero with
no warmup. When the generation phase, we kept
the N = 60 most qualified contrastive narratives
for creating negative examples. For training our
CohEval, we adopt RoBERTa-large as the back-
bone. We train our model for 5 epochs, and then
evaluate it on downstream tasks. We set batch-size
to 1 and gradient-accumulation-steps to 16. For
each positive example, we sample 15 negative ex-
amples for contrastive training. lr is set to 5e-5.
Weight-decay is set to 1e-4. We use the AdamW
optimizer and linearly decrease the lr to zero with
a 10% warmup ratio. The random seed is set to 42
for all experiments. All experiments are performed
on a Ubuntu server with 4×RTX2080Ti GPUs.

6550



Tasks Prompt

HellaSwag

Multi-choice Task: Given a context event, select the most reasonable subsequent event from the following four choices.

Here is one example:
###
Context event: The man examines the instrument in his hand.
Please select the most reasonable subsequent event from the following four choices.
Choice1: The person studies a picture of the man playing the violin.
Choice2: The person holds up the violin to his chin and gets ready.
Choice3: The person stops to speak to the camera again.
Choice4: The person puts his arm around the man and backs away.
Between Choice1, Choice2, Choice3 and Choice4, the correct one is:
Choice2
###
Now, given the following example, please select the correct answer. No further explanation is required.

Context event: {context}
Please select the most reasonable subsequent event from the following four choices.
Choice1: {op1}
Choice2: {op2}
Choice3: {op3}
Choice4: {op4}
Between Choice1, Choice2, Choice3 and Choice4, the correct one is:

TimeTravel

Each story contains 5 sentences, where the first two sentences are the story premise, and the last 3 sentences are the story ending.
I will apply subtle a perturbation to the second sentence, making the first two sentences a counterfactual story premise.
Due to the slight perturbation, the counterfactual premise is very similar to the original premise, with only some words being
different. According to the original story and the counterfactual story premise, you are required to predict the counterfactual
story ending. Note that the counterfactual story ending should be similar to the original story ending, as well as be coherent
with the counterfactual story premise.

Here is one example:
###
<Original 5-sentences story>
1. Bella wanted to cook some spaghetti and meatballs.
2. She discovered she had no pasta noodles.
3. She found a recipe online that used spaghetti squash instead.
4. Bella luckily had a spaghetti squash on hand.
5. She was surprised to find the spaghetti and meatballs delicious!

<Counterfactual story premise>
1. Bella wanted to cook some spaghetti and meatballs.
2. She realized she didn’t have the time to make it properly so she changed made an omelette instead.

<Counterfactual story ending>
3. She found a recipe online that used egg whites instead.
4. Bell luckily had many eggs on hand.
5. She was surprised to find the egg white omelette delicious!
<END>
###
Now, given the following example, please write the counterfactual story ending.
There should be only three sentences at the counterfactual story ending. Ending with <END>.

<Original 5-sentences story>
{original_story}

<Counterfactual story premise>
{counterfactual_premise}

<Counterfactual story ending>

Contrastive
Narratives
Generation

Contrastive story generation:
You will see a five-sentence story. Now let’s fix the first and last sentences, and you need to generate another middle three
sentences to make the resulted five sentences form a different story.
Ensure that your generation is similar to the original story and conveys different semantics.
Here is one example:

###
<Original Story>
1. Sam and John went out to play some ultimate Frisbee one day.
2. Upon arrival at the field, there was a pickup game of football going.
3. Sam approached them and asked them to let him and John play as well.
4. After a few minutes talk, they agreed and everyone played for a bit.
5. Then they all went home.

<The fixed first and last sentences>
1. Sam and John went out to play some ultimate Frisbee one day.
5. Then they all went home.

<Generated middle 3 sentences>
2. Upon arrival at the field they found it deserted.
3. Sam and John played on the field by themselves.
4. After a few minutes, they agreed they were bored.
###
Now, given the following input, generate the middle three sentences.

<Original Story>
{original_story}

<The fixed first and last sentences>
{first_last_events}

<Generated middle 3 sentences>

Table 10: The prompts used for different tasks.
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Premise (z) Alec’s daughter wanted more blocks to play with.
Initial (x) Alec figured that blocks would develop her scientific mind.

Original Ending (y) Alec bought blocks with letters on them. Alec’s daughter made words with them rather
than structures. Alec was happy to see his daughter developing her verbal ability.

Counterfactual (x′) Alec couldn’t afford to buy new blocks for his daughter.

Edited Ending (y′) Alec decided to make blocks with letters on them instead. Alec’s daughter made words
with the blocks. Alec was happy to see his daughter developing her verbal ability.

Table 11: An examples from TimeTravel.

COPA e-Care αNLI Cloze Swag HS. TimeT.

#numAns 2 2 2 2 4 4 N/A
#numVal 500 2132 1532 1871 20006 10041 1871
#numTest 500 N/A 3059 1871 N/A N/A 1871

Table 12: The statistics of the used datasets. #numVal
and #numTest denotes the number of samples in the val
and test set. #numAns denotes the size of the answer
set of multi-choice datasets. HS. and TimeT. denotes
HellaSwag and TimeTravel, respectively.
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Figure 5: Results under different backbones for narra-
tive coherence learning.

E Different Backbones for Narrative
Coherence Learning

We additionally build our method on the BERT-
base (Devlin et al., 2018b) and RoBERT-base back-
bones, as shown in Figure 5. RoBERTa-base has
a better performance than BERT-base, and the
RoBERTa-large tends to have a better result than
RoBERTa-base. However, due to the limitation of
computing resources, we are not able to evaluate
our method under larger pre-trained models.

F The Prompts for Different Tasks

The multi-choice datasets have a similar format ex-
cept for the number of choices. For simplicity, we
take the HellaSwag dataset as an example. An ex-
ample and its corresponding instruction are shown
in Table 10. For other multi-choice datasets, we
use a similar format for evaluation.

G The Non-autoregressive Generation
Process on TimeTravel

TimeTravel is a counterfactual story generation
dataset. A story is defined as a five-sentence text

{z, x, y}, where the first sentence z is the premise,
the second sentence x is the original condition, and
the last three sentences constitute the original end-
ing, abbreviated as y. After given a counterfactual
condition denoted as x′, the task requires revising
the original ending y into a counterfactual ending
y′ which minimally modifies the original one and
regains narrative coherency to the counterfactual
condition. An example is shown in Table 11.

Existing EDUCAT (Miao et al., 2018; Chen
et al., 2021) adopts the Markov chain Monte Carlo
(MCMC) sampling process to this task. EDUCAT
directly samples from the sentence space with three
local operations: token replacement, deletion and
insertion. During sampling, after an edit position is
found, the operation is randomly chosen with equal
probability. Finally, the proposed new sentence will
either be accepted or rejected according to the ac-
ceptance rate computed by desired properties π(y).
The above process is repeated till convergence.

The stationary distribution π(y) in EDUCAT is
defined as the product of the fluency score and the
coherence score as follows:

π(y) = XLM (y) · XCoh(y), (11)

where the fluency score XLM (y) is the probabil-
ity of the generated ending based on GPT2. The
coherence score XCoh(y) is defined by:

XCoh(y
′) =

PCoh(Y = y′|z, x′)
PCoh(Y = y′|z, x) , (12)

where PCoh(·) is the conditional probability cal-
culated by GPT2. This definition encourages the
generated y′ to be more coherent to x′ instead of x.

Following EDUCAT, we define the stationary
distribution π(y) as Equation 11. The difference is
that we replace XCoh(y) with our CohEval:

XCoh(y) = CohEval([z;x; y′]), (13)

where [; ] denotes the concatenation. Same as ED-
UCAT, we run our model and its variants for 100
steps for fairness.
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H The Correlation between Automatic
Metrics and Human Ratings

Metrics Pearson’s r Kendall’s τ

ENTScore 0.25 0.24
CohEval 0.20 0.18

Table 13: The correlation between automatic metrics,
e.g., ENTScore and CohEval, and human ratings. All
of these numbers are statistically significant at p < 0.01.

Table 13 shows the correlation between auto-
matic metrics, including ENTScore, CohEval, and
human ratings in coherence. All results show a
positive correlation. The result of our CohEval is
similar to that of ENTScore. Notice that ENTScore
is trained with human-labeled counterfactual data,
while our CohEval is trained in a self-supervised
manner.

I Details and Results for Mixing-up in
Latent Space

The mixup strategy creates negative examples via
mixing-up a positive X and several counterparts
{Xk

c }Kk=1 in the latent space:

h+ = RoBERTa(X)

hk
c = RoBERTa(Xk

c ),

h̄k = αkh
+ + (1− αk)h

k
c ,

αk ∼ Uniform[0, 1].

(14)

Then, the loss is:

s+ = WT
c h

+,

s̄k = WT
c h̄

k,

LM = − 1

|D+|
∑

D+

log
exp(s+)

exp(s+) +
∑K

k=1 exp(s̄
k)

.

(15)

The experiment setting details are the same as those
used in Appendix D.

J Error Cases when Creating Negative
Examples

The most common error in event-level replacement
is that the sampled event ē from Qe is especially
similar to the original e, or is the paraphrase of
the original e, as shown in Table 14, Case #1. The
most common mistake in cross strategy is that the
contrastive variant and the original story describe
different actions for the same purpose, resulting in
the false negative. An example is shown in Table
14, Case #2.

Overall, the proportion of errors is relatively low.

Event-level replacement

#1

Original story: Rod was ironing his clothes.
His iron is very old.
The iron left a burn mark on his favorite shirt!
Rod got very angry.
He bought a new iron.

Created negative: She even ironed her sheets!
His iron is very old.
The iron left a burn mark on his favorite shirt!
Rod got very angry.
He bought a new iron.

Crisscrossing

#2

Original story: Katie needed to cross the street by herself.
Being seven, she hadn’t done it by herself before.
She looked left then right.
The coast was clear.
She crossed the street successfully and was full of pride.

Contrastive example: Katie needed to cross the street by herself.
Being seven she knew it was possible.
The nearest crosswalks were just behind her.
She held her breath and did her best.
She crossed the street successfully and was full of pride.

Created negative: Katie needed to cross the street by herself.
Being seven, she hadn’t done it by herself before.
The nearest crosswalks were just behind her.
She held her breath and did her best.
She crossed the street successfully and was full of pride.

Table 14: Error cases when creating negatives.

K Details of Obtaining Samples in t-NSE
Visualization

In TimeTravel, each example consists of an original
story (z, x, y) and a counterfactual story (z, x′, y′),
where y′ is similar to y. Motivated by (Chen et al.,
2021), we obtain positive and negative samples
from the perspective of natural language inference,
i.e., the original context (z, x) entails by y but
contradicts with y′, and the counterfactual context
(z, x′) entails by y′ but contradicts with y. Because
y is similar to y′, (z, x, y′) and (z, x′, y) tend to be
hard negatives. Based on the test set of TimeTravel,
we obtain 3742 positive examples and 3742 neg-
ative examples. Then, we use t-SNE to visualize
representations of the examples that are encoded
by different models.

L Case Study

Table 15 presents a case study for the task of
TimeTravel. The counterfactual endings gener-
ated by ChatGLM2 and ChatGPT are very different
from the original ending, which conflicts with the
minimal-edits requirement of the task. On the con-
trary, based on the MCMC-sampling, our method
produces the counterfactual ending, which is simi-
lar to the original ending, as well as coherent to the
counterfactual condition.

Table 16 presents a case study for the task of
contrastive narratives generation. In the case #1,
our method shifts the topic of accent to personality.
In the case #2, our method exchanges the opinions
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#1

Original context Tim was mad. He saw roaches in his house.

Original ending
He bought some cheap bug spray.
However, it did not get rid of them.
Tim called an exterminator.

Counterfactual context Tim was mad. He saw rats in his house.

GhatGLM2
He found a rat trap and was able to catch them.
Tim was relieved that the problem had been solved.
He called an exterminator to make sure they were gone for good.

ChatGPT
He bought some cheap rat traps.
However, they did not catch any rats.
Tim called a professional pest control service.

CohEval(ours)
He bought rat poison.
And it did not get rid of the rats.
So he hired an exterminator.

#2

Original context Jim worked at the local coffee shop.
He was the best barista in town.

Original ending
He always made sure his customers had the best drinks.
Jim’s boss saw him working one day and was impressed.
Jim got a promotion for doing such a good job.

Counterfactual context Jim worked at the local coffee shop.
He was the worst barista in town.

GhatGLM2
He found a recipe online to make better drinks.
Jim decided to try it out and impressed his boss.
Jim got a raise for his excellent work.

ChatGPT
He always made sure his customers had the worst drinks.
Jim’s boss saw him working one day and was disappointed.
Jim got fired for doing such a bad job.

CohEval(ours)
He always made sure his customers had the wrong drinks.
Jim’s boss saw him that night and was furious.
He got a beating for doing a bad job.

Table 15: Some cases with the generated text by different models. The cases are from the test set of TimeTravel.

of two participants. Due to the limited changes, the
generated story is very similar to the original story
and meets the requirements for contrastive narra-
tives. On the contrary, the middle events generated
by ChatGLM2 and ChatGPT show a significant dif-
ference from that of the original story, as a result,
the synthesized negative samples should be easily
distinguished.
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#1

Original story

Fanny is new at school.
She is from England.
Many kids do not understand her accent.
This made Fanny sad.
Fanny is having a difficult time making friends.

ChatGLM2

Fanny is new at school.
One of the kids at school does understand her accent, and they become her friends.
Fanny meets a new student at her lunch table who helps her feel more comfortable.
Fanny learns to embrace her accent and makes many new friends at school.
Fanny is having a difficult time making friends.

ChatGPT

Fanny is new at school.
During lunchtime, Fanny sat alone at a table in the cafeteria.
Some kids approached Fanny and asked her where she was from.
Fanny tried her best to explain her accent, but they still had trouble understanding her.
Fanny is having a difficult time making friends.

CohEval(ours)

Fanny is new at school.
She has just graduated from college.
She is very shy.
Fanny is not very outgoing.
Fanny is having a difficult time making friends.

#2

Original story

Morgan and Timothy were having an argument.
Morgan thought that all of The Beatles’ music was good.
Timothy thought their early stuff was not very good.
Morgan made her case by simply playing a few songs.
Timothy realized Morgan was probably right about the music.

ChatGLM2

Morgan and Timothy were having an argument.
Timothy tried to reason with Morgan, but she was too set in her opinion.
Morgan refused to back down and continued to play her favorite songs.
Timothy was left feeling frustrated, but eventually came to accept Morgan’s
love for her music. Timothy realized Morgan was probably right about the music.

ChatGPT

Morgan and Timothy were having an argument.
Morgan defended her stance by pointing out the innovative songwriting and
harmonies in their later albums. Timothy reluctantly agreed to listen to a few
songs from their later discography. As the music played, Timothy’s opinion started to
shift, realizing the depth and creativity in The Beatles’ later work.
Timothy realized Morgan was probably right about the music.

CohEval(ours)

Morgan and Timothy were having an argument.
Morgan said the Beatles’ music was terrible.
Timothy said their early music was good.
Morgan disagreed.
Timothy realized Morgan was probably right about the music.

Table 16: Case study for contrastive narratives generation.
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