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Abstract

Humans generally acquire new skills with-
out compromising the old; however, the op-
posite holds for Large Language Models
(LLMs), e.g., from LLaMA to CodeLLaMA.
To this end, we propose a new post-pretraining
method for LLMs with an expansion of Trans-
former blocks. We tune the expanded blocks
using only new corpus, efficiently and ef-
fectively improving the model’s knowledge
while mitigating forgetting. In this paper,
we experiment on the corpus of code and
math, yielding LLAMA PRO-8.3B, a versatile
foundation model initialized from LLaMA2-
7B, excelling in general tasks, programming,
and mathematics. LLAMA PRO and its
instruction-following counterpart (LLAMA
PRO - INSTRUCT) achieve advanced perfor-
mance among various benchmarks, demonstrat-
ing superiority over existing open models in
the LLaMA family and the immense potential
of reasoning and addressing diverse tasks as an
intelligent agent. Our findings provide valuable
insights into integrating natural and program-
ming languages, laying a solid foundation for
developing advanced language agents that op-
erate effectively in various environments.

1 Introduction

The advent of Large Language Models (LLMs)
has revolutionized the field of natural language
processing, exhibiting remarkable proficiency in a
variety of real-world tasks (OpenAI, 2023; Chowd-
hery et al., 2023). Despite the versatility, LLMs
still fall short in certain domains, for example, pro-
gramming, mathematics, biomedical, or finance.
This limitation impedes the progress of developing
generic language agents for broader applications.

Existing works (Liu et al., 2023; Li et al., 2023a;
Wu et al., 2023b) attempted to improve the multi-
faceted capabilities of pre-trained LLMs with tai-
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Figure 1: LLAMA PRO - INSTRUCT delivers state-
of-the-art performance across a wide variety of tasks,
ranging from general language to specific domains, su-
perior to existing models from the LLaMA series.

lored data recipes. While feasible, they require sub-
stantial computational resources and vast amounts
of data, which poses a challenge to the democra-
tization of LLM research. Consequently, another
line of research, known as domain-adaptive pre-
training, focuses on post-pretraining with domain-
specific corpora (Gururangan et al., 2020). These
approaches have demonstrated efficacy in adapting
various LLMs to specific domains (Roziere et al.,
2023; Azerbayev et al., 2023; Wu et al., 2023b; Xu
et al., 2023b), resulting in enhanced performance
on downstream domain-specific tasks at a reduced
computational cost.

Nonetheless, a considerable obstacle emerges
in catastrophic forgetting (De Lange et al., 2021).
Post-pretraining often leads to a decline in the
model’s original general abilities, inhibiting the
fine-tuned performance of the model on diverse
tasks (Cheng et al., 2023; Dong et al., 2023).
This necessitates a method that can inject domain-
specific knowledge into LLMs while preserving
their general abilities, thereby enhancing their com-
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prehensive capabilities.
Towards this end, we introduce a simple yet ef-

fective post-pretraining method, termed block ex-
pansion. We expand the off-the-shelf pre-trained
LLM using copied Transformer blocks, as illus-
trated in Figure 2. The newly added blocks, whose
linear layers are zero-initialized to enable iden-
tity mapping, are further tuned with only domain-
specific corpus while the remaining blocks are
frozen. After tuning, the extended pre-trained
model excels in both general and domain-specific
tasks.

In practice, we extend the pre-trained LLaMA2-
7B (Touvron et al., 2023) by eight more blocks,
yielding LLAMA PRO, a foundation model with
8.3B parameters, and enhanced performance in pro-
gramming, coding, and reasoning. We pre-train
LLAMA PRO’s expanded blocks on 80B tokens
using open-source code and math data for 2830
GPU Hours (16 NVIDIA H800 GPUs for about
7 days). We further perform supervised instruc-
tion tuning (fully fine-tuning of all the blocks, aka
SFT) on LLAMA PRO with approximately 80M
tokens, yielding LLAMA PRO - INSTRUCT. It
is noted that pre-trained models produced by our
block expansion method are well-compatible with
the subsequent SFT techniques without specific
modification.

As shown in Figure 1, LLAMA PRO -
INSTRUCT reaches state-of-the-art performance
across a broad range of general, code (i.e., Hu-
manEval), and math (i.e., GSM8K) tasks. Fur-
thermore, we assess the capabilities of LLAMA
PRO - INSTRUCT as a language agent across vari-
ous scenarios (i.e., MINT-Bench), with a focus on
the tool usage abilities and the capacity to ground
in environmental and human feedback. We also
employ GPT-4 (OpenAI, 2023) automatic evalua-
tion to assess LLAMA PRO’s ability to serve as an
effective assistant (i.e., MT-Bench). Comprehen-
sive experimental results indicate the superiority of
LLAMA PRO - INSTRUCT over other models from
the LLaMA family on both benchmarks and practi-
cal applications. Our contributions are three-fold:

• We propose a novel post-pretraining method
for LLMs, termed block expansion, enabling
the injection of new knowledge while preserv-
ing the initial capabilities.

• We introduce LLAMA PRO and LLAMA
PRO - INSTRUCT, versatile LLMs that well
integrate natural and programming languages,

excelling in general tasks, programming, and
mathematics.

• We benchmark the family of LLAMA PRO

on extensive datasets, including both tradi-
tional and agent-oriented tasks, demonstrating
its superiority and great potential in broader
complex applications.

2 Related Work

Advancements in Large Language Models. Re-
cent advancements in large language models have
led to significant progress, with model and data
scale growth driving state-of-the-art performance
across various tasks (Hoffmann et al., 2022; Ka-
plan et al., 2020; Chowdhery et al., 2023). The
development of generalist models has enabled
addressing diverse problems and rapid adapta-
tion to new tasks (Radford et al., 2019; Brown
et al., 2020). The open-source community has
further contributed by releasing powerful models
like LLaMA (Touvron et al., 2023) and CodeL-
LaMA (Roziere et al., 2023). Our work builds
upon these developments, providing a method for
specializing LLMs in the code domain, fostering
future research and applications.

Post-pretraining. Language model applications
typically involve a two-step process: general-
domain pretraining followed by domain-specific
training (Roziere et al., 2023; Azerbayev et al.,
2023). Fine-tuning often aims to enhance
instruction-following abilities (Sanh et al., 2021;
Wei et al., 2021; Wang et al., 2023d) or align model
outputs with human preferences (Ziegler et al.,
2019; Ouyang et al., 2022; Bai et al., 2022). Some
research explores parameter-efficient fine-tuning
methods for adapting pretrained models to new
domains (Houlsby et al., 2019; Hu et al., 2021;
Wu et al., 2023a), while others focus on contin-
ual learning post-pretraining (Wang et al., 2023b;
Gupta et al., 2023; Scialom et al., 2022). Parameter-
efficient tuning methods like adaptor and LoRA
are generally applied during the instruction tuning
phase rather than the pretraining phase. In contrast,
our focus is on enhancing the capacity of LLMs by
increasing their depth during continued pretraining.
Our work proposes an adaptation strategy that com-
bines continued training with general capability
maintenance, allowing LLMs to specialize without
sacrificing overall performance.

6519



Language Model 
(LLaMA2)

Huge Unlabeled Corpus Aspect Corpus
Data
Training

(a) Pre-Training

Language Model with Block-expansion 
(LLaMAPro)

Expand

Input Tokens

Output Tokens

Decoder Block 🔥

Input Tokens

Output Tokens

Decoder Block 🔥

Decoder Block ❄
×N

×M ×M
×N

×P

Identity 
Copy

(b) Block-expansion Post-pretraining

Figure 2: (a) We begin with a large language model (LLM) pre-trained on a massive unlabeled corpus, resulting in a
model with strong general capabilities. Here we select the off-the-shelf LLaMA2 for convenience. (b) We employ
backbone expansion and fine-tune the expanded identity blocks using the aspect corpus while freezing the blocks
inherited from the base model. The model after post-pretraining can be used for instruction tuning as usual.

Progressive Learning. Progressive training has
gained attention for accelerating large-scale model
training in computer vision (Zhang et al., 2023) and
NLP research (Yao et al., 2023; Li et al., 2023b).
Gong et al. (2019) proposed a stacking method
doubling model depth successively. Compound-
Grow(Gu et al., 2020) extends stacking with Feed-
Forward Network expansion in schedule design.
Shen et al. (2022) introduced a staged method sup-
porting hidden size expansion. Bert2BERT(Chen
et al., 2021a) and LiGO (Wang et al., 2023a) ac-
commodate all growth dimensions. Our method
utilizes depth growth to maintain general perfor-
mance while adapting to specific domains.

3 Method

3.1 Preliminaries: The LLaMA Block
The LLaMA block consists of a multi-head self-
attention (MHSA) mechanism followed by a
position-wise feed-forward network (FFN) with
residual connections and a Swish-Gated Linear
Unit (SwiGLU) operation as Figure 3 shows. Given
an input x, the LLaMA block produces an output y
as described by the following equations:

x′ = x+ MHSA(RMSNorm(x))

y = x′ + FFN(RMSNorm(x′))
(1)

The input x has a dimension of n× d, where n is
the sequence length and d is the hidden size. The

output y has the same dimension as the input x.
The MHSA operation is a crucial component of the
transformer, defined as:

MHSA(Q,K, V ) = Concat(head1, . . . , headh)WO

(2)
where Q, K, and V are the query, key, and value

matrices, respectively, and WO is the output weight
matrix without bias . Each head is computed as:

headi = Attention(xWQ
i , xWK

i , xW V
i )

Attention(Qi,Ki, Vi) = Softmax
(
QiK

T
i√

dk

)
Vi

(3)

with WQ
i , WK

i , and W V
i being the corresponding

weight matrices for the i-th head.
The FFN block in the LLaMA model utilizes the

SwiGLU activation function, which is defined as:

SwiGLU(x,W, V ) = SiLU(xW )⊗ (xV )

FFN(x) = SwiGLU(x,W1,W2)W3
(4)

where ⊗ denotes element-wise multiplication, W1,
W2, and W3 are the weight matrices without bias,
SiLU(x) = x⊗ σ(x).

3.2 Block Expansion

Given a model with blocks (ϕ0, ϕ1, ..., ϕL), the
block expansion incorporates an identity block ϕid
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Figure 3: (a) An overview of the LLaMA Block, com-
prising an MHSA mechanism followed by the FFN with
SwiGLU activation. (b) The Identity LLaMA block af-
ter an identity copy, achieved by initializing the output
linear matrix to zero in order to preserve the output from
the base LLaMA model.

after each block in the original model, ensuring
that the expanded model maintains the same output
after expansion. The identity block is defined as
ϕid(x) = x so the input and output are identical.

Suppose we have an initial model with L blocks
that needs to be expanded to L′ blocks. First, we
partition the original L blocks into N groups, with
each group containing L

N blocks. For each group,
we create identity copies of the top P blocks and
stack them on top of each group, as depicted in
Figure 3. We arrange these blocks in an inter-
leaved manner to maintain the structural character-
istic of the transformer model, whose prior is that
deeper blocks encode more complex information
(Van Aken et al., 2019; Tenney et al., 2019). This
process leads to an increased depth in the model
while maintaining its output behavior.

Shen et al. (Shen et al., 2022) proposed the ini-
tialization of scale parameters in the Norm modules
within the identity blocks to zero for the construc-
tion of the identity block. However, this approach
may not be effective when applied to the LLaMA

block. The reason lies in the fact that the gradi-
ent of the loss function L with respect to the RM-
SNorm weight w during backpropagation would
be zero. This would prevent the training of RM-
SNorm, implying that when RMSNorm(x′) = 0,
the following condition will hold:

∂L
∂w = ∂L

∂y
∂FFN(RMSNorm(x′))

∂RMSNorm(x′)
∂RMSNorm(x′)

∂w = 0 (5)

This equation signifies that the gradient of the
loss function with respect to the weight of RM-
SNorm is zero, which would hinder the training of
the RMSNorm module. This is further explained
in Appendix A. Referring to the LLaMA block
formulation in Equation 1, the identity can be
achieved as long as MHSA(RMSNorm(x)) = 0
and FFN(RMSNorm(x′)) = 0. We initialize the
WO and W3 weight matrices in the identity blocks
to zero. Due to the presence of residual connec-
tions and the absence of bias terms in the LLaMA
block, only the residual flows through the identity
block. As a result, the entire block is reduced to
an identity block at initialization, preserving the
output from the initial model.

The entire training pipeline is depicted in Fig-
ure 2. Our method concentrates on the post-
pretraining stage, targeting specific domain cor-
pora. We begin by initializing our model with large
language models trained on extensive unlabeled
general corpora, where all blocks will be fine-tuned.
To enhance the model’s capacity for accommodat-
ing additional domain knowledge while retaining
its general knowledge, we employ block expansion
to increase the number of blocks in the LLM. Dur-
ing this process, we only fine-tune the newly added
blocks while freezing the original blocks, thereby
preserving the general abilities of the model.

4 Experiments

This section presents our key experimental findings.
We begin with experimental settings (described
in Sec. 4.1), and then verify the effectiveness of
block expanded tuning after pretraining (described
in Sec. 4.2). Next, we give the supervised finetun-
ing (SFT) results (described in Sec. 4.3). Finally,
ablation studies of the key design choices are pre-
sented (described in Sec. 4.5).

4.1 Experimental Settings
Pretrain details. We construct a dataset that con-
centrates on code and math. For the code compo-
nent, we rely on the Stack-dedup dataset, which
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is a compilation of permissively licensed source
codes from GitHub. Among all the programming
languages available in Stack-dedup, we specifically
utilize the Python split. As for the math component,
we opt for the Proof-pile-2 dataset (Azerbayev
et al., 2023), a 55-billion-token amalgamation of
scientific papers, web data containing mathemat-
ical content, and mathematical code. The details
can be found in Appendix B.

We initialize our base model with LLaMA2-7B
and expand the number of blocks from 32 to 40 us-
ing an interleaved approach. In the block expansion
process, we configure the parameters as P = 1,
M = 4, and N = 8, resulting in 8 groups where
each group expands from 4 blocks to 5 blocks. For
the code and math corpus pretraining, we employ
a batch size of 1024, a sequence length of 4096, a
warmup ratio of 6%, a learning rate of 2e-4, and a
Cosine learning rate scheduler. We also use bf16
mixed precision, a weight decay of 0.1, and gradi-
ent clipping at 1.0. To speed up the training process,
we apply the flash-attention mechanism.

Our experiment is conducted on 16 NVIDIA
H800 GPUs. LLAMA PRO is trained for a total of
15,900 steps. This training process corresponds to
approximately 2830 H800 GPU hours.

We want to highlight that our approach does not
incur higher training costs, and it is worth the extra
resources to achieve a better performance of the
domain specific tasks in the inference.

Training stage cost: Our approach requires
fewer computational resources since only the newly
added blocks are tuned during training. As illus-
trated in Figure 4, LLaMA Pro-8B (1B parameters
tuned for 80B tokens) incurs less training over-
head compared to CodeLLaMA-7B (7B parameters
tuned for 500B tokens). It also uses fewer resources
than training domain-specific models from scratch,
such as StarCoder and CrystalCoder. Despite this,
our method achieves a better balance of general
and domain-specific performance, offering a more
cost-effective solution.

Inference stage cost: Although our method re-
quires more resources during inference than the ini-
tial LLM, it strikes a balance between performance
and efficiency. LLaMA Pro-8B outperforms larger
models like LLaMA2-13B and LLaMA2-34B in
the code domain while demanding significantly
fewer resources during training and inference.

SFT details. During the instruction fine-tuning
phase, we combine five data sources to create
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Figure 4: We compare LLAMA PRO’s general perfor-
mance and code performance to a set of models trained
around the same time, spanning from general LLMs to
code-oriented LLMs. The size of the blobs is propor-
tional to the number of tokens trained. Mistral-7B is not
included here, as the number of tokens is not reported
in its paper.

LLAMA PRO - INSTRUCT as shown in Table 7.
The final sft dataset consists of approximately 1M
samples. To fine-tune the basic models, we employ
specific configurations, including a batch size of
128, a sequence length of 4096, 0.03 warmup ra-
tio, a learning rate of 2e-5, a Cosine learning rate
scheduler, and bf16 mixed precision.

Evaluation details. We conduct a comparative
analysis of LLAMA PRO with the latest state-of-
the-art (SOTA) Large Language Models (LLMs).
The evaluation is performed on six key general
benchmarks using the Eleuther AI Language Model
Evaluation Harness1, a unified framework designed
to test generative language models across a vast
array of evaluation tasks. For code-related tasks,
we employ the BigCode Evaluation Harness2 to
evaluate HumanEval and MBPP, and we report the
pass@1 rate of code tasks with greedy decoding.
The evaluation details can be found in Appendix
D.

4.2 Pretrain Results
We evaluate LLAMA PRO’s performance with
benchmark datasets from the Open LLM Leader-

1https://github.com/EleutherAI/
lm-evaluation-harness

2https://github.com/bigcode-project/
bigcode-evaluation-harness
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Model Language Tasks Math Tasks Code Tasks Avg.
ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K GSM8K-PoT HumanEval MBPP

Pretrained comparison
LLAMA PRO (8B) 54.10 77.94 47.88 39.04 73.95 17.89 25.42 28.66 33.20 44.23
CrystalCoder (7B) 47.01 71.97 48.78 35.91 67.17 10.77 24.96 28.38 36.38 41.26

LLaMA2-7B 53.07 78.59 46.87 38.76 74.03 14.48 17.68 13.05 20.09 39.62

CodeLLaMA-7B 39.93 60.80 31.12 37.82 64.01 5.16 25.20 33.50 41.40 37.66

StarCoder-15B 30.38 47.93 29.96 41.28 56.12 9.48 25.09 33.63 43.28 35.24

LLaMA-7B 50.94 77.81 35.69 34.33 71.43 8.04 10.46 10.61 17.04 35.15

OpenLLaMA-v2-7B 43.69 72.20 41.29 35.54 69.38 3.49 5.46 15.32 12.69 33.23

Falcon-7B 47.87 78.13 27.79 34.26 72.38 4.62 4.32 9.42 13.39 32.46

SFT comparison
LLAMA PRO - INSTRUCT 52.30 76.88 52.57 48.80 72.53 43.59 55.61 44.51 37.88 53.85
LLaMA2-7B-Chat 52.90 78.55 48.32 45.57 71.74 7.35 19.73 14.63 21.60 40.04

CodeLLaMA-7B-Instruct 36.52 55.44 34.54 41.25 64.56 7.96 34.67 34.80 44.4 39.35

WizardCoder-Python-7B 41.81 65.06 32.29 36.32 61.72 4.70 17.60 42.07 47.20 38.75

WizardMath-7B 54.10 79.55 45.97 43.65 72.69 2.73 25.57 12.20 18.00 39.38

Table 1: Comparison of evaluation results among several prominent code and language models.

board. Furthermore, we incorporate coding bench-
mark datasets, including HumanEval pass@1 and
MBPP pass@1, as well as the math benchmark
GSM8K, to provide a comprehensive evaluation.
We compare the performance of LLAMA PRO with
a selection of state-of-the-art pretrained models
that were trained around the same period with sim-
ilar size. This includes general-purpose pretrained
models like LLaMA2 and code-oriented pretrained
models like CodeLLaMA. The results are presented
in Table 1.

The results highlight that LLAMA PRO effec-
tively balances natural language processing and
coding capabilities. It not only preserves the gen-
eral performance of its base model, LLaMA2-7B,
but also surpasses it in the average performance of
general language tasks. Conversely, CodeLLaMA-
7B sacrifices general performance. We attribute
this improvement to our expansion design, which
freezes the initial LLaMA blocks to maintain their
capabilities and increases the blocks to accommo-
date domain-specific knowledge.

As depicted in Figure 4, LLAMA PRO shows
robust general performance alongside code perfor-
mance that is on par with code-oriented LLMs. Sit-
uated on the Pareto frontier, LLAMA PRO has un-
dergone fine-tuning with an additional 80B tokens
in conjunction with LLaMA2, which more than
doubles the code tasks average performance. In
contrast, CodeLLaMA is fine-tuned with 500B to-
kens. LLAMA PRO excels in general performance
while maintaining code performance that is com-
petitive with code-oriented LLMs, whether they are

Model MT Bench

Alpaca-13B 4.53
CodeLLaMA-7B-Instruct 5.71
Vicuna-7B 6.17
LLaMA2-7B-Chat 6.27
LLAMA PRO - INSTRUCT 6.32

Table 2: GPT-4 automatic evaluation of Chatbot models.
LLAMA PRO - INSTRUCT outperforms widely used
LLaMA community chatbots.

trained from scratch, such as StarCoder-15B and
CrystalCoder, or fine-tuned like CodeLLaMA-7B.

4.3 SFT Results

Modern LLMs typically undergo supervised fine-
tuning or instruction tuning after pretraining on
vast amounts of unlabeled data. In this section, we
aim to demonstrate that our expansion strategy can
adapt to this widely used training pipeline, just as
traditional LLMs do.

Table 1 presents a comparison of evaluation
results among several prominent supervised fine-
tuning (SFT) LLMs from the LLaMA community,
across general tasks, math tasks, and code tasks
benchmarks. As a singular SFT model, LLAMA
PRO - INSTRUCT attains state-of-the-art perfor-
mance, even when compared to specifically tuned
models such as WizardCoder and WizardMath.
This demonstrates its more comprehensive capabil-
ities.

As seen in Figure 1, LLAMA PRO - INSTRUCT

boosts both code and math tasks to SOTA perfor-
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Model Interaction Turns Avg.
1 2 3 4 5

AgentLM-7B 0.0 4.44 5.29 6.48 7.34 4.71

CodeLLaMA-7B-Instruct 0.34 7.85 10.24 9.73 8.70 7.37

LLaMA2-7B-Chat 1.02 4.27 6.66 6.48 7.34 5.77

Mistral-Instruct-v0.1 1.54 12.12 13.31 14.16 13.99 11.02

LLAMA PRO - INSTRUCT 0.68 12.63 11.95 11.95 14.68 10.38

Table 3: : In the tool-augmented reasoning assessments,
we evaluate the model’s proficiency in integrating tools
into its reasoning workflow. The model’s effectiveness
is measured by its success rate across various stages of
interaction.

mances while maintaining reliable general perfor-
mance. We enhance the average performance of
LLaMA2-7B-chat and CodeLLaMA-7B-instruct
by 13.81% and 14.50% respectively, which high-
lights the benefits of balancing textual and coding
abilities.

To assess the comprehensive conversational per-
formance of the LLAMA PRO - INSTRUCT assis-
tant, we evaluate it using the MT-Bench with GPT-4
automatic scoring, as proposed by Vicuna (Zheng
et al., 2023). As depicted in Table 2, LLAMA PRO

- INSTRUCT surpasses widely used chatbots from
the LLaMA community. This indicates its potential
as a chatbot capable of providing helpful responses,
in addition to its impressive performance in tradi-
tional benchmarks. The details of MT-Bench can
be found in the Appendix F.

We use MINT-Bench (Wang et al., 2023c) to
evaluate our model’s ability to solve multi-turn in-
teractions by using tools. MINT-Bench tests LLMs’
ability to use tools by generating and executing
Python code, focusing on tool-augmented task-
solving and leveraging natural language feedback.
MINT includes eight datasets covering reasoning,
code generation, and decision-making. The details
of MINT can be found in the Appendix E. The
results are shown in Table ??. LLAMA PRO - IN-
STRUCT achieves SOTA performance compared to
similar size models in multi-turn interactions with
the use of tools.

4.4 Mistral-Pro Results

We experimented with block expansion on Mistral-
7B (Jiang et al., 2023), training it on code and
mathematics datasets. The resulting pretrained per-
formance is detailed in Table 4, highlighting supe-
rior outcomes across various benchmarks, partic-
ularly in the domains of code and math. Notably,
it demonstrates competitive results compared to
the new open-source model Gemma (Team et al.,
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(MoE) expansion, in conjunction with traditional train-
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Figure 6: Token distribution shift after block expan-
sion compared to the initial LLaMA-2-7B. The propor-
tions of unshifted, marginally shifted, and significantly
shifted tokens are color-coded and presented as percent-
ages. Frequently shifted tokens are displayed below.

2024), while incurring significantly lower training
overhead. We further utilized the MetaMath dataset
(Yu et al., 2023) for supervised fine-tuning. Our ap-
proach yielded scores of 78.4 for GSM8k and 30.3
for MATH, surpassing Mistral’s scores of 77.7 and
28.2, respectively. Additional details are provided
in Appendix C.

4.5 Ablation Study

Apart from the aspect of code corpus, we explore
our method on another domain: law, with the
freelaw subset of Pile dataset as our pretrain corpus
(Gao et al., 2020). We evaluate on UNFAIR-ToS
(Lippi et al., 2019) of the LexGLUE benchmark
(Chalkidis et al., 2021).

In our experiment, we assess the scalability of
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Model ARC Hellaswag MMLU TruthfulQA Winogrande GSM8K HumanEval
Gemma-7B 61.9 82.2 64.6 44.8 79.0 50.9 32.3
Mistral-7B 60.8 83.3 62.7 42.6 78.0 39.2 28.7

Mistral-Pro (Ours) 63.2 82.6 60.6 48.3 78.9 50.6 32.9

Table 4: Comparison between the original Mistral-7B (Jiang et al., 2023), Gemma-7B (Team et al., 2024), and our
Mistral-Pro with the Open LLM leaderboard metrics.

Method Language Tasks Law Task Avg.
ARC HellaSwag MMLU TruthfulQA Winogrand Avg. Unfair-ToS

Add 1 Block 52.30 77.92 38.62 37.80 73.16 55.96 67.45 61.71

Add 2 Block 53.16 77.91 39.62 38.92 73.01 56.52 69.57 63.05

Add 4 Block 52.39 76.92 37.30 40.53 72.22 55.87 71.31 63.59

Add 8 Block 52.90 76.63 41.74 39.83 72.38 56.70 75.11 65.91
Add 16 Block 51.88 76.59 41.35 40.13 71.82 56.35 75.17 65.76

Add 32 Block 50.77 76.72 40.68 41.66 72.77 56.52 73.93 65.23

Mixture-of-Expert (MoE) 51.45 76.51 42.47 40.13 72.23 56.56 67.27 61.92

Fine-tuning 48.81 74.49 41.13 41.49 69.14 55.01 70.63 62.82

LoRA 53.50 78.12 44.30 40.96 73.88 58.15 65.34 61.75

Prefix Stacking (8 Block) 27.82 26.12 23.12 22.52 47.20 29.36 0.81 15.08

Suffix Stacking (8 Block) 52.56 77.89 39.10 39.03 72.38 56.19 60.98 58.59

Table 5: Comparison of evaluation results among different training strategies, reporting performance on both general
and law-specific tasks.

our block expansion method in terms of training
loss and downstream task performance as we in-
crease the number of added blocks. We also com-
pare our method with the Mixture-of-Expert (MoE)
expansion method (Fedus et al., 2022) and tradi-
tional training strategies, such as fine-tuning and
LoRA (Hu et al., 2021). The details can be found
in Appendix H.

We analyze the training loss with varying added
blocks (Figure 5). The loss consistently decreases
during training, regardless of the number of added
blocks, and decreases more rapidly with larger
models. These findings indicate that our method
demonstrates strong scalability with larger models
and more data.

However, a lower overall training loss does
not necessarily guarantee superior performance
on domain-specific tasks. Therefore, we evaluate
models of different sizes on both general language
tasks and Unfair-ToS, as shown in Table 5. All the
expanded models effectively preserve the general
capabilities of the initial model. For the domain-
specific task, larger models achieve better perfor-
mance. We find that adding eight blocks provides
optimal performance with minimal cost compared
to larger models, hence we adopt this as our default

strategy. The performance of MoE is comparable
to our method with four added blocks. Figure 9
illustrates the differences between traditional train-
ing strategies such as fine-tuning and LoRA, and
our proposed method. We observe that while LoRA
effectively preserves the general ability, it struggles
to model the distribution of a new domain, as also
evidenced by the training loss depicted in Figure
5. In contrast, full fine-tuning results in a more
significant drop in general performance. Here we
use a rank of 1024 for LoRA, resulting in a number
of trainable parameters comparable to our method.

In line with the approach of Lin et al. (2023), we
analyze the token distribution between the original
LLaMA and LLAMA PRO to assess the similarity
in their behavior when answering general ques-
tions from the Alpaca dataset (Taori et al., 2023).
As depicted in Figure 6, the token distribution shift
between LLaMA and LLAMA PRO is subtle. De-
tailed information can be found in Appendix G.

We also analyze the impact of the position where
the identity blocks are added, either at the bottom
or the top of the model, compared to adding them
interleaved, as shown in Table 5. We observe that
adding blocks at the bottom results in poor eval-
uation performance, likely because it disrupts the

6525



GSM8K MATH HumanEval MBPP
Tasks

0

10

20

30

40

50

60

Sc
or

e
63.61 64.67

19.6 21.2

39

47.56

31.2

41.4

LLaMA2-7B
LLaMA Pro

Figure 7: By fine-tuning both LLaMA2-7B and
LLAMA PRO using the same instruction dataset,
LLAMA PRO consistently outperforms LLaMA2-7B
across all tasks. This result highlights the effectiveness
of our method, as it demonstrates that LLAMA PRO
successfully encodes more domain knowledge during
the pretraining process.

model’s foundation, causing errors to propagate
throughout the model. Adding blocks at the top
of the model (Gong et al., 2019) preserves the ini-
tial model’s performance, but its performance on
domain-specific tasks is lower than when adding
blocks interleaved.

As highlighted in the LIMA study (Zhou et al.,
2023), the majority of knowledge in large language
models is acquired during pretraining, with only a
limited amount of instruction tuning data required
to generate high-quality output. To investigate
the extent of knowledge encoded during pretrain-
ing, we conducted a comparative analysis between
LLaMA2-7B and LLAMA PRO using the same
instruction dataset, as illustrated in Figure 7. Our
results showed that LLAMA PRO consistently out-
performs LLaMA2-7B across all tasks, indicating
that our method effectively enables LLAMA PRO

to encode more domain-specific knowledge during
the pretraining phase.

5 Scope and Limitations

Although our study presents a promising method
for balancing general and domain-specific capabili-
ties in LLMs, its scope is limited to the language
modality, especially programming language and
English. Future research could explore extending
the application of our block expansion method to
other domains, such as maintaining original lan-
guage ability in multimodal large language mod-
els(Ge et al., 2023; Bai et al., 2023), and multi-

lingual domains.

6 Conclusion

In this study, we introduced a novel block
expansion method for Large Language Mod-
els (LLMs) post-pretraining, aiming to enhance
domain-specific abilities while preserving the orig-
inal general capabilities. Our approach effectively
balances the model’s performance across both gen-
eral and domain-specific tasks. We demonstrated
the effectiveness of our method through LLAMA
PRO, an LLM initialized from LLaMA2-7B with 8
added blocks, which outperformed other LLaMA-
series models on comprehensive benchmarks.

7 Ethical Statement

LLAMA PRO and LLAMA PRO - INSTRUCT are
designed for a wide range of NLP tasks, with a
focus on programming, mathematics, and general
language tasks. It suits scenarios requiring integra-
tion of natural and programming languages. While
LLaMA-Pro addresses some limitations of previ-
ous models in the series, it may still encounter
challenges specific to highly specialized domains
or tasks. Users should be aware of potential biases
in the model and use it responsibly, considering its
impact on various applications with the LLaMA-2
license.
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A Gradient Derivation

To calculate the gradient of the RMSNorm weight during backpropagation, we first need to consider the
forward pass equation for the Llama RMSNorm:

RMSNorm(x) =
w ⊙ x√

Var(x) + ϵ
(6)

where x is the input tensor, w is the weight parameter, Var(x) is the variance of x across the last
dimension, and ϵ is a small constant for numerical stability.

Now, let’s consider the chain rule for the gradient of the loss function with respect to the RMSNorm
weight during backpropagation. Denote the loss function as L, and the output of the FFN as y. We have:

∂L

∂w
=

∂L

∂y

∂y

∂w
(7)

To compute the gradient, we need to find the partial derivative ∂y
∂w . From the FFN equation, we have:

y = x′ + FFN(RMSNorm(x′)) (8)

Taking the derivative with respect to w, we get:

∂y

∂w
=

∂FFN(RMSNorm(x′))
∂w

(9)

Now, let’s differentiate the RMSNorm function with respect to w:

∂RMSNorm(x)

∂w
=

x√
Var(x) + ϵ

(10)

Using the chain rule, we can compute the gradient of the loss function with respect to the RMSNorm
weight:

∂L

∂w
=

∂L

∂y

∂FFN(RMSNorm(x′))
∂RMSNorm(x′)

∂RMSNorm(x′)
∂w

(11)

Given that RMSNorm(x′) = t, we need to find the derivative of the FFN with respect to t. Recall the
FFN equation:

FFN(t) = SwiGLU(t,W1,W2)W3 (12)

Now we want to find the partial derivative of the FFN with respect to t. Recall the SwiGLU activation
function:

SwiGLU(t,W1,W2) = SiLU(tW1)⊗ (tW2) (13)

Taking the derivative of the SwiGLU function with respect to t, we get:

∂SwiGLU(t,W1,W2)

∂t
=

(
∂SiLU(tW1)

∂t

)
⊗ (tW2) + SiLU(tW1)⊗

(
∂(tW2)

∂t

)
(14)

Now, recall the SiLU activation function:

SiLU(x) = x⊗ σ(x) (15)

Thus, the gradient of the FFN with respect to t when t = 0 is also zero:

∂FFN(t)

∂t
= 0 (16)

In conclusion, when t = 0, the gradient of the FFN with respect to t is zero, which demonstrates that
the gradient is zero when the input to the FFN is zero.
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Data source Tokens Weight

Proof-Pile-2 55B

1.00
AlgebraicStack 11B
OpenWebMath 15B
ArXiv 29B

The-Stack-Dedup
Python 22B 1.50

Table 6: Pretrain data sources, tokens, and the mixture weights of each component during training.

Datasets Query Source Response Source # Instances N̄rounds L̄prompt L̄completion

ShareGPT User prompts GPT-3.5/GPT-4 63,817 2.9 293.2 1157.1
WizardLM_evol_instruct_V2 GPT-4 GPT-4 143,000 1.0 602.6 1704.9
SlimOrca Human-written GPT-4 517,982 1.0 574.3 599.3
MetaMath Human-written/GPT-4 GPT-4 395,000 1.0 209.4 498.2
Evol-CodeAlpaca GPT-4 GPT-4 111,272 1.0 652.5 1552.0

Table 7: Instruction datasets investigated in this work. We report the average number of rounds (N̄rounds), average
length of prompts (L̄prompt), average length of completion (L̄completion).

B Dataset Details

In this section, we provide detailed information about the dataset used for both pretraining and Supervised
Fine-Tuning (SFT). Table 6 outlines the composition of our pretraining dataset, which comprises approxi-
mately 80 billion tokens from both math and code corpora. The specifics of the SFT data are delineated in
Table 7.

For our proposed LLAMA PRO - INSTRUCT, we employ a blend of multiple instruction datasets
spanning general instruction, math, and code for the SFT process. These sources include ShareGPT3,
which contains real user and ChatGPT chat history records, and the WizardLM evolution instruction
dataset (Xu et al., 2023a), offering a wealth of instruction data with varying complexity levels. We also
incorporate the evolution CodeAlpaca dataset (Luo et al., 2023), which includes complex coding tasks
generated by ChatGPT and their corresponding solutions. Additionally, we use MetaMath (Yu et al.,
2023), which reframes questions from multiple perspectives, and SlimOrca (Lian et al., 2023), a curated
subset of our OpenOrca data. SlimOrca provides an efficient route to achieve performance comparable to
using larger data slices, while only incorporating approximately 500,000 GPT-4 completions.

C Mistal-Pro Details

Mistral-Pro is an advanced version of the original Mistral model (Jiang et al., 2023), enhanced through
the addition of Transformer blocks. This version excels in combining general language understanding
with domain-specific knowledge, particularly in programming and mathematics. It employs the same
methodology for creating additional blocks as LLaMA-Pro but utilizes only 1

10 of LLaMA Pro’s learning
rate, as recommended by MetaMath-Mistral 4. We continued pretraining on code and math datasets,
including the automath subset of Cosmopedia 5, proof-pile-2, and the Python subset of Stack. The
supervised fine-tuning (SFT) approach remains consistent with MetaMath-Mistral, except that we switch
the base model to our Mistral-Pro. The detailed results of GSM8k and MATH can be found in Table 8.

D Evaluation Benchmark

The benchmarks used for evaluation include:
3https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
4https://huggingface.co/spaces/TencentARC/MetaMath-Mistral-Pro
5https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
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Model GSM8k Pass@1 MATH Pass@1

MPT-7B 6.8 3.0
Falcon-7B 6.8 2.3
LLAMA-1-7B 11.0 2.9
LLAMA-2-7B 14.6 2.5
MPT-30B 15.2 3.1
LLAMA-1-13B 17.8 3.9
GPT-Neo-2.7B 19.5 –
Falcon-40B 19.6 2.5
Baichuan-chat-13B 23.9 –
Vicuna-v1.3-13B 27.6 –
LLAMA-2-13B 28.7 3.9
MetaMath-7B 66.5 19.8
MetaMath-13B 72.3 22.4
MetaMath-Mistral-7B 77.7 28.2
MetaMath-Llemma-7B 69.2 30.0
MetaMath-Mistral-Pro 78.4 30.3

Table 8: Performance of various models on GSM8k Pass@1 and MATH Pass@1

• AI2 Reasoning Challenge (Clark et al., 2018) (25-shot): a set of grade-school science questions.

• HellaSwag (10-shot) (Zellers et al., 2019): a test of commonsense inference, which is easy for
humans (approximately 95%) but challenging for SOTA models.

• MMLU (5-shot) (Hendrycks et al., 2020): a test to measure a text model’s multitask accuracy. The
test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.

• TruthfulQA (0-shot) (Lin et al., 2021): a test to measure a model’s propensity to reproduce falsehoods
commonly found online.

• Winogrande (5-shot) (Sakaguchi et al., 2021): an adversarial and difficult Winograd benchmark at
scale, for commonsense reasoning.

• GSM8k (5-shot) (Cobbe et al., 2021): diverse grade school math word problems to measure a model’s
ability to solve multi-step mathematical reasoning problems. Additionally, we assess the models
in the context of the Program of Thought (PoT) setting (Chen et al., 2023a). The PoT setting
utilizes Python code to solve mathematical problems, which serves to evaluate the code generation
capabilities of the models.

• HumanEval (0-shot) (Chen et al., 2021b): 164 handwritten Python programming problems with a
function signature, docstring, body, and several unit tests.

• MBPP (3-shot) (Austin et al., 2021): crowd-sourced Python programming problems, designed to be
solvable by entry-level programmers. Each problem consists of a task description in English, a code
solution and 3 automated test cases.

E MINT-Bench

The MINT-Bench (Wang et al., 2023c) details are provided in this section. MINT-Bench comprises eight
datasets spanning code generation, decision-making, and reasoning tasks, totaling 586 instances, as shown
in Table 9.

We use the Success Rate (SR) as our evaluation metric, which measures the percentage of successful
task instances. For an interaction limit of k, MINT-Bench starts from scratch and allows each LLM to
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Task Type Task Name # Instances

Code Generation HumanEval (Chen et al., 2021b) 45
MBPP (Austin et al., 2021) 91

Decision Making ALFWorld (Shridhar et al., 2020) 134

Reasoning

GSM8K (Cobbe et al., 2021) 48
HotpotQA (Yang et al., 2018) 43
MATH (Hendrycks et al., 2021) 100
MMLU (Hendrycks et al., 2020) 76
TheoremQA (Chen et al., 2023b) 49

Total 586

Table 9: Dataset statistics of MINT-Bench.

Model Code Generation Decision Making Reasoning Micro Avg.

AgentLM-7B 1.47 9.70 8.86 7.34

CodeLLaMA-7B-Instruct 2.21 17.16 7.91 8.70

LLaMA2-7B-Chat 0.00 0.00 13.61 7.34

Mistral-Instruct-v0.1 6.62 34.33 8.54 13.99

LLAMA PRO - INSTRUCT 11.76 29.10 9.81 14.68

Table 10: The success rates of each model evaluated on different task type benchmarks, as well as the micro average
when k = 5.

interact up to the k-th turn, measuring the corresponding SRk. Unless specified otherwise, MINT-Bench
limits k ∈ [1, 5], where k = 1 indicates no interaction, and k = 5 maximizes interaction turns within the
context window (4,096 tokens) of most modern LLMs.

In each turn, the LLM is instructed to perform the following steps: (1) Optionally express its reasoning
process (referred to as "Thought," similar to (Yao et al., 2022)); (2) Either interact with tools by generating
Python code and executing it through a Python interpreter (referred to as "Execute"), or propose a solution
to the user (referred to as "Propose Solution").

Table 10 displays the success rate for each model evaluated on various task type benchmarks, as well as
the micro average when k = 5. The LLAMA PRO - INSTRUCT model demonstrates robust performance
across all task types compared to other models of similar size. Figure 8 provides a case study to compare
LLAMA PRO - INSTRUCT and LLaMA2-7B-Chat where LLAMA PRO - INSTRUCT successfully utilizes
Python program to solve the given question in the multi-round interaction.

F MT-Bench

MT-bench is a collection of demanding multi-turn open-ended questions designed for evaluating chat
assistants. In order to automate the evaluation process, we employ powerful LLMs, such as GPT-4, to act
as judges and assess the quality of the models’ responses. We present the detailed pairwise comparison in
the Figure 10 and Figure 11. Figure 12 shows the case study of the comparison between LLAMA PRO -
INSTRUCT and LLaMA2-7B-Chat.

G Token Distribution

We assess the token distribution between LLaMA-2-7B and LLAMA PRO, employing the methodology
proposed by Lin et al. (2023). Specifically, for a given user query q = {q1, q2, ...}, we input it into
LLAMA PRO to obtain its output o = {o1, o2, ...} using greedy decoding. For each position t, we define a
context at this position as xt = q + {o1, ..., ot−1}. We denote the aligned model’s probability distribution
for predicting the next token at this position as Palign, where ot has the highest probability.

By passing the context xt into the base model LLaMA-2-7B, we generate another probability distribu-
tion, Pbase, for sampling the next token at this position. First, the aligned model with greedy decoding is
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Questions:  Maria invited 4 of her friends over for a water balloon fight in the backyard. At the start of the game, Maria gave each of her friends 2 water balloons. She had one 
water balloon for herself.  Then her mom came out and gave each person 3 more balloons.  How many total balloons did the girls have? Solution output format: an integer.

LLaMA Pro- Instruct: LLaMA2-7B-Chat: 

Observation:  Out[1]: 9. 
You have 4 steps left and 2 chances to propose 
solution left.

Thought:  Let's first determine the initial number of 
balloons Maria and her friends had.
Execute:  
Maria_balloons = 1
friends_balloons = 4 * 2
total_balloons = Maria_balloons + friends_balloons
print(total_balloons)

Observation:  Out[2]: 24. 
You have 3 steps left and 2 chances to propose 
solution left.

Thought:  Let's now add the additional balloons 
given by Maria's mom.
Execute:  
additional_balloons = 3 * 5
total_balloons = total_balloons + additional_balloons
print(total_balloons)

Interaction Turn # 2

Propose solution:  The answer is 24.

Interaction Turn # 3

Good job! You have successfully solved the task! 
[stop interaction]

Thought:  Great, let's solve this problem together! To start, we know that Maria had 2 water balloons 
initially, and her mom gave each person 3 more balloons. So, the total number of balloons Maria's friends 
had after the mom's gift is: 2 + 3(4) = 2 + 12 = 14Therefore, the total number of balloons the girls had was 
14. Now it's your turn! Please provide the next task or question, and I'll be happy to help you solve it. 

Interaction Turn # 2

Interaction Turn # 1 Interaction Turn # 1

Thought:  Ah, my apologies! Thank you for pointing that out. To answer the question, the total number of 
balloons the girls had was 14. So, the solution is <solution> 14 </solution>. Now, please provide the next 
task or question, and I'll be happy to help you with it!

Observation:  Your answer is wrong. You have 3 steps left and 1 chances to propose solution left.

Propose solution:  The answer is 14.

Interaction Turn # 3

Thought:  Oh, I see! Thank you for letting me know. I apologize for my mistake earlier. To solve the problem, 
we need to find the total number of balloons the girls had after Maria's mom gave each person 3 more 
balloons. So, the total number of balloons the girls had is:2 + 3(4) = 2 + 12 = 14
Therefore, the answer is <solution> 14 </solution>.

Propose solution:  The answer is 14.

Your answer is wrong! [stop interaction] 

Observation:  I don't understand your input. If you want to execute code, please use 
<execute> YOUR_CODE_HERE </execute>.
If you want to give me an answer, please use <solution> YOUR_SOLUTION_HERE </solution>. For example: 
The answer to the question is <solution> 42 </solution>.
You have 4 steps left and 2 chances to propose solution left.

Figure 8: A case study of multi-turn interactions by using tools and environment feedback to solve math questions
with LLAMA PRO - INSTRUCT and LLaMA2-7B-Chat.

(a) Fully Fine-tuning (b) LoRA-tuning (c) Block-Expansion 
(LLaMAPro)

Input Tokens

Output Tokens

Decoder Block 🔥

Decoder Block ❄ ×M
×N

×P

Input Tokens

Output Tokens

Decoder Block ×M ×N🔥

Input Tokens

Output Tokens

Decoder Block ×M ×N

Identical
Copy

🔥 ❄

LoRA

Figure 9: The difference of three training strategies, fully fine-tuning, LoRA, and our proposed block expansion.

used to generate a full output o. For each position t, tokens are ranked according to their probability Pbase
as predicted by the base model. The rank of ot in this sorted list is defined as the ’base rank’, denoted as η.
This categorizes positions into three types: (1) unshifted positions (η = 1): ot is the top-ranked token
in both Pbase and Palign, having the highest probability; (2) marginal positions (1 < η ≤ 3): although
ot is not the top-ranked token in Pbase, it is still likely to be sampled for decoding, with the 2nd or 3rd
highest probability; (3) shifted positions (η > 3): in this case, ot is rather unlikely to be sampled by Pbase,
indicating a significant distribution shift from Pbase to Palign.

We conduct a perplexity evaluation of LLaMA-2-7B and LLAMA PRO across general and code corpora.
For the general domain, we utilize two different versions of the LAMBADA dataset. For the code domain,
we use the Python split of the bigcode/the-stack-smol-xs dataset6. The results, presented in Table 11,
indicate that LLAMA PRO effectively retains the language modeling ability for the general corpus while
enhancing its proficiency in the code domain.

6https://huggingface.co/datasets/bigcode/the-stack-smol-xs
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0% 20% 40% 60% 80% 100%

LLaMA2-7B-Chat

CodeLlama-7b-Instruct-hf

WizardCoder-Python-7B-V1.0

23.3%

26.7%

43.3%

71.7%

63.3%

43.3%

5.0%

10.0%

13.3%

LLaMA Pro-Instruct Wins Tie LLaMA Pro-Instruct Loses

Figure 10: MT-Bench pairwise comparison between LLAMA PRO - INSTRUCT and widely used LLaMA community
models in math and code questions.

0% 20% 40% 60% 80% 100%

LLaMA2-7B-Chat

CodeLlama-7b-Instruct-hf

WizardCoder-Python-7B-V1.0

21.9%

35.0%

61.9%

46.9%

42.5%

28.8%

31.2%

22.5%

9.3%

LLaMA Pro-Instruct Wins Tie LLaMA Pro-Instruct Loses

Figure 11: MT-Bench pairwise comparison between LLAMA PRO - INSTRUCT and widely used LLaMA community
models in comprehensive questions.

H Domain of Law

Table 12 shows the hyper-parameters we use to do the ablation study in the domain of law. We use the
freelaw subset of Pile dataset as our pretrain corpus (Gao et al., 2020) in the domain of law. This subset
has 51.2 GiB raw size and 16.7B tokens with 3.6M documents.

The Unfair-ToS dataset, which we use to evaluate the performance of law, contains Terms of Service
(ToS) from online platforms (e.g., YouTube, Ebay, Facebook, etc.). The dataset has been annotated on the
sentence-level with 8 types of unfair contractual terms (sentences), meaning terms that potentially violate
user rights according to the European consumer law. The UNFAIR-ToS task is a multilabel classification
task. To get model predictions for this task, we categorize it as a multiple-choice question as the method
Cheng et al. (2023) uses. The accuracy of an individual data example is considered true if the model
prediction (i.e., the option with the highest per-token likelihood) belongs to the label(s) set. We evaluate
the Unfair-ToS dataset in a 4-shot scenario just like Cheng et al. (2023).

Figure 9 shows the difference between three training strategies that we use to conduct our ablation
study. For the Mixture-of-Expert (MoE), our implementation is similar to Jiang et al. (2024). We use 2
experts and for each token, both experts will be activated. Specifically, We extend each FFN for all 32
layers, keep the original ‘W3‘ unchanged, learn an additional Linear layer with weights ‘Ŵ3‘, and at the
same time add two new learnable parameters ‘α1, α2‘ , when forward the output of Linear corresponding
to W3, Ŵ3 will be weighted and summed with softmax(α1, α2) and fed into the next block.
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Model General Domain Perplexity Code Domain Perplexity
lambada openai lambada standard stack

LLaMA-2-7B 3.39 4.13 9.46
LLAMA PRO 3.46 4.30 5.25

Table 11: The perplexity of LLaMA and LLAMA PRO evaluated across general domain and code domain.

Hyperparameter Assignment

Batch size 1024
Maximum sequence length 2,048
Maximum learning rate 2e-4
Optimizer Adam
Adam beta weights 0.9, 0.95
Learning rate scheduler cosine
Warmup ratio 0.06
Gradient clipping 1.0

Table 12: Hyper-parameters of pretraining on the domain of law.
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Questions:  Develop a Python program that reads all the text files under a
directory and returns top-5 words with the most number of occurrences.

Follow-up Questions:  Can you parallelize it?

GPT-4 Judgment: 🎉  LLaMA Pro Wins !! 🎉

LLaMA Pro-Instruct’s
response to both question is correct and helpful
. The assistant provides a parallelized version 
of the program using the `ProcessPoolExecutor`      
from the `concurrent.futures` module. The assis
tant also explains how the parallelized version
works, which is helpful for the user.

LLaMA2-7B-chat’s 
response to the first  question is correct . But its 
response to second question is incorrect. The assistant
mentions using the Parallel library to parallelize the
program, but the provided code does not include
any parallelization

LLaMA Pro-Instruct: LLaMA2-7B-Chat: 

LLaMA2-7B-Chat: LLaMA Pro-Instruct: 

Figure 12: Multi-turn dialogues between a user and two Al assistants—LLAMA PRO - INSTRUCT and LLaMA2-
7B-Chat.
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